PUBLISHED AT DAVIS, CALIFORNIA

Volume 40 June 2000 Number 2

A series of administrative publications of the University of California, Davis, California, 95616.

Five issues a year— one in March, one in June, two in July, and one in August.

Periodical postage paid at Davis, California.

POSTMASTER: Send changes of address to Office of the Registrar, General Catalog, University of California One Shields Avenue Davis, CA 95616-8692.

The provisions of this catalog reflect information as of the date of publication. The most current information available to the Office of the Registrar may be found in the Class Schedule and Registration Guide. The provisions of the catalog in this publication are subject to change without notice and do not constitute an irrevocable contract between any student and the University of California. IT IS THE RESPONSIBILITY OF THE INDIVIDUAL STUDENT TO BECOME FAMILIAR WITH THE ANNOUNCEMENTS AND REGULATIONS OF THE UNIVERSITY PRINTED IN THIS CATALOG AND IN THE CLASS SCHEDULE AND REGISTRATION GUIDE.

The University of California, Davis, will provide assistance to the visually impaired regarding the information contained in this catalog. Questions should be directed to the office or department concerned.

Copies of the General Catalog may be purchased from the UC Davis Bookstore, University of California, Davis, 2828 Cowell Blvd., Davis, CA 95616-4902, telephone 530-752-2944.

CREDITS:
Cover design/Adriana Pérez, Editorial/Design, Office of Public Communications
Editorial and production coordination/
 Molly Theodossy, Office of the Registrar
 Barbara Anderson, Editorial/Design, Office of Public Communications
Welcome to UC Davis. We're delighted you've chosen the Davis campus as the place to pursue your academic goals. All of us—faculty, staff and administrators—are committed to helping you toward their successful attainment.

In the time you spend at UC Davis, you will acquire knowledge and skills that will help you shape the rest of your life. You will make lifelong friends and have experiences that will determine the direction of your growth as a human being and as a member of the larger community in which you live. For that to happen there must be a partnership among many individuals working together to ensure the most intellectually stimulating, technologically sophisticated and culturally rich environment. That partnership includes you, the student. Your energy and vision are the catalysts that energize and inspire each of us to help make your time at UC Davis challenging, meaningful—and, yes—fun.

We are very proud of UC Davis. Long renowned for its agricultural and veterinary science programs, in recent years we have attained international stature for our programs in engineering, biological sciences, the humanities and the social sciences. Members of our faculty have won MacArthur genius grants, Pulitzer prizes, Fulbright scholarships and election to the nation's top academies of the arts and sciences. UC Davis is a member of the prestigious Association of American Universities, a select group of 62 institutions of higher learning whose membership is by invitation only. Our alumni have made significant and lasting contributions to society as leaders in government, business, technology, media and the arts. And our students—the cream of California's crop—consistently persist and graduate at among the highest rates of University of California campuses.

UC Davis' character has been built through decades of commitment to a unique core of values and principles. We are using our talents and ingenuity to continue working toward a community that honors our diversity as individuals and reflects our belief in a shared set of values. I'm happy you're about to join our community. Congratulations on becoming an Aggie!

Larry N. Vanderhoef
Chancellor
ADDRESS DIRECTORY

University of California
One Shields Avenue
Davis, California 95616
530-752-1011 (main campus number)
World Wide Web: http://www.ucdavis.edu

Information Services Office
Buehler Alumni and Visitors Center
530-752-8111
(campus tours, maps and information)

Memorial Union Campus Information Desk
530-752-2222

Office of the Chancellor
Mrak Hall
530-752-2065

College of Agricultural and Environmental Sciences
228 Mrak Hall
530-752-0107

College of Engineering
1050 Engineering II
530-752-0553

College of Letters and Science
200 Social Sciences and Humanities Building
530-752-0392

Division of Biological Sciences
202 Life Sciences Addition
530-752-0410

Graduate Studies
250 Mrak Hall
530-752-0650

Graduate School of Management
106 AOB IV
530-752-7399

Graduate School of Management Admissions
115 King Hall
530-752-6477

Graduate Studies Admissions
252 Mrak Hall
530-752-0655

Law:
School of Law Admissions
115 King Hall
530-752-6477

Management:
Graduate School of Management
106 AOB IV
530-752-7399

Medicine:
School of Medicine Admissions
Medical Sciences 1C
530-752-7399

Veterinary Medicine:
Admissions
125 Surge IV
530-752-1383

Office of the Registrar
12 Mrak Hall
530-752-2973
(for registration information, transcripts, the General Catalog)

Financial Aid Office
1110 Dutton Hall
530-752-2390
(undergraduate and graduate loans, grants, employment information)

Undergraduate Scholarship Office
228 Voorhies Hall
530-752-2804

Fellowships and Graduate Scholarships
Graduate Studies
252 Mrak Hall
530-752-7481

Teaching and Research Assistantships
Write to department or group concerned.

ASUCD (Associated Students UCD)
Basement, South Hall
530-752-1990

Disability Resource Center
160 South Silo
530-752-3184 (voice), 530-752-6833 (telephone device for the speech and hearing impaired)

Student Health Service
54A Cowell Student Health Center
530-752-2300

Housing
Residence Halls:
Student Housing Office
530-752-2033

Student Family Housing
Orchard Park/Solano Park
530-752-4000

Undergraduate:
Undergraduate Admissions and Outreach Services
178 Mrak Hall
530-752-2971

EOP Office of Admissions
175 Mrak Hall
530-752-2993

Graduate:
Graduate Studies Admissions
252 Mrak Hall
530-752-0655

Law:
School of Law Admissions
115 King Hall
530-752-6477

Management:
Graduate School of Management
106 AOB 4
530-752-7399

Medicine:
School of Medicine Admissions
Medical Sciences 1C
530-752-7399

Veterinary Medicine:
Admissions
125 Surge IV
530-752-1383

Office of the Registrar
12 Mrak Hall
530-752-2973
(for registration information, transcripts, the General Catalog)

Financial Aid Office
1110 Dutton Hall
530-752-2390
(undergraduate and graduate loans, grants, employment information)

Undergraduate Scholarship Office
228 Voorhies Hall
530-752-2804

Fellowships and Graduate Scholarships
Graduate Studies
252 Mrak Hall
530-752-7481

Teaching and Research Assistantships
Write to department or group concerned.

ASUCD (Associated Students UCD)
Basement, South Hall
530-752-1990

Disability Resource Center
160 South Silo
530-752-3184 (voice), 530-752-6833 (telephone device for the speech and hearing impaired)

Student Health Service
54A Cowell Student Health Center
530-752-2300

Housing
Residence Halls:
Student Housing Office
530-752-2033

Student Family Housing
Orchard Park/Solano Park
530-752-4000

Undergraduate:
Undergraduate Admissions and Outreach Services
178 Mrak Hall
530-752-2971

EOP Office of Admissions
175 Mrak Hall
530-752-2993

Graduate:
Graduate Studies Admissions
252 Mrak Hall
530-752-0655

Law:
School of Law Admissions
115 King Hall
530-752-6477

Management:
Graduate School of Management
106 AOB 4
530-752-7399

Medicine:
School of Medicine Admissions
Medical Sciences 1C
530-752-7399

Veterinary Medicine:
Admissions
125 Surge IV
530-752-1383

Office of the Registrar
12 Mrak Hall
530-752-2973
(for registration information, transcripts, the General Catalog)

Financial Aid Office
1110 Dutton Hall
530-752-2390
(undergraduate and graduate loans, grants, employment information)

Undergraduate Scholarship Office
228 Voorhies Hall
530-752-2804

Fellowships and Graduate Scholarships
Graduate Studies
252 Mrak Hall
530-752-7481

Teaching and Research Assistantships
Write to department or group concerned.

ASUCD (Associated Students UCD)
Basement, South Hall
530-752-1990

Disability Resource Center
160 South Silo
530-752-3184 (voice), 530-752-6833 (telephone device for the speech and hearing impaired)

Student Health Service
54A Cowell Student Health Center
530-752-2300

Housing
Residence Halls:
Student Housing Office
530-752-2033

Student Family Housing
Orchard Park/Solano Park
530-752-4000

Undergraduate:
Undergraduate Admissions and Outreach Services
178 Mrak Hall
530-752-2971

EOP Office of Admissions
175 Mrak Hall
530-752-2993

Graduate:
Graduate Studies Admissions
252 Mrak Hall
530-752-0655

Law:
School of Law Admissions
115 King Hall
530-752-6477

Management:
Graduate School of Management
106 AOB 4
530-752-7399

Medicine:
School of Medicine Admissions
Medical Sciences 1C
530-752-7399

Veterinary Medicine:
Admissions
125 Surge IV
530-752-1383

Office of the Registrar
12 Mrak Hall
530-752-2973
(for registration information, transcripts, the General Catalog)

Financial Aid Office
1110 Dutton Hall
530-752-2390
(undergraduate and graduate loans, grants, employment information)

Undergraduate Scholarship Office
228 Voorhies Hall
530-752-2804

Fellowships and Graduate Scholarships
Graduate Studies
252 Mrak Hall
530-752-7481

Teaching and Research Assistantships
Write to department or group concerned.

ASUCD (Associated Students UCD)
Basement, South Hall
530-752-1990

Disability Resource Center
160 South Silo
530-752-3184 (voice), 530-752-6833 (telephone device for the speech and hearing impaired)

Student Health Service
54A Cowell Student Health Center
530-752-2300

Housing
Residence Halls:
Student Housing Office
530-752-2033

Student Family Housing
Orchard Park/Solano Park
530-752-4000
DEGREES OFFERED BY UC DAVIS

Undergraduate majors are administered by the colleges of Agricultural and Environmental Sciences (A&ES), Letters and Science (L&S) and Engineering. Professional studies are administered by the schools indicated. All graduate programs are administered by Graduate Studies. The list below indicates the major or discipline, the degree(s) offered and the school or college offering the major.

* = closed to new students, † = graduate degree offered under Engineering

<p>| Administration | M.B.A.Graduate School of Management |
| Aeronautical Science and Engineering | B.S.†Engineering |
| African American and African Studies | A.B.L&S |
| Agricultural and Environmental Chemistry | M.S., Ph.D. |
| Agricultural and Resource Economics | M.S., Ph.D. |
| Agricultural Education Credential | |
| Agricultural Systems and Environment | B.S.A&ES |
| American Studies | A.B.L&S |
| Animal Behavior Ph.D. | |
| Animal Biology | B.S.A&ES |
| Animal Science B.S., M.A.M., M.S.A&ES |
| Animal Science and Management | B.S.A&ES |
| Anthropology A.B. or B.S., M.A., Ph.D.L&S |
| Applied Mathematics | M.S., Ph.D. |
| Applied Physics | B.S.L&S |
| Art | M.F.A. |
| Art History | A.B.L&S |
| Art Studio | A.B.L&S |
| Atmospheric Science | B.S., M.S., Ph.D.A&ES |
| Avian Sciences | B.S., M.S.A&ES |
| Asian American Studies A.B.L&S |
| Biochemistry | B.S.A&ES or L&S |
| Biochemistry and Molecular Biology | M.S., Ph.D. |
| Biological and Agricultural Engineering | M.S., M.Engr., Ph.D., D.Engr.Engineering |
| Biological Sciences B.S. or B.S.A&ES or L&S |
| Biomedical Engineering | M.S., Ph.D. |
| Biophysics | Ph.D. |
| Biotechnology | B.S.A&ES |
| Cell and Developmental Biology | Ph.D. |
| Cell Biology | B.S.A&ES or L&S |
| Chemical Engineering | B.S., M.S., Ph.D.Engineering |
| Chemical/Biochemical Engineering | B.S.Engineering |
| Chemical Engineering/Materials Science and Engineering | B.S.Engineering |
| Chemistry A.B. or B.S., M.S., Ph.D.L&S |
| Chicana/Chicano (Mexican-American) Studies | A.B.L&S |
| Child Development | M.S. |
| Chinese | A.B.L&S |
| Civil and Environmental Engineering | M.S., M.Engr., Ph.D., D.Engr.Engineering |
| Civil Engineering | B.S.Engineering |
| Civil Engineering/Materials Science and Engineering | B.S.Engineering |
| Classical Civilization | A.B.L&S |
| Clinical Nutrition | B.S.A&ES |
| Communication A.B., M.A.*L&S |
| Community and Regional Development | B.S.A&ES |
| Community Development | M.S. |
| Comparative Literature | A.B., M.A., Ph.D.L&S |
| Comparative Pathology | M.S., Ph.D. |
| Computer Engineering | B.S.†Engineering |
| Computer Science | B.S.L&S |
| Computer Science M.S., Ph.D.Engineering |
| Crop Science and Management | B.S.Engineering |
| Cultural Studies | M.A., Ph.D. |
| Design | B.S.A&ES |
| Dramatic Art A.B., M.F.A., Ph.D.L&S |
| East Asian Studies | A.B.L&S |
| Ecology | M.S., Ph.D. |
| Economics | A.B., M.A., Ph.D.L&S |
| Education M.A., M.Ed.*, Ph.D., Ed.D., credential |
| Electrical Engineering | B.S.†Engineering |
| Electrical Engineering/Materials Science and Engineering | B.S.Engineering |
| Endocrinology | M.S., Ph.D. |
| Engineering M.Engr., M.S., D.Engr., Ph.D. |
| Engineering—Applied Science | M.S., Ph.D. |
| English A.B., M.A., Ph.D.L&S |
| Entomology | B.S., M.S., Ph.D.A&ES |
| Environmental and Resource Sciences | B.S.A&ES |
| Environmental Biology and Management | B.S.A&ES |
| Environmental Horticulture and Urban Forestry | B.S.A&ES |</p>
<table>
<thead>
<tr>
<th>Degree</th>
<th>Major</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.B.</td>
<td>Art</td>
</tr>
<tr>
<td>A.B.</td>
<td>Biology</td>
</tr>
<tr>
<td>A.B.</td>
<td>Chemistry</td>
</tr>
<tr>
<td>A.B.</td>
<td>Civil Engineering</td>
</tr>
<tr>
<td>A.B.</td>
<td>Computer Science</td>
</tr>
<tr>
<td>A.B.</td>
<td>Engineering</td>
</tr>
<tr>
<td>A.B.</td>
<td>Environmental Policy Analysis and Planning</td>
</tr>
<tr>
<td>B.S.</td>
<td>Environmental Toxicology</td>
</tr>
<tr>
<td>A.B.</td>
<td>Epidemiology</td>
</tr>
<tr>
<td>M.S.</td>
<td>Evolution and Ecology</td>
</tr>
<tr>
<td>A.B. or B.S.</td>
<td>Exercise Science</td>
</tr>
<tr>
<td>B.S., M.S.</td>
<td>Family Nurse Practitioner/Physician Assistant</td>
</tr>
<tr>
<td>A.B.</td>
<td>Fiber and Polymer Science</td>
</tr>
<tr>
<td>B.S.</td>
<td>Food Biochemistry</td>
</tr>
<tr>
<td>A.B.</td>
<td>Food Engineering</td>
</tr>
<tr>
<td>B.S.*</td>
<td>Food Science</td>
</tr>
<tr>
<td>B.S., M.S.</td>
<td>Food Science</td>
</tr>
<tr>
<td>A.B., M.A.</td>
<td>French</td>
</tr>
<tr>
<td>B.S., M.S.</td>
<td>Genetics</td>
</tr>
<tr>
<td>A.B., M.A.</td>
<td>Geography</td>
</tr>
<tr>
<td>M.A., Ph.D.</td>
<td>Geography</td>
</tr>
<tr>
<td>A.B. or B.S.</td>
<td>Geology</td>
</tr>
<tr>
<td>A.B.</td>
<td>German</td>
</tr>
<tr>
<td>A.B., M.A.</td>
<td>Greek</td>
</tr>
<tr>
<td>M.A.</td>
<td>History</td>
</tr>
<tr>
<td>M.A.</td>
<td>History of Art</td>
</tr>
<tr>
<td>A.B.</td>
<td>Horticulture & Agronomy</td>
</tr>
<tr>
<td>M.S.</td>
<td>Human Development</td>
</tr>
<tr>
<td>B.S., Ph.D.</td>
<td>Hydrologic Sciences</td>
</tr>
<tr>
<td>M.S., Ph.D.</td>
<td>Hydrology</td>
</tr>
<tr>
<td>B.S.</td>
<td>Immunology</td>
</tr>
<tr>
<td>M.S., Ph.D.</td>
<td>Immunology</td>
</tr>
<tr>
<td>A.B.</td>
<td>Individual Major</td>
</tr>
<tr>
<td>A.B., B.S.</td>
<td>International Agricultural Development</td>
</tr>
<tr>
<td>B.S., M.S.</td>
<td>International Relations</td>
</tr>
<tr>
<td>A.B.</td>
<td>Italian</td>
</tr>
<tr>
<td>A.B.</td>
<td>Japanese</td>
</tr>
<tr>
<td>A.B.</td>
<td>Landscape Architecture</td>
</tr>
<tr>
<td>B.S.</td>
<td>Latin</td>
</tr>
<tr>
<td>A.B.*</td>
<td>Law</td>
</tr>
<tr>
<td>J.D., LL.M.</td>
<td>Linguistics</td>
</tr>
<tr>
<td>A.B., M.A.</td>
<td>Managerial Economics</td>
</tr>
<tr>
<td>B.S.</td>
<td>Materials Science and Engineering</td>
</tr>
<tr>
<td>B.S., M.S.</td>
<td>Mathematics</td>
</tr>
<tr>
<td>A.B.</td>
<td>Mechanical Engineering</td>
</tr>
<tr>
<td>B.S.*</td>
<td>Mechanical Engineering</td>
</tr>
<tr>
<td>A.B. or B.S.</td>
<td>Mechanical Engineering</td>
</tr>
<tr>
<td>B.S., M.S.</td>
<td>Mechanical Engineering</td>
</tr>
<tr>
<td>A.B.</td>
<td>Medical Informatics</td>
</tr>
<tr>
<td>M.S.</td>
<td>Medicine</td>
</tr>
<tr>
<td>M.D.</td>
<td>Medicine</td>
</tr>
<tr>
<td>B.S.</td>
<td>Medieval Studies</td>
</tr>
<tr>
<td>A.B.</td>
<td>Microbiology</td>
</tr>
<tr>
<td>B.A.</td>
<td>Music</td>
</tr>
<tr>
<td>A.B., M.A.</td>
<td>Native American Studies</td>
</tr>
<tr>
<td>A.B.</td>
<td>Nature and Culture</td>
</tr>
<tr>
<td>A.B.</td>
<td>Neurobiology, Physiology and Behavior</td>
</tr>
<tr>
<td>B.S.</td>
<td>Neuroscience</td>
</tr>
<tr>
<td>Ph.D.</td>
<td>Nutrition</td>
</tr>
<tr>
<td>M.S., Ph.D.</td>
<td>Nutrition Science</td>
</tr>
<tr>
<td>B.S.</td>
<td>Optical Science and Engineering</td>
</tr>
<tr>
<td>B.S.</td>
<td>Pharmacology and Toxicology</td>
</tr>
<tr>
<td>M.S., Ph.D.</td>
<td>Philosophy</td>
</tr>
<tr>
<td>A.B., M.A.</td>
<td>Physical Education</td>
</tr>
<tr>
<td>M.A.</td>
<td>Physics</td>
</tr>
<tr>
<td>A.B. or B.S.</td>
<td>Physiology</td>
</tr>
<tr>
<td>M.S., Ph.D.</td>
<td>Plant Biology</td>
</tr>
<tr>
<td>A.B.</td>
<td>Plant Pathology</td>
</tr>
<tr>
<td>M.S., Ph.D.</td>
<td>Plant Protection and Pest Management</td>
</tr>
<tr>
<td>M.S.</td>
<td>Political Science</td>
</tr>
<tr>
<td>A.B., M.A.</td>
<td>Political Science—Public Service</td>
</tr>
<tr>
<td>A.B.</td>
<td>Population Biology</td>
</tr>
<tr>
<td>M.S., Ph.D.</td>
<td>Preventive Veterinary Medicine</td>
</tr>
<tr>
<td>M.P.V.M.</td>
<td>Preventive Veterinary Medicine</td>
</tr>
<tr>
<td>M.D.</td>
<td>Preventive Veterinary Medicine</td>
</tr>
<tr>
<td>B.S.</td>
<td>Psychology</td>
</tr>
<tr>
<td>A.B.</td>
<td>Religious Studies</td>
</tr>
<tr>
<td>A.B.</td>
<td>Rhetoric and Communication</td>
</tr>
<tr>
<td>M.A.*</td>
<td>Russian</td>
</tr>
<tr>
<td>A.B.</td>
<td>Sociology</td>
</tr>
<tr>
<td>M.S., Ph.D.</td>
<td>Sociology—Organizational Studies</td>
</tr>
<tr>
<td>M.S., Ph.D.</td>
<td>Soil Science</td>
</tr>
<tr>
<td>M.S.</td>
<td>Soil and Water Science</td>
</tr>
<tr>
<td>B.S.</td>
<td>Spanish</td>
</tr>
<tr>
<td>A.B., M.A.</td>
<td>Statistics</td>
</tr>
<tr>
<td>M.S.</td>
<td>Textiles</td>
</tr>
<tr>
<td>M.S.</td>
<td>Textiles and Clothing</td>
</tr>
<tr>
<td>B.S.</td>
<td>Textile Arts and Costume Design</td>
</tr>
<tr>
<td>M.F.A.</td>
<td>Transportation Technology and Policy</td>
</tr>
<tr>
<td>M.S., Ph.D.</td>
<td>Veterinary Medicine</td>
</tr>
<tr>
<td>D.V.M.</td>
<td>Veterinary Medicine</td>
</tr>
<tr>
<td>M.S., Ph.D.</td>
<td>Vitiiculture and Enology</td>
</tr>
<tr>
<td>B.S.</td>
<td>Wildlife, Fish and Conservation Biology</td>
</tr>
<tr>
<td>B.S.</td>
<td>Women's Studies</td>
</tr>
<tr>
<td>A.B.</td>
<td>Women's Studies</td>
</tr>
</tbody>
</table>
MINOR PROGRAMS OFFERED BY UC DAVIS

Minor programs are offered by both the College of Agricultural and Environmental Sciences (A&ES) and the College of Letters and Science (L&S). The College of Engineering does not offer any minors. The list below indicates the minor program, the offering department (if the department name is different than the name of the minor) and the college offering the minor.

African American and African Studies, L&S
Aging and Adult Development
(Human & Community Development), A&ES
Agricultural and Managerial Economics
(Agricultural and Resource Economics), A&ES
Agricultural Computing & Information Systems
(Agronomy), A&ES
Agricultural Entomology (Entomology), A&ES
Agricultural Systems and Environment
(Agronomy), A&ES
American Studies, L&S
Animal Science, A&ES
Anthropology, L&S
Apiculture (Entomology), A&ES
Applied Biological Systems Technology
(Biological & Agricultural Engineering), A&ES
Art History, L&S
Art Studio, L&S
Asian American Studies, L&S
Atmospheric Science
(Land, Air and Water Resources), A&ES
Avian Sciences (Avian Sciences), A&ES
Biological Sciences, A&ES or L&S
Chicana/Chicano (Mexican-American) Studies, L&S
Chinese, L&S
Classical Civilization (Classics), L&S
Communication, L&S
Community Development
(Human & Community Development), A&ES
Community Nutrition (Nutrition), A&ES
Comparative Literature, L&S
Computer Science, L&S
Dramatic Art, L&S
East Asian Studies, L&S
Economics, L&S
Economy, Justice and Society, L&S
Education, L&S
Energy Policy (Environmental Science and Policy), A&ES
English, L&S
Entomology, A&ES
Environmental Geology (Geology), L&S
Environmental Horticulture, A&ES
Environmental Policy Analysis
(Environmental Science and Policy), A&ES
Environmental Toxicology, A&ES
Exercise Science, L&S
Fiber and Polymer Science (Textiles and Clothing), A&ES
Film Studies (Humanities), L&S
Food Service Management (Nutrition), A&ES
French, L&S
Fungal Biology and Ecology (Plant Pathology), A&ES
Geographic Information Systems
(Biological & Agricultural Engineering), A&ES
Geographic Studies (Environmental Design), A&ES
Geology, L&S
Geophysics (Geology), L&S
German, L&S
Global and International Studies (Humanities), L&S
Greek (Classics), L&S
History, L&S
History and Philosophy of Science, L&S
Human Development
(Human & Community Development), A&ES
Hydrology
(Land, Air and Water Resources), A&ES
Insect Ecology (Entomology), A&ES
International Agricultural Development
(Human & Community Development), A&ES
Italian, L&S
Japanese (Chinese and Japanese), L&S
Jewish Studies (Humanities), L&S
Landscape Restoration (Environmental Horticulture), A&ES
Latin (Classics), L&S
Linguistics, L&S
Mathematics, L&S
Medical-Veterinary Entomology (Entomology), A&ES
Medieval Studies, L&S
Music, L&S
Native American Studies, L&S
Nature and Culture, L&S
Nematology, A&ES
Nutrition and Food (Nutrition), A&ES
Nutrition Science (Nutrition), A&ES
Philosophy, L&S
Physics, L&S
Plant Biology, A&ES or L&S
Political Science, L&S
Precision Agriculture (Biological and Agricultural Engineering), A&ES
Psychology, L&S
Recreation (Environmental Science and Policy), A&ES
Religious Studies, L&S
Russian, L&S
Science and Society, A&ES
Social and Ethnic Relations (African American Studies, Asian American Studies, Native American Studies, Women and Gender Studies), L&S
Sociology, L&S
Soil Science (Land, Air and Water Resources), A&ES
Spanish, L&S
Statistics, L&S
Textiles and Clothing, A&ES
War-Peace Studies (International Relations), L&S
Women's Studies, L&S
Welcome to UC Davis. Founded as the University Farm amid the fertile fields of the state’s Central Valley, UC Davis has emerged an acknowledged international leader in agricultural, biological, biotechnological and environmental sciences and is gaining similar recognition for excellence in the arts, humanities, social sciences, engineering, health sciences, law and management.

The campus owes much of its strength to its deep traditional roots in agriculture, the impressive diversity of academic programs that emerged from this foundation, a distinguished faculty of scholars and scientists, a treasured sense of community and a dedication to the land-grant values of creative, responsive and innovative teaching, research and public service. One of every 300 Californians is a UC Davis graduate.

The University of California

UC Davis is one of nine campuses of the University of California, which was chartered as a land grant college in 1868 and now constitutes the pre-eminent system of public higher education in the country. (A tenth campus, UC Merced, is scheduled to open as early as 2004.) Together, the campuses have an enrollment of more than 173,000 students, 90 percent of them California residents. Some 150 laboratories, extension centers, research and field stations strengthen teaching and research while providing public service to California and the nation. The collections of the more than 100 UC campus libraries are surpassed in size in the United States only by that of the Library of Congress.

A place for learning

Providing a rich and challenging learning experience for undergraduate and graduate students is critical to UC Davis’ mission and is a cherished commitment and hallmark of the campus. Several programs support this aim, including a $30,000 prize awarded to a faculty member each year by the UC Davis Foundation in recognition of outstanding undergraduate teaching and scholarly achievement, and a campuswide Davis Honors Challenge program through which students elect special courses and have closer contact with faculty.

UC Davis undergraduates persist and graduate at among the highest rates of UC campuses. Law school graduates rank among the top three of 60 law schools in California in their passage rate of the state bar examination.

UC Davis offers more than 100 undergraduate majors and 70 graduate programs in the College of Agricultural and Environmental Sciences, the College of Engineering and the College of Letters and Science. The campus’s Division of Biological Sciences draws students and faculty from across the campus. UC Davis’ four professional schools—the School of Law, the Graduate School of Management, the School of Medicine and the School of Veterinary Medicine—is a combination unique within the University of California system.

A place for discovery

Research is an integral part of teaching at UC Davis. Faculty members share their research findings in the classroom, and students learn firsthand about discovery while working with professors in the laboratory and field. A number of undergraduate research programs offer students the opportunity to work on a research project in a faculty laboratory, in some cases as early as their freshman year.

Research at UC Davis supports California’s economic, intellectual and social development. The campus’s varied research programs explore and seek solutions to
problems in agriculture, resource management, the environment, health, medicine, engineering, business, the economy and public policy. UC Davis scholars also explore the intellectual frontiers of the physical, biological and social sciences, the humanities and the arts.

U.S. News & World Report ranks UC Davis among the top 12 public universities nationally, and the campus is among a select group admitted into the prestigious Association of American Universities. Membership in this group of 62 institutions of higher learning is by invitation only.

The campus's reputation has attracted a distinguished faculty of scholars and scientists in all fields. UC Davis faculty rank 16th in quality among comprehensive public universities nationwide, according to a multi-year study of U.S. doctoral programs reported in 1995 by the National Research Council. That same study placed four of UC Davis' graduate programs in the top 20 nationwide in terms of faculty quality; graduate programs in ecology, evolution and behavior ranked fifth in the nation.

UC Davis stands 24th in research funding among universities in the United States, according to the most recent statistics from the National Science Foundation.

Life on campus
Teaching and research provide students with the academic side of their education, and campus life balances the books. Students enjoy a wide range of offerings, including sports, internships, outdoor activities, student government, clubs and creative arts programs.

Intercollegiate athletic teams participate in the National Collegiate Athletic Association, with most competing at the Division II level. Eleven men's and 12 women's sports are offered. In 1999 Sports Illustrated named UC Davis the top Division II school for women athletes. More than 30 club sports, organized by students, compete against other area colleges and amateur clubs, or are recreational and focus on skill development and social interaction. Intramural sports annually draw more than 13,000 students for 68 men's, women's and coed activities.

Each year nearly 5,500 students interested in gaining work experiences participate in internships locally, nationally and globally through the campus's Internship and Career Center, among the largest campuswide academic internship programs in the country. The campus's UC Davis Washington Center, based in the nation's capital, offers government-related internships and makes possible satellite-assisted communication between classrooms and the center. UC Davis is known for its student-run facilities—the Coffee House, radio station KDVS and Unitrans provide paid employment and real-world experience to hundreds of students each year.

Life in Davis
Davis' proximity to Sacramento, the state capital, and the San Francisco Bay Area makes it easy to take advantage of big-city attractions while enjoying the security and friendliness of a small-town environment. Known as environmentally aware and socially innovative, Davis boasts more than 50 miles of bicycle paths and more bicycles per capita than any other city in the nation. Residents are active—in local, national and international political causes, in sports, in the arts and in community organizations. Quality of life is a high priority in this community of more than 58,000 residents. Many citizen committees advise the city council on issues such as quality of child care and natural resources conservation. With students constituting about half the city's population, Davis is one of the state's few remaining "college towns."

"My greatest reward is the success of my students. It's knowing they have a wonderful job or they're studying at a great graduate school. It's the final product that's the main thrill."
—Péter Lindert, professor of economics and recipient of the 1999 UC Davis Prize for Undergraduate Teaching and Scholarly Achievement

Visiting the Campus
Visitor Services Office
Buehler Alumni and Visitors Center
530-752-8111

You are welcome to pay us a visit. Weekend tours depart from the Buehler Alumni and Visitors Center at 11:30 a.m. No appointment is necessary. For weekday individual or group campus tours, contact the Visitor Services Office at least one week in advance. You may also visit our Virtual Tour Web site at http://vtour.ucdavis.edu. If you have questions about application procedures or entrance requirements, write or visit Undergraduate Admissions and Outreach Services in Mrak Hall.

Introduction
The University of California, Davis, is first and foremost an institution of learning and teaching, committed to serving the needs of society. Our campus community reflects and is a part of a society comprising all races, creeds, and social circumstances. The successful conduct of the University's affairs requires that every member of the University community acknowledge and practice the following basic principles:

We affirm the dignity inherent in all of us, and we strive to maintain a climate of justice marked by respect for each other. We acknowledge that our society carries within it historical and deep-rooted misunderstandings and biases, and therefore we will endeavor to foster mutual understanding among the many parts of our whole.

We affirm the right of freedom of expression within our community and also affirm our commitment to the highest standards of civility and decency towards all. We recognize the right of every individual to think and speak as dictated by personal belief, to express any idea, and to disagree with or counter another's point of view, limited only by University regulations governing time, place, and manner. We promote open expression of our individuality and our diversity within the bounds of courtesy, sensitivity, and respect.

We confront and reject all manifestations of discrimination, including those based on race, ethnicity, gender, age, disability, sexual orientation, religious or political beliefs, status within or outside the University, or any of the other differences among people which have been excuses for misunderstanding, dissension, or hatred. We recognize and cherish the richness contributed to our lives by our diversity. We take pride in our various achievements, and we celebrate our differences.

We recognize that each of us has an obligation to the community of which we have chosen to be a part. We will strive to build a true community of spirit and purpose based on mutual respect and caring.
The College of Agricultural and Environmental Sciences

The College of Agricultural and Environmental Sciences offers a diverse program of majors and courses and is committed to education that emphasizes a spirit of discovery. Based on the premise that tomorrow’s citizens will need to anticipate, understand and solve emerging societal problems and contribute to the discovery and application of new knowledge, the college fosters:

- critical thinking and an appreciation for diversity in thought and approaches to problem solving
- an ethos of lifelong learning—of teaching oneself and others while confronting challenges and solving problems
- an ability to move beyond either/or thinking and to pursue innovative and integrative understanding of the agricultural sciences, environmental sciences, and human sciences.
- intellectual skills that prepare individuals to secure a life-affirming physical and cultural environment based on sound, respectful management of resources
- a commitment to serve the public with informed and open-minded dedication to understanding, critiquing and addressing complex societal needs and interests

The college is proud of its rich agricultural history. From this foundation, it has expanded its educational offerings to encompass programs that highlight interconnections among the environment, plant and animal sciences, biological sciences, and human sciences. Through a wide array of major programs, the college prepares high-potential students for advanced studies in diverse disciplines and leadership in such arenas as public policy; research and development; managerial and natural resource economics; agricultural systems; environmental protection, safety and design; human nutrition, health and development; and the food, fiber, textile and apparel industries.

Undergraduate students enjoy early contact with faculty advisers, graduate students and postgraduate researchers, enriching and broadening the educational experience of all.

Several levels of academic advising are available that are designed to enhance your undergraduate experience. Advisers help you plan your courses, meet degree requirements and take maximum advantage of the resources available at UC Davis. You are encouraged to meet regularly with your assigned faculty adviser and with the Advising Associates and departmental peer advisers. Through a shared commitment to education for service to society, college faculty, staff and students work together to improve the relationship between humanity and the natural world.

The College of Engineering

The College of Engineering is among the largest undergraduate engineering colleges in the University of California system, with an undergraduate enrollment of approximately 2,700 and graduate enrollment of 700. The college offers both a friendly atmosphere and the varied academic programs in basic sciences and engineering that have made UC Davis engineering graduates highly valued in private practice and research. The college has seven departments and one division; each has outstanding programs of instruction.

The college integrates teaching, research and service to society with our proud tradition as a land-grant research university, and provides highly qualified students with a firm intellectual and professional foundation, enhanced by an environment of discovery.

With a long-standing commitment to undergraduate students, we provide strong engineering programs that balance scientific principles with practical applications in engineering design. These programs prepare students for entry into both engineering practice and graduate-level research. We challenge our undergraduates to collaborate and communicate effectively as they begin the process of life-long professional growth.

We challenge our graduate students to join with our faculty and staff in advancing the understanding of a broad spectrum of modern technology. We are committed to being one of the world’s leading engineering research centers, while contributing to our country’s technological leadership and to the benefit of all people.

We are committed to maintain our vision of the college in regular consultation with our students and their families, our alumni and our many partners in academia, industry and government.

- The Department of Applied Science instructs students in broad areas of scientific technology and offers an innovative program for undergraduates in optical science and engineering that prepares students to work in areas such as opto-electronics, lasers and opto-communications.
- The Department of Biological and Agricultural Engineering combines study in engineering with instruction in the biological processes used to solve challenging environmental and technical problems.
- The Division of Biomedical Engineering educates graduate students in a highly interdisciplinary combination of the biological sciences and engineering as this combination applies to medicine.
- The Department of Chemical Engineering and Materials Science offers curricula integrating knowledge of chemistry, biological sciences or materials science and engineering that enable students to solve problems in both current and future manufacturing technologies or to analyze the structure, properties and behavior of materials.
• The Department of Civil and Environmental Engineering educates students to plan and design systems that have a direct impact on health and human productivity and on the quality of human life.
• The Department of Computer Science offers programs in all aspects of design and use of computer hardware and software systems. The department also plays a significant service role for programs throughout the campus.
• The Department of Electrical and Computer Engineering offers programs in research and education crucial for the continued success of high technology industries in California and the nation, preparing students to design, analyze and use electronic and computer systems effectively.
• The Department of Mechanical and Aeronautical Engineering educates students in the design and manufacture of complex engineering systems for transport, industry or energy and to design, manufacture and operate aircraft and aeronautical structures.

Every effort has been made to provide engineering students with the maximum flexibility consistent with rigorous professional education standards. The key to flexibility is academic advising. You are strongly encouraged to attend the Summer Advising and Orientation Program, held the summer before your first quarter on campus. Summer Advising sessions can provide you with the information you need to make your academic experience rewarding and effective. As an incoming student, you will be given the name and office hours of your departmental staff adviser; you should arrange an appointment with your adviser as soon as you arrive on campus. A well-developed peer advising system supplements the departmental advisers.

Undergraduate education in engineering at UC Davis serves as a sound basis for beginning professional practice in engineering design and development, as a preparation for careers in corporate or governmental operations, or as a foundation for graduate study. To these ends, the college emphasizes fundamental sciences to give students the maximum postgraduate flexibility. Technological developments in recent years have made it clear that engineering education must be based on fundamentals or rapidly become obsolete.

Engineers will continue to face new challenges as society demands improvements in the quality of life and as our state and nation demand greater participation by engineers in efforts toward competitiveness in a global market. As part of a land-grant institution, the College of Engineering must help maintain the technological leadership long enjoyed by the United States, while advancing technology for the benefit of all.
Graduate students at UC Davis have the opportunity to work with and learn from accomplished faculty, recognized for their contributions to research in their fields. The Office of Graduate Studies oversees more than 70 graduate programs leading to master’s or doctoral degrees, which together enroll more than 2,800 graduate students. Many of Graduate Studies’ programs are offered through graduate groups, an interdisciplinary concept that allows students to study and work in interrelated areas to broaden their intellectual experiences. See the Graduate Studies chapter.

Professional Study

UC Davis has three professional schools—the School of Law (J.D.), the School of Medicine (M.D.) and the School of Veterinary Medicine (D.V.M., M.P.V.M.)—and the Graduate School of Management offers the M.B.A. degree. These schools and programs are described in later chapters.

Academic Resources

The University Library

530-752-6561; http://www.lib.ucdavis.edu

The General Library at UC Davis is one of the premier research libraries in North America. In addition to Peter J. Shields Library, there are four other General Library facilities: the Physical Sciences and Engineering Library, the Loren D. Carlson Health Sciences Library, the Agricultural and Resource Economics Library and the Medical Center Library in Sacramento. The combined collections of the various General Library facilities total more than 2.75 million volumes, and more than 39,000 periodical and journal titles are received annually. An extensive variety of government documents, maps, microfilms and CD-ROMs are also part of the collection.

Shields Library houses the collections in the humanities, arts, social sciences, biological sciences, agricultural sciences, mathematics and computer science. The Physical Sciences and Engineering Library collections support teaching and research in engineering, chemistry, geology and physics. The Carlson Health Sciences Library serves the Schools of Medicine and Veterinary Medicine. The library at the UC Davis Medical Center provides a clinical collection of more than 31,900 volumes. A law library, administered by the School of Law, is located in King Hall.

The California Digital Library (CDL) hosted databases, including the MELVYL online catalog, can be used to access the collections of UC Davis and the other eight UC campuses. The CDL databases and MELVYL can be searched in the libraries, at campus computer laboratories, and remotely with a modem and on the Internet. The libraries also offer access to databases and numerous other electronic resources including electronic journals available through California Digital Library. Terminals with Internet access are available for patron use in all of our facilities.

Information about library services, new full text electronic databases, and important subject-specific World Wide Web sites are available at the library’s Web site. The library provides free classes on the use of MELVYL as well as subject specific electronic journals and databases. Librarians are also available for consultation on resources for research projects and dissertations.

UC Davis Arboretum

Arboretum Headquarters
530-752-4880; http://arboretum.ucdavis.edu

The 95-acre UC Davis Arboretum, located along Putah Creek’s historic north fork, maintains a documented collection of more than 4,000 different kinds of trees, shrubs and perennials for use in teaching and research. Outstanding plant collections include the Shields Oak Grove, the Mary Wattis Brown Garden of California native plants, the Ruth Storer Garden of flowering perennials and small shrubs, and the T. Elliot Weier Redwood Grove. Under construction in 2000, the Home Demonstration Garden will promote sustainable and environmentally appropriate garden practices. Internships are available in nursery management, landscape design and maintenance, environmental education, conservation biology, Integrated Pest Management (IPM) and Geographic Information Systems (GIS).

Information Technology

IT Express
182 Shields Library
530-754-HELP (754-4357); ithelp@ucdavis.edu
http://itexpress.ucdavis.edu

The Division of Information Technology (IT) provides computing, communications media and publishing services in support of research and instruction. IT Express, the campus access point for computing information, offers help activating your campus e-mail account, consultation on various technologies, and copy services. Other services available through IT include the Bovine Online Internet software package, online technology training materials and multimedia labs to access media production and editing equipment. Computer classrooms provide access to the Internet and a range of software programs in use in UC Davis courses. Classrooms are available on a drop-in basis when not being used for instruction. Students living in residence halls can connect directly to the UC Davis network using ResNet. Students living off campus need a modem to access the Internet.

Information about IT’s many services, including computer classroom locations and hours, IT Express hours, and the Student Computing Guide, is available at IT’s extensive Web site (http://it.ucdavis.edu).

Computer Hardware and Software Needs. In Fall 2001, every entering undergraduate student will be expected to own a computer that meets certain minimum performance standards and that can connect effectively to the Internet. Every student should have ready access to these essential new technologies, and faculty should be able to count on students having the computing hardware, software and connectivity required for using class materials and other instructional resources on the UC Davis intranet and the World Wide Web. In fact, students who do not have ready access to a com-
Introduction

I

ntroduction

puter, whenever they want to study, will soon be at a significant disadvantage.

Rather than require a specific system, the campus is stating its expectation in terms of a minimum set of functional requirements that computers must meet to be used effectively in the student’s education at UC Davis. A panel composed of faculty, students, administrators and staff has concluded that students should have a computer that will run a word processing program, a spreadsheet program, an electronic mail program and a World Wide Web browser and be equipped with a CD-ROM. A printer is also recommended. Equipment feature suggestions for desktop and laptop computers are available at http://it.ucdavis.edu/Solutions/studpurc.html. Specific majors may stipulate performance expectations greater than the campus minimum standards.

Although UC Davis provides, and will continue to provide, computer rooms and access ports for student use on campus, the university recognizes that it has neither the financial resources nor the space to meet all of this demand with on-campus computer facilities. Moreover, those computer facilities will increasingly be used for class instruction or focused on the more advanced uses associated with courses requiring advanced software or hardware. All students who do not already own an appropriate computer are urged to purchase or upgrade as soon as possible and certainly before fall 2001. Students who are eligible for need-based financial aid will be able to seek additional financial resources to pay for these systems through the Financial Aid Office.

RESEARCH PROGRAMS AND RESOURCES

Organized Research Units

Organized Research Units (ORUs) are campuswide interdisciplinary research programs that further the university’s missions of teaching, research and public service, but do not offer courses of instruction. Members of an ORU come from more than one department and normally from more than one school, college or division.

Television news reporters covered the story when UC Davis researchers uncovered the genetic origins of Cabernet Sauvignon.

Agricultural History Center

5202 Social Sciences and Humanities Building
530-752-1827

The center coordinates and administers several research and publication programs that further the study of agricultural and natural-resource history. Research activities include studies of comparative farm policy, migration and agricultural development, the history of farm land values, the agricultural-environmental border, rural international borderlands in the Americas, the causes and consequences of agricultural mechanization and other sources of productivity improvements in the 19th and 20th centuries, and the impact of scientific research.

Bodega Marine Laboratory and Reserve

Bodega Marine Laboratory
P.O. Box 247
Bodega Bay, CA 94923
707-875-2211; 707-875-2009 (fax); ucdbm1@ucdavis.edu;
http://www-bml.ucdavis.edu

The Bodega Marine Laboratory is dedicated to research and teaching in marine biology and related fields. Research areas include population biology/ecology, cell and organismal biology, and aquaculture and fisheries. Well-equipped facilities feature running seawater in two classrooms and most laboratories, a marine science library, lecture hall, housing facilities, greenhouses, experimental freshwater system for anadromous fish studies, and a dive locker and air station. Faculty teach a number of undergraduate courses during the academic year and summer session. The laboratory is located in Bodega Bay, Sonoma County, 100 miles west of Davis.

The Bodega Marine Reserve, part of the UC Natural Reserve System, is 362 acres of remarkably diverse habitats, including an excellent rocky intertidal zone, sand beaches, saltmarsh, lagoon tidal flats, freshwater marsh, coastal prairie and dunes. The reserve also administers adjacent subtidal sand and rock habitats in a marine life refuge. Areas of research include a broad spectrum of field studies of plants and animals in coastal marine, intertidal and terrestrial ecosystems.
California Regional Primate Research Center (CRPRC)
Primate Center
530-752-0447;
http://www.crprc.ucdavis.edu/crprc/homepage.html

The California Regional Primate Research Center investigates selected human health problems for which the nonhuman primate is the animal model of choice. Research programs include behavioral and neurobiology, developmental and reproductive biology, respiratory diseases, virology and immunology, genetics and a variety of biomedical collaborative research projects. Self-sustaining breeding colonies of macaques are available for study of spontaneously occurring disorders.

Center for Geotechnical Modeling
119 Everson Hall
530-752-6986; http://www.engr.ucdavis.edu/~cgm/

At the Center for Geotechnical Modeling, students and faculty from several departments and other universities conduct research in physical and numerical modeling of geotechnical problems. The center operates two centrifuges, including the 9-m radius, 4,500-kg payload National Geotechnical Centrifuge. These centrifuges are used to study a variety of topics, including the effect of earthquakes on earth structures, toxic waste transport in groundwater, and deformations of foundations of bridges and large buildings.

Center for Image Processing and Integrated Computing
Bernd Hamann and David Rocke
530-752-2387; 530-752-8894 (fax);
http://info.cpic.ucdavis.edu

The Center for Image Processing and Integrated Computing focuses on data analysis, visualization, computer graphics, optimization, and electronic imaging. The central emphasis is the investigation of techniques for the study of large-scale, multi-dimensional data sets. These techniques may be applied to the analysis and visualization of environmental, geophysical, astrophysical, biological, fluid flow, and satellite data. The center seeks to solve complex data analysis and visualization problems in a cross-disciplinary environment, working with researchers in academia, national research laboratories, and industry.

Crocker Nuclear Laboratory
Crocker Nuclear Laboratory
530-752-1460

This facility is an interdepartmental laboratory for the application of nuclear science to a variety of disciplines. The laboratory has research programs in nuclear physics and chemistry, air pollution analysis, use of pulsed ultraviolet light as an alternative to pesticides and insecticides, biology, material damage studies, the effect of background radiation on computers, and historical studies. Isotopes produced by the variable-energy 76-inch cyclotron are used in clinical and research applications, including pioneering work in brain imaging.

Institute of Governmental Affairs
Alan L. Olmstead, Director
360 Shields Library
530-752-2042; 530-752-2835 (fax)
http://www.iga.ucdavis.edu

The Institute of Governmental Affairs (IGA) serves as a research base for social science faculty at UC Davis. IGA serves approximately 80 faculty from 18 campus departments as well as visiting scholars from throughout the United States and around the world.

Located in the core of the Davis campus, IGA houses seven formal research programs: Center for State and Local Taxation; Center on Social Sciences and the Law; Joint Center for International Security Studies (JCISS); Program on Immigration, Population and the Economy; Program on Pacific Rim Business and Development; Program on Technology, Institutions, and Economic Growth; and Program on Telecommunications Policy.

Specialized services include grant advising, preparation, and administration; research program development; library and data services; social science computing, programming, and statistical consulting; seminar, workshop, and conference organization; and much more. The institute also enhances the education of students by providing research opportunities. The institute sponsors an active public affairs program. IGA serves as the UC Davis liaison to the systemwide program: Institute on Global Conflict and Cooperation (IGCC).

Institute of Theoretical Dynamics
2201 Academic Surge Building
530-752-0938; info@itd.ucdavis.edu; http://itd.ucdavis.edu/

The Institute of Theoretical Dynamics (ITD) promotes research and graduate education in the mathematical sciences and provides a focus for extramural and intramural research pursuits. The two most important research themes are dynamics and stochastic processes. Approximately 30 faculty from all of the colleges participate in conferences, workshops, seminars and summer schools. The institute provides networking of computer workstations, a gateway to supercomputers, and research offices and facilities for interaction with students, faculty and visitors. ITD supports research in mathematical biology, mathematical physics and applied mathematical analysis, especially fluid dynamics, and houses the NSF Computer Graphics Facility for computational biology, which is open to faculty, graduate students and postdoctoral researchers for graphic visualization in biology. ITD also coordinates a campuswide NSF research training group, “Nonlinear Dynamics in Biology.”

Institute of Toxicology and Environmental Health (ITEH)
Institute of Toxicology and Environmental Health
530-752-1340

ITEH coordinates interdisciplinary research on biomedical and toxicological problems related to exposure to chemical, physical and biological toxic agents or to ionizing radiation. This research aims to determine basic mechanisms of toxic effects and to predict hazards to human and animal health from continual exposure to realistic levels of toxic substances in the environment or at the workplace. Studies on toxic, radioactive, muta-
I

Introduction

Research include maternal and child nutrition, nutrition programs to ameliorate these problems. Current areas of objective of planning, implementing, and evaluating populations in developing countries, with the ultimate mechanisms of the major nutritional problems of human nutrition are studying the epidemiology and causal mechanisms.

Faculty members of the Program in International Nutrition are studying the epidemiology and causal mechanisms of the major nutritional problems of human populations in developing countries, with the ultimate objective of planning, implementing, and evaluating programs to ameliorate these problems. Current areas of research include maternal and child nutrition, nutrition and infection, nutritional assessment, and food and nutrition policy. The program manages a small micro-computer center for the analysis of clinical and population-based studies of relevance to international nutrition.

Additional Research Centers and Resources

Institute of Transportation Studies
Daniel Sperling
530-752-6548; 530-752-6572 (fax); dsperling@ucdavis.edu; http://www.its.ucdavis.edu

The institute conducts multidisciplinary research on complex problems related to traffic congestion and local and global pollution, and disseminates research results to the broader academic and professional community. Research priorities are travel behavior, alternative-fueled vehicle technology and policy, energy and environmental projects and advanced vehicle and highway systems. About 25 faculty members and 70 students from more than 10 academic disciplines, including the departments of Civil and Environmental Engineering and Mechanical Engineering, Economics, Environmental Science and Policy, Agricultural and Resource Economics, and the Graduate School of Management, participate in the research activities of the institute. The institute also houses the Fuel Cell Vehicle Center and the Graduate Group in Transportation Technology and Policy.

John Muir Institute of the Environment (JMIE)
Robert G. Flocchini
530-754-9135

The institute facilitates research and exchange of information to improve the scientific basis for decisions on environmental issues. It encourages and facilitates multidisciplinary research focused on environmental topics, acts as administrative coordinator for specific programs of organized environmental research, and facilitates communication among policymakers, resource agencies, academic scientists and the public through outreach programs.

Program in International Nutrition
Kenneth H. Brown
3150 Meyer Hall
530-752-1992; 530-752-3406 (fax); khbrown@ucdavis.edu; http://www-nutrition.ucdavis.edu/pin/index.htm

Faculty members of the Program in International Nutrition are engaged in advanced study of the role of exercise and nutrition in the management of optimal physiological function. Basic and clinical research studies focus on cardiovascular, respiratory and metabolic functions. The program emphasizes risk reduction for cardiovascular disease and development of cardiorespiratory endurance. Studies stress fitness, relaxation, and weight reduction and control through appropriate diet and exercise programs that are individually prescribed after extensive medical and physiological testing.

California Agricultural Experiment Station
College of Agricultural and Environmental Sciences
530-752-1610

The California Agricultural Experiment Station has branches in Davis, Riverside and Berkeley. The Davis branch includes 500 faculty in more than 30 departments in the College of Agricultural and Environmental Sciences, the Division of Biological Sciences and the School of Veterinary Medicine. In addition to laboratory facilities, it has approximately 3,000 acres devoted to agricultural research in the areas of experimental crops, orchards and animal facilities. The Experiment Station facilitates research in agricultural production, food processing, nutrition, animal care and disease prevention, consumer sciences and community development and environmental quality, with emphasis on resource conservation and management, water and soil pollution and regional planning.

Center for Child and Family Studies
West House of Child and Family Study Center
530-752-2888; http://ccfs.ucdavis.edu

The Center for Child and Family Studies is a research, teaching and demonstration laboratory of the Division of Human Development and Family Studies in the Department of Human and Community Development. At the laboratory, students enrolled in human development courses develop observational techniques and participate with peers, children, parents and professionals in a fully integrated laboratory of developmental programs for young children. Students study theories of
I

development in a naturalistic setting, linking theory to principles of interaction and developing a recognition and respect for individual differences. Selected undergraduate students participate in faculty and graduate student research at the laboratory.

Center for Neuroscience
Edward G. Jones, Director
1544 Newton Ct.
Davis, CA 95616
530-757-8708; 530-757-8827 (fax);
http://www.neuroscience.ucdavis.edu

The Center for Neuroscience is an interdisciplinary unit that serves as the focal point for the study of the neurosciences at UC Davis. Faculty affiliated with the center are from 13 departments and sections. The center sponsors a seminar series, conferences and symposia, distributes a quarterly newsletter, provides research space for center members and supports graduate students, postdoctoral scholars and distinguished visitors.

Faculty and students are engaged in the study of brain mechanisms responsible for normal human cognitive and perceptual processes and in the study of fundamental aspects of nerve cell function and development. A core group of cognitive neuroscientists uses various imaging techniques and electrophysiological techniques to study both the normal and lesioned cerebral cortex to increase their understanding of how the normal brain produces behavior. Other faculty members use either animal models to understand how information is processed in the cortex or simple systems to study the fundamental biology of nerve cell functions and development.

Food Intake Laboratory
TB 33
530-752-7516

The Food Intake Laboratory supports predoctoral and postdoctoral research in nutrition and behavior, emphasizing studies on the control of food intake and the nature of the factors that govern feeding choices. The laboratory promotes collaborative research involving the roles of metabolic, psychological, neurochemical, hormonal, gender, genetic and sensory inputs in the feeding behavior of experimental animals.

Health Sciences Research Laboratories
The Health Sciences Research Laboratories are biological science facilities with research staff and assistance for faculty, staff and students.

• Animal Surgery Laboratory
 Buildings H and J—Animal Resources Service
 530-752-7756; latalken@ucdavis.edu; jesdavis@ucdavis.edu

This unit is a surgical research facility in compliance with NIH, AAALAC, and USDA standards. Instruction in surgical techniques is available. Surgical instruments, drapes, anesthesia machines, scrub suits, and equipment for monitoring vital signs and physiologic parameters are available. Staff are available to perform or assist with both survival and non-survival surgical procedures depending on the investigator’s requirements. Staff are available for post-operative care and collection of samples and data as required.

• Biochemistry and Special Instrumentation Laboratory
 TB 161
 530-752-0320

This central facility provides investigators access to certain common but expensive laboratory equipment, including ultracentrifuges and high-speed centrifuges with rotors, scintillation and gamma counters, UV/VIS spectrophotometers, densitometers, Betaplate and Elisa readers.

Human Performance Laboratory
164 Hickey Gym
530-752-0965/530-754-8675

The Human Performance Laboratory houses equipment for the study of blood and muscle chemistry and enzymology, metabolism and energetics, muscle mechanics and electromyography, movement kinetics and kinematics, body composition and anthropometry, cardiorespiratory function during exercise in a controlled environment, control and acquisition of motor skills and the psychosocial aspects of human performance. Apple Macintosh and IBM microcomputers are available for data collection, reduction, graphing and statistical analysis and for biomechanical, physiological systems and human performance modeling.

Humanities Institute
227 Voorhies Hall
530-752-2295; 530-752-4263 (fax)

The Davis Humanities Institute organizes interdisciplinary research seminars open to faculty and graduate students and promotes creative exchanges among the humanities, social sciences and environmental sciences. Its fellowship program enables campus fellows and distinguished visitors to participate in year-long seminars on designated themes. The seminar theme in 2000-2001 will be “Premodern Worlds.” The institute also sponsors distinguished visiting lecturers, supports interdisciplinary research clusters and a graduate student research assistantship program, co-sponsors lectures with other departments, organizes a Friday noon series of talks enti-
Introduction

Intercampus Institute for Research at Particle Accelerators
Richard L. Lander
325 Physics/Geology Building
530-752-1780

This institute conducts research using the unique facilities at national and international accelerator laboratories, particularly the Enrico Fermi National Accelerator Laboratory and the Large Hadron Collider to be built in Europe. High-energy particle physics is the dominant area of research. The institute also promotes seminars and lectures by visiting researchers.

Mann Laboratory
104 Mann Laboratory
530-752-1410; 530-752-4554 (fax)

Plant scientists in the Louis K. Mann Laboratory direct their physiological, biochemical and molecular research to improving the quality of harvested fruits, vegetables and seeds. The five faculty housed in this facility are members of the Department of Vegetable Crops and are assisted by numerous students, postdoctoral researchers and visiting scientists. Research ranges from the basic molecular biology of fruit ripening and seed development to practical storage technologies for whole and lightly processed fruits and vegetables. Results are of interest to other researchers in the plant sciences and to growers, shippers, marketers and consumers of fresh fruit and vegetables. The facility is equipped with 18 controlled-temperature rooms, seven research laboratories, a teaching laboratory and a conference room and library.

Molecular Structure Facility
8 Hutchison Hall
(530) 752-6392

The Molecular Structure Facility (MSF) provides state-of-the-art instrumentation for the structural elucidation and identification of biological and organic molecules. Mass spectrometers include MALDI-TOF, ESI, ESI-TOF, LC/MS and GC/MS. Thus, the facility can analyze a wide spectrum of molecules including proteins and peptides. The MSF also provides advanced biotechnological instrumentation for protein sequencing, amino acid analysis and DNA synthesis. Additional capabilities include: 2D-gel electrophoresis, in-gel and on-membrane digestion, rapid protein identification, micro-bore and capillary HPLC and consultation for protein related research. The MSF, as a core instrumentation facility, supports various research programs across the campus and is open to off campus researchers as well.

Natural Reserve System
Virginia Boucher
2112 Wickson Hall
530-752-6949; http://nrs.ucop.edu

The Davis campus administers six reserves that are available for teaching and research.

- Bodega Marine Reserve, located at Bodega Bay, 100 miles west of campus, consists of coastal dune vegetation and bay and coastal tidal areas with facilities for overnight and longer stays. (See Bodega Marine Laboratory in "Organized Research Units" section.)
- Eagle Lake Biological Field Station is on the shore of Eagle Lake in northeastern California and has boats, a small laboratory and facilities for overnight and longer stays.
- Jepson Prairie Reserve, located in Solano County 15 miles south of the campus, consists of native California bunchgrass grasslands, vernal pools, playa lakes and freshwater sloughs.
- Donald and Sylvia McLaughlin Reserve, located near Clear Lake about 70 miles northwest of campus, consists of intercoastal range habitat with a mix of serpentine and non-serpentine soils. The reserve has a facility for long-term overnight stays with a well-equipped kitchen, full bath, and a camping area for class groups.
- Quail Ridge Reserve consists of intercoastal range habitat located about 25 miles west of campus on a peninsula jutting into Lake Berryessa. The reserve has a facility with a well-equipped kitchen, full bath, four-wheel drive vehicle, and camping areas for groups.
- Stebbins Cold Canyon Reserve, located about 24 miles west of campus, has representative populations of several different plant communities found in California's inner and outer coast ranges.

The university maintains over 33 reserves throughout the state, many of which are available for teaching and research.

Nuclear Magnetic Resonance Facility
Medical Sciences 1D
530-752-7677

The Nuclear Magnetic Resonance Facility provides qualified researchers in the biological, medical and physical sciences access to state-of-the-art NMR instrumentation for spectroscopy and imaging. At present, the facility operates six spectrometers of varying purposes and capabilities. Three horizontal magnet bore spectrometers are used for in vivo spectroscopy and imaging of small animals and materials, and in vitro spectroscopy of perfused organs. Two vertical bore spectrometers are used primarily for solution studies of biomolecules, with an additional vertical bore instrument for in vitro studies. All of the spectrometers are multi-nuclear, and a large variety of high resolution, surface and imaging coils are available for use. The facility also has SUN and Silicon Graphics workstations for off-line data processing and molecular modeling.

Social Science Data Service
105 Social Sciences and Humanities Building
530-752-6063; http://www.sdds.ucdavis.edu

The Social Science Data Service (SSDS) is a unit of the Institute of Governmental Affairs (IGA). SSDS provides consulting, computing and specialized support services to faculty involved in quantitative social science research on the UC Davis campus. SSDS staff provides consulting on a wide range of software used by social scientists and assists with questions regarding the use of SSDS computers, as well as statistical and data-related programming. SSDS manages a UNIX system that provides a platform for quantitative social science computing. Specialized support is available for extramurally funded research projects managed by IGA.
The Student Experimental Farm is an innovative teaching and research facility located on 25 acres of university land just west of the Recreation Pool. Since its inception, the Student Experimental Farm has provided students with unique opportunities to explore alternative agricultural technologies and philosophies through classes, special projects, internships, work study jobs and original research. Because the farm includes several acres of land that have been managed organically for two decades, it provides researchers with a facility for conducting field research into sustainable agriculture.

UC Agricultural Issues Center
132 Social Sciences and Humanities Building
530-752-2320; http://aic.ucdavis.edu; agissues@ucdavis.edu
The UC Agricultural Issues Center, headquartered at Davis, is a universitywide research and outreach unit that draws on expertise from many disciplines. The center focuses on agricultural issues related to science and technology, international trade, agribusiness trends, rural-urban issues, resources and the environment, human resources and commodity policy and markets.

UC Davis Herbarium
Section of Plant Biology
530-752-1091/0617; http://herbarium.ucdavis.edu
The UC Davis Herbarium is used for research in plant systematics and ecology, as well as for public service requests (especially identification of weeds and poisonous plants). The herbarium contains more than 200,000 plant specimens, including vascular plants, bryophytes, lichens and algae. The majority of these specimens are angiosperms (flowering plants), mainly from California, but the collections are worldwide in scope, with strong holdings from North America, Ecuador, Baja California and regions with Mediterranean climate regimes. The herbarium is well known for its collection of weeds and poisonous plants, although it also has world-class collections of grasses, oaks and spurge.

UC Davis VMTRC
18830 Road 112
Tulare, CA 93274
559-688-1731; http://www.vmtrc.ucdavis.edu
VMTRC is a clinical teaching and research center within the UC Davis School of Veterinary Medicine. The center offers a forum for teaching, research and service programs for D.V.M. students, M.P.V.M. students, graduate students, residents, university faculty and visiting researchers interested in food animal medicine. VMTRC programs emphasize herd health medicine, epidemiology and preventive medicine, production management, agricultural economics, environmental protection, food safety and animal welfare.

Wildland Resources Center
151 University Services Building
530-752-8070
The center coordinates activities among the university's research and extension programs and stimulates research into conservation, management and utilization of wildland resources with a view toward the optimum present and future uses of wildlands. Projects focus on such topics as habitat conservation, assessment and management of timber resources and old-growth forests, and development of a system for evaluating California's environmental resources. The center increases the awareness of the university's research and extension programs related to wildlands and serves as liaison between the university and state and federal agencies and other organizations concerned with wildland resources and problems.

X-Ray Crystallographic Facility
Marilyn Olmstead
Department of Chemistry
530-752-6668
The X-Ray Crystallographic Facility, located in the Department of Chemistry, provides crystal structure determinations for researchers. Single crystals from all branches of chemistry are studied. Recently, the facility acquired a Bruker SMART X-ray diffraction system with a low temperature accessory and a high powered stereo microscope. The facility also has three older X-ray diffractometers, one of which is equipped with a rotating Cu anode source. Consultation and collaboration on a variety of single crystal related projects can be arranged.
Welcome to UC Davis. We’re delighted you’ve chosen the Davis campus as the place to pursue your academic goals. All of us—faculty, staff and administrators—are committed to helping you toward their successful attainment.

In the time you spend at UC Davis, you will acquire knowledge and skills that will help you shape the rest of your life. You will make lifelong friends and have experiences that will determine the direction of your growth as a human being and as a member of the larger community in which you live. For that to happen there must be a partnership among many individuals working together to ensure the most intellectually stimulating, technologically sophisticated and culturally rich environment. That partnership includes you, the student. Your energy and vision are the catalysts that energize and inspire each of us to help make your time at UC Davis challenging, meaningful—and, yes—fun.

We are very proud of UC Davis. Long renowned for its agricultural and veterinary science programs, in recent years we have attained international stature for our programs in engineering, biological sciences, the humanities and the social sciences. Members of our faculty have won MacArthur genius grants, Pulitzer prizes, Fulbright scholarships and election to the nation’s top academies of the arts and sciences. UC Davis is a member of the prestigious Association of American Universities, a select group of 62 institutions of higher learning whose membership is by invitation only. Our alumni have made significant and lasting contributions to society as leaders in government, business, technology, media and the arts. And our students—the cream of California’s crop—consistently persist and graduate at among the highest rates of University of California campuses.

UC Davis’ character has been built through decades of commitment to a unique core of values and principles. We are using our talents and ingenuity to continue working toward a community that honors our diversity as individuals and reflects our belief in a shared set of values. I’m happy you’re about to join our community. Congratulations on becoming an Aggie!
Degrees Offered by UC Davis

Undergraduate majors are administered by the colleges of
Agricultural and Environmental Sciences (A&ES), Letters and
Science (L&S) and Engineering. Professional programs are administered by the schools indicated. All graduate programs are
administered by Graduate Studies. The list below indicates the major or discipline, the degree(s) offered and the school or
college offering the major.

<table>
<thead>
<tr>
<th>Subject</th>
<th>Degree</th>
<th>School</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal Biology</td>
<td>B.S.</td>
<td>A&ES or L&S</td>
</tr>
<tr>
<td>Animal Behavior</td>
<td>M.A.</td>
<td>L&S</td>
</tr>
<tr>
<td>Animal Biology</td>
<td>M.A.</td>
<td>L&S</td>
</tr>
<tr>
<td>Animal Science</td>
<td>B.S.</td>
<td>A&ES or L&S</td>
</tr>
<tr>
<td>Anthropology</td>
<td>A.B.</td>
<td>L&S</td>
</tr>
<tr>
<td>Applied Engineering</td>
<td>B.S.</td>
<td>A&ES or L&S</td>
</tr>
<tr>
<td>Applied Physics</td>
<td>B.S.</td>
<td>L&S</td>
</tr>
<tr>
<td>Art</td>
<td>M.F.A.</td>
<td></td>
</tr>
<tr>
<td>Art History</td>
<td>A.B.</td>
<td></td>
</tr>
<tr>
<td>Art Studio</td>
<td>A.B.</td>
<td></td>
</tr>
<tr>
<td>Atmospheric Science</td>
<td>B.S.</td>
<td>L&S</td>
</tr>
<tr>
<td>Avian Sciences</td>
<td>B.S.</td>
<td>L&S</td>
</tr>
<tr>
<td>Asian American Studies</td>
<td>B.S.</td>
<td></td>
</tr>
<tr>
<td>Biochemistry</td>
<td>B.S.</td>
<td>L&S</td>
</tr>
<tr>
<td>Biological and Agricultural Engineering</td>
<td>M.S.</td>
<td>A&ES or L&S</td>
</tr>
<tr>
<td>Biomedical Engineering</td>
<td>M.S., M.Ph.D.</td>
<td></td>
</tr>
<tr>
<td>Biotechnology</td>
<td>B.S.</td>
<td></td>
</tr>
<tr>
<td>Biotechnology/Materials Science and Engineering</td>
<td>B.S.</td>
<td></td>
</tr>
<tr>
<td>Child Development</td>
<td>M.S.</td>
<td></td>
</tr>
<tr>
<td>Chinese</td>
<td>A.B.</td>
<td></td>
</tr>
<tr>
<td>Civil and Environmental Engineering</td>
<td>M.S.</td>
<td>A&ES or L&S</td>
</tr>
<tr>
<td>Civil Engineering</td>
<td>M.S.</td>
<td>A&ES or L&S</td>
</tr>
<tr>
<td>Classical Civilization</td>
<td>A.B.</td>
<td></td>
</tr>
<tr>
<td>Clinical Nutrition</td>
<td>B.S.</td>
<td>L&S</td>
</tr>
<tr>
<td>Communication</td>
<td>A.B. or M.A.</td>
<td></td>
</tr>
<tr>
<td>Community and Regional Development</td>
<td>B.S.</td>
<td></td>
</tr>
<tr>
<td>Community Development</td>
<td>M.S.</td>
<td></td>
</tr>
<tr>
<td>Comparative Literature</td>
<td>A.B. or M.A.</td>
<td></td>
</tr>
<tr>
<td>Comparative Pathology</td>
<td>M.S., M.Ph.D.</td>
<td></td>
</tr>
<tr>
<td>Computer Engineering</td>
<td>M.S. or Ph.D.</td>
<td></td>
</tr>
<tr>
<td>Computer Science</td>
<td>B.S.</td>
<td></td>
</tr>
<tr>
<td>Cross Science and Management</td>
<td>M.S.</td>
<td></td>
</tr>
<tr>
<td>Cultural Studies</td>
<td>M.A. or Ph.D.</td>
<td></td>
</tr>
<tr>
<td>Dramatic Art</td>
<td>B.S.</td>
<td></td>
</tr>
<tr>
<td>East Asian Studies</td>
<td>M.A.</td>
<td></td>
</tr>
<tr>
<td>Ecology</td>
<td>M.S.</td>
<td></td>
</tr>
<tr>
<td>Education</td>
<td>M.A. or M.S.</td>
<td></td>
</tr>
<tr>
<td>Electrical Engineering</td>
<td>B.S.</td>
<td></td>
</tr>
<tr>
<td>Environmental Engineering</td>
<td>M.S.</td>
<td></td>
</tr>
<tr>
<td>Endocrinology</td>
<td>B.S.</td>
<td></td>
</tr>
<tr>
<td>Environmental Policy Analysis and Planning</td>
<td>B.S.</td>
<td></td>
</tr>
<tr>
<td>Environmental Toxicology</td>
<td>A.B. or M.A.</td>
<td></td>
</tr>
<tr>
<td>Epidemiology</td>
<td>M.S., M.Ph.D.</td>
<td></td>
</tr>
<tr>
<td>Evolutionary Ecology</td>
<td>A.B. or M.S.</td>
<td></td>
</tr>
<tr>
<td>Family Nurse Practitioner/Physician Assistant</td>
<td>B.S.</td>
<td></td>
</tr>
<tr>
<td>Fermentation Science</td>
<td>B.S.</td>
<td></td>
</tr>
<tr>
<td>Fiber and Paper Science</td>
<td>B.S.</td>
<td></td>
</tr>
<tr>
<td>Food Biochemistry</td>
<td>B.S.</td>
<td></td>
</tr>
<tr>
<td>Food Engineering</td>
<td>B.S.</td>
<td></td>
</tr>
<tr>
<td>Food Science and Education</td>
<td>M.S.</td>
<td></td>
</tr>
<tr>
<td>French</td>
<td>M.A. or A.B.</td>
<td></td>
</tr>
<tr>
<td>Genetics</td>
<td>B.S., M.S., M.A.</td>
<td></td>
</tr>
<tr>
<td>Geology</td>
<td>M.A.</td>
<td></td>
</tr>
<tr>
<td>Geography</td>
<td>B.S.</td>
<td></td>
</tr>
<tr>
<td>Geochemistry</td>
<td>B.S.</td>
<td></td>
</tr>
<tr>
<td>German</td>
<td>M.A.</td>
<td></td>
</tr>
<tr>
<td>Germanic Art</td>
<td>B.S.</td>
<td></td>
</tr>
<tr>
<td>Geometric Art</td>
<td>B.S.</td>
<td></td>
</tr>
<tr>
<td>Geophysics</td>
<td>M.S., M.Ph.D.</td>
<td></td>
</tr>
<tr>
<td>Geophysical Engineering</td>
<td>B.S.</td>
<td></td>
</tr>
<tr>
<td>Geography & Agronomy</td>
<td>M.A.</td>
<td></td>
</tr>
<tr>
<td>Human Development</td>
<td>M.S.</td>
<td></td>
</tr>
<tr>
<td>Hydrologic Engineering</td>
<td>B.S.</td>
<td></td>
</tr>
<tr>
<td>Immunology</td>
<td>M.S.</td>
<td></td>
</tr>
<tr>
<td>Individual Major</td>
<td>B.S.</td>
<td></td>
</tr>
<tr>
<td>International Relations</td>
<td>A.B.</td>
<td></td>
</tr>
<tr>
<td>Italian</td>
<td>A.B.</td>
<td></td>
</tr>
<tr>
<td>Japanese</td>
<td>A.B.</td>
<td></td>
</tr>
<tr>
<td>Landscape Architecture</td>
<td>A.B. or M.A.</td>
<td></td>
</tr>
<tr>
<td>Law</td>
<td>J.D. or LL.M.</td>
<td></td>
</tr>
<tr>
<td>Linguistics</td>
<td>A.B. or M.A.</td>
<td></td>
</tr>
<tr>
<td>Managerial Economics</td>
<td>A.B. or M.A.</td>
<td></td>
</tr>
<tr>
<td>Materials Science and Engineering</td>
<td>M.S. or M.A.</td>
<td></td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td>M.S.</td>
<td></td>
</tr>
<tr>
<td>Mechanical Engineering Materials Science and Engineering</td>
<td>B.S.</td>
<td></td>
</tr>
<tr>
<td>Medical Imaging</td>
<td>M.D.</td>
<td></td>
</tr>
<tr>
<td>Microbiology</td>
<td>B.S.</td>
<td></td>
</tr>
<tr>
<td>Music</td>
<td>A.B.</td>
<td></td>
</tr>
<tr>
<td>Native American Studies</td>
<td>B.A.</td>
<td></td>
</tr>
<tr>
<td>Nature and Culture</td>
<td>M.A.</td>
<td></td>
</tr>
<tr>
<td>Neurobiology</td>
<td>M.S.</td>
<td></td>
</tr>
<tr>
<td>Neurology</td>
<td>B.S.</td>
<td></td>
</tr>
<tr>
<td>Nutrition</td>
<td>M.S.</td>
<td></td>
</tr>
<tr>
<td>Nutrition Science</td>
<td>B.S.</td>
<td></td>
</tr>
<tr>
<td>Optical Science and Engineering</td>
<td>M.S.</td>
<td></td>
</tr>
<tr>
<td>Pharmacology and Toxicology</td>
<td>M.S.</td>
<td></td>
</tr>
</tbody>
</table>

Additional Degree Programs

- Preventive Veterinary Medicine: M.V.M. or M.S. (School of Veterinary Medicine)
- Psychology: A.B. or B.S., M.A. or M.S. (School of Veterinary Medicine)
- Religious Studies: A.B. or M.A. (School of Public Service)
- Rhetoric and Communication: A.B. or M.A. (School of Public Service)
- Russian: A.B. or M.S. (School of Russian Studies)
- Sociology: A.B. or M.A. (School of Sociology—Organizational Studies)
- Soil Science: A.B. or M.S. (School of Environmental Science and Policy)
- Soil and Water Science: B.S. or M.S. (School of Environmental Science and Policy)
- Spanish: A.B. or M.A. (School of Public Service)
- Statistics: A.B. or M.S. or M.A. (School of Environmental Science and Policy)
- Textiles: A.B. or M.A. (School of Textiles and Clothing)
- Transportation Technology and Policy: M.S. (School of Transportation Technology and Policy)
- Veterinary Medicine: D.V.M. (School of Veterinary Medicine
- Viticulture and Enology: B.S. or M.S. (School of Viticulture and Enology)
- Wildlife, Fish and Conservation Biology: B.S. or M.S. (School of Wildlife, Fish and Conservation Biology)
- Women's Studies: A.B. or M.A. (School of Women's Studies)
MINOR PROGRAMS OFFERED BY UC DAVIS

Minor programs are offered by both the College of Agricultural and Environmental Sciences (A&ES) and the College of Letters and Science (L&S). The College of Engineering does not offer any minors. The list below indicates the minor program, the offering department (if the department name is different than the name of the minor) and the college offering the minor.

African American and African Studies, L&S
Aging and Adult Development (Human & Community Development), A&ES
Agricultural and Resource Economics (Agricultural and Resource Economics), A&ES
Agricultural Computing & Information Systems (Agronomy), A&ES
Agricultural Entomology (Entomology), A&ES
Agricultural Systems and Environment (Agronomy), A&ES
American Studies, L&S
Animal Science, A&ES
Anthropology, L&S
Agriculture (Entomology), A&ES
Applied Systems Technology (Biological & Agricultural Engineering), A&ES
Art History, L&S
Art Studio, L&S
Asian American Studies, L&S
Atmospheric Science (Land, Air and Water Resources), A&ES
Avian Sciences (Avian Sciences), A&ES
Biological Sciences, A&ES or L&S
Chicana/Chicano (Mexican-American) Studies, L&S
Chinese, L&S
Classical Civilization (Classics), L&S
Communication, L&S
Community Development (Human & Community Development), A&ES
Community Nutrition (Nutrition), A&ES
Comparative Literature, L&S
Computer Science, L&S
Dramatic Art, L&S
East Asian Studies, L&S
Economics, L&S
Economics Justice and Society, L&S
Education, L&S
Energy Policy (Environmental Science and Policy), A&ES
English, L&S
Entomology, A&ES
Environmental Geology (Geology), L&S
Environmental Horticulture, A&ES
Environmental Policy Analysis (Environmental Science and Policy), A&ES
Environmental Toxicology, A&ES
Exercise Science, L&S
Fiber and Polymer Science (Textiles and Clothing), A&ES
Film Studies (Humanities), L&S
Food Service Management (Nutrition), A&ES
French, L&S
Fungal Biology and Ecology (Plant Pathology), A&ES
Geographic Information Systems (Biological & Agricultural Engineering), A&ES
Geographic Studies (Environmental Design), A&ES
Geology, L&S
Geophysics (Geology), L&S
German, L&S
Global and International Studies (Humanities), L&S
Greek (Classics), L&S
History, L&S
History and Philosophy of Science, L&S
Human Development (Human & Community Development), A&ES
Hydrology (Land, Air and Water Resources), A&ES
Insect Ecology (Entomology), A&ES
International Agricultural Development (Human & Community Development), A&ES
Italian, L&S
Japanese (Chinese and Japanese), L&S
Jewish Studies (Humanities), L&S
Landscape Restoration (Environmental Horticulture), A&ES
Latin (Classics), L&S
Linguistics, L&S
Mathematics, L&S
Medical Veterinary Entomology (Entomology), A&ES
Medieval Studies, L&S
Music, L&S
Native American Studies, L&S
Nature and Culture, L&S
Nematology, A&ES
Nutrition and Food (Nutrition), A&ES
Nutrition Science (Nutrition), A&ES
Philosophy, L&S
Physics, L&S
Plant Biology A&ES or L&S
Political Science, L&S
Precision Agriculture (Biological and Agricultural Engineering), A&ES
Psychology, L&S
Recreation (Environmental Science and Policy), A&ES
Religious Studies, L&S
Russian, L&S
Science and Society, A&ES
Social and Ethnic Relations (African American Studies, Asian American Studies, Native American Studies, Women and Gender Studies), L&S
Sociology L&S
Soil Science (Land, Air and Water Resources), A&ES
Spanish, L&S
Statistics, L&S
Textiles and Clothing, A&ES
War–Peace Studies (International Relations), L&S
Women’s Studies, L&S
Welcome to UC Davis. Founded as the University Farm amid the fertile fields of the state's Central Valley, UC Davis has emerged as an acknowledged international leader in agricultural, biological, biotechnological and environmental sciences and is gaining similar recognition for excellence in the arts, humanities, social sciences, engineering, health sciences, law and management.

The campus owes much of its strength to its deep traditional roots in agriculture, the impressive diversity of academic programs that emerged from this foundation, a distinguished faculty of scholars and scientists, a treasured sense of community and a dedication to the land-grant values of creative, responsive and innovative teaching, research and public service. One of every 300 Californians is a UC Davis graduate.

The University of California

UC Davis is one of nine campuses of the University of California, which was chartered as a land grant college in 1868 and now constitutes the pre-eminent system of public higher education in the country. (A tenth campus, UC Merced, is scheduled to open as early as 2004.) Together, the campuses have an enrollment of more than 173,000 students, 90 percent of them California residents. Some 150 laboratories, extension centers, research and field stations strengthen teaching and research while providing public service to California and the nation. The collections of the more than 100 UC campus libraries are surpassed in size in the United States only by that of the Library of Congress.

A place for discovery

Research is an integral part of teaching at UC Davis. Faculty members share their research findings in the classroom, and students learn firsthand about discovery while working with professors in the laboratory and field. A number of undergraduate research programs offer students the opportunity to work on a research project in a faculty laboratory, some courses as early as their freshman year.

Research at UC Davis supports California's economic, intellectual and social development. The campus varied research programs explore and seek solutions to problems in agriculture, resource management, the environment, health, medicine, engineering, business, the economy and public policy. UC Davis scholars also explore the intellectual frontiers of the physical, biological and social sciences, the humanities and the arts.

UC Davis is a member of the Association of American Universities (AAU), an organization of leading research universities. UC Davis is one of only 12 major research universities in the nation that is a full member of the AAU. The campus is also among a select group admitted into the prestigious Association of Public and Land-Grant Universities, an association of 103 public research universities.

Life on campus

Teaching and research provide students with the academic side of their education, and campus life balances the books. Students enjoy a wide range of offerings, including sports, internships, outdoor activities, student government, clubs and creative arts programs. More than 30 club sports, organized by students, compete against other area colleges and amateur clubs, or are recreational and focus on skill development and social interaction. Intramural sports annually draw more than 13,000 students for 68 men's, women's and coed activities.

Each year nearly 5,500 students interested in gaining work experiences participate in internships locally, nationally and globally through the campus Internship and Career Center, among the largest campuswide academic internship programs in the country. The campus' UC Davis Washington Center, based in the nation's capital, offers government-related internships and makes possible satellite-assisted communication between classrooms and the center. UC Davis is known for its student-run facilities—the Coffee House, radio station KXVS and Uniris provide paid employment and real-world experience to hundreds of students each year.

Life in Davis

Davis’ proximity to Sacramento, the state capital, and the San Francisco Bay Area makes it easy to take advantage of big-city attractions while enjoying the security and friendliness of a small-town environment. Known as environmentally aware and socially innovative, Davis boats more than 50 miles of bicycle paths and more bicycles per capita than any other city in the nation. Residents are active—in local, national and international political causes, in sports, in the arts and in community organizations. Quality of life is a high priority in this community of more than 50,000 residents. Many citizen committees advise the city council on issues such as quality of child care and natural resources conservation. With its students constituting about half the city’s population, Davis is one of the state’s few remaining “college towns.”

"My greatest reward is the success of my students. It’s knowing they have a wonderful job or they’re studying at a great graduate school. It’s the final product that’s the main thrill.”

— Peter Lindert, professor of economics and recipient of the 1999 UC Davis Prize for Undergraduate Teaching and Scholarly Achievement

Visiting the Campus

Visit Visitor Services Office after 9 a.m. No appointment is necessary. For weekday individual or group campus tours, contact the Visitor Services Office at least one week in advance. You may also visit our Virtual Tour Web site at http://tour.ucdavis.edu. If you have questions about application procedures or entrance requirements, write or visit Undergraduate Admissions and Outreach Services in Mrak Hall.
University of California, Davis
Principles of Community

The University of California, Davis, is first and foremost an institution of learning and teaching, committed to serving the needs of society. Our campus community reflects and is a part of a society comprising all races, creeds, and social circumstances. The successful conduct of the University's affairs requires that every member of the University community acknowledge and practice the following basic principles:

We affirm the dignity inherent in all of us, and we strive to maintain a climate of justice marked by respect for each other. We acknowledge that our society carries within it historical and deep-rooted misunderstandings and biases, and therefore we will endeavor to foster mutual understanding among the many parts of our whole.

We affirm the right of freedom of expression within our community and also affirm our commitment to the highest standards of civility and decorum towards all. We recognize the right of every individual to think and speak as dictated by personal belief, to express any idea, and to disagree with or counter another's point of view, limited only by University regulations governing time, place, and manner. We promote open expression of our individuality and our diversity within the bounds of courtesy, sensitivity, and respect.

We confront and reject all manifestations of discrimination, including those based on race, ethnicity, gender, age, disability, sexual orientation, religious or political beliefs, status within or outside the University, or any of the other differences among people which have been excuses for misunderstanding, dissection, or hatred. We recognize and cherish the richness contributed to our lives by our diversity. We take pride in our various achievements, and we celebrate our differences.

We recognize that each of us has an obligation to the community of which we have chosen to be a part. We will strive to build a true community of spirit and purpose based on mutual respect and caring.

The "Principles of Community" were prepared and adopted after extensive discussion within the campus community about the need for a statement that reflects UC Davis' commitment to a learning environment characterized by diversity understanding and the acceptance of all people. This statement of common principles was published on April 20, 1990, carrying the endorsement of Chancellor Theodore L. Hullar and the leadership of the Davis Division of the Academic Senate, the Academic Staff Organization, the UCD Staff Assembly, the UCUCSDM Staff Assembly, the Associated Students of UC Davis (ASUCD), and the Graduate Student Association.

The Undergraduate Colleges

The College of Agricultural and Environmental Sciences

The College of Agricultural and Environmental Sciences offers a diverse program of majors and courses and is committed to education that emphasizes a spirit of discovery. Based on the premise that tomorrow's citizens will need to anticipate, understand and solve emerging societal problems and contribute to the discovery and application of new knowledge, the college fosters:

- critical thinking and an appreciation for diversity in thought and approaches to problem solving
- an ethos of lifelong learning—of teaching oneself and others while confronting challenges and solving problems
- an ability to move beyond either/or thinking and to pursue innovative and integrative understanding of the agricultural sciences, environmental sciences, and human sciences.

- Intellectual skills that prepare individuals to secure a life-affirming physical and cultural environment based on sound, respectful management of resources
- a commitment to serve the public with informed and open-minded dedication to understanding, critiquing and addressing complex societal needs and interests

The college is proud of its rich agricultural history. From this foundation, it has expanded its educational offerings to encompass programs that highlight interconnections among the environment, plant and animal sciences, biological sciences, and human sciences. Through a wide array of major programs, the college prepares high-potential students for advanced studies in diverse disciplines and leadership in such arenas as public policy; research and development; managerial and natural resource management; agricultural systems; environmental protection and safety and design; human nutrition, health and development; and the food, fiber, textile and apparel industries.

Undergraduate students enjoy early contact with faculty advisers, graduate students and postgraduate researchers, enriching and broadening the educational experience of all.

Several levels of academic advising are available that are designed to enhance your undergraduate experience. Advisers help you plan your courses, meet degree requirements and take maximum advantage of the resources available at UC Davis. You are encouraged to meet regularly with your assigned faculty adviser and with the Advising Associates and departmental peer advisers. Through a shared commitment to education for service to society, college faculty, staff and students work together to improve the relationship between humanity and the natural world.

The College of Engineering

The College of Engineering is among the largest undergraduate engineering colleges in the University of California system, with undergraduate enrollment of approximately 2,700 and graduate enrollment of 700. The college offers both a friendly atmosphere and the varied academic programs in basic sciences and engineering that have made UC Davis engineering graduates highly valued in private practice and research. The college has seven departments and one division; each has outstanding programs of instruction.

The college integrates teaching, research and service to society with our proud tradition as a land-grant research university and provides highly qualified students with a firm intellectual and professional foundation, enhanced by an environment of discovery.

The Engineering Department of Engineering Studies, the UCDMC Staff Assembly, the Associated Students of UC Davis (ASUCD), and the Graduate Student Association.

The Undergraduate Colleges

The College of Agricultural and Environmental Sciences

The College Office
228 McKee Hall
530-752-5108; http://www.as.ucdavis.edu

The College of Agricultural and Environmental Sciences offers a diverse program of majors and courses and is committed to education that emphasizes a spirit of discovery. Based on the premise that tomorrow's citizens will need to anticipate, understand and solve emerging societal problems and contribute to the discovery and application of new knowledge, the college fosters:

- critical thinking and an appreciation for diversity in thought and approaches to problem solving
- an ethos of lifelong learning—of teaching oneself and others while confronting challenges and solving problems
- an ability to move beyond either/or thinking and to pursue innovative and integrative understanding of the agricultural sciences, environmental sciences, and human sciences.

The college is proud of its rich agricultural history. From this foundation, it has expanded its educational offerings to encompass programs that highlight interconnections among the environment, plant and animal sciences, biological sciences, and human sciences. Through a wide array of major programs, the college prepares high-potential students for advanced studies in diverse disciplines and leadership in such arenas as public policy; research and development; managerial and natural resource management; agricultural systems; environmental protection and safety and design; human nutrition, health and development; and the food, fiber, textile and apparel industries.

Undergraduate students enjoy early contact with faculty advisers, graduate students and postgraduate researchers, enriching and broadening the educational experience of all.

Several levels of academic advising are available that are designed to enhance your undergraduate experience. Advisers help you plan your courses, meet degree requirements and take maximum advantage of the resources available at UC Davis. You are encouraged to meet regularly with your assigned faculty adviser and with the Advising Associates and departmental peer advisers. Through a shared commitment to education for service to society, college faculty, staff and students work together to improve the relationship between humanity and the natural world.

The College of Engineering

Deans Office
1550 Engineering II
530-752-5053; http://www.engr.ucdavis.edu

The College of Engineering is among the largest undergraduate engineering colleges in the University of California system, with undergraduate enrollment of approximately 2,700 and graduate enrollment of 700. The college offers both a friendly atmosphere and the varied academic programs in basic sciences and engineering that have made UC Davis engineering graduates highly valued in private practice and research. The college has seven departments and one division; each has outstanding programs of instruction.

The college integrates teaching, research and service to society with our proud tradition as a land-grant research university and provides highly qualified students with a firm intellectual and professional foundation, enhanced by an environment of discovery.

With a long-standing commitment to undergraduate students, we provide strong engineering programs that balance scientific principles with practical applications in engineering design. These programs prepare students for entry into both engineering practice and graduate level research. We challenge our undergraduates to collaborate and communicate effectively as they begin the process of life-long professional growth.

We challenge our graduate students to join with our faculty and staff in advancing the understanding of a broad spectrum of modern technology. We are committed to being one of the world's leading engineering research centers, while contributing to our country's technological leadership and to the benefit of all people.

We are committed to maintain our vision of the college in regular consultation with our students and their families, our alumni and our many partners in academia, industry and government.

- The Department of Applied Science instructs students in broad areas of scientific technology and offers an innovative program for undergraduates in optical science and engineering that prepares students to work in areas such as opto-electronics, lasers and opto-communications.
- The Department of Biological and Agricultural Engineering combines study in engineering with instruction in the biological processes used to solve challenging environmental and technical problems.
- The Division of Biomedical Engineering educates graduate students in a highly interdisciplinary combination of the biological sciences and engineering as this combination applies to medicine.
- The Department of Chemical Engineering and Materials Science offers curricula integrating knowledge of chemistry, biological sciences or materials science and engineering that enable students to solve problems in both current and future manufacturing technologies or to analyze the structure, properties and behavior of materials.
The College of Letters and Science
Office of the Dean
200 Social Sciences and Humanities Building
530-752-3092; http://www.lsb.ucdavis.edu

The College of Letters and Science provides students with the conceptual tools needed to succeed in central academic disciplines of the university. The largest of the three undergraduate colleges at UC Davis, the College of Letters and Science offers the majority of the campus’s general education courses, more than 20 major programs of study and thousands of courses per year across a broad range of subject areas. Its faculty and students are organized into three Divisions—Humanities, Arts and Cultural Studies, Mathematical and Physical Science, and Social Science. The college offers Bachelor of Arts (A.B.), Bachelor of Science (B.S.) and Bachelor of Arts and Science (B.A.S.) degrees.

The College of Letters and Science is a community of scholars and students sharing a commitment to liberal education rather than to specialized, vocationally oriented training. The college values the human experience, ideas of artistic accomplishments and of matter and things. Within this curriculum you are able to explore a variety of academic fields, engage in the pursuit of fundamental knowledge, and gain the capacity for independent study and thought. By learning to think carefully and critically you will be able to continue the ongoing process of education that begins in the classroom but continues over a lifetime. You will have learned how to learn—the ultimate objective of a liberal arts education.

The educational goals of the college are reflected in the three primary groups of requirements established by the faculty: the English Composition Requirement, the Foreign Language and Area Requirements and the Major Requirement.

The English Composition Requirement ensures that you are well versed in written communication skills. The Foreign Language and Area Requirements provide you with a broad background of knowledge, guide you in the exploration of the human experience, enhance your knowledge and acquaint you with other cultures. The Major Requirements provide you with intellectual depth and competence in a selected area of study.

The college has a well-developed system of faculty advisers, student peer advisers and professional staff advisers who are available for individual consultations with undergraduates in a variety of subject areas, from the dean’s office to departmental offices to campus residence halls.

The strength of the college lies in the faculty’s commitment to advancing the frontiers of human knowledge through research, artistic expression and other creative endeavors, and to the effective communication and application of that knowledge through teaching and public service. Together, faculty, students and the College of Letters and Science create a climate that enables students to achieve their highest potential.

Graduate Study
Office of Graduate Study
530-752-0560; http://grad.ucdavis.edu/sypgp/

Graduate students at UC Davis have the opportunity to work with and from an accomplished faculty, recognized for their contributions to research in their fields. The Office of Graduate Study oversees more than 70 graduate programs leading to master’s or doctoral degrees. All of these graduate studies’ programs are offered through graduate groups, an interdisciplinary concept that allows students to study and work in interrelated departments and other affiliated intellectual experiences. See the Graduate Studies chapter.

Professional Studies
UC Davis has three professional schools—the School of Law (J.D.), the School of Medicine (M.D.) and the School of Veterinary Medicine (D.V.M., M.P.V.M.), and the Graduate Management Program. The School of Medicine offers the M.D. degree. These schools and programs are described in later chapters.

Academic Resources
The University Library
530-752-6561; http://library.ucdavis.edu/uc

The General Library at UC Davis is one of the premier research libraries in North America. In addition to Peter J. Shields Library, there are several other campus library facilities: the Physical Sciences and Engineering Library, the Loren D. Carlson Health Sciences Library, the Agriculture and Natural Resources Library and the Medical Center Library in Sacramento. The combined collections of the various General Library facilities total more than 4.6 million volumes and, more than 100,000 periodical and journal titles are received annually. An extensive variety of government documents, maps, microforms and CD-ROMs are also part of the collection. Shields Library houses the collections in the humanities, arts, social sciences, biological sciences, agricultural sciences, mathematics and computer science. The Physical Sciences and Engineering Library collections support teaching and research in engineering, chemistry, geology and physics. The Carlson Health Sciences Library, which includes the School of Medicine and the School of Veterinary Medicine, is located in King Hall.

The California Digital Library (CDL) hosts databases, including the MELVYL online catalog, it can be accessed for the School of Agriculture and the other eight UC campuses. The CDL databases and MELVYL can be searched in the libraries, at campus computer laboratories, in dorm rooms and on the Internet. The libraries also offer access to databases and numerous other electronic resources including electronic journals available through the California Digital Library. Terminals with Internet access are available for patron use in all of our facilities.

Information about library services, new full text electronic databases, selected subject specific electronic databases and Web sites are available at the library’s Web site. The library provides free classes on the use of Melvyl as well as subject specific electronic databases. Libraries are also available for consultation on resources for research projects and dissertations.

UC Davis Arboretum
Arboretum Headquarters
530-752-4880; http://arboretum.ucdavis.edu

The 95-acre UC Davis Arboretum, located along Putah Creek’s historic north fork, maintains a documented collection of more than 4,000 different kinds of trees, shrubs and perennials. The Arboretum is organized into three Divisions—Botany, History and Cultural Studies; Mathematical and Physical Sciences, and Social Sciences. The key to conservation biology Integrated Pest Management (IPM) and Geographic Information Systems (GIS).

Information Technology
IT Express
182 Shields Library
530-754-4357; ithelp@ucdavis.edu

The Division of Information Technology (IT) provides computing, communications media and publishing services in support of research and teaching efforts, the campus access point for computing information, offers help activating your campus e-mail account, consultation on various technologies, and copy services. Other services available through IT include the Bovin Online Internet software package, online technology training materials and multimedia labs to access media production and editing equipment. The campus computing laboratories provide access to the Internet and a range of software programs in use in UC Davis courses. Classrooms are available on a drop-in basis when not being used for instruction. Students living in residence halls can connect directly to the UC Davis network using RedNet. Students living off campus need a modem to access the S&K Student Modem Pool.

Information about IT’s many services, including computing classrooms and hours, IT Express hours, and the Student Computing Guide is available at IT’s extensive Web site (http://IT.ucdavis.edu).

Computer Hardware and Software Needs
In Fall 2003, every entering undergraduate student will be expected to own a computer that meets certain minimum performance standards and that can connect effectively to the Internet. Every student should have ready access to these essential new technologies, and faculty should be able to count on students having the computing hardware, software and connectivity required for using class materials and other electronic resources on the UC Davis intranet and the World Wide Web. In fact, students who do not have ready access to a com-
Introduction

Rather than require a specific system, the campus is stating its expectation in terms of a minimum set of functional requirements that computers must meet to be used effectively in the student's education at UC Davis.

A panel composed of faculty, students, administrators and staff has concluded that students should have a computer that will run a word processing program, a spreadsheet program, an electronic mail program and a World Wide Web browser and be equipped with a CD-ROM drive. Software is also recommended.

Equipment feature suggestions for desktop and laptop computers are available at http://it.ucdavis.edu/it/pc-purc.html. Specific majors may stipulate performance expectations greater than the campus minimum standards.

Although UC Davis provides, and will continue to provide, computer rooms and access ports for student use on campus, the university recognizes that it has neither the financial resources nor the space to meet all of this demand with on-campus computer facilities. Moreover, those computer facilities will increasingly be used for class instruction or focused on the more advanced uses associated with courses requiring advanced software or hardware. All students who do not already own an appropriate computer are urged to purchase or upgrade as soon as possible and certainly before fall 2001. Students who are eligible for need-based financial aid will be able to seek additional financial resources to pay for these systems through the Financial Aid Office.

RESEARCH PROGRAMS AND RESOURCES

Organized Research Units (ORUs) are campuswide interdisciplinary research programs that further the university's missions of teaching, research and public service, but do not offer courses of instruction. Members of an ORU come from more than one department and normally from more than one school, college or division.

Agricultural History Center
5202 Social Sciences and Humanities Building
530-752-1827

The center coordinates and administers several research and publication programs that further the study of agricultural and natural resource history. Research activities include studies of comparative farm policy, migration and agricultural development, the history of farm land values, the agricultural-environmental border, rural international borderlands in the Americas, the causes and consequences of agricultural mechanization and other sources of productivity improvements in the 19th and 20th centuries, and the impact of scientific research.

Bodega Marine Laboratory and Reserve
Bodega Marine Laboratory
PO Box 247
Bodega Bay, CA 94923
707-875-2221; 707-875-2009 (fax); ucdm@ucdavis.edu; http://www-bml.ucdavis.edu

The Bodega Marine Laboratory is dedicated to research and teaching in marine biology and related fields. Research areas include population biology, ecology, cell and organismal biology, and aquaculture and fisheries. Well-equipped facilities feature running seawater in two classrooms and most laboratories, a marine science library, lecture hall, housing facilities, greenhouses, experimental freshwater system for anadromous fish studies, and a dive locker and air station. Faculty teach a number of undergraduate courses during the academic year and summer session. The laboratory is located in Bodega Bay Sonoma County, 100 miles west of Davis. The Bodega Marine Reserve, part of the UC Natural Reserve System, is 362 acres of remarkably diverse habitats, including an excellent rocky intertidal zone, sand beaches, salt marsh, lagoon tidal flats, freshwater marsh, coastal prairie and dunes. The reserve also administers adjacent subtidal sand and rock habitats in a marine life refuge. Areas of research include a broad spectrum of field studies of plants and animals in coastal marine, intertidal and terrestrial ecosystems.

California Regional Primate Research Center (CRPRC)
Primate Center
530-752-0447; http://www-primate.ucdavis.edu/pcr/prchomepage.html

The California Regional Primate Research Center investigates selected human health problems for which the nonhuman primate is the animal model of choice. Research programs include behavioral and neurobiology, developmental and reproductive biology, respiratory diseases, virology and immunology, genetics and a variety of biomedical and behavioral research projects. Self-sustaining breeding colonies of macaques are available for study of spontaneously occurring disorders.

Center for Geotechnical Modeling
139 Evansen Hall
530-752-6968; http://www-eng.ucdavis.edu/cgm/

At the Center for Geotechnical Modeling, students and faculty from several departments and other universities conduct research in physical and numerical modeling of geotechnical problems. The center operates two centrifuges, an 11-m radius, 4,500-lb payload National Geotechnical Centrifuge. These centrifuges are used to study a variety of topics, including the effect of earthquakes on earth structures, toxic waste transport in groundwater, and deformations of foundations of bridges and large buildings.

Center for Image Processing and Integrated Computing
Bernd Hamann and David Rocke
530-752-2387; 530-752-8894 (fax); http://www-cpc.ucdavis.edu

The Center for Image Processing and Integrated Computing focuses on data analysis, visualization, computer graphics, optimization, and electronic imaging. The central emphasis is the investigation of techniques for the study of large-scale, multi-dimensional data sets. These techniques may be applied to the analysis and visualization of meteorological, geophysical, astrophysical, biological, fluid flow, and satellite data. The center seeks to solve complex data analysis and visualization problems in a cross-disciplinary environment, working with researchers in academia, national research laboratories and industry.

Crocker Nuclear Laboratory
530-752-1460

This facility is an interdepartmental laboratory for the application of nuclear science to a variety of disciplines. The laboratory has research programs in nuclear physics and chemistry, air pollution analysis, use of pulsed ultra-violet light as an alternative to pesticides and insecticides, biology, material damage studies, the effect of background radiation on computers, and historical studies. Isotopes produced by the variable-energy 76-inch cyclotron are used in clinical and research applications, including pioneering work in brain imaging.

Institute of Governmental Affairs
Alan L. Orrin, Director
530-752-2042; 530-752-2835 (fax)
http://www-iga.ucdavis.edu/

The Institute of Governmental Affairs (IGA) serves as a research base for social science faculty at UC Davis. IGA serves approximately 80 faculty from 18 campus departments as well as visiting scholars from throughout the United States and around the world.

Located in the core of the Davis campus, IGA houses seven formal research programs: Local Taxation; Center on Social Sciences and the Law; Joint Center for International Security Studies (JCISS); Program on Immigration, Population and the Economy; Program on Pacific Rim Business and Development; Program on Technology, Institutions, and Economic Growth; and Program on Telecommunications Policy. Specialized services include grant advising, preparation, and administration; research program development; library and data services; social science computing, programing, statistical consulting, seminar, workshop, and conference organization; and much more. The institute also enhances the education of students by providing research opportunities. The institute sponsors an active public affairs program. IGA serves as the UC Davis liaison to the systemwide program: Institute on Global Conflict and Cooperation (IGCC).

Institute of Theoretical Dynamics
http://www-itd.ucdavis.edu/

The Institute of Theoretical Dynamics (ITD) promotes research and graduate education in the mathematical and physical sciences and provides a focus for extramural and intramural research pursuits. The two most important research themes are dynamical systems and partial differential equations. Approximately 30 faculty from all of the colleges participate in conferences, workshops, seminars and summer schools. The institute also provides monthly computer workshops, a gateway to supercomputers, and research offices and facilities for interaction with students, faculty and visitors. ITD supports research in mathematical biology, mathematical physics and applied mathematical analysis, especially fluid dynamics, and houses the NSF Computer Graphics Facility for computational biology, which is open to faculty, graduate students and postdoctoral researchers for graphic visualization in biology. ITD is a community NSF research training group, "Nonlinear Dynamics in Biology.

Institute of Toxicology and Environmental Health (ITEH)
530-752-1340

ITEH coordinates interdisciplinary research on biomedical and toxicological problems related to exposure to chemical, physical and biological toxic agents or to ionizing radiation. This research aims to determine basic mechanisms of toxic effects and to predict hazards to human and animal health from continual exposure to realistic levels of toxic substances in the environment or at the workplace. Studies on toxic, radioactive, muta...
Introduction

Faculty members of the Program in International Nutrition, academic scientists and the public through outreach programs and communication among policy makers, resource agencies, and the broader academic and professional community.

The institute conducts multidisciplinary research on complex problems related to traffic congestion and local environmental pollution, and disseminates research results to the faculty and students.

The institute facilitates research and exchange of information both within the United States and internationally. It encourages and facilitates multidisciplinary research focused on environmental topics, as well as the integration of research across disciplines.

The institute also houses the Fuel Cell Vehicle Center and the Graduate Program in Transportation Technology and Policy.

John Muir Institute of the Environment (JIME)

Robert G. Fischlin
530-752-9319

The institute facilitates research and exchange of information to improve the scientific basis for decisions on environmental issues. It encourages and facilitates multidisciplinary research focused on environmental topics, as well as the integration of research across disciplines.

Program in International Nutrition

Kenneth H. Brown
3150 Meyer Hall
530-752-3406 (fax)

Faculty members of the Program in International Nutrition are studying the epidemiology and causal mechanisms of the major nutritional problems of human populations in developing countries, with the ultimate objective of planning, implementing, and evaluating programs to ameliorate these problems. Current areas of research include maternal and child nutrition, nutrition and infection, nutritional assessment, and food and nutrition policy. The program manages a small microcomputer center for the analysis of clinical and population-based studies of relevance to international nutrition.

Additional Research Centers and Resources

Adult Fitness Program

Department of Exercise Science
530-752-2540

The Adult Fitness Program serves as an educational laboratory for undergraduate and graduate students engaged in advanced study of the role of exercise and nutrition in the management of optimal physiological function. Basic and clinical research studies focus on cardiovascular, respiratory, and metabolic functions. The program emphasizes risk reduction for cardiovascular disease and development of cardioprotective endurance. Studies stress fitness, relaxation, and weight reduction and control through appropriate diet and exercise programs that are individually prescribed after extensive medical and psychological testing.

California Agricultural Experiment Station

College of Agricultural and Environmental Sciences
530-752-3300

The California Agricultural Experiment Station has branches in Davis, Riverside, and Berkeley. The Davis branch includes 500 faculty in more than 30 departments in the College of Agricultural and Environmental Sciences, the Division of Biological Sciences, and the School of Veterinary Medicine. In addition to laboratory facilities, it has approximately 3,000 acres devoted to agricultural research in the areas of experimental crops, orchards, and animal facilities. The Experiment Station facilities support agricultural production, food processing, nutrition, animal care and disease prevention, consumer sciences and community development and environmental quality, with emphasis on resource conservation and management, water and soil pollution, and regional planning.

Center for Child and Family Studies

West House of Child and Family Study Center
530-752-2888

The Center for Child and Family Studies is a research, teaching, and demonstration laboratory of the Division of Human Development and Family Studies in the Department of Human and Community Development. At the laboratory, students enrolled in human development courses develop observational techniques and participate with peers, children, parents and professionals in a fully integrated laboratory of developmental programs for young children. Students study theories of development in a naturalistic setting, linking theory to principles of interaction and development and recognizing the importance of individual differences.

Center for Neuroscience

Edward G. Jones, Director
530-754-1131

The Center for Neuroscience is an interdisciplinary unit that serves as the focal point for the study of the neurosciences at UC Davis. Faculty affiliated with the center are from 13 departments and sections. The center sponsors a seminar series, conferences and symposia, distributes a quarterly newsletter, provides research space for center members and supports graduate students, postdoctoral scholars and distinguished visitors.

Center for Neurosciences

The Center for Neurosciences is an interdisciplinary unit that serves as the focal point for the study of the neurosciences at UC Davis. Faculty affiliated with the center are from 13 departments and sections. The center sponsors a seminar series, conferences and symposia, distributes a quarterly newsletter, provides research space for center members and supports graduate students, postdoctoral scholars and distinguished visitors.

Food Intake Laboratory

T8 33
530-752-7136

The Food Intake Laboratory supports postdoctoral and postdoctoral research in nutrition and behavior, emphasizing studies on the control of food intake and the nature of the factors that govern feeding choices.

Health Sciences Research Laboratories

The Health Sciences Research Laboratories are biological science facilities with research staff and assistance for faculty, staff and students.

Animal Surgery Laboratory

Building H and J – Animal Resources Service
530-753-7556

This unit is a surgical research facility in compliance with NIH, AAALAC, and USDA standards. Instrumentation in surgical techniques is available. Surgical instruments, drapes, and surgical anesthesia machines, scalpels, and needle holders are available. Postoperative monitoring for vital signs and physiological parameters are available. Staff are available to perform or assist with both surgical and non-surgical procedures depending on the investigator’s requirements. Staff are available for post-operative care and collection of samples and data as required.

Biochemistry and Special Instrumentation Laboratory

Laboratory

530-752-0320

This central facility provides access for instruments and equipment, including ultracentrifuges and high-speed centrifuges, spectrophotometers, densitometers, Biotopes, and Elisa readers.

Human Performance Laboratory

144 Kline Gym
530-752-0995/530-754-8675

The Human Performance Laboratory houses equipment for the study of blood and muscle chemistry and enzymology, metabolism and energetics, muscle mechanics and electromyography, movement kinematics, body composition and anthropometry, cardiac function during exercise in a controlled environment, control and acquisition of motor skills and the psychosocial aspects of human performance. Apple Macintosh and IBM microcomputers are available for data collection, reduction, and analysis. Spectrophotometers and spectrophotometers, densitometers, Biotopes, and Elisa readers are available.

Humanities Institute

237 Voorhies Hall
530-752-2295

The Davis Humanities Institute organizes interdisciplinary research seminars open to faculty and graduate students and promotes creative exchanges among the humanities, social sciences and environmental sciences. This fellowship program enables campus fellows and distinguished visitors to participate in year-long seminars on designated themes. The seminar theme in 2000-2001 will be “Premodern Worlds.” The institute also sponsors distinguished visiting lecturers, supports interdisciplinary research clusters and a graduate student research assistantship program, co-sponsors lectures with other departments, and organizes a Friday noon series of talks entitled Students ride free on Unitrans, the student-run transportation service using routes covering all of Davis.
Introduction

The University of California, Davis, is one of the nation’s leading research institutions. It is home to a diverse and dynamic community of scholars, students, and researchers who are committed to advancing knowledge and solving some of the world’s most pressing challenges.

Intercampus Institute for Research at Particle Accelerators
Richard L. Lander
325 Physics-Building
530-752-1780

This institute conducts research using the unique facilities at national and international accelerator laboratories, particularly at the Enrico Fermi National Accelerator Laboratory and the Large Hadron Collider to be built in Europe. High-energy particle physics is the dominant area of research. The institute also promotes seminars and lectures by visiting researchers.

Mann Laboratory
104 Mann Laboratory
530-752-5563; 530-752-4554 (fax)

Plant scientists in the Louis K. Mann Laboratory direct their physiological, biochemical and molecular research to improving the quality of harvested fruits, vegetables and seeds. A faculty housed in this facility are members of the Department of Vegetable Crops and are assisted by numerous students, postdoctoral researchers and visiting scientists. Research ranges from the basic molecular biology of fruit ripening and seed development to practical storage technologies for whole and highly processed fruits and vegetables. Results are of interest to other researchers in the plant sciences and to growers, shippers, marketers and consumers of fresh fruit and vegetables. The facility is equipped with 18 controlled-temperature rooms, seven research laboratories, a teaching laboratory and a conference room and library.

Molecular Structure Facility
9 Hudson Hall
(530) 752-6392

The Molecular Structure Facility (MSF) provides state-of-the-art instrumentation for the structural elucidation and identification of biological and organic molecules. Mass spectrometers include MALDI-TOF-ESI, ES-TOF-LCMS and GC/MS. Thus, the facility can analyze a wide spectrum of molecules including proteins and peptides. The MSF also provides advanced biotechnological instrumentation for protein sequencing, amino acid analysis and DNA and RNA synthesis. Additional capabilities include 2D-gel electrophoresis, in-gel and on-membrane blotting, rapid protein identification, micro-bioreactor for cell culture and GC/MS for combustion studies. The facility operates six spectrometers of varying purposes and capabilities. Three horizontal magnetic bore spectrometers are used for high resolution spectroscopy and imaging of small animals and materials, and in vitro spectroscopy of perfused organs. Two vertical bore spectrometers are used primarily for solution studies of biological molecules, with an additional vertical bore instrument for in vitro studies. All of the spectrometers are multi-nuclear, and a large variety of high resolution, surface and imaging coils are available for use. The facility also has SUN and Silicon Graphics workstations for off-line data processing and molecular modeling.

Social Science Data Service
105 Social Sciences and Humanities Building
530-752-4063; http://www.ssd.ucdavis.edu

The Social Science Data Service (SSDS) is a unit of the Institute of Governmental Affairs (IGA). SSDS provides consulting, computing and specialized support services to faculty involved in quantitative social science research on the UC Davis campus. SSDS staff provides consulting on a wide range of software used by social scientists and assists with questions regarding the use of SSDS computers, as well as statistical and data-related programming. SSDS manages a UNIX system that provides a platform for quantitative social science computing. Specialized support is available for extramurally funded research projects managed by IGA.

Student Experimental Farm
Student Experimental Farm
530-752-7445

The Student Experimental Farm is an innovative teaching and research facility located on 25 acres of university land just west of the Recreation Pool. Since its inception, the Student Experimental Farm has provided students with unique opportunities to explore alternative agricultural technologies and philosophies through classes, special projects, internships, work study jobs and original research. Because the farm includes several acres of land that have been managed organically for two decades, it provides researchers with a facility for conducting field research into sustainable agriculture.

UC Agricultural Issues Center
132 Social Sciences and Humanities Building
530-752-3230; http://aic.ucdavis.edu; agissues@ucdavis.edu

The UC Agricultural Issues Center, headquartered at Davis, is a university-wide research and outreach unit that draws on expertise from many disciplines. The center focuses on agricultural issues related to science and technology, international trade, agricultural trends, rural-urban issues, resources and the environment, human resources and commodity policy and markets.

UC Davis Herbarium
Section of Plant Biology
530-752-2557; http://herbarium.ucdavis.edu

The UC Davis Herbarium is used for research in plant systematics and ecology, as well as for public service requests (especially identification of weeds and poisonous plants). The herbarium contains more than 200,000 plant specimens, including vascular plants, bryophytes, lichens and algae. The majority of these specimens, which represent nearly all plant families, are collected from California, but the collections are worldwide in scope, with strong holdings from North America, Ecuador, Baja California and regions with Mediterranean climate regimes. The herbarium is well known for its collection of weeds and poisonous plants, although it also has world-class collections of grasses, oaks and spurge.

Wildland Resources Center
123 University Services Building
530-752-8070

The center coordinates activities among the university’s research and extension programs and stimulates research into conservation, management and utilization of wildland resources with a view toward the optimum present and future uses of wildlands. Projects focus on such topics as ecological integrity, habitat conservation, sustainable management of timber resources and old-growth forests, and development of a system for evaluating California’s environment resources. The center increases the awareness of the university’s research and extension programs related to wildlands and serves as a liaison between the university and state and federal agencies and other organizations concerned with wildland resources and problems.

X-Ray Crystallographic Facility
Marilyn Olmstead
Department of Chemistry
530-752-4685

The X-Ray Crystallographic Facility located in the Department of Chemistry provides crystal structure determinations for researchers. Single crystals from all branches of chemistry are studied. Recently, the facility acquired a Bruker SMART X-ray diffractometer system with a low temperature accessory and a high powered stereo microscope. The facility also has three other X-ray diffractometers, one of which is equipped with a rotating Cu anode source. Consultation and collaboration on a variety of single crystal related projects can be arranged.

Veterinary Genetics Laboratory
Horse Bloodtyping and DNA Laboratory, Armstrong-4, 530-752-2211
Other Species Bloodtyping and DNA Laboratory, Armstrong-4, 530-752-7383

The laboratory is recognized for its pioneering research on animal blood groups and biochemical polymorphisms. Current research activities include studies of the genetic basis of blood groups, evaluation of DNA marker screening tests and gene mapping. The knowledge acquired is applied to genetic disease diagnostics and parentage verification for domestic animals (horses, cattle, sheep, goats, elk, llamas, alpacas and dogs) and wildlife.

Veterinary Medicine Teaching and Research Center (VTMRC)
UC Davis VTMRC
18530 Road 112
Tulare, CA 93274
559-688-1731; http://www.vtmrc.ucdavis.edu

VTMRC is a clinical teaching and research center within the UC Davis School of Veterinary Medicine. The center offers a forum for teaching, research and service programs for D.V.M., students, M.V.-M. students, graduate students, residents, university faculty and visiting researchers interested in food animal medicine. VTMRC programs emphasize herd health medicine, epidemiology and preventive medicine, production management, agricultural economics, environmental protection, food safety and animal welfare.
Applying to UC Davis

You can apply online at http://www.ucop.edu/pathways, or you can print your own copy of the application at http://www.ucop.edu/pathways/getapp.html.

The Application for Undergraduate Admission and Scholarships can also be obtained from any California high school, community college or from the admission office of any UC campus.

The filing periods to submit your application for admission and scholarships for fall quarter at UC Davis are as follows:

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Filing Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>fall 2001</td>
<td>November 1–30, 2000</td>
</tr>
<tr>
<td>fall 2002</td>
<td>November 1–30, 2001</td>
</tr>
</tbody>
</table>

The filing period for admission for fall 2000 was November 1–30, 1999.

UC Davis is usually closed to new undergraduate applicants for winter and spring quarters. To seek admission for winter or spring quarter, you will need to submit a completed application with fee and an appeal letter directly to Undergraduate Admissions and Outreach Services during the appropriate filing period. The filing periods to submit your application for admission and scholarships for winter or spring quarters at UC Davis are as follows:

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Filing Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>winter 2001</td>
<td>July 1–30, 2000</td>
</tr>
<tr>
<td>spring 2001</td>
<td>October 1–30, 2000</td>
</tr>
<tr>
<td>winter 2002</td>
<td>July 1–30, 2001</td>
</tr>
<tr>
<td>spring 2002</td>
<td>October 1–31, 2001</td>
</tr>
</tbody>
</table>

Application Fees

The application fee of $40 entitles you to apply to one University of California campus. If you want to apply to more than one UC campus, you must pay an additional $40 for each campus you select. These fees are not refundable. You must include the fee with the application or it will not be processed. Attach a check or money order made payable to the Regents of the University of California to the application form.

The University of California will waive application fees for up to four campuses for qualified students who otherwise would be unable to apply for admission. To be accepted for the fee waiver program, you must meet specific requirements related to your family income and size. The fee waiver program is for United States citizens and permanent residents only. Go to http://www.ucop.edu/pathways/impinfo for more information.

Preparing for University Work—Freshman

A carefully planned program of high school courses provides you with the best preparation for university work. As a prospective university student, you should give priority to completing the high school courses required for admission—known as the “a–f” subject requirements; see http://www.ucop.edu/pathways/impinfo/freshx.html.

You should take college preparatory courses that will challenge you to work hard and will prepare you beyond minimum levels of competence in reading, writing and mathematics. A student who is well prepared for university work will have taken four years of English in high school, three to four years of mathematics, two to three years of foreign language, two to three years of laboratory science, two or more years of history/social science, and one or more years of art or humanities.

Reading: You should become proficient in reading and understanding technical materials and scholarly works. Learn to read analytically and critically, actively questioning yourself about the author’s intentions, viewpoint, arguments and conclusions. Become familiar and comfortable with the conventions of standard written English, and with various writing strategies and techniques. Your reading experience should include original works in their entirety, not just textbooks and anthologies, and should encompass a wide variety of forms and topics.

Writing: Effective critical thinking and proficiency with the written language are closely related, and both are skills that every university student must master. By university standards, a student who is proficient in English composition is able to understand the assigned topic; select and develop a theme by analysis and argument; choose words that aptly and precisely convey the intended meaning; construct effective sentences; i.e., sentences that economically and successfully convey the writer’s ideas and display a variety of structures; and demonstrate an awareness of the conventions of standard written English.

If you plan to attend the university, you must take English courses in high school that require the development and practice of these skills. You must take at least four years of English composition and literature classes that stress expository writing.

Mathematics: Many undergraduate majors require preparation in mathematics beyond the three years required for admission to the university. All majors in the natural and life sciences, engineering and mathematics require calculus. Many majors in the social sciences require statistics or calculus, or both. Calculus is also required for undergraduates preparing for careers in the environmental sciences, dentistry, medicine, optometry, pharmacy and biostatistics. If you select a major that requires either calculus or statistics, you should expect to take that course during your first year at the university.

Prepare yourself for university courses in mathematics while you are still in high school. Good preparation includes a year of mathematics beyond second-year algebra (such as precalculus, mathematical analysis, analytic geometry) and definitely a course in mathematics during your senior year.

Algebra is necessary for success in university mathematics courses. Students who do not take a mathematics course during their last year in high school often find they need
to take a preparatory course at the university in order to renew their algebra skills. The need to take such a course at the university could delay your undergraduate studies that require mathematics as a prerequisite.

Finally, take advantage of any guidance your high school offers in study skills and diagnostic tests designed to help you assess your preparation for college. Managing your time well and studying effectively are critical to excelling at the university. Together with solid academic preparation, these skills should enable you to realize your educational goals and, ultimately, fulfill your career aspirations.

ADMISSION AS A FRESHMAN

The University of California defines a freshman applicant as a student who has graduated from high school but has not enrolled since then in a regular session in any college-level institution. Summer session immediately following high school graduation is excluded in this determination.

Admission requirements for California residents are different from those for nonresidents. Nonresidents must meet higher scholarship requirements.

The following describes the minimum requirements to establish eligibility at the University of California. Applicants to UC Davis generally must perform well above these minimums in order to gain admission, since the number of eligible applicants exceeds the number of students we can admit. We give priority to students on the basis of highest academic achievements and test scores.

Minimum Requirements for California Residents

To be minimally eligible for admission to the University of California as a freshman, you must meet the subject requirements, scholarship requirement and examination requirements that are described on this and the following pages.

Subject Requirements: a–f
You must complete at least 15 high school units in the subject areas listed below. At least seven of the required 15 units will have to be taken in the last two years of high school. The required course sequence is often referred to as the “a–f” pattern. Go to http://www.ucop.edu/pathways/infoctr/doorway_index.html to view the “a–f” pattern for California high schools.

Courses taken in the 9th grade and completed with a grade of C or better can satisfy a subject requirement; however, the grades will not be used in computing your grade point average. If you receive a grade of D or lower in a 9th-grade course, you have not satisfactorily completed the subject requirement until you repeat the course (or, in some cases, complete a more advanced course) with a grade of C or better.

a. History/Social Science—2 years
One year of United States history, or one-half year of United States history and one-half year of civics or American government; and one year of world history, cultures and geography.

b. English—4 years
Four years of English—composition and literature. Classes should stress preparation for university study, including frequent and regular practice in writing expository prose compositions of some length. Not more than one year will be accepted from the 9th grade. (See English Proficiency on the next page.)

c. Mathematics—3 years; 4 years recommended
Three years of mathematics—elementary algebra, geometry and intermediate algebra. (Courses taken in grades 7 and 8 may partially satisfy the requirement if they are accepted by the high school as equivalent to its own courses.)

d. Laboratory Science—2 years; 3 years recommended
Two years of laboratory science providing fundamental knowledge in at least two of these three areas: biology, chemistry and physics. Not more than one year of laboratory science taken in the 9th grade may be used to meet this requirement.

e. Language other than English—2 years; 3 years recommended
Two years of the same language other than English. Courses should emphasize speaking and understanding, and include instruction in grammar, vocabulary, reading and composition. (Courses taken in grades 7 and 8 may satisfy this requirement if they are accepted by the high school as equivalent to its own courses.)

f. College Preparatory Electives—2 years
Two years in addition to those required in “a” through “e” above.

• History and English: courses that fit the general description for courses above.

• Advanced mathematics: trigonometry, linear algebra, pre-calculus (mathematical analysis), calculus, statistics, computer science and similar courses. (Courses containing significant amounts of material for arithmetic or from shop, consumer or business mathematics are not acceptable.)

• Laboratory science: courses in the biological and physical sciences. A general science course taken in grade 9 as preparation for a laboratory science may be used.
• **Language other than English**: courses may be in either the same language used to satisfy the “a” requirement or a second foreign language. If a second language is chosen, however, at least two years of work in that language must be completed.

• **Social science**: courses that serve as preparation for lower division work in social science at the university. (Courses of an applied, service or vocational nature are not acceptable.)

• **Visual and performing arts**: courses should enable you to understand and appreciate artistic expression, and to talk and write with discrimination about artistic materials studied. Courses that develop creative artistic ability or artistic performance may be used. (Courses that are recreational or are offered under physical education are not acceptable.)

Note: One year of visual and performing arts (VPA) coursework will become a subject requirement for all high school students graduating in or after 2003. The university will allow two semesters of any approved VPA coursework for graduates in 2003. For graduates in 2004 or 2005, the university will allow two semesters of any approved VPA coursework in the same area. Graduates in 2006 or later will be required to complete a year long VPA course where the first semester is a prerequisite for the second semester. The visual and performing arts requirement is labeled the “f” requirement, and the college preparatory elective requirement is labeled the “g” requirement.

If you are a California high school graduate, the courses used to satisfy the **Subject Requirement** must appear on a list that your high school principal has certified meets the course descriptions above, and has been accepted by the university’s Office of Student Academic Services. If you submit courses from an out-of-state school, Undergraduate Admissions and Outreach Services will determine if your courses fulfill the Subject Requirement.

English Proficiency

Instead of a fourth year of high school English, you may satisfy the **English Proficiency Requirement** by completing one of the following:

- SAT II Subject Test in Writing (a score of 680 or above); OR
- Advanced Placement Examination in English Composition and Literature or English Language and Composition (a score of 5, 4, or 3).
- OR
- International Baccalaureate Higher Level Examination in English (a score of 7, 6 or 5).

The requirement may also be satisfied with a transferable college-level English course in literature or composition worth 3-semester or 4-quarter units in which you earned a grade of C or higher.

Scholarship Requirement

You must have earned a grade of C or better in all high school courses to satisfy the “a–f” requirements above. The grades earned in these courses that are taken in grades 10 through 12 will be used to evaluate your grade point average for minimum eligibility.

Applicants to UC Davis generally must perform well above minimums in order to gain admission.

Fall 2000 UC Eligibility Index

<table>
<thead>
<tr>
<th>GPA</th>
<th>ACT</th>
<th>SAT I total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.82</td>
<td>36</td>
<td>1600</td>
</tr>
<tr>
<td>2.83</td>
<td>35</td>
<td>1590</td>
</tr>
<tr>
<td>2.84</td>
<td>35</td>
<td>1580</td>
</tr>
<tr>
<td>2.85</td>
<td>35</td>
<td>1570</td>
</tr>
<tr>
<td>2.86</td>
<td>35</td>
<td>1560</td>
</tr>
<tr>
<td>2.87</td>
<td>34</td>
<td>1550</td>
</tr>
<tr>
<td>2.88</td>
<td>34</td>
<td>1530</td>
</tr>
<tr>
<td>2.89</td>
<td>33</td>
<td>1510</td>
</tr>
<tr>
<td>2.90</td>
<td>33</td>
<td>1490</td>
</tr>
<tr>
<td>2.91</td>
<td>33</td>
<td>1470</td>
</tr>
<tr>
<td>2.92</td>
<td>32</td>
<td>1450</td>
</tr>
<tr>
<td>2.93</td>
<td>31</td>
<td>1430</td>
</tr>
<tr>
<td>2.94</td>
<td>31</td>
<td>1400</td>
</tr>
<tr>
<td>2.95</td>
<td>31</td>
<td>1370</td>
</tr>
<tr>
<td>2.96</td>
<td>30</td>
<td>1350</td>
</tr>
<tr>
<td>2.97</td>
<td>30</td>
<td>1330</td>
</tr>
<tr>
<td>2.98</td>
<td>29</td>
<td>1310</td>
</tr>
<tr>
<td>2.99</td>
<td>28</td>
<td>1290</td>
</tr>
<tr>
<td>3.00</td>
<td>28</td>
<td>1270</td>
</tr>
<tr>
<td>3.01</td>
<td>27</td>
<td>1250</td>
</tr>
<tr>
<td>3.02</td>
<td>27</td>
<td>1230</td>
</tr>
<tr>
<td>3.03</td>
<td>26</td>
<td>1210</td>
</tr>
<tr>
<td>3.04</td>
<td>26</td>
<td>1190</td>
</tr>
<tr>
<td>3.05</td>
<td>25</td>
<td>1170</td>
</tr>
</tbody>
</table>

*The American College Test (ACT) is scored in intervals of 1 point from a minimum of 1 to a maximum of 36.

*The Scholastic Aptitude Test (SAT) is scored in intervals of 10 points from a minimum of 400 to a maximum of 1600.

UC Eligibility Index and Conversion Table

Fall 2001

<table>
<thead>
<tr>
<th>GPA</th>
<th>SAT Total</th>
<th>ACT score</th>
<th>Equivalent SAT I score</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.80-2.84</td>
<td>4640</td>
<td>36</td>
<td>1600</td>
</tr>
<tr>
<td>2.85-2.89</td>
<td>4384</td>
<td>35</td>
<td>1580</td>
</tr>
<tr>
<td>2.90-2.94</td>
<td>4160</td>
<td>34</td>
<td>1520</td>
</tr>
<tr>
<td>2.95-2.99</td>
<td>3984</td>
<td>33</td>
<td>1470</td>
</tr>
<tr>
<td>3.00-3.04</td>
<td>3840</td>
<td>32</td>
<td>1420</td>
</tr>
<tr>
<td>3.05-3.09</td>
<td>3720</td>
<td>31</td>
<td>1380</td>
</tr>
<tr>
<td>3.10-3.14</td>
<td>3616</td>
<td>30</td>
<td>1340</td>
</tr>
<tr>
<td>3.15-3.19</td>
<td>3512</td>
<td>29</td>
<td>1300</td>
</tr>
<tr>
<td>3.20-3.24</td>
<td>3408</td>
<td>28</td>
<td>1260</td>
</tr>
<tr>
<td>3.25-3.29</td>
<td>3320</td>
<td>27</td>
<td>1220</td>
</tr>
<tr>
<td>3.30-3.34</td>
<td>3248</td>
<td>26</td>
<td>1180</td>
</tr>
<tr>
<td>3.35-3.39</td>
<td>3192</td>
<td>25</td>
<td>1140</td>
</tr>
<tr>
<td>3.40-3.44</td>
<td>3152</td>
<td>24</td>
<td>1110</td>
</tr>
<tr>
<td>3.45-3.49</td>
<td>3128</td>
<td>23</td>
<td>1070</td>
</tr>
<tr>
<td>3.50 or higher</td>
<td>3120</td>
<td>22</td>
<td>1030</td>
</tr>
</tbody>
</table>

*SAT total: (SAT I composite) + (2x (SAT II English + SAT II math + third SAT II)). SAT I composite is highest combined mathematics and verbal scores from a single sitting. See conversion table (right) to convert ACT scores to SAT I composite score.

Note: GPA Total* is calculated as follows:

- GPA Total* = GPA + (2x ACT score) + (2x SAT II).
Applicants for admission fall 2000: If you are a California resident and you attain a grade point average of 3.30 in the required “a–f” subjects taken after the 9th grade, the university will use a semester grade of A in one course regardless of your scores on standardized tests. If your grade point average falls between 2.80 and 3.20, you will meet the minimum requirements for the university if you achieve the specified scores on the standardized tests (see the Fall 2000 Eligibility Index).

Applicants for admission fall 2001 and thereafter: If you are a California resident and your grade point average is 2.80 or above in the required “a–f” subjects taken after the 9th grade, you will meet minimum requirements for the university if you achieve the specified scores on the standardized tests (see the Fall 2001 Eligibility Index).

The university calculates your grade point average (GPA) in the “a–f” subjects by assigning point values to the grades you earn, totaling the points, and dividing the total number of “a–f” course units. Points are assigned as follows: A=4 points, B=3 points, C=2 points, D=1 point, F=0 points. The university assigns extra points for up to four units of university certified honors level and advanced placement courses taken in the 10th, 11th, and 12th grade: A=5 points, B=4 points, C=3 points. No more than two years of UC approved honors level courses taken in the 10th grade may be given extra points. A grade of D in an honors or advanced placement course does not earn extra points.

In determining the required grade point average, the university will use a semester grade of A in one course to balance a semester grade of C in another. Grades you received in courses taken in the 9th grade or earlier are not used in determining your grade point average.

(However, these courses may be used to satisfy subject requirements.) The grades that appear on your official high school transcript, including those earned in accelerated and advanced courses, are the grades the university will use in evaluating your record. Grades are counted on a semester basis unless your school gives only year grades.

To meet the Subject and Scholarship Requirements you may repeat courses in which you received a grade of D or lower. The grade achieved in the repeated course will be calculated into the grade point average. There is no limit to the number of repeated courses that may be used in the “a–f” pattern, but each course may be repeated only one time.

Examination Requirement
All freshman applicants must submit official scores from the College Board or the American College Testing (ACT) Program. If you are applying for admission to the fall quarter, the tests no later than December of your senior year (earlier testing is recommended). Applicants to UC Davis generally must perform well above the minimum requirements to gain admission. The following tests are required:

- Three Scholastic Assessment Tests-II (SAT-II—College Board), which must include (a) writing test, (b) mathematics (level I or II) and (c) one test from the social studies or science or foreign language, or the test in English literature. The English Language Proficiency Test is not an acceptable option.

Applicants for admission fall 2001 or thereafter: Beginning fall 2001, the new UC Eligibility Index will incorporate SAT II test scores. If you are a California resident, and your grade point average is 2.80 or above in the required “a–f” subjects taken after the 9th grade, you will meet the minimum requirements for the university if you achieve the specified scores on the standardized tests (see the Fall 2001 Eligibility Index).

Make arrangements to take the required SAT-I and SAT-II by writing to College Board SAT, Princeton, NJ 08541. For the American College Test (ACT) write to American College Testing Program, Registration Unit, P.O. Box 168, Iowa City, IA 52240. (Test fees should be paid to the Testing Service, not to the university.) UC Davis’ College Board code is 4834 and the ACT code is 0454.

Eligibility in the Local Context
Beginning with students entering UC in fall 2001, the top four percent of students at each participating California high school are designated UC eligible and guaranteed admission to one of the eight UC general campuses under the Eligibility in the Local Context (ELC) pathway.

To be considered for ELC, you must complete eleven specific units of the Subject Requirement by the end of your junior year. With the assistance of each participating high school, the university will identify the top four percent of students on the basis of GPA in the required coursework.

The eleven units include one unit of history/social science; three units of English; three units of mathematics; one unit of laboratory science; one unit of language other than English; two units chosen from among other subject requirements.

The university will notify ELC students of their status at the beginning of their senior year. If you are designated UC-eligible through ELC, you must submit the university’s undergraduate application during the November filing period and complete remaining eligibility requirements—including the subject and examination requirements—to enroll.

ELC students are guaranteed a spot at one of the eight UC campuses, though not necessarily at their first-choice campus.
College Board Advanced Placement (AP) Examination Credit

<table>
<thead>
<tr>
<th>Examination</th>
<th>Score</th>
<th>UC Davis Course Equivalencies</th>
<th>Continuing Course</th>
<th>Credit Toward Degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGLISH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>English</td>
<td>5, 4</td>
<td>English 1, 3</td>
<td></td>
<td>8 units</td>
</tr>
<tr>
<td>College of Agricultural and Environmental Sciences: 4 units—Satisfies first half of English composition requirement.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>College of Engineering: 8 units—Satisfies English 1. College of Letters and Science: Satisfies first course toward English Composition requirement.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>English</td>
<td>3</td>
<td></td>
<td></td>
<td>8 units</td>
</tr>
<tr>
<td>FOREIGN LANGUAGES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>College of Agricultural and Environmental Sciences: 4 units of credit allowed toward Breadth requirement or Unrestricted electives for each foreign language examination passed.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>French</td>
<td>5</td>
<td>French 22</td>
<td>French 23, or consultation with adviser</td>
<td>8 units</td>
</tr>
<tr>
<td>French</td>
<td>4</td>
<td>French 21</td>
<td></td>
<td>8 units</td>
</tr>
<tr>
<td>French</td>
<td>3</td>
<td>French 3</td>
<td></td>
<td>8 units</td>
</tr>
<tr>
<td>German</td>
<td>5, 4</td>
<td>German 20</td>
<td>German 21, upper division literature courses</td>
<td>8 units</td>
</tr>
<tr>
<td>German</td>
<td>3</td>
<td>German 3</td>
<td>German 20</td>
<td>8 units</td>
</tr>
<tr>
<td>Latin (Vergil)</td>
<td>5, 4, 3</td>
<td>Latin 2</td>
<td>Determined by consultation with Classics adviser</td>
<td>4 units</td>
</tr>
<tr>
<td>Latin (Lyric)</td>
<td>5, 4, 3</td>
<td>Latin 3</td>
<td>Determined by consultation with Classics adviser</td>
<td>4 units</td>
</tr>
<tr>
<td>Spanish</td>
<td>5, 4, 3</td>
<td>Spanish 3</td>
<td>Spanish 21, 22, 23, 31, 32, 33 or consultation with adviser</td>
<td>8 units</td>
</tr>
<tr>
<td>HUMANITIES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>College of Agricultural and Environmental Sciences: 8 units of credit allowed toward Breadth requirement or Unrestricted electives for each humanities examination passed.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Art Studio</td>
<td>5</td>
<td></td>
<td></td>
<td>8 units</td>
</tr>
<tr>
<td>College of Letters and Science: partially satisfies Area (breadth) requirements for A.B. degree</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Art Studio</td>
<td>4</td>
<td>Art Studio 2</td>
<td></td>
<td>8 units</td>
</tr>
<tr>
<td>College of Letters and Science: partially satisfies Area (breadth) requirements for A.B. degree</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Art Studio</td>
<td>3</td>
<td></td>
<td></td>
<td>8 units</td>
</tr>
<tr>
<td>College of Letters and Science: partially satisfies Area (breadth) requirements for A.B. degree</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Art History</td>
<td>5</td>
<td>Art History 1A, 1B, 1C</td>
<td></td>
<td>8 units</td>
</tr>
<tr>
<td>College of Letters and Science: partially satisfies Area (breadth) requirements for A.B. degree</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Art History</td>
<td>4, 3</td>
<td></td>
<td></td>
<td>8 units</td>
</tr>
<tr>
<td>American History</td>
<td>5, 4, 3</td>
<td>History 17A, 17B</td>
<td>Satisfies the university American History and Institutions requirement. History 17A and 17B may be taken for full credit.</td>
<td>8 units</td>
</tr>
<tr>
<td>European History</td>
<td>5, 4, 3</td>
<td>History 4B, 4C</td>
<td></td>
<td>8 units</td>
</tr>
<tr>
<td>All colleges: History 4A and 4B may be taken for full credit.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Music</td>
<td>5, 4, 3</td>
<td>Music 10</td>
<td></td>
<td>8 units</td>
</tr>
<tr>
<td>College of Letters and Science: partially satisfies Area (breadth) requirements for A.B. degree</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NATURAL SCIENCES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All colleges: 4 units of credit toward Natural Sciences Credit or Preparatory Course Work allowed for science majors for each Natural Sciences examination passed, except 8 units of credit allowed for Mathematics BC and Physics B examinations.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biology</td>
<td>5, 4, 3</td>
<td>Biological Sciences 10</td>
<td></td>
<td>8 units</td>
</tr>
<tr>
<td>Biological Sciences 1A is the first course taken by most students contemplating majors in the Life Sciences.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemistry</td>
<td>5</td>
<td>Chemistry 2A</td>
<td>Determined by consultation with adviser</td>
<td>8 units</td>
</tr>
<tr>
<td>Although Chemistry 2A may be taken for full credit, students are strongly encouraged to enroll in the 20A, 20B, 20C sequence.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemistry</td>
<td>4, 3</td>
<td>Chemistry 10</td>
<td></td>
<td>8 units</td>
</tr>
<tr>
<td>Computer Science AB</td>
<td>5, 4</td>
<td>Engineering, Computer Science 30</td>
<td>Engineering, Computer Science 40 as prerequisite for Computer Science and Engineering 40 with consent of instructor</td>
<td>4 units</td>
</tr>
<tr>
<td>Computer Science AB: 4 units of credit allowed toward the unrestricted electives requirement.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Computer Science A</td>
<td>5, 4, 3</td>
<td>Engineering, Computer Science 30</td>
<td></td>
<td>4 units</td>
</tr>
<tr>
<td>Environmental Sciences</td>
<td>5, 4, 3</td>
<td>Environmental and Resource Sciences 10, 10G</td>
<td>Environmental and Resource Sciences 60</td>
<td>4 units</td>
</tr>
<tr>
<td>Mathematics AB</td>
<td>5, 4</td>
<td>Mathematics 12, 16A, or 21A</td>
<td>Mathematics 16B or 21B</td>
<td>4 units</td>
</tr>
<tr>
<td>Mathematics AB may be taken for full credit. Credit for Mathematics 16A or 21A equivalents may serve as prerequisite for Mathematics 16B or 21B.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematics AB</td>
<td>3</td>
<td>Mathematics 16A or 21A</td>
<td></td>
<td>4 units</td>
</tr>
<tr>
<td>Mathematics BC</td>
<td>5</td>
<td>Mathematics 12, 16A-16B, or 21A-21B</td>
<td>Mathematics 16C or 21C</td>
<td>8 units</td>
</tr>
<tr>
<td>Mathematics BC may be taken for full credit. Mathematics 16A, 16B, 21A, or 21B equivalents may serve as a prerequisite for Mathematics 16B, 16C, 21B, or 21C.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematics BC</td>
<td>4, 3</td>
<td>Mathematics 12, 16A, or 21A</td>
<td>Mathematics 16B or 21B</td>
<td>8 units</td>
</tr>
<tr>
<td>Mathematics 16A or 21A may be taken for full credit. Credit for Mathematics 16A or 21A equivalents may serve as prerequisite for Mathematics 16B or 21B.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physics B</td>
<td>5</td>
<td>Physics 1A, 1B, 7A, 7B, 7C</td>
<td>Determined by consultation with adviser</td>
<td>8 units</td>
</tr>
<tr>
<td>Physics 7A, 7B, 7C may be taken for full credit.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physics B</td>
<td>4</td>
<td>Physics 10</td>
<td></td>
<td>4 units</td>
</tr>
<tr>
<td>Physics CI</td>
<td>3</td>
<td>Physics 1A, 7B, or 9A</td>
<td></td>
<td>4 units</td>
</tr>
<tr>
<td>Physics CI: only a score of 3 on Physics CI and CII Examinations applies toward Physics requirements.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physics CI</td>
<td>4</td>
<td>Physics 1A or 7B</td>
<td></td>
<td>4 units</td>
</tr>
<tr>
<td>Physics CI</td>
<td>3</td>
<td>Physics 1B or 7A</td>
<td></td>
<td>4 units</td>
</tr>
<tr>
<td>Physics CI</td>
<td>5</td>
<td>Physics 1B or 7A</td>
<td></td>
<td>4 units</td>
</tr>
<tr>
<td>Statistics</td>
<td>3</td>
<td>Statistics 13</td>
<td></td>
<td>4 units</td>
</tr>
<tr>
<td>Statistics 13 may be taken for full credit.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOCIAL SCIENCE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>College of Agricultural and Environmental Sciences: 4 units of credit allowed toward Breadth requirement or Unrestricted electives for each Social Science examination passed.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>American Government</td>
<td>5, 4, 3</td>
<td>Political Science 1</td>
<td></td>
<td>4 units</td>
</tr>
<tr>
<td>Political Science 1 satisfies American History and Institutions requirement.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comparative Government</td>
<td>5, 4, 3</td>
<td>Political Science 2</td>
<td></td>
<td>4 units</td>
</tr>
<tr>
<td>Economics (Micro)</td>
<td>5, 4, 3</td>
<td>Economics 1A</td>
<td>Economics 100</td>
<td>4 units</td>
</tr>
<tr>
<td>Economics (Macro)</td>
<td>5, 4, 3</td>
<td>Economics 1B</td>
<td>Economics 101</td>
<td>4 units</td>
</tr>
<tr>
<td>Psychology</td>
<td>5</td>
<td>Psychology 1</td>
<td></td>
<td>4 units</td>
</tr>
<tr>
<td>Psychology</td>
<td>4, 3</td>
<td></td>
<td></td>
<td>4 units</td>
</tr>
</tbody>
</table>
Minimum Requirements for Residents of Other States

If you are a freshman applicant who does not claim California residency, you must meet the following requirements for minimum admission eligibility to the University of California. **Applicants to UC Davis generally must perform well above the minimum in order to gain admission to UC Davis:**

- Graduate from a regionally accredited or state-accredited high school
- Satisfactorily complete the subject requirements listed under Requirements for California Residents
- Earn a grade point average of at least 3.40 (B+) in the courses used to meet the subject requirements
- Complete the examination requirements listed for California residents

Minimum Eligibility by Examination Alone

If you do not meet the minimum scholarship and subject requirements for admission, you can meet minimum requirements for eligibility as a freshman by examination alone. The examinations must be taken before you graduate from high school. (If you have completed transferable college courses, College Board subject tests cannot be taken in academic subjects covered in those courses.) You must take the same College Board tests discussed above and receive a total score of at least 1460 on the SAT-I, or a score of 31 on the American College Test. Your total score on the SAT-II must be 1760 or higher with no score less than 530 on an individual test. If you are a nonresident applicant, your score on the SAT-II must be 1830 or higher with no score less than 530 on an individual test.

High School Proficiency Examination

The University of California will accept the Certificate of Proficiency or the General Education Development (GED) certificate awarded by the State Department of Education in lieu of the regular high school diploma. However, you must also meet all other university entrance requirements (subject, scholarship and examination).

Transfer Credit

Transfer credit may be granted to a freshman applicant for an acceptable college course taken while still in high school when an official transcript is received from the college that conducted the course.

Transfer credit is also granted for each College Board Advanced Placement Examination completed with a score of 3, 4 or 5. International Baccalaureate Higher Level Examinations with scores of 5, 6 or 7 will receive transfer credit. If students take college courses in combination with Advanced Placement or International Baccalaureate Examinations in the same subject areas, transfer credit may be limited due to duplication of credit.

Advanced Placement Examinations

If you take one or more of the College Board Advanced Placement (AP) Examinations and score 3, 4 or 5, you will be awarded college credit. The credit will become part of the minimum 180 quarter units you need in order to receive a bachelor's degree. The credit from the AP Examinations may also be used to satisfy specific degree requirements.

Consult the chart on the previous page to learn how many units you will receive for an AP Examination (see the column headed: Credit Toward Degree). How those units will be applied toward specific degree requirements in each college is explained for each exam category and in the notes below each exam listing. Please note that the courses for which AP credit has been granted may not be used as a substitute for courses required as part of the UC Davis General Education Requirement. (See General Education in the “Undergraduate Education” chapter.)

In general, you may not earn university credit for courses that duplicate credit already earned through AP. There are, however, a few exceptions to this general rule. Since it is often difficult to know exactly which UC Davis course you should take when you have earned AP credit, you should talk with an academic adviser in your department or dean's office before selecting and enrolling in classes.

ADMISSION AS A TRANSFER STUDENT

The University of California defines a transfer applicant as a student who has been a registered student in a college or university or in college-level extension classes since last attendance at high school. Summer session attended immediately following high school graduation is excluded in this determination. If you are a transfer applicant, you may not disregard your college record and apply for admission as a freshman.

California residents must meet the requirements that follow. If you are not a California resident, see Requirements for Residents of Other States below. **Applicants to UC Davis generally must perform well above the minimums in order to gain admission,** since the number of eligible applicants exceeds the number of students we can admit.

The highest priority for admission is given to California Community College transfer applicants with 90 quarter (60 semester) units of transfer work and earn an overall C (2.00) average in all transferable college course work.

UC Minimum Requirements for California Residents

Transfer applicants must meet one of the following conditions:

- Students who were eligible for admission to the university when they graduated from high school—meaning they satisfied the Subject, Scholarship and Examination Requirements—are UC minimally eligible to transfer if they have a C (2.00) in their transferable college course work.
- Students who met the Scholarship Requirement but did not satisfy the Subject Requirement must take transferable college courses in the subjects they are missing, earn a grade of C or better in each of these required courses, and earn an overall C (2.00) average in all transferable college course work to be minimally eligible to transfer. Students who met the Scholarship Requirements but did not meet the Examination Requirement must complete a minimum of 18 quarter (12 semester) units of transferable work and earn an
overall C (2.00) average in all transferable college course work completed.

- Students who were not eligible for admission to the university when they graduated from high school because they did not meet the Scholarship Requirements must:
 a. complete 90 quarter (60 semester) units of transferable college credit with a grade point average of at least 2.40,
 and
 b. Complete a course plan requirement to include:
 1. two transferable college courses (4-5 quarter or 3 semester units each) in English composition; and,
 2. one transferable college course (4-5 quarter or 3 semester units) in mathematical concepts and quantitative reasoning; and,
 3. four transferable college courses (4-5 quarter or 3 semester units each) chosen from at least two of the following subject areas: the arts and humanities, the social and behavioral sciences, the physical and biological sciences.

Each of the courses in this pattern must be complete with a grade of C or better.

Minimum Requirements for Residents of Other States

If you meet the requirements for admission as a nonresident freshman, you must have a grade point average of 2.80 or better in college courses that are accepted for transfer credit by the University of California.

If you do not meet the minimum requirements for admission as a nonresident freshman, you must have completed at least 90 quarter (60 semester) units of transferable work with a grade point average of 2.80 or better and have completed the subject requirements for California residents. **Applicants to UC Davis generally must perform well above the minimums to gain admission to UC Davis.**

Transfer Admission to the College of Engineering

The College of Engineering, in screening applicants, gives priority to junior-level California community college students who have completed a minimum of 90 quarter (60 semester) units of transfer work and the specified required lower division engineering courses and who have high GPAs.

The lower division programs and required courses are specified in the “Programs and Courses” section of this catalog, under the specific engineering major. You can also find this information on the World Wide Web at http://registrar.ucdavis.edu/UCDWebCatalog. Direct questions about courses required for transfer admission to your counselor or to the Engineering Undergraduate Office (530-752-0556).

Unit Credit for Courses Taken Elsewhere

The university gives unit credit to transfer students for courses they have completed at other accredited colleges and universities. To be accepted for credit, your courses must be comparable to those offered at the university, as determined by Undergraduate Admissions and Outreach Services. You can find information about transferable credit from California Community Colleges on the World Wide Web at http://www.assist.org.

A total of 105 quarter (70 semester) units toward a university degree may be earned at a community (two-year) college. Only subject credit will be granted for courses taken in excess of these amounts.

UC Intercampus Transfer

If you are an undergraduate student currently or previously registered at another UC campus and have not since been registered in another institution, you may apply for transfer to the Davis campus. Filing dates, the application, fees and admission requirements are the same as those listed for new applicants.

ADMISSION AS AN INTERNATIONAL STUDENT

International students attend the University of California, Davis, from many countries around the world. There were 87 different countries represented on the Davis campus in the 1998-1999 academic year, by an international student population of approximately 1,100 students, as well as an equal number of visiting international faculty and researchers. To be eligible for admission to the University, international students need to meet specific academic and financial qualifications.

Freshman Admission

Prospective students attending school outside of the U.S., seeking admission as freshmen, must complete secondary school earning superior marks in academic subjects. International students applying to UC Davis from California high schools are considered for admission using the same eligibility criteria as California residents. The eligibility of applicants who have attended both foreign and U.S. high schools will be evaluated using both foreign and U.S. academic records. UC Davis welcomes competent, qualified applicants from around the world. There are no quotas for international students.

Required Tests for Freshman Applicants

The Scholastic Assessment Test I (SAT I) and three Scholastic Assessment Test II (SAT II) are required. Subject tests include Writing, Mathematics Level 1 or Level 2 and one test in one of the following areas: English literature, foreign language, science or social studies. These tests are required from international students graduating from U.S. high schools, American-type schools abroad, and applicants from countries with educational systems that do not have national, external examinations at the end of secondary school.

Freshman applicants are strongly encouraged to take these tests early because many preliminary admission decisions are made on the basis of test scores and marks. Official scores must be reported to UC Davis no later than the end of December of the year they apply. For information concerning these tests, contact the following:

SAT Program
1425 Lower Ferry Road
Q10
Trenton, NJ 08618
Phone: (609) 771-7600; e-mail: sat@ets.org
Priority is given to prospective transfer students who are prepared to begin their junior or third year of study at UC Davis. Coursework from other colleges and universities is considered transferable if the applicant completed the course at an institution that is recognized by the University of California and is comparable to coursework offered at UC Davis. Students attending colleges or universities outside of the U.S. should be aware that many foreign technical institutes are not recognized and that vocational coursework is not transferable.

International students applying to transfer to UC Davis from California colleges or universities are considered for admission using the same eligibility criteria as domestic students. Applicants who have attended both foreign and U.S. colleges and universities will be evaluated using both foreign and U.S. academic records.

Note: It is not possible to disregard any college or university work undertaken.

Required Academic Records

International students are responsible for providing UC Davis with official academic transcripts and/or certificates beginning with secondary school records. College and university records should indicate subjects taken; grades or marks earned; rank in class; number of academic terms per year; number of weeks in each academic term; and number of hours per week devoted to lecture and laboratory. Certifications must be provided for any university or government examinations the student has passed. Certified English translations of all academic records are required. To apply for undergraduate admission, send records directly to the following:

Undergraduate Admissions and Outreach Services
University of California
178 Mrak Hall, One Shields Avenue
Davis, CA 95616-8507
U.S.A.

To be considered for admission at other UC campuses, send copies of your records directly to the other campuses.

Opportunities for International Students in Engineering

The College of Engineering at UC Davis receives many more applications for undergraduate admission than can be accommodated. As a result, the college can only accept a few applications for the fall quarter from international students who have superior records. You may apply for admission if you meet the following criteria:

Freshman applicants: You must be attending and graduating from a school in the United States. Applications from students completing secondary school outside of the U.S. will not be accepted.

Transfer applicants: You must be a student attending a California community college, completing the lower division requirements for the College of Engineering, and be at the junior level (60 semester/90 quarter units) at the time you enter UC Davis. Applications from students attending other colleges and universities will not be accepted.

If you are interested in applying for admission in Engineering majors at other University of California campuses, you must contact each campus directly for information about admission.
TOEFL
The Test of English as a Foreign Language (TOEFL) is a requirement of admission for applicants from abroad or for those with little schooling in the United States, when English is not the applicants’ native language. International students attending secondary school in the United States will be required to present TOEFL results if they have attended an American school for less than two years. To be considered for admission, UC Davis requires a minimum score of 550 on the paper based TOEFL or 213 on the computer based TOEFL. You may call (609) 771-7100, e-mail toefl@ets.org, or go to http://www.toefl.org for information.

Estimated Costs for 2000-2001
For the 2000-2001 academic year, international students seeking nonimmigrant visas must guarantee $27,500 is on deposit, in a bank, available for their support for the first year of study. It is estimated that tuition and fees will be $15,500 and minimum living expenses will be $12,000. Financial aid is not available to international students. International students with nonimmigrant visas must anticipate paying full fees for the duration of their stay at UC Davis. Fees are subject to change without notice.

CAMPUS ADMISSION STANDARDS
The University of California makes every effort to provide a place for all California resident applicants who meet the minimum UC admission requirements and file an application during the appropriate priority filing period.
In recent years, UC Davis has received more applications than the number of spaces available. When UC Davis cannot accept all eligible applicants, it uses standards that are more demanding than the minimum requirements to select students. These standards, which are called selection criteria, identify those students who have demonstrated the capacity for high academic achievement and who have a variety of other qualities that can contribute to the strength and diversity of the campus community.

The selection criteria described below were used for applicants for the fall 1999 term. The criteria may differ for the winter and spring terms because enrollment targets and applicant qualifications change. Applicants for winter or spring should contact Undergraduate Admissions and Outreach Services for more information.

Selection Guidelines
Each campus, in consultation with the Office of the President, develops enrollment targets that specify the number of new freshman and advanced standing students expected to enroll. UC Davis receives more applications than required to meet our enrollment target and therefore admits students using the criteria described below.

Freshman Applicants
Academic Criteria (used to select up to 60 percent of admits): Freshman applicants selected have made the greatest effort to fully prepare academically as measured by the following criteria:

1. Calculated GPA on all academic courses completed in the “a-f” subject areas, with additional points given for honors courses. Maximum value is 4.00.
2. College entrance test scores—SAT-I or ACT and the three SAT-II test scores.
3. The number and content of college preparatory courses taken in academic subjects beyond UC minimums.
4. The number of university-approved honors or advanced placement courses completed or in progress.

Supplemental Criteria (used to select up to 40 percent of admits): Applicants are evaluated using the selection criteria described above in conjunction with the following supplemental criteria:
1. Personal accomplishments, talents, school and community experiences or interests that will contribute to the educational environment of the campus.
2. Special circumstances that may have affected the applicant’s life, including personal hardship and economic and educational disadvantage.

Transfer Applicants
Academic Criteria: UC-eligible California community college junior level transfer applicants with 90 quarter (60 semester) units of transfer work are given top priority for admission consideration. Other UC-eligible transfer applicants will be admitted if space is available. Applications far exceed the number of spaces available in majors such as engineering, biological sciences, computer science, exercise science, fermentation science, international relations, psychology, and viticulture and enology; therefore, the applicant must complete specific lower division preparatory courses in the major. Check your intended major on the Web at http://unicorn.ucdavis.edu/admissions/majors.html or through http://www assistir.org, which provides articulation with California community colleges.

Supplemental Criteria: The same supplemental criteria described above for freshmen are used.

Notification and Acceptance of Admission
Upon completion of a review of your academic records, you will be notified of your admission status by letter. Throughout the admissions process, you can check your application status online at http://sisweb.ucdavis.edu.

The length of time before admission notification varies depending upon the completeness of your application. For example, most applicants for fall quarter will be notified of their admission status between March 1 and mid-March for freshmen, and March 1 and May 1 for transfer applicants.

When you receive your notification of admission you will also receive an important form called the Statement of Intent to Register (SIR). Complete the form and return it to the Cashier’s office, along with the required nonrefundable $100 deposit, in order to complete the admissions process. This advance deposit is applied to your university registration fee as long as you register in the quarter to which you are admitted. EOP
applicants are not required to submit the $100 advance deposit; however, they will pay full registration fees at the time of registration.

The Statement of Intent to Register (SIR) for the fall term should be returned by May 1 (freshman) or June 1 (transfer) to notify the campus that you wish to attend. You may not file SIRs at multiple UC campuses for the same term. Students admitted to winter or spring quarter must return the SIR by the date specified on the SIR document.

READMISSION

If you are a former UC Davis undergraduate student planning to resume studies at the Davis campus as an undergraduate, you must file an Application for Readmission, available in the Office of the Registrar, and pay a nontransferable, nonrefundable fee of $40. (You are a former student if you have interrupted the completion of consecutive terms of enrollment on the Davis campus.) Official transcripts of all work you may have attempted in the interim must be submitted to the Office of the Registrar.

Students applying for readmission must file their applications on or before the following deadlines:

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Deadline Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall 2000</td>
<td>July 31, 2000</td>
</tr>
<tr>
<td>Winter 2001</td>
<td>October 31, 2000</td>
</tr>
<tr>
<td>Spring 2001</td>
<td>January 31, 2001</td>
</tr>
<tr>
<td>Fall 2001</td>
<td>July 31, 2001</td>
</tr>
<tr>
<td>Winter 2002</td>
<td>October 31, 2001</td>
</tr>
<tr>
<td>Spring 2002</td>
<td>January 31, 2002</td>
</tr>
</tbody>
</table>

SPECIAL PROGRAMS

Open Campus—Concurrent Enrollment

Concurrent courses are regular university courses open to the community on a space-available basis through University Extension. This program allows an individual to pursue academic interests and to test academic abilities at the university.

For information, write to the University Extension office, Research Park, University of California, Davis, CA 95616 (530-757-8777).

Educational Opportunity Program (EOP)

The Educational Opportunity Program (EOP) assists students from economically, socially, and/or educationally disadvantaged backgrounds. EOP can help students with the admission application process and offers academic, social and cultural support. (See also under the “Academic Advising and Student Resources” chapter.) Application fee waivers and financial aid are available to those individuals with demonstrated financial need.

Contact Undergraduate Admissions and Outreach Services for information on obtaining application fee waivers, and contact the Financial Aid Office regarding financial assistance. Once enrolled, contact the EOP Information Office for a quarterly newsletter and class information.

To apply for the program, each applicant must complete the regular UC admission application form and complete the appropriate items related to EOP. In addition, the applicant is advised to discuss the reasons for requesting EOP assistance in the required personal statement.

Limited Status

Students in limited status are those whose special attainments qualify them to take certain courses in the university toward a definite and limited objective. To apply for limited status admission, you must either have a bachelor’s degree but not be a candidate for an advanced degree, or have completed a substantial amount of college work with a satisfactory grade point average. You must submit an undergraduate application with fee as well as a limited status petition and official transcripts from all schools attended. As a limited status student you will be expected to maintain a certain scholarship average during a predetermined time of enrollment.

Application filing dates are the same as those for new undergraduate applicants. Fees for limited status students are the same as those for new applicants. You will not be admitted to limited status for the purpose of raising a low scholarship average.

Admission to the College of Agricultural and Environmental Sciences requires the approval of the undergraduate admissions director and the dean of the college.

Enrollment pressures have necessitated closing this category of admission for the College of Engineering, the College of Letters and Science and the Division of Biological Sciences.

Second Baccalaureate

If you have a bachelor’s degree substantially equivalent to one that is granted by the University of California, you may be allowed to enroll as an undergraduate seeking a second bachelor’s degree. Admission in this category will depend upon a superior academic record and clear evidence of a change in objective.

Admission to the Colleges of Agricultural and Environmental Sciences and Engineering requires the approval of the undergraduate admissions director and the dean of the college. You must submit an undergraduate application, a second baccalaureate petition (except College of Engineering) as well as official transcripts from all schools attended. The second baccalaureate petition can be downloaded from
The College of Engineering will accept applicants if their first degree is not in engineering and if they complete the lower division engineering program at a California community college. Enrollment pressures have necessitated closing this category of admission for the College of Letters and Science and the Division of Biological Sciences, except in the major of Plant Biology in the College of Agricultural and Environmental Sciences.

Special Status
The special status classification is for applicants 21 years of age or older who have not had the opportunity to complete a satisfactory high school program or who have not completed a substantial amount of college work, but by reason of special attainment or background may be prepared to undertake certain courses at UC Davis toward a definite and limited objective.

You will not be admitted to special status for the purpose of fulfilling requirements for admission as a regular student. Conditions for admission are determined by the admissions director and are subject to approval by the dean of Agricultural and Environmental Sciences. Admission is for a specified time only and a prescribed scholastic average must be maintained. Application, special status petition, fees and filing dates are the same as those for new applicants.

Enrollment pressures have necessitated closing this category of admission for the College of Engineering, the College of Letters and Science, and the Division of Biological Sciences.

ADMISSION CHECKLIST

☐ 1. Apply via the World Wide Web at http://www.ucop.edu/pathways. You can also obtain the Application for Undergraduate Admissions and Scholarship from your local high school, community college, or a campus of the University of California. If you are not a California resident and cannot apply via the web, request an application from Undergraduate Admissions and Outreach Services, 178 Mrak Hall, One Shields Avenue, University of California, Davis, CA 95616-8507.

☐ 2. Complete the application, including the essay, and list the college and major you prefer. Attach a check or money order to cover the application fee with your application materials, and return them in the preaddressed envelope during the priority filing period for the quarter in which you are interested; do not attach any other documents.

☐ 3. Keep a copy of your application and essay.

☐ 4. Keep the notices you receive from both the Undergraduate Application Processing Service and the Undergraduate Admissions offices.

☐ 5. If you are applying from high school, do not send a preliminary transcript unless asked to do so by Undergraduate Admissions and Outreach Services. Please arrange to have official test scores forwarded by the testing agency. If you are applying as a transfer student, arrange to have all official college or university transcripts sent to each UC campus to which you applied.

☐ 6. High school applicants for the fall quarter should take the SAT-I or ACT and the three SAT-II tests no later than December. We strongly encourage you to complete these tests by the November test date.

☐ 7. Undergraduate Admissions and Outreach Services may request additional information, such as official transcripts, or confirmation of work in progress. Send this information right away so your application can be evaluated without delay. Your eligibility for admission cannot be evaluated until all your application materials are received; i.e., completed application form, filing fee, essay, official transcripts (if required), work in progress, and test scores (if required).

☐ 8. If you are admitted, keep your admission letter for your records.

☐ 9. Return your “Statement of Intent to Register” (SIR), “Statement of Legal Residence” (SLR), Student Address form, and the nonrefundable advance deposit of $100 (if required) no later than the date stated on the SIR, so you can be authorized to complete registration.

☐ 10. After your SIR is received, you will be sent information from the Cowell Student Health Center. Return your completed Medical History and Immunization forms to the Cowell Student Health Center as soon as possible.
FEES AND EXPENSES

Give careful consideration to the total financing of your university education. If you will need funds beyond those that you and your family can provide, you should apply for financial aid well in advance of enrollment. The deadlines for applying for financial aid (grants, loans, work-study and scholarships) are listed on the following pages.

At the time of registration each quarter, every student must pay the quarterly fees as shown in the box below. (A Registration Fee Deferred Payment Plan, which allows students to pay quarterly fees in three monthly installments, is available.)

Course Materials Fees

Students may be charged fees in some courses for the use, rental or consumption of materials, tools or equipment, or for the costs of materials or services necessary to provide a special supplemental educational experience. For example, course materials fees may cover the purchase of chemicals and glassware for a science laboratory or of art supplies for an art studio class. They might also cover film rentals, field trips, or the purchase or rental of specific equipment. Courses that may be subject to the course materials fee are listed in the Class Schedule and Registration Guide.

Part-Time Students

Students approved for enrollment on a part-time basis pay the same fees as full-time students, but pay only one-half of the Educational Fee. Part-time nonresidents pay one-half of the Nonresident Tuition Fee. Undergraduates file their part-time petition with the Office of the Registrar, 12 Mrak Hall. Graduate students file their petition with Graduate Studies, 250 Mrak Hall.

Student Fees

These are the quarterly fees for the 2000-2001 academic year. Because they are subject to regental, legislative, and gubernatorial action, these fees may change without notice. Go to www.pbo.ucdavis.edu/studentfees for updated information.

<table>
<thead>
<tr>
<th>Undergraduate</th>
<th>Graduate</th>
<th>Law*</th>
<th>Medicine</th>
<th>Management</th>
<th>Veterinary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resident</td>
<td>Nonresident</td>
<td>Resident</td>
<td>Nonresident</td>
<td>(Semester)</td>
<td>Medicine</td>
</tr>
<tr>
<td>Registration Fee$</td>
<td>$238.00</td>
<td>$238.00</td>
<td>$238.00</td>
<td>$238.00</td>
<td>$238.00</td>
</tr>
<tr>
<td>Educational Fee$</td>
<td>$906.00</td>
<td>$1,029.00</td>
<td>$966.00</td>
<td>$1,029.00</td>
<td>$1,543.00</td>
</tr>
<tr>
<td>ASUC/CD Fee</td>
<td>$35.00</td>
<td>$35.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GSA Fee</td>
<td></td>
<td>$6.50</td>
<td>$6.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISA Fee</td>
<td></td>
<td>$10.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Memorial Union Fee</td>
<td>$28.50</td>
<td>$28.50</td>
<td>$28.50</td>
<td>$28.50</td>
<td>$42.75</td>
</tr>
<tr>
<td>Facilities and Campus Enhancements Fee</td>
<td>$11.00</td>
<td>$11.00</td>
<td>$11.00</td>
<td>$11.00</td>
<td>$11.00</td>
</tr>
<tr>
<td>Legal Education Enhancement and Access Program Fee</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Student Services Maintenance Fee and Student Activities & Services Initiative Fee</td>
<td>$82.50</td>
<td>$82.50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Student Facilities Safety Fee</td>
<td>$22.00</td>
<td>$22.00</td>
<td>$22.00</td>
<td>$22.00</td>
<td>$33.00</td>
</tr>
<tr>
<td>Student Health Services Fee</td>
<td>$36.00</td>
<td>$36.00</td>
<td>$36.00</td>
<td>$36.00</td>
<td>$33.00</td>
</tr>
<tr>
<td>Health Insurance</td>
<td>—</td>
<td>—</td>
<td>$141.00</td>
<td>$141.00</td>
<td>$211.00</td>
</tr>
<tr>
<td>Disability Insurance Fee$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$61.00</td>
</tr>
<tr>
<td>Professional School Fee$</td>
<td></td>
<td></td>
<td>$3,188.00</td>
<td>$1,792.00</td>
<td>$2,000.00</td>
</tr>
<tr>
<td>Veterinary Medicine Course Materials Fee$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Full-time Student Fees, CA Resident</td>
<td>$1,359.00</td>
<td>$1,449.00</td>
<td>$3,464.25</td>
<td>$3,338.50</td>
<td>$3,312.00</td>
</tr>
<tr>
<td>Nonresident Tuition$</td>
<td>$3,415.00</td>
<td>$3,415.00</td>
<td>$5,122.00</td>
<td>$3,415.00</td>
<td>$3,415.00</td>
</tr>
<tr>
<td>Total Full-time Student Fees, Nonresident</td>
<td>$4,897.00</td>
<td>$4,927.00</td>
<td>$7,586.25</td>
<td>$6,773.50</td>
<td>$6,927.00</td>
</tr>
<tr>
<td>Total Part-time Student, CA Resident</td>
<td>$906.00</td>
<td>$966.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Part-time Student, Nonresident</td>
<td>$2,676.00</td>
<td>$2,706.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Employee-Student</td>
<td>$432.50</td>
<td>$452.50</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* The Law School operates on the semester system.

1 Fees for which tax credit can be claimed under the Taxpayer Relief Act of 1997.
2 Undergraduates may elect to purchase university sponsored health insurance at registration. The 2000–2001 fee is approximately $174.00 per quarter. Foreign students and FNP/PA students are required to purchase the Graduate Student Health Insurance Plan (GSHIP). The 2000–2001 GSHIP fee is approximately $141.00 per quarter.
3 The Disability Insurance Fee is $61.00 per year, assessed annually fall quarter. This fee applies only to medical students, not interns, residents or health science academics.
4 Includes School of Law and School of Medicine surcharges.
5 Students entering Veterinary Medicine in 1998-1999 will be assessed the Veterinary Medicine Course Materials Fee of $1,000.00.
6 The Law School operates on the semester system.

For more information, visit the Office of the Registrar or the website at http://www.pbo.ucdavis.edu/studentfees.
UC Employee-Student Fees

Reduced fees are available to UC career employees and certain UC retirees who are qualified for admission to the university. Once admitted, the employee-student must file a petition for the reduction in fees before each quarter of enrollment. Employee-students pay one-third of the full-time Registration Fee and one-third of the full-time Education Fee. Employee-students also pay the Memorial Union Fee and the Student Facilities Safety Fee.

Employee students may enroll for up to nine units or three courses per quarter or semester, whichever is greater. Information is in Personnel Policies for Staff Members (section 51), available in department offices, at Shields Library, the Staff Development and Professional Services Office, and on the World Wide Web. Petitions are also available on the World Wide Web.

Motor Vehicle Parking Permit and Bicycle Licensing Fees

Parking permit rates are available at Parking Services or you may call (530) 752-8277.

A California State License fee is required for all bicycles on campus (initial license, $6; renewals, $3).

Costs for a Year at UC Davis

The costs listed below are average costs, and your own living expenses may differ somewhat from these. Cost of living expenses are adjusted annually, and fees are subject to change without notice. More information on living expenses can be found in the section on housing or from the Financial Aid Office.

International Student Expenses

International students are responsible for all of their expenses while studying at UC Davis. The expenses include non-resident tuition, educational fees, room and board and a modest amount for personal expenses. For the 2000-2001 academic year, we estimate the cost will be $27,500. Because the exact cost for tuition and fees is not determined until just before the beginning of the academic year, $27,500 is only a preliminary figure. This minimum allowance may be increased without advance notice.

During the admission process, most international undergraduate students are required to complete the “Financial Statement for Students Seeking Nonimmigrant Status” form certifying that funds are available for twelve months support. It is very important that students have adequate, reliable, and continuing financial support for the whole time they are here. After students arrive in the United States, it is extremely difficult to obtain additional funding. The university does not offer grants or financial aid to international undergraduate students.

All students need to be aware that there are numerous initial expenses during the first few months, including tuition and fees, an initial down payment for housing, food and personal expenses. We suggest that you bring a minimum of $7,000 for immediate expenses. Careful budgeting is essential for international students.

Average Student Costs Annually

<table>
<thead>
<tr>
<th>Category</th>
<th>Undergraduate</th>
<th>Graduate (single; living off campus)</th>
<th>Graduate School of Management (evening program)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fees*</td>
<td>$4,072</td>
<td>$15,321</td>
<td>$18,449</td>
</tr>
<tr>
<td>Books and supplies</td>
<td>$1,055</td>
<td>$21,908 to 25,565</td>
<td></td>
</tr>
<tr>
<td>Housing and Food</td>
<td>$5,438</td>
<td>(depending upon the year in school)</td>
<td></td>
</tr>
<tr>
<td>Personal expenses</td>
<td>$1,234</td>
<td>$22,108 to 26,698</td>
<td></td>
</tr>
<tr>
<td>Health Insurance</td>
<td>$415</td>
<td>(depending upon the year in school)</td>
<td></td>
</tr>
<tr>
<td>Transportation</td>
<td>$710</td>
<td>$23,622 to 23,898</td>
<td></td>
</tr>
<tr>
<td>Total (on-campus residence)</td>
<td>$15,017</td>
<td>$12,924</td>
<td></td>
</tr>
<tr>
<td>Total (off-campus residence)</td>
<td>$21,908</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Out of state tuition is $10,244 per year; if applicable, this amount is added to the “fee” category.

Fee Refunds

Cancellation, Withdrawal and Fee Refunds

To cancel your registration before the first day of instruction or to withdraw from the university on or after the first day of instruction, you must complete a Notice of Cancellation/Withdrawal form and return the form to the Office of the Registrar. If you don't submit a Notice of Cancellation/Withdrawal form, you will be liable for fees according to university policy (below). No exceptions will be made to this policy.

For students who paid fees and cancel or withdraw with official approval before the end of any quarter, fees may be refunded according to the Schedule of Refunds (see explanation on opposite page).

The effective date for determining a refund of fees is the date you file a completed Notice of Cancellation/Withdrawal form with the Office of the Registrar, and it is presumed that no university services will be provided to you after that date. The percentage of fees that may be refunded is determined by the number of calendar days (not school days) elapsed, beginning with the first day of instruction.

If you enrolled in classes, you will be dropped from all of your courses automatically when the Notice of Cancellation/Withdrawal form is processed. If you enrolled, but have not paid fees in full by the tenth day of instruction, you will be dropped for non-payment and officially withdrawn from the university.

New Undergraduate Students:

The nonrefundable $100 deposit paid when you accepted admission and returned your Statement of Intent to Register (SIR) is withheld from the registration
fee and the Schedule of Refunds is applied to the balance of fees assessed.

Thus, before or on the first day of instruction, registration fees paid are refunded in full minus $100. After the first day of instruction, the nonrefundable $100 deposit is withheld from the registration fee and the Schedule of Refunds is applied to the balance of fees assessed.

All Continuing Students, Readmitted Students and New Graduate Students:

On or before the first day of instruction, registration fees are refunded in full minus a $10 service charge for cancellation/withdrawal. After the first day of instruction, the Schedule of Refunds is applied to the total of fees assessed.

Planned Educational Leave Program

The Schedule of Refunds also applies to students who participate in the Planned Educational Leave Program (PELP). Thus, for a full refund of registration fees paid, you must file a completed approved PELP form with the Office of the Registrar before or on the first day of instruction. See Planned Education Leave in the “Academic Information” chapter.

Schedule of Refunds

The Schedule of Refunds applies to all continuing and readmitted students and new students who do not receive federal financial aid.*

The Schedule of Refunds refers to calendar days beginning with the first day of instruction. The number of days elapsed is determined from the date the completed Notice of Cancellation/Withdrawal form is returned to the Office of the Registrar. Percentages listed (days 1-35) should be applied respectively to University Registration Fee, Educational Fee, Nonresident Tuition, and other student fees.

<table>
<thead>
<tr>
<th>Calendar Days Elapsed</th>
<th>Percentage of Fees Refunded</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>100% less $10.00</td>
</tr>
<tr>
<td>2-7 days</td>
<td>90%</td>
</tr>
<tr>
<td>8-18 days</td>
<td>50%</td>
</tr>
<tr>
<td>19-35 days</td>
<td>25%</td>
</tr>
<tr>
<td>36 days and over</td>
<td>0%</td>
</tr>
</tbody>
</table>

*New students who receive federal financial aid and withdraw during their first academic term may be refunded fees according to a Modified Fee Refund Schedule, available at the Financial Aid Office.

Refund of Health Insurance Fee

If you paid the health insurance fee and you are cancelling your registration on or before the first day of instruction, you are entitled to a 100 percent refund of this fee. Undergraduates must contact the Health Insurance Office at 530-752-2612 to receive the refund. Graduates will get an automatic refund from the Accounting Office.

After the first day of instruction, no refund of the health insurance fee will be issued. Any questions regarding the refund of health fees for withdrawals should be directed to the Student Health Center.

FINANCIAL AID

Financial Aid Office
1100 Dutton Hall
530-752-2390; 530-754-6073 (TTY);
undergradfinaid@ucdavis.edu; http://faoman.ucdavis.edu

The Financial Aid Office provides financial assistance in the form of scholarships, loans, grants and work-study employment. To apply, undergraduates and graduate students are required to file the Free Application for Federal Student Aid (FAFSA) which is available online at http://www.fafsa.ed.gov. Paper FAFSAs are also available at local high schools, community colleges, and the Financial Aid office. UC Davis students can obtain the FAFSA from the Financial Aid office in December. The priority filing deadline is March 2 each year; however, students are encouraged to apply even if the deadline has passed. Although state and university funding may be depleted, Federal Pell Grants and Loan are available throughout the year for eligible applicants.

Financing an education is a responsibility that is shared by the student, the parents of dependent students and the Financial Aid Office (through distribution of federal, state, and university funds). All students are expected to work to help finance their education.

Financial Aid Deadlines

Priority filing period for grants, loans, work-study and California Student Aid Commission applications for 2001-2002 Jan. 1–Mar. 2
Deadline to file for fellowships and graduate scholarships for 2001-2002 with Graduate Studies Jan. 15

Students who miss the March 2 deadline should still apply for financial aid. Even though Cal Grant, scholarship, and work-study funds may be depleted, eligible applicants can receive Pell Grants and Federal Direct Stafford/Ford Student Loans to help meet their need. The Free Application for Federal Student Aid (FAFSA) is available at local high schools, community colleges and the Financial Aid Office. Continuing UC Davis students and prospective graduate students should obtain the FAFSA from the Financial Aid Office in December.

Undergraduates with outstanding academic records are encouraged to apply for scholarships. See “Scholarships and Awards” at the end of this chapter for information about scholarship applications.

Graduate students are eligible for many of the same types of financial aid as undergraduates. In addition, graduate scholarships, fellowships, and teaching and research assistantships are administered through Graduate Studies.

Eligibility for most assistance is based upon demonstrated financial need. (However, most scholarships are not based on need.) Eligibility is determined by the following formula: (1) the student is assigned a standard budget reflecting the average costs for a student attending UC Davis; (2) the student’s resources are analyzed according to federal and state regulations; (3) the resources and an expected student contribution from work are subtracted from the budget; the remainder is the amount of eligibility. The Financial Aid Office
Financial Aid and Expenses

Fees, Expenses and Financial Aid

The awards for married students are based on the same basic budget plus the addition of a standard child care allowance, unless documentation is provided about a spouse who is unable to work, in which case a dependent living allowance will also be awarded. Single parents' awards are based on the single student's budget and a child care allowance. If single parents' resources (earnings and benefits) are not sufficient to meet the basic living expenses of their dependents, a standard dependent living allowance may be awarded upon receipt of documentation. The Financial Aid Office can assist student parents who qualify for financial aid with allowances for direct child care costs.

Satisfactory Academic Progress. Federal regulations require that financial aid recipients meet the published Standards for Satisfactory Academic Progress for Financial Aid concerning units, grade point average and maximum quarters of attendance allowed to obtain a degree. A copy of these standards is available at the Financial Aid Office. Review the policy in detail and discuss it with your academic adviser.

For more information, contact the Financial Aid Office. Regulations and deadlines are subject to change.

Types of Financial Aid

Grants

A grant is an award that does not have to be repaid as long as the student remains eligible. Whenever criteria and funding levels permit, a student's financial aid award includes grants.

Federal Pell Grants. All undergraduate financial aid applicants are required to apply for a Federal Pell Grant each year by filing the FAFSA. Recipients must be enrolled at least half time and must maintain good academic standing and make satisfactory academic progress. Eligibility is determined by the federal government according to a formula developed by the Department of Education and approved annually by Congress. All applicants are notified via a “Student Aid Report” (SAR). The amount you receive depends on your financial need.

Cal Grants are awarded by the California Student Aid Commission and may be renewed each year. All undergraduate financial aid applicants who are California residents are encouraged to apply for one of these awards. Follow the instructions in the financial aid application packet.

Cal Grant A awards are based on financial need and academic achievement and can be extended for one year for students entering a teaching credential program. Cal Grant A pays partial registration fees.

Cal Grant B awards are based on financial need and are for entering undergraduate students primarily from low-income backgrounds. Recipients are required to complete at least 12 units each quarter. Cal Grant B pays a quarterly stipend for living expenses for first-year students, and a portion of the registration fees plus a quarterly stipend for living expenses for students in their second through fourth years.

Cal Grant T awards provide one year of grant funding for students in approved teaching credential programs. Eligibility criteria and award amounts are the same as for Cal Grant A.

University Grants are available to both graduate and undergraduate students. The University determines grant eligibility for undergraduates by subtracting a student and parent contribution, any federal or state resources the student receives, and a standard work and loan contribution from the cost of attendance. Any remaining eligibility would be funded with UC Grant. Graduate students are awarded UC Grant funds based on need determined by the federal processor.

Bureau of Indian Affairs (BIA) Grants are awarded to students who are at least one-fourth American Indian, Eskimo or Aleut as recognized by a tribal group served by the Bureau of Indian Affairs and who show financial need. Applicants must submit a Free Application for Federal Student Aid (FAFSA) and provide supporting documents. Write to the agency that administers your tribal affairs and request a BIA Higher Education Assistance application. The BIA Financial Aid officer on campus can help you complete the application. The amount of BIA grant depends on need and availability of funds at each BIA agency.

Loans

Financial Aid almost always includes a long-term loan. Repayment of these loans (with the exception of Federal Direct PLUS loans) begins after you graduate or withdraw from school. Students are encouraged to work as much as possible (while remaining full-time students) and to develop modest personal budgets to keep final loan indebtedness within a manageable range.

Federal Perkins Loans are for U.S. citizens or permanent U.S. residents. Loans may be limited to a percentage of student's need because of demand and limited funds. This is a subsidized loan, which means the federal government pays the interest on the loan while the student is enrolled in school. Repayment starts nine months after graduation or withdrawal from school and may be extended over 10 years. Additional deferments are possible for temporary total disability or volunteer service in a private, non-profit organization, VISTA or the Peace Corps. Some teachers of students from low-income families and full-time teachers of handicapped children may also qualify for partial loan cancellation.

Annual Loan Limits

• $4,000 for undergraduate students
• $6,000 for graduate/professional students

Aggregate (Maximum) Loan Limits

• $8,000 for a student who has not completed the first two years of undergraduate work and for programs that are less than two years in length
• $20,000 for a student who has successfully completed two years of a program of education leading to a bachelor's degree but who has not completed degree work
• $40,000 for a graduate/professional student (includes loans borrowed at the undergraduate level)

Health Profession Student Loans (HPSL) are awarded to students in the School of Veterinary Medicine who
demonstrate financial need. Parental income information is required for all applicants regardless of age and dependency status.

- $2,500 plus fees maximum
- 5 percent interest
- Repayment begins twelve months after receipt of the degree or withdrawal

Federal Direct Subsidized and Unsubsidized

William D. Ford Student Loans (Direct Loans) are available through the Financial Aid Office. Subsidized loans are based on financial need, and interest accrued while the student is in school is paid by the federal government. Unsubsidized loans are available to students regardless of income and assets, and there is no interest subsidy. Students are advised to speak with a Financial Aid officer before borrowing an unsubsidized loan.

- Undergraduate students may borrow up to annual maximums of $2,625 for freshmen, $3,500 for sophomores, and $5,500 for juniors and seniors, up to a maximum aggregate indebtedness of $23,000.
- Independent undergraduate students may borrow unsubsidized Direct Loans up to annual maximums of $4,000 for freshmen and sophomores, and $5,000 for juniors and seniors.
- Graduate and professional students may borrow unsubsidized Direct Loans up to an annual maximum of $10,000.
- Variable interest rate is adjusted annually, capped at 8.25 percent.
- A 3% loan fee is charged on all Direct Loans. The fee is deducted proportionately from each disbursement.
- Repayment begins six months after graduation or withdrawal.

Federal Direct Parent Loans for Undergraduate Students (Direct PLUS) are government-insured loans that are made to parents of dependent students.

- Parents may borrow Direct PLUS up to the cost of education minus other financial aid received during the years the dependent student is an undergraduate.
- The maximum interest rate is 9%. There is no interest subsidy for this loan.
- A 4% loan fee is charged and deducted proportionately from each disbursement.
- Repayment begins within 60 days after loan disbursement.

Short-Term Loans meet temporary or emergency financial needs of registered students. Loan funds are provided by UC Davis alumni, ASUCD, the Cal Aggie Foundation, the Regents of the University of California, and private donors.

- Emergency Loans: $200 maximum. The maximum repayment period is 30 days.
- Short-Term Loans: $300 maximum. The maximum repayment period is five months or the end of the academic year.

- Assistant Loans: graduate students who are in the teaching assistant, research assistant, associate-instructor or postgraduate researcher classifications can apply for a maximum of one month’s salary. The maximum repayment period is six months or the end of the academic year.

For information about how to apply, stop by the Financial Aid Office, 1100 Dutton Hall.

Work-Study

Student Employment Center
1210 Dutton Hall
530-752-0520; sec@ucdavis.edu; http://jobs.ucdavis.edu

College work-study programs enable students to earn part of their financial aid through part-time employment. To participate, you must file a Free Application for Federal Student Aid (FAFSA) and receive work-study as a part of your financial aid package. Your work-study award offers you both money for your education and work experience. You should obtain a work-study job or ask to defer your work-study before December 1 or your award will be canceled. The Student Employment Center coordinates all undergraduate college work-study programs.

Work-study funds for graduate students are allocated directly to the chairpersons of the graduate programs or departments. Graduate students seeking work-study funding should contact their respective departments for further information. Students must file a FAFSA to be considered for work-study funding.

Federal College Work-Study Program is funded by the federal government. Employment may be on or off campus with profit or nonprofit organizations. Many community service work-study jobs are available that can provide you with an educational and rewarding work experience. To be eligible, you must be a citizen or permanent resident of the U.S., carry at least a half-time academic course load, and maintain satisfactory academic progress.

Undergraduate Scholarships and Awards

Scholarship Office
Dutton Hall
530-752-2804; ugscholofc@ucdavis.edu; http://faoman.ucdavis.edu/schol.htm

Mailing address: Scholarship Office University of California One Shields Avenue Davis, CA 95616-8696

UC Davis recognizes outstanding students with scholarships awarded on the basis of academic excellence and exceptional promise. The Scholarship Office administers approximately 200 different undergraduate scholarships. Many more scholarships are handled through outside agencies.

Scholarship recipients are chosen by committees made up of both students and faculty. In addition to academic records (a minimum grade point average of 3.25 is required), selection may be based on letters of recommendation, test scores, and a personal essay in which your university goals and objectives are stated. Some awards are limited to students in specific majors or colleges, residents of certain geographical areas, students of a particular class standing, or students with demonstrated
Fees, Expenses and Financial Aid

financial need. Most scholarships are not renewable and you must re-apply each year for scholarship aid.

Students applying to the university for the fall quarter are considered for scholarships using the same forms completed for admission purposes. Winter and spring quarter admission applicants should contact the Scholarship Office for instructions no later than November 1. Continuing students should obtain scholarship applications in October. These applications are due in early December. Announcement of winners is usually made beginning in April.

Graduate students are also eligible for various scholarships and fellowships. (See the Graduate Studies chapter.)

Regents Scholarships, among the highest honors that undergraduates at the university can receive, are granted to exceptionally promising freshmen or juniors enrolling in the fall quarter. Awards may be honorary (a $1,000 per year award) or may be accompanied by a stipend generally covering the difference between family resources and yearly educational costs. These scholarships are renewable as long as you maintain a 3.25 grade point average.

- Dollar amounts vary—up to full financial need
- 2-year and 4-year renewable scholarships

Alumni Scholarships, provided by the alumni association in cooperation with the university, are based primarily upon leadership and scholastic achievement. Your financial need and extracurricular activities may also be considered.

- $1,000 maximum
- New undergraduates only
- Selection by local alumni association chapters

Military Scholarships are awarded to outstanding high school seniors without regard to financial need, as well as to UC Davis students who have demonstrated exceptional leadership and scholastic achievement during their freshman and/or sophomore years. Eligible high school seniors apply for the full 4-year scholarship and must file applications by November. UC Davis scholarship students participate in the Military Science (ROTC) Program. Information and applications are available from the Department of Military Science, 125 Hickey Gymnasium, 530-752-5211.

- Full fees, books and supplies
- $1,000 per year for miscellaneous expenses
- 1-, 2-, 3-, or 4-year scholarships

Other Scholarships are made possible by individual donors, private corporations, and various agencies. Many organizations and groups conduct their own scholarship programs. In most cases, you apply directly to these sponsoring groups. Free scholarship search services are available through our Web site.

- Generally $300 to $4,500

Special Prizes at UC Davis recognize outstanding performance, achievement and promise in special programs or majors. The most prestigious prize is the University Medal, presented to the most outstanding graduating senior.

- Plaques or certificates and cash awards
- College and school medals to outstanding graduates

Scientists aboard the research vessel John LeConte gather information used by the UC Davis Tahoe Research Group, which is studying ways to halt the lake’s degradation.
LIVING AT DAVIS

On-Campus Housing

Residence Halls
Student Housing Office
530-752-2033; studenthousing@ucdavis.edu; http://www.housing.ucdavis.edu

Living on campus adds a measure of convenience to your life and helps familiarize you with the campus. Some 3,700 undergraduate students live on campus each year, including about 90 percent of freshman students and 25 percent of transfer students. In each of the residence hall complexes, students and staff help create and maintain an environment conducive to personal growth and educational achievement.

Rooms are furnished with a bed, desk and chair, bookcase, chest of drawers, study lamp and wastebasket for each resident. Cost depends on which of the eight meal plans you choose. The total room-and-board rate for the 2000–2001 academic year is $6,521.81-$7,476.17 for a double-occupancy room and $6,816.64-$7,539.64 for a single room (of which there are very few available to new residents). Rates for the 2000-2001 academic year have not yet been formally approved.

All new freshmen whose Statements of Intent to Register (SIR) are received on time are guaranteed residence hall housing as long as they complete all of the instructions that accompany their contracts. Freshmen housing contract offers will be mailed out between May 5 and May 19. Transfer students who return their SIR by June 1 will receive contract offers on a space available basis after all on time freshmen have been accommodated. Due to projected freshman enrollment numbers, we anticipate that housing contract offers to transfer students will be very limited. We suggest that admitted transfer students contact Residential Services and request to be placed on the Fall 2000 waiting lists.

Student Housing information is included with your admissions packet. If you have a physical disability or special dietary needs that require special accommodation, please send a detailed letter of explanation to Residential Services, 160 Student Housing, when you return your housing contract.

Student Housing

Orchard Park/Solano Park Apartments
530-752-2033

Orchard Park and Solano Park Apartments offer 476 university-operated, unfurnished on-campus apartments for UC Davis student families. The monthly rates for the 2000–2001 academic year will be as follows:

- Orchard Park
two-bedroom unfurnished apartment, $574
- Solano Park
one-bedroom unfurnished apartment, $472
two-bedroom unfurnished apartment, $537

Rates shown have not yet been formally approved. Once approved, they will be effective August 1, 2000. Vacancies in Orchard Park/Solano Park Apartments are filled from a waiting list based on the date the application is received. For a fall assignment, you should apply at least six to nine months in advance. For an assignment during the remainder of the year, the waiting period is usually shorter. You may submit an application before you are admitted to the university. If a member of your family has a physical disability that requires special housing accommodation, please attach a detailed letter of explanation to your application.

Russell Park
530-753-7322

Privately owned and managed on-campus living accommodations are available for student families. Russell Park features one-, two-, and three-bedroom unfurnished units.

Graduate Student Apartment Housing

The Atriums
530-753-0659

The Atriums offers on-campus living accommodations for single graduate students. The privately owned and managed apartments feature studio and two-bedroom unfurnished units.

Off-Campus Housing

The majority of UC Davis students live off campus. The City of Davis has ample apartments for rent, from one-
person studio apartments to 5- or 6-person suites. Townhouses, duplexes and houses throughout the city are also available for student rental. ASUCD maintains a list of available community housing.

Transportation and Parking

Transportation and Parking Services (TAPS)

Extension Center Drive

530-752-8277; http://www.taps.ucdavis.edu

Motorist Assistance Program: 530-752-3729

Bicycle Program: 530-752-BIKE

Unitrans

5 South Hall

530-752-RUSS; unitrans@ucdavis.edu

http://www.unitrans.edu

The central campus is closed to motor vehicles. Walking and bicycling are the usual ways to traverse the campus, though some students prefer inline skates.

Bicycles. All bicycles ridden or parked on campus must have a current California state bicycle license. You may get a license or renewal tag at TAPS. Bicycle riding and parking regulations are strictly enforced. Be sure to lock your bicycle to the provided racks and poles—bike theft is common in Davis. The Bicycle Program rents bicycle lockers, located adjacent to Hickey Gym and the Rec Hall, on a quarterly or annual basis for storage of bicycles only. The **ASUCD Bike Barn** offers repairs and rentals, and sells bicycle parts and accessories. Students can also check out tools to do their own repairs or maintenance.

Parking. If you park a vehicle (including a motorcycle or moped) on campus, you must have a valid parking permit or pay at a meter. You may buy a daily permit at dispensers in any visitor parking lot. All other lots require long-term permits, which you may purchase at Parking Services. Parking lots on campus are financed solely by fees collected from parking permits and meters.

Buses. Unitrans, 13 bus lines operated by the Associated Students, serves the campus and city year round. Unitrans is free to undergraduate students with a valid registration card; others may ride by paying the single ride fare or by purchasing passes from TAPS or at the Campus Box Office. Full service is provided each UC Davis school day (Monday through Friday) and Monday through Thursday night during the regular school year—fall, winter and spring quarters. Reduced schedule service operates during the summer, finals week, all academic breaks and on Saturdays. Unitrans also operates a shuttle from Amtrak on Saturday and Sunday for undergraduate students. Schedules are available at the MU Campus Information Center, bus terminals, Davis City Hall and the Unitrans office.

Ridesharing. UC Davis encourages ridesharing. Registered carpools and vanpools receive reduced parking rates and preferential parking. For information on transportation alternatives, public transit, or commuter match assistance, call 752-MILE (752-6453).

Shuttles. The UCD/UCDMC Shuttle provides hourly service Monday through Friday between the Davis campus and the medical center in Sacramento. The shuttle is available to all members of the UC Davis community. You may purchase shuttle passes at Parking Services or the Cashier's Office. Departmental business passes are available at Parking Services.

The Intracampus Bus provides transportation between the Davis campus and the Berkeley campus for university employees, registered students and other university affiliates. Call Fleet Services at 752-8287 for schedule information and reservations.

Student Employment

Student Employment Center

First Floor, Dutton Hall

530-752-0520; http://jobs.ucdavis.edu

The Student Employment Center advertises student employment opportunities both on and off campus. Full-time or part-time students, students on PELP, students' spouses, and students with a letter of acceptance for the following quarter who have not yet registered are eligible.

Full-time, part-time and temporary jobs are available year-round. New listings are posted daily. Listings of employment opportunities for the summer with government agencies, camps and resorts throughout California are located at the center, as are job listings of parents wishing to hire child care providers. Registered students may access employment opportunities on-line at the World Wide Web address given above and use their student identification number as their password.

Child Care Services

260 Student Housing Office

530-752-5415; baashby@ucdavis.edu; http://www.childcare.ucdavis.edu

Child Care Services is the principal resource on campus for child care information, referrals, and publications and serves as the university's liaison with the on-campus day care centers and the off-campus child care services available through the City of Davis Parks and Community Services/Child Care.

On-Campus Child Care Programs and Resources

- **LaRue Park Child Development Center** (753-8716; larueurcdc@ucdavis.edu) and **Russell Park Child Development Center** (753-2487; russellcdc@ucdavis.edu) are privately owned and operated with university oversight, serving infants through kindergarten-age children. Residents of student family housing pay reduced rates.

- **The Center for Child and Family Studies** (752-2888), a teaching and research laboratory for the Department of Human and Community Development, offers part-time programs for children aged six months to five years. Children are selected from a waiting list according to criteria designed to meet academic goals.

- **The UC Davis Breastfeeding Support Program** provides lactation sites with electric breast pumps, regis-
Students, faculty or staff who are concerned about a student or desire consultation or assistance in making a referral are encouraged to call the center. The Counseling Center (752-0520) posts listings for parents seeking license-exempt providers.

Counseling Center

219 North Hall
530-752-0871; http://counselingcenter.ucdavis.edu

The Counseling Center offers free, confidential psychological, psychiatric and peer counseling services to all registered students having problems that affect their academic progress and sense of well-being. Staff members offer assistance with personal and interpersonal issues such as relationships, family stress, cultural differences, assertiveness, self esteem and intimacy. Additionally, staff can help with educational/vocational concerns such as coping with university life, academic performance, test anxiety, reentry adjustment and determining life goals. Services for relationship issues are also offered to students and their partners.

Confidentiality is strictly maintained in accordance with state laws and ethical standards. Walk-in services are available daily if you need immediate assistance. The center also provides short-term individual counseling, group counseling and assistance with off-campus referrals. Career interest testing, personality testing and information about graduate school admissions tests and the Planned Educational Leave Program are available.

Students, faculty or staff who are concerned about a student or desire consultation or assistance in making a referral are encouraged to call or come to the center.

Counseling and Health Services

Counseling Center

219 North Hall
530-752-0871; http://counselingcenter.ucdavis.edu

The Counseling Center offers free, confidential psychological, psychiatric and peer counseling services to all registered students having problems that affect their academic progress and sense of well-being. Staff members offer assistance with personal and interpersonal issues such as relationships, family stress, cultural differences, assertiveness, self esteem and intimacy. Additionally, staff can help with educational/vocational concerns such as coping with university life, academic performance, test anxiety, reentry adjustment and determining life goals. Services for relationship issues are also offered to students and their partners.

Confidentiality is strictly maintained in accordance with state laws and ethical standards. Walk-in services are available daily if you need immediate assistance. The center also provides short-term individual counseling, group counseling and assistance with off-campus referrals. Career interest testing, personality testing and information about graduate school admissions tests and the Planned Educational Leave Program are available.

Students, faculty or staff who are concerned about a student or desire consultation or assistance in making a referral are encouraged to call or come to the center.

Community Child Care Programs

City of Davis Parks and Community Services/Child Care
604 Second Street
Davis, CA 95616
530-757-5691;
http://www.city.davis.ca.us/city/parks/child/index.htm

City of Davis Parks and Community Services/Child Care maintains information on licensed family child care homes, day care centers, nursery schools, playgroups, support groups, and other family-related services for Yolo County. Additional services include parenting workshops and handouts; a bimonthly newsletter; a parenting resource library; and a book, video and toy lending library. The program provides referrals to licensed family child care homes and administers the UC Davis Child Care Subsidy Program and the Child Care Grant, both of which can help low-income families pay for child care. Applications for subsidies are available at the grant office (600 A Street, 757-5695).

Cowell Student Health Center

Cowell Student Health Center
530-752-2300; http://healthcenter.ucdavis.edu

Cowell Student Health Center is conveniently located on campus and provides UC Davis students with wellness, illness, and injury care. Student health services are available to all registered students whether or not they have health insurance. Student fees subsidize the services of Cowell Student Health Center. Students pay very small co-payments for most services. Graduate, professional, and international students must purchase a mandatory insurance plan as part of registration. Undergraduate students may purchase a voluntary plan. For more information, call 752-2612, or visit the Patient Accounts Office at Cowell Student Health Center.

Advice Nurse (752-9649), **Acute Care and After Hours** (752-2300). Services are for acute medical illness and injury care. Appointments are not required, but students are encouraged to call the Advice Nurse before coming for care.

Primary Care Clinics/Specialty Clinics (752-2349). Appointments can be scheduled for routine primary care, nutrition and fitness, men’s/women’s health/physical exams, allergy care, sports medicine, travel immunizations, and other services. Physician specialists are available upon referral from a primary care provider. Services include dermatology, gynecology, internal medicine, orthopedics, minor surgery and podiatry. Laboratory, x-ray, pharmacy and physical therapy services are also available.

Health Education

Cowell Student Health Center
530-752-9652

The Health Education Program at Cowell promotes student health through trained peer counselors, health educators, workshops and resource libraries.

Campus Alcohol and Drug Abuse Prevention Program (CADAPP) (752-6334). Individual assessments, small group education courses, workshops and support groups on alcohol/other drug-related problems, as well as issues of dysfunctional families and addiction.

Peer Counselors in Athletics (752-6334). Athlete to athlete resources/peer counseling on alcohol/other drug issues, nutrition, player-coach relationships, steroids, body image issues, tobacco, race and sports, and gender equity issues. PCAs offer mentoring services to fellow UC Davis student athletes and outreach education and mentoring to area high schools.

Health Advocates (752-9651). Presentations/peer counseling for students on dealing with personal alcohol and drug issues, nutrition, exercise, stress management, massage, bicycle safety and other wellness issues. Free individual computerized dietary analysis and peer nutrition counseling available by appointment.

Peer Counselors in Sexuality (752-1151). Presentations/peer counseling on birth control, pregnancy, sexually transmitted disease prevention, safer sex, healthy relationships, partner communication skills, sex roles and orientations and other issues related to sexuality and reproductive health.
The House
Temporary Building 16 (two-story house by Housing Office)
24-hour hotline: 530-752-2790; business line: 530-752-5665

The House is a professionally managed peer counseling program of the Counseling Center. Students receive confidential support, information and referrals regarding personal or social problems. Well-trained student volunteers assist fellow students through individual peer counseling and a wide variety of workshops and support groups held in an informal setting. No appointment is necessary and services are offered on a drop-in basis from 9:00 a.m. to 11:00 p.m., seven days a week, with 24-hour telephone assistance. The House is wheelchair accessible.

Volunteers for peer counselor positions at the House are accepted each quarter. Students are trained in basic counseling skills and can receive units for training. Transcript notation is also available for quarters working as a peer counselor volunteer.

ARTS AND RECREATION

Whatever your recreational bent—horseback riding, outdoor activities, music, arts and crafts, or sports—there’s a place or program on the Davis campus for you to enjoy your favorite activities.

Social, physical, creative, intellectual and cultural activities and programs provide many healthy activities to offset the stresses associated with a rigorous academic environment. These programs complement the academic mission of the university and enhance the quality of life for the campus.

In addition, the City of Davis has 31 parks with various facilities, including tennis courts, playgrounds, swimming pools, playing fields, and a skateboard facility. The city has several movie theaters, art galleries, the Davis Art Center, Davis Comic Opera Company and Davis Musical Theatre.

Campus Recreation
Memorial Union Programs and Campus Recreation
Memorial Union, Room 457
530-752-1730; http://campusrecreation.ucdavis.edu

The following programs are offered through Memorial Union Programs and Campus Recreation. A catalog of activities is published quarterly, mailed to all residences in Davis and distributed throughout campus.

Outdoor Adventures
The Barn (on the corner of California and Hutchison)
530-752-1995/1730

Outdoor Adventures will help you develop your outdoor skills and plan your outdoor excursions. You can rent equipment of professional quality and arrange for custom-designed trips and group rates. An up-to-date library contains topographic maps, trail guides and other materials. Classes, excursions and clinics in backpacking, rock-climbing techniques, whitewater rafting, kayaking, sea kayaking, mountaineering, cross-country skiing and other sports are offered throughout the year. Outdoor experts conduct many special activities, such as wilderness emergency-care clinics, whitewater river guide training, slide presentations and programs. Outdoor Adventurers Retail Store has items you might need for your next trip.

Equestrian Center
Garrod Dr. (southwest of Veterinary Medical Teaching Hospital)
530-752-2372/1730

The Equestrian Center is open year round, offering trail rides, practice sessions and instruction in both English and Western riding. Group and private lessons are available for beginning through advanced levels, along with training in horse care and stable management. The Equestrian Center sponsors clinics, horse shows, summer equestrian camps and special events, and coordinates the Equestrian Club.

The Aggie Pack, with more than 8,000 student members, is the largest student spirit organization in the United States.
The Craft Center is an ideal place to channel your creative energy. Facilities are available on a drop-in basis, or purchase a pass for more frequent use of the equipment and work space. Workshops and classes are offered each quarter in woodworking, weaving, jewelry-making, art and graphics, computer imaging, ceramics, photography, silkscreen printing, welding, leatherworking, stained glass and other crafts.

The Rec Pool is a large free-form pool with a separate wading pool, a bathhouse, shuffleboard courts and a large grass area for sunbathing. The staff offers swimming lessons to all age groups and arranges for special events, such as family nights. The pool opens for the season in April and closes in October.

The Games Area features bowling lanes, billiards room, video arcade, lounge and storage lockers. The Games Area conducts bowling leagues, classes, clinics and tournaments for all ages from beginning through advanced skill levels. The facility is fully accessible to those with disabilities.

The MU complex serves as the community center for the campus. The MU Campus Information Center's student staff can refer you to people, places, programs and services on and off campus, maintains an up-to-date database of 1,200 organizations, and takes reservations for the use of tables and display boards in and around the MU.

The complex houses the UCD Bookstore, Corral gift shop, Coffee House, MU II Conference Center, Campus Box Office (where you can purchase tickets for campus events and cash checks), Campus Events and Visitors Services (CEVS) and the MU Business Office.

King Lounge, on the second floor, provides a comfortable and relaxed atmosphere popular for studying, leisure reading and listening to music. The adjacent Music and Periodicals Center (752-2885) contains current popular periodicals and a large library of music.

Freeborn Hall, a 1,250-seat assembly hall in the MU complex, is used for performing arts, dances, banquets, lectures and conferences.

The Memorial Union operates several facilities that can be rented for group gatherings. With its wood-paneled interior and ceiling-high windows, Rec Pool Lodge is an ideal location for meetings, lectures or dances. The covered patio surrounding the lodge offers a shaded environment for outside dining during the warm weather. Putah Creek Lodge, secluded in the Arboretum, provides a relaxing atmosphere for lectures, banquets, weddings or dances. The spacious lawn surrounding the lodge is suitable for volleyball and games, receptions and picnics. The lodge has kitchens and outdoor barbecues.

The Silo Union houses food services, meeting/conference facilities, lounges and the campus pub. In the South Silo are the ASUCD Experimental College (752-2568), Student Special Services (752-2007), Graduate Student Association (752-6108) and a branch of the Bookstore serving the School of Law (752-2961). To reserve space in the Silo, call Campus Events and Information at 752-2813.

Recreation Hall is a multi-use facility for intramural and informal recreation play, intercollegiate athletic basketball and women's gymnastics, physical education classes and sports clubs. Numerous special events sponsored each year by the campus and community are held in the 8,400-seat arena. The tri-level facility has locker rooms; a flat running track; an equipment room; racquetball, wallyball and squash courts; two weight rooms with free weights, universals, Nautilus weight training circuit, stair machines, rowing machines, treadmills, cross-training machines and bicycles; court areas for basketball, volleyball and badminton; and areas for martial arts, table tennis, gymnastics and dance. Aerobics classes are offered daily on a walk-in basis. A state-of-the-art artificial rock climbing wall is available for climbers of all skill levels under the supervision of Outdoor Adventures.

Undergraduate and graduate students can use Rec Hall facilities by showing their current valid photo ID card. Students may purchase a $6.00 guest pass valid for three daily uses. Non-students may purchase a daily, monthly, quarterly or yearly privilege card at Rec Hall to use lockers, equipment and facilities. Prices are available at the Recreation Hall Equipment Room.

Surrounding Recreation Hall are the in-line skate facility, volleyball and basketball courts, the Community Baseball Field, soccer field, and intramural playing fields.
Intramural Sports/Sports Clubs
IM Sports/Sports Clubs
140 Recreation Hall
530-752-3500

Intramural Sports, Sports Clubs and Intercollegiate Athletics programs provide a coordinated program of organized sports competition and physical recreation activities to meet student needs at every skill and interest level.

Intramural Sports is a structured, competitive program involving 36 men’s, women’s and coed activities with over 13,000 participants. Complementing this highly popular activity is the sports club program. Twenty-six recreational and competitive offerings for men and women attract roughly 1,000 athletes in activities ranging from archery, badminton, crew, roller hockey, and water and snow skiing to the traditional volleyball, lacrosse, rugby and equestrian events.

Intercollegiate Athletics
Intercollegiate Athletics
264 Hickey Gymnasium
530-752-1111

Although Intercollegiate Athletics at Davis benefits the campus by fostering school spirit, its primary role is to provide personal development opportunities for as many student-athlete participants as facilities and resources permit. Currently, the program consists of varsity teams in 11 men’s sports and 12 women’s sports. Membership affiliation is with the California Collegiate Athletic Association and Division II of the National Collegiate Athletic Association. Approximately 750 students compete on varsity teams each year.

Arts and Entertainment
Whether you want to participate, be entertained or be inspired, an abundance of musical, theater, art, design and dance offerings take place on campus all year long.

UC Davis Presents
200 B Street, Suite A
530-757-3399; http://ucdpresents.ucdavis.edu

UC Davis Presents brings a wide variety of world-class performing artists to UC Davis to serve the campus and surrounding communities. During the academic year, UC Davis Presents offers concerts and recitals by classical, jazz and folk music artists; drama; classical, modern and ethnic dance; and lectures by eminent public figures. Tickets for UC Davis Presents events may be purchased at the Campus Box Office (Freeborn Hall, 530-752-1915) or any BASS outlet.

Music
Department of Music
530-752-0888; http://musdra.ucdavis.edu

The Department of Music sponsors the UCD Symphony Orchestra, Chorus, Chamber Singers, Early Music Ensemble, Gospel Choir, Concert Band, Jazz Band and small ensemble groups. Music majors and other interested students can receive credit for participating in these groups, which perform at concerts and recitals open to the university community. The department sponsors artists-in-residence who give concerts, recitals and lectures. Free noon concerts featuring individual performers and ensembles—both professional musicians and music students—are a favorite weekly event during the school year. The Empyrean Ensemble and the UCD Wind Quintet are in residence on campus. The Department of Music sponsors nearly 100 public concerts each year.

Dramatic Art and Dance
Department of Theatre and Dance
530-752-0888; http://theatredirect.ucdavis.edu

The Department of Theatre and Dance has one of the finest theater facilities in California, with an unusually good stock of scenery, props, costumes and state-of-the-art lighting and sound equipment. Facilities are complemented by an excellent faculty, the Granada Artists-in-Residence program (which brings a major British artist to the department each quarter), and graduate students working on Master of Fine Arts degrees in acting and Ph.D. degrees in 20th Century Performance and Culture, all of whom contribute to the fine quality of UC Davis drama and dance productions.

Each year’s schedule includes University Theatre Season (five major productions of established plays); Dance Concert (student and faculty choreographed dance numbers); and Studio Season (four to six productions). Studio Season features premiere performances of new plays written at UC Davis, productions of established plays, and performance projects conceived and produced for the first time at UC Davis. These productions are part of the academic program of the department and serve an important purpose in the study of theatre and dance. Participation is open to all students.

Art Galleries
The MU Art Gallery (second floor of the MU; 530-752-2885) features a changing series of contemporary and historical art exhibits throughout the academic year. Works by professional artists as well as students are on display for periods of approximately six weeks. The gallery sponsors print sales, special programs and lectures, and offers internships for those interested in career work in an art gallery or museum.

The Design Gallery (first floor of Walker Hall; 530-752-6150) explores diverse topics and media with an emphasis on ethnographic arts and consumer cultures. The gallery is internationally known, with innovative exhibitions based on design from a global perspective. Historical cultural artifacts, contemporary functional objects and creative installations are presented in changing spaces designed specifically for each exhibit.

The Richard L. Nelson Gallery (first floor of the Art Building; 530-752-8500), named in honor of the first chair of the Department of Art, organizes regularly changing exhibitions of historical and contemporary works of art. The gallery’s program reflects and complements the teaching program of the Department of Art and brings art to the university community and the Northern California area at large.

The Fine Arts Collection (Art Building, adjacent to the Nelson Gallery; 530-752-8500), representing various historical periods and cultures, is the Davis campus’s major collection of art.

The Basement Gallery (Art Building basement) is a
S
Student Life

student-directed gallery that exhibits the artwork of advanced UC Davis art majors. The exhibitions change biweekly throughout the academic year.

The Carl Gorman Museum (first floor of Hart Hall; 530-752-6567, Native American Studies) was established in honor of Carl N. Gorman, an artist, advocate and former faculty member of Native American Studies. The museum features changing exhibitions of works by Native American and diverse artists.

STUDENT GOVERNMENT

Associated Students (ASUCD)

Student Government Administrative Office
348 Memorial Union
530-752-3632
ASUCD Student Services Office
347 Memorial Union
530-752-1990; http://asucd.ucdavis.edu

The Associated Students of the University of California, Davis (ASUCD), authorized by the regents and the chancellor, represents all undergraduate students. Graduate and law students also have access to all ASUCD commercial activities. Funds allocated to ASUCD provide activities and services that make life as a student a little easier, less expensive, or just more fun.

ASUCD operates more than 40 activities, including the Unitrans bus system, The California Aggie newspaper, the Bike Barn repair services, travel service, free legal advice for undergraduate students, the Aggie Student Store, Campus Copies, Classical Notes, Project Recycle, Cal Aggie Camp, Book Exchange, U.S. Post Office and the Coffee House.

The ASUCD-sponsored Experimental College offers a variety of nontraditional classes each quarter for students interested in diversifying their educational experience. Radio KDVS stereo 90.3 FM, the student-run campus radio station, broadcasts at 5,000 watts. Other ASUCD activities include Housing Viewpoint, Homecoming, Student Forums, Entertainment Council and the Whole Earth Festival.

Picnic Day, a UC Davis tradition since 1909, is the largest student-run event in the nation. This annual spring open house features more than 100 exhibits and cultural displays, including a parade, a fashion show, sports, sheep dog trials, dachshund races, food, music and dancing.

You can find information about ASUCD programs in the Student Directory, which combines details about ASUCD services and organizations with the ASUCD student telephone directory, or by visiting the ASUCD office.

Allocated funds are budgeted through the ASUCD Senate. Based on a modified federal form of government, the senate consists of 12 elected senate members and the ASUCD president and vice president. The senate is the policy-making body for ASUCD and supervises all aspects of the association. The ASUCD president is the chief administrative officer and is assisted by the vice president who serves as the executive aide. ASUCD is the liaison for the undergraduate student body and represents the students with other universities, the UC Office of the President and the regents.

Six commissions advise the senate and assist the governing board with its decisions by researching legislation and making recommendations. Commission chairs are ex-officio members of the senate. Each commission also involves itself with various projects that relate to its specific area.

- Academic Affairs advocates students’ rights in the area of academics, including dealing with the Academic Senate and with issues such as grading policies, tenure and teacher evaluations.
- Business and Finance makes recommendations to the Senate on all financial matters and conducts audits on ASUCD commercial units.
- Environmental Policy and Planning addresses all issues and concerns that pertain directly to the environment.
- Ethnic and Cultural Affairs makes recommendations on policies and programs concerning UC Davis’ ethnic community, acts as a liaison between on-campus and off-campus bodies affecting ethnic students and their quality of life at the university.
- External Affairs deals with off-campus concerns (the regents, UC Office of the President, City Council, etc.).
- Internal Affairs recommends policies to improve ASUCD operations and the quality of nonacademic student life on campus.
- The Sexual Assault Awareness Committee promotes awareness and prevention of sexual assault through outreach efforts and education programs.
- The Elections Committee ensures the fair administration of ASUCD online elections. The committee coordinates candidate and ballot measure forums and provides unbiased election information.

The judicial branch consists of the ASUCD Supreme Court. The court reviews legislation at the request of any ASUCD member and has the ultimate authority to interpret the ASUCD constitution.

UC Davis Administrative Advisory Committees

If you would like to participate in issues affecting the campus community, you may apply for membership on an administrative advisory committee. Each committee advises on policies affecting a specific area, such as athletics, child care, disability issues, or student services and fees.

The committees respond to requests for advice, identify needs or concerns within the charge of the committee, and recommend action to the administration. Applications are accepted each winter for service on committees the next academic year.
The Graduate Student Association (GSA) is the officially recognized student government for UC Davis graduate students. GSA provides a forum for addressing the concerns of graduate students and promotes communication with campus administrators. GSA also serves as an advocate at all levels of the university on behalf of graduate students. Funded by graduate student fees, GSA provides services to all academic graduate students and to professional students in the Graduate School of Management. Services include new student orientation, legal service, fax service, travel awards, newsletters and assorted social events. Other professional students are eligible to join GSA by paying a fee.

GSA General Assembly representatives are designated by other students in their department or graduate group. General Assembly meetings are held once a month and are open to all graduate and professional students. Each year the General Assembly elects the members of the Executive Council, who serve in a variety of positions to carry out the policies and functions of the organization.

STUDENT ORGANIZATIONS

Student Programs and Activities Center
Memorial Union, 4th Floor
530-752-2027
http://spacweb.ucdavis.edu

More than 300 student organizations are registered at UC Davis. They consist of cultural, social, religious, political, ethnic, academic, international, recreational, performing and service groups, provide students and the entire campus with important educational experiences. The **Student Programs and Activities Center (SPAC)** registers these diverse groups and provides educational programs, advising and support for activities, event planning, leadership development, conflict resolution, resources and campus policies.

In addition, SPAC administers a number of campus programs including the Activities Faire, Club Finance Council, College Bowl, Danzantes del Alma folkloric dance troupe, leadership training programs, campus service awards, and acts as liaison to fraternities and sororities. Anyone interested in participating in student organizations or becoming involved in unique activities is encouraged to visit the SPAC office.

Cultural Days is a series of annual programs celebrating the diverse ethnic cultures of the university community. Programs include African Continuum, Asian Pacific Culture Week, La Raza Cultural Days, Native American Culture Days and the Native American Pow-Wow. Everyone is invited to share in these programs featuring speakers, workshops, films, entertainment and family events.

The **Cal Aggie Marching Band** entertains spectators at athletic, campus and community events. As one of the last remaining “student-run” bands in the nation, the band has a style and personality indicative of UC Davis.

Cal Aggie Student Alumni Network (CASAN)

Cal Aggie Student Alumni Network (CASAN)
Walter A. Buehler Alumni and Visitors Center
530-752-0115 or 530-752-0286; caaa@ucdavis.edu;
http://www.alumni.ucdavis.edu/casan

All UC Davis students are encouraged and welcome to become CASAN members. CASAN involves students and alumni in a variety of academic, philanthropic and professional programs that build lasting ties to the university. Programs include Senior Daze, Leadership Conference, new student receptions, career panels, Take an Aggie to Lunch and Aggie Diner. You may join CASAN any time during the academic year; the annual $15 membership fee includes collegiate membership in the Cal Aggie Alumni Association.

Picnic Day, UC Davis’ annual open house, is the largest student-run event in the nation.
ACADEMIC ADVISING & STUDENT RESOURCES
ACADEMIC ADVISING

UC Davis offers many different types of academic advising to help you get the most from your education. College advisers can assist you in meeting degree requirements and taking maximum advantage of the resources available in the university. A conference at least once a quarter with your faculty or staff adviser is especially desirable during your first year and during your final quarters preceding graduation.

College Advising

College of Agricultural and Environmental Sciences

Office of the Dean
228 Mrak Hall
530-752-0108

In the dean's office you will find

- Staff advisers who can help with university and college rules, regulations and policies and procedures that affect students.
- Academic advising: in-depth advice regarding probation/dismissal status, admission to the college, readmission, and second bachelor's, limited and regular status.
- Advice and action on petitions.
- Other services include study plan clearance, college English requirement check, release of holds on registration packets and final evaluation for graduation.

Associate Dean of Undergraduate Academic Programs

Annie King, Associate Dean
228 Mrak Hall
530-752-0108

The college has an associate dean of undergraduate academic programs and advising staff who welcome the opportunity to become acquainted and to talk with individual students. They can also help you with academic problems if you are placed on probation or subject to dismissal.

Faculty Advisers/Staff Advisers. You will be assigned a faculty adviser to help you plan a program that corresponds to your individual educational interests. The master advisers coordinate advising within a major. Staff advisers in the department can advise you on courses, specific requirements of majors and career opportunities. You are strongly urged to consult with your faculty adviser or staff adviser each quarter before selecting your courses.

As educational objectives evolve, you may, in consultation with the master adviser for your major, choose a new faculty adviser whose area of expertise corresponds more directly to your specific objectives.

Exploratory Program (non-degree program)

228 Mrak Hall
530-752-0610

Are you unsure what major you really want to pursue? If so, you may want to register in the Exploratory Program. With the help of staff in the dean's office and the major advisers, you can explore specialized options, develop your decision-making abilities and select the major best suited to your needs. For registration purposes, indicate “Exploratory” on your admissions materials. You must declare a major before you complete 120 units; see Declaration of Major in the “Academic Information” chapter.

Division of Biological Sciences

Dean's Office
202 Life Sciences Addition
530-752-0410

The associate dean and staff in the dean's office offer complete academic advising services for the Biological Sciences major and general advising information about other divisional majors. The office also advises on college and university requirements, policies, and procedures, including PELF, withdrawal, change of major, and late actions.

This office is also responsible for the academic progress of all students majoring in the division. If you have any problems (personal, medical, financial) that are affecting your academic performance, or if you are on academic probation, make an appointment to see one of the advisers in the dean's office.

Sections and Advising Centers. Students entering or intending to declare sectional majors in biochemistry; cell biology; evolution and ecology; genetics; microbiology; neurobiology; physiology; and behavior; or plant biology should contact the specific section office for academic advising services, where both faculty and staff advisers are available. Students selecting the biological sciences major should contact the dean's office for academic advising services.

Peer Advisers. Peer advisers are available in each section. Biological Sciences houses its peer advisers in the dean's office.

College of Engineering

Undergraduate Office
1050 Engineering II
530-752-0553

Information and assistance on academic, career and personal matters is available in the Undergraduate Office, either through direct assistance from one of the staff advisers or through referral to other offices on campus. The Undergraduate Office handles student petitions, transfer evaluation, articulation and degree certifications.

Advising. As soon as you arrive on campus, you should consult with your departmental staff adviser, whose name and office hours you can obtain at the department office. The departmental staff adviser is aware of the requirements for your major and can assist you with planning your program.

Mandatory Advising. The College has implemented a mandatory advising system through the online registration system. You are required to meet with your adviser once a year, during a specific quarter, which is determined by the number of units you have completed. When you enroll in classes for your advising quarter, you will be told that you have an advising hold on your registration. You may enroll in classes for and during this quarter. If you meet with your adviser during this quarter, there will be no difficulties with subsequent registration. If, however, you fail to meet with your adviser
Academic Advising and Student Resources

The geology department's Professor Geerat Vermeij, a MacArthur Award recipient, measures the shape, texture and size of shells to give us valuable insights into the nature of evolution.

during your assigned quarter, you will be dropped from all your classes on the first day of the following quarter. Therefore, you have approximately four months to clear an advising hold. For more information on mandatory advising, call the Advising Office at 752-0557.

Peer Advisers. A well-developed peer advising system complements faculty and staff advising. Student advisers are in Bainer Hall, Engineering II and other locations.

College of Letters and Science
Office of the Deans/Undergraduate Education and Advising Office 200 Social Sciences and Humanities Building 530-752-0392
The deans and staff in the Undergraduate Education and Advising Office can help you with issues relating to your academic goals and experiences. You can consult the Advising Office on matters such as program planning, selection of a major, exceptions to regulations and academic enrichment opportunities. The office also provides a number of additional services:

• Determines how your transfer credits from other institutions apply towards completion of breadth and unit requirements for the bachelor's degree. (Applicability of transfer credit toward the major is determined by your major faculty adviser.)
• Provides degree checks to identify remaining college requirements and certifies graduation.
• Acts on petitions requiring the dean's approval.
• Reviews the records of students who are subject to disqualification and determines whether such students may continue at UC Davis.

Faculty Advisers. New students are assigned to a faculty adviser during their first term of enrollment. If you indicated an interest in a particular program on your application, your adviser will be a faculty member associated with that major. If you change your major, you will be reassigned.

New students are encouraged to see their faculty adviser at least once every quarter during their first year on campus to discuss their educational goals, course program and progress.

Continuing students who have completed three quarters in residence in the college should consult with an adviser at certain important checkpoint stages in their academic careers (explained at right). You are urged, however, to maintain regular contact with an adviser in your major to avoid program errors that may delay graduation. Seniors should maintain close contact with their advisers to ensure that they are meeting the major requirements.

Academic Options Program. If you did not indicate an initial commitment to a particular major program on your application, you will participate in the Academic Options Program, which provides academic advising to lower division students. You will be assisted by an advising team available at sites in each of the university residence hall complexes. Students living off campus should contact the Letters and Science Undergraduate Education and Advising Office early in the quarter to receive their adviser assignments.

Advising Checkpoints. You should consult with your faculty adviser at two, possibly three, critical stages in your academic career:

• Before you complete 90 units of degree credit, including transfer work, you must develop in consultation with your faculty adviser a proposal for a quarter-by-quarter program of courses showing how you will meet your educational goals and graduation requirements. You must also have declared a major by this time. Filing this plan with your adviser does not preclude subsequent modifications of the plan or a change of major.

• When you complete 135 units of degree credit, including transfer work, you may pick up Degree Check materials from the Letters and Science Advising Office and consult your adviser concerning course selection and satisfaction of requirements in the major.

• Before you complete 195 units of degree credit, including transfer work, you must develop in consultation with your faculty adviser a firm study plan, in the form of a quarter-by-quarter program that will satisfy all remaining degree requirements as expeditiously as possible. This plan will be filed with your adviser. If the plan indicates that you will have to register beyond the 225-unit limit in order to meet degree requirements, you must contact the Undergraduate Education and Advising Office immediately. Exceptions to the 225-unit limit are granted by the dean only rarely. Typically, approval is granted only to allow completion of minimum degree requirements.

If you have not met with your faculty adviser before these established checkpoints, a hold may be placed on your registration as a reminder.

Peer Advisers. Student-to-student advising is an important part of the university advising services. The College of Letters and Science dean's office peer advisers are available in the Undergraduate Education and Advising Office, 200 Social Sciences and Humanities Building, and on a weekly basis in the campus residence halls to talk with students about their academic concerns.
Advising Services
Advising Services
1st floor, South Hall
530-752-3000, http://advisingservices.ucdavis.edu

Academic Peer Advising (APA) places peer advisers in over 50 departments to help students find the answers to their questions about major requirements, courses and university regulations. The academic peer adviser complements faculty advising by providing a student perspective on the department. The Academic Peer Advising staff is trained to provide information and assistance about graduate schools, career opportunities and college requirements.

Orientation and Summer Advising coordinates the Summer Advising and Registration Program, fall quarter Orientation activities and other student assistance and orientation programs for new students. The staff will introduce you to the campus environment, procedures and opportunities, and offers programs relevant to your changing needs. Your contribution to orientation programs, through ideas and assistance, is always welcome.

Pre-Graduate School Advising assists students interested in M.A., M.B.A., Ph.D. or teaching credential programs. Services include help in locating graduate school programs in specific fields, completing application forms and statements of purpose, and planning financial options. This unit also coordinates the Undergraduate Research Conference, an annual event open to all undergraduate UC Davis researchers.

Pre-Law Advising offers help with admission requirements and program planning to students interested in the legal profession. You can learn about preparing for law school and a legal career through the many seminars and workshops held each year.

Health Sciences Advising is an important resource if you are preparing for a profession in the health sciences. Staff and student advisers can provide information on requirements, application procedures, professional school curricula and related options.

The Career and Graduate Study Resource Center, 114 South Hall, is an extensive reference library managed by Advising Services and the Internship and Career Center. Resources include numerous graduate and professional school catalogs and program directories, admission test materials, fellowship directories, videotapes, and books and journals related to health education. Also available are job listings, general career information materials, and information about companies who recruit at UC Davis. Several personal computers are available to search the Internet for information on graduate and professional study and job opportunities.

Educational Opportunity Program (EOP)
228 North Hall
530-752-3472

The Educational Opportunity Program serves students by assisting them with their academic, social and personal adjustments to the university environment; coordinates EOP new student orientation programs; and serves as liaison to staff, faculty and administrators. The office's diverse peer staff is particularly sensitive to differing social, cultural and ethnic concerns. Students interested in pursuing the helping professions can receive training and experience through the Peer Adviser Counselor training program.

EOP Information Office services are also accessible at various locations on campus, such as the Colleges of Agricultural and Environmental Sciences, Letters and Science and Engineering; Learning Skills Center; The House; and all ethnic studies departments. You are invited to telephone or stop by the EOP Information Office on the second floor of North Hall or at any of the outreach locations to find out more about the peer support services.

The First Resort
1st floor lobby, South Hall
530-752-2807 or 530-752-3323

The First Resort is a place to go if you are feeling bogged down by university red tape, registration procedures, course selection, choosing a major or other general advising questions. The student advisers here can either answer your questions or put you in contact with others who can. The staff can give you advice and assistance from the point of view of someone who has "been there." The First Resort maintains a referral service, a listing of courses of 1 to 3 units and other valuable resources. If you have a problem, remember—start with The First Resort.

STUDENT CONDUCT
Student Judicial Affairs
3200 Dutton Hall

Students enrolling or seeking enrollment in the university assume an obligation to act honestly, ethically and responsibly in a manner compatible with the university's function as an educational institution. Rules concerning student conduct, student organizations, use of university facilities and related matters are set forth in both university policies and campus regulations.

Standards for student conduct are included in the UCD Code of Academic Conduct, the Student Activities Handbook, the Guide to Residence Hall Life and the University of California Policies Applying to Campus Activities, Organizations and Students. The operation of the campus student disciplinary system is outlined in the booklet Administration of Student Discipline. These policies and regulations are available from the Office of Student Judicial Affairs and on the World Wide Web. A summary of student conduct expectations is published each quarter in the Class Schedule and Registration Guide.

Misconduct and Discipline

Misconduct for which students are subject to discipline includes, but is not limited to, plagiarism; cheating; knowingly furnishing false information to the university; sexual or other physical assault; threats of violence; possession of weapons; harassment, including stalking, sexual harassment or “fighting words”; forgery; theft; vandalism; illegal possession, use or sale of drugs or alcohol; hazing; obstruction or disruption of university activities or functions; and alteration or misuse of university documents, records, keys or identification.

Disciplinary sanctions that may be imposed range from a warning to dismissal, and may include restitution.
and/or assigned community service. Alleged violations of campus or university standards should be referred to the Office of Student Judicial Affairs. If complaints cannot be resolved informally between Student Judicial Affairs, the accused student and the referring party, the case may be referred to a hearing before the Student Conduct Committee, Campus Judicial Board, or a hearing officer. The president of the university, through the chancellor, has ultimate authority for the administration of student discipline.

Student Responsibilities

You are responsible for complying with the announcements and regulations printed in this catalog, in the Class Schedule and Registration Guide, on the SJA Web site and with all policies, rules and regulations of the university and this campus. You will not be able to register or receive transcripts of record or diplomas until you have met all university obligations.

Student Judicial Affairs

Student Judicial Affairs
3200 Dutton Hall
530-752-1128; http://sja.ucdavis.edu

Student Judicial Affairs supports the standards of the campus by responding to alleged violations of university policies or campus regulations. The office coordinates the informal resolution process and provides information and assistance about how to file formal complaints of alleged unfair practices or policies, arbitrary treatment, prohibited discrimination or harassment (based on sex, race, religion, disability, etc.) or violations of student rights to obtain access to or prevent disclosures from campus records. The office can help with conflict resolution and provide interpretations of university policies and regulations.

Resolving Academic Problems

Grade Changes

Grades may not be changed once they have been submitted to the Office of the Registrar unless 1) a clerical error has been made (e.g., a homework score is missing) or 2) a procedural error has affected the student’s grade (e.g., misapplication of grading procedures, arbitrary treatment or prohibited discrimination). If you believe you received an incorrect grade due to a clerical or procedural error, ask your instructor to file a grade change form with the Office of the Registrar. If your instructor does not agree, you may request a change of grade by filing a grade change petition with the Office of the Registrar. Requests must be made by the fifth week of the following quarter (see the Class Schedule and Registration Guide).

The Academic Senate Committee on Grade Changes reviews requests for grade change and has no authority to reevaluate student work, but can change the grade if it finds a documented clerical or procedural error. If the alleged procedural error involves arbitrary treatment or prohibited discrimination, the Grade Change Committee may refer the case to the Student-Faculty Relationships Committee, or the student may file a formal grievance under the policy on student discrimination complaints or the Faculty Code of Conduct. See the SJA website at http://sja.ucdavis.edu for more information.

Other Grievances

If you need a requirement waived or any other type of variance, contact your faculty adviser or the appropriate dean’s office for information on your college’s procedures. If you cannot get satisfaction through normal channels, contact the ASUCD Grievance Center or the Committee on Student-Faculty Relationships (see below).

Discrimination/Harassment

If you believe that you have been discriminated against or harassed, you may contact the office of Student Judicial Affairs (see left) or the ASUCD Grievance Center (see below) for information and assistance. It is important to seek assistance as soon as possible, as a 30-day time limit applies to some grievance processes. Advice is also available from the Sexual Harassment Information Line (752-2255). Graduate students may contact Graduate Studies (752-0650) and/or the Graduate Student Association (752-6108).

ASUCD Grievance Center

ASUCD Grievance Center
7 South Hall
530-754-4131; 530-752-6101 (ASUCD Academic Affairs); 530-752-3339 (ASUCD Campus Affairs)

The ASUCD Grievance Center advocates students’ academic and nonacademic concerns to the faculty and administration. Grievance counselors assist students one-on-one, directing them to appropriate channels through which to state their academic grievances (e.g., student-faculty relations, sexual harassment, grade change problems, prejudicial treatment in the classroom and problems with academic procedure and policy) and nonacademic grievances (e.g., campus facilities, campus safety, ASUCD, and any other nonacademic concerns). All information discussed between counselors and students is completely confidential. Students can get counseling, referrals and support to aid in the resolution of these matters.

Committee on Student-Faculty Relationships

Academic Senate Office
356 Mrak Hall
530-752-3920

If students with a grievance feel they cannot get satisfaction through normal procedures, they may contact the Committee on Student-Faculty Relationships for assistance. The committee is advisory and can make recommendations to the office having authority to resolve the problem. The chair and/or other designate may also meet informally with the students involved with the grievance.

TUTORING AND LEARNING RESOURCES

EOP Tutoring

Learning Skills Center
2205 Dutton Hall
530-752-2013

EOP tutoring is a free service for EOP students. If you are having difficulty with your course work, the Learning Skills Center offers tutoring in many course areas. Tutoring is provided in groups and on a drop-in basis. For students in academic difficulty, a limited amount of one-to-one tutoring is also available. Although primary
emphasizes the development of skills, reading efficiency, academic writing habits, and test-taking skills. The tutoring program is staffed by volunteers carefully selected for their knowledge of course content and their sensitivity to the needs of students being tutored.

The Learning Skills Center offers pre- and co-classes in mathematics, physics and statistics for EOP students. Pre-classes help prepare EOP students for the regular university class they usually take the following quarter. Co-classes provide supplementary instruction for EOP students enrolled in the regular class. The LSC offers pre-classes for Mathematics 16A, 21A and Physics 9A. The LSC also offers co-classes for the Mathematics 16 and 21 series, the Physics 9 series and Statistics 13. All pre-classes carry 3 workload units and co-classes carry 1 workload unit. These units count toward minimum progress and financial aid eligibility, but do not count toward graduation.

Learning Resource Centers

Student Housing
Lisa Papagni
530-754-6022

Learning Resource Centers are located in the Segundo, Tercero and Cuarto residence hall areas. They offer the following services to all residence hall students: PC computer terminals (Macintosh conversion software), printers, scanners and staff assistance. Other resources include a reference library, CD ROM's, language tapes and an exam file, study groups and a quiet place to study. The staff also provides free computer software tutoring and programs.

Learning Skills Center

2205 Dutton Hall
530-752-2013

At the Learning Skills Center you can receive help with such things as general study skills, math/science study skills, writing essays and term papers, reading efficiency, English as a second language, time-management skills, test-taking skills and test anxiety reduction.

Learning specialists can help you individually, or you may participate in workshops covering specific areas of study. The Learning Laboratory has self-help tapes and films that let you work at your own pace. The LSC library contains a variety of programmed instructional materials, reference books, preparation materials for the GRE, MCAT and LSAT exams, and a file of course examinations given in past quarters. Most materials may be checked out.

Under certain circumstances, the center also provides individual tutoring sessions for students on academic probation or subject to dismissal. Group and drop-in tutoring is available to all students. Come in and ask about our services, which are free to all UC Davis students.

Special Transitional Enrichment Program

Learning Skills Center
2205 Dutton Hall
530-752-2013

Freshman EOP students admitted by special action are expected to participate in the Special Transitional Enrichment Program (STEP). Selected regularly admitted EOP students are encouraged to do so. The program begins in summer and continues through the first academic year, providing preparatory course work and developing academic skills. It helps students adjust academically and socially to the campus by strengthening their learning skills and study habits, and by providing an extensive orientation to campus life.

INTERNSHIPS AND CAREER SERVICES

Internship Programs

The Internship and Career Center
2nd and 3rd floor, South Hall; Buehler Alumni and Visitors Center
530-752-2855; http://icc.ucdavis.edu

You can take advantage of one of the hundreds of organized internships through the Internship and Career Center or initiate your own.

An internship may be full time or part time, credit or non-credit, voluntary or involving a stipend, depending on your needs and interests and the availability of openings. Internship experiences must emphasize learning rather than routine activities, include field supervision by a qualified professional and, where appropriate, the faculty member responsible for giving credit. Academic credit is awarded only for experiences planned and approved in advance by the sponsoring faculty member.

The Internship and Career Center

2nd and 3rd floor, South Hall; Buehler Alumni and Visitors Center
530-752-2855; http://icc.ucdavis.edu

If you are an undergraduate, graduate or alumnus, ICC can help you identify your abilities and interests and relate them to jobs; gain access to practical experience to increase your competitiveness in the job market; and find out how and where to look for the jobs you want. If you are considering dropping out of the university for a term or longer, an adviser can also give you information about internships and employment opportunities.

The Career and Graduate Study Resource Room (1st floor, South Hall) contains materials that can help you learn how your major field of study can be translated into job opportunities, and data concerning types of employment graduates have obtained. Useful to job-seekers—and available free of charge—is ICC’s Career Resource Manual, which provides guidelines for preparing a resume, tips on being interviewed and information on employment in government, business and education.

The office solicits and maintains job vacancy listings, arranges employment interviews and schedules on-campus recruiting by employers.

Education and Graduate Placement Services

The Internship and Career Center
3rd floor, South Hall
530-752-7841

Any student enrolled in the teaching credential program or pursuing a master's or doctoral degree in order to teach should register with the Education and Graduate Placement Office.

Services include teaching job vacancy listings, placement files (professional dossiers), special workshops on writing teaching resumes and curriculum vitae, on preparing for interviews, and individual advising.
Advisers maintain contact with school district personnel and work with undergraduate students to explore teaching through internships. The office sponsors the Graduate Career Options Program for advanced degree candidates originally planning a teaching career and now considering other career options.

Human Corps Program
The Internship and Career Center
2nd floor, South Hall
530-752-3813

Human Corps is the student community services program at UC Davis. Public service work can be a rewarding and satisfying experience that may also improve your qualifications for the job market. Community service may or may not be compensated through wages, academic credit or transcript notation and can vary from a one-day activity to a long-term commitment.

The Human Corps is a referral center for students who want to perform community service and as a resource for agencies and campus units with service opportunities. The office has a database and directories with information about nonprofit agencies in California, community service opportunities throughout the world and employment in the non-profit or public sectors after graduation.

STUDENT RESOURCE AND INFORMATION CENTERS

Campus Violence Prevention Program
Fire and Police Building, Kleiber Hall Drive
530-752-3299; jmbeeman@ucdavis.edu

The Campus Violence Prevention Program (CVPP), formerly Rape Prevention Education Program (RPEP), explores myths and exposes the realities of sexual violence, relationship violence and hate-related activities, focusing on prevention through education. The program offers discussions, workshops, self-defense classes, short-term crisis intervention, referrals and support groups for victims/survivors of all types of interpersonal violence, 24-hour crisis intervention and advocacy and training for peer counselors and professionals. A circulating library of books, videos and articles on related issues is available. Call for drop-in hours or to make an appointment.

Cross-Cultural Center
Information:
Winnie LaNier, Director
Corner of East Quad and Shields road
530-752-4287; 530-752-5067 (fax); ccc@ucdavis.edu;
http://ccc.ucdavis.edu

The Cross-Cultural Center fosters a multi-ethnic and multi-cultural community through educational and cultural programs, and leadership development opportunities. Everyone is welcome and encouraged to participate in the many programs, special events and activities sponsored by the center.

Lesbian, Gay, Bisexual and Transgender Resource Center
Allison Subasic, Coordinator
University House Annex
530-752-2452; http://lgbcenter.ucdavis.edu

The Lesbian, Gay, Bisexual and Transgender (LGBT) Resource Center has information and resources about lesbian, gay, bisexual and transgender issues and offers a safe, supportive environment. Students who are studying or researching these issues are encouraged to use the center’s resources. The center also serves as a meeting place for local organizations or support groups. Resources include a library with books on topics ranging from domestic partnership issues to lesbian humor; local and national newspapers and magazines; a resource database and files on local resources, including health professionals, legal services, clubs, organizations and community contacts; and a bulletin board exchange, where community members may advertise special events and services. The LGBT Resource Center is open Monday through Friday; call for daily hours.
Services for International Students and Scholars (S.I.S.S.)
Services for International Students and Scholars
530-752-0864; siss@ucdavis.edu
Services for International Students and Scholars assists international students, faculty and researchers throughout their programs of study, teaching and research at UC Davis, offering orientation, personal and cultural advising, and information and assistance with U.S. Immigration and Naturalization Services regulations. The office serves as a liaison with home governments and sponsors, and provides orientation to the U.S. university system.

All new and transfer international students must attend a special orientation program held just before each quarter begins. The orientation helps new students with registration, class enrollment, making housing arrangements, immigration regulations, and finding campus services and community resources. Orientation and check-in for new international faculty and researchers is held each week. Students and scholars should report to SISS as soon as possible after arriving in Davis.

Women’s Resources and Research Center (WRRC)
North Hall, First Floor
530-752-3372; 752-0222 (fax); http://wrrc.ucdavis.edu
The Women’s Resources and Research Center educates the campus community about women’s issues and concerns, promotes an understanding of the role and impact of gender in our lives and in our society, helps women of diverse backgrounds achieve their intellectual, professional and personal goals, and advocates for women’s full inclusion, equality and advancement.

The WRRC’s staff can answer questions, locate resources and help you with personal, academic or work-related concerns. Services and resources include lectures, workshops and forums; a library staffed by a full-time librarian; resource listings of campus and community services such as health care, counseling, child care, women’s organizations and legal resources; child emergency notification service for student parents; and specialized programs, discussion groups and individualized consultation for faculty and graduate students on research, academic, career and personal topics.

Student Special Services
South Silo
530-752-2007
Student Special Services coordinates a variety of programs and services to meet the special needs of students.

Disability Resource Center
530-752-3184 (voice) or 752-6833 (TTY)
http://drc.ucdavis.edu
The Disability Resource Center (DRC) provides services to students with disabilities who are eligible for reasonable accommodation under either Section 504 of the Rehabilitation Act or the Americans with Disabilities Act. The staff of Disability Specialists assist students with disabilities in identifying accommodations that will ensure the student has equal access to educational opportunities at UC Davis. For information about DRC services, please call us or visit our Web site.

Reentry Student Services
530-752-2005
Reentry Student Services helps students who have returned to the university after several years of life and work experience. The office provides admissions assistance, information, orientation and peer support, and provides referral assistance through the Reentry Resource Network. The office sponsors an annual Reentry Day for prospective reentry students on the last Saturday in February.

Transfer Student Services
530-752-2200
Transfer Student Services helps students who have transferred from other institutions of higher education, coordinating transfer student matters among existing student services units to aid in an easy and smooth transfer to the university. It also sponsors special receptions and workshops for new transfers and publishes an annual Transfer Guide of available campus services.

Veterans Affairs
530-752-2020
Veterans Affairs assists veterans, dependents and reservists with a number of services, including certifying course attendance to the Department of Veterans Affairs, coordinating a tutorial assistance program, providing advice and support, and helping with educational fee waivers, work study and financial aid concerns. To initiate a benefit claim, write or drop by with your letter of admission.
ACADEMIC ADVISING

UC Davis offers many different types of academic advising to help you get the most from your education. College advisers can assist you in meeting degree requirements and taking maximum advantage of the resources available in the university. A conference at least once a quarter with your faculty or staff adviser is especially desirable during your first year and during your final quarters preceding graduation.

College Advising

College of Agricultural and Environmental Sciences

Office of the Dean
228 Mrak Hall
530-752-0108

In the dean's office you will find:

• Staff advisers who can help with university and college rules, regulations and policies and procedures that affect students.
• Academic advising: in-depth advice regarding probation/dismissal status, admission to the college, readmission, and second bachelor's, limited and regular status.
• Advice and action on petitions.
• Other services include study plan clearance, college English requirement check, release of holds on registration packets and final evaluation for graduation.

Associate Dean of Undergraduate Academic Programs
Annie King, Associate Dean
228 Mrak Hall
530-752-0108

The college has an associate dean of undergraduate academic programs and advising staff who welcome the opportunity to become acquainted and to talk with individual students. They can also help you with academic problems if you are placed on probation or subject to dismissal.

Faculty Advisers/Staff Advisers. You will be assigned a faculty adviser to help you plan a program that corresponds to your individual educational interests. The master advisers coordinate advising within a major. Staff advisers in the department can advise you on courses, specific requirements of majors and career opportunities. You are strongly urged to consult with your faculty adviser or staff adviser each quarter before selecting your courses.

As educational objectives evolve, you may, in consultation with the master adviser for your major, choose a new faculty adviser whose area of expertise corresponds more directly to your specific objectives.

Exploratory Program (non-degree program)
228 Mrak Hall
530-752-0610

Are you unsure what major you really want to pursue? If so, you may want to register in the Exploratory Program. With the help of staff in the dean's office and the major advisers, you can explore specialized options, develop your decision-making abilities and select the major best suited to your needs. For registration purposes, indicate "Exploratory" on your admissions materials. You must declare a major before you complete 120 units; see Declaration of Major in the "Academic Information" chapter.

Division of Biological Sciences

Dean's Office
202 Life Sciences Addition
530-752-0410

The associate dean and staff in the dean's office offer complete academic advising services for the Biological Sciences major and general advising information about other divisional majors. The office also advises on college and university requirements, policies, and procedures, including PELP, withdrawal, change of major, and late actions.

This office is also responsible for the academic progress of all students majoring in the division. If you have any problems (personal, medical, financial) that are affecting your academic performance, or if you are on academic probation, make an appointment to see one of the advisers in the dean's office.

Sections and Advising Centers. Students entering or intending to declare sectional majors in biochemistry; cell biology; evolution and ecology; genetics; microbiology; neurobiology, physiology, and behavior; or plant biology should contact the specific section office for academic advising services, where both faculty and staff advisers are available. Students selecting the biological sciences major should contact the dean's office for academic advising services.

Peer Advisers. Peer advisers are available in each section. Biological Sciences houses its peer advisers in the dean's office.

College of Engineering

Undergraduate Office
1050 Engineering II
530-752-0553

Information and assistance on academic, career and personal matters is available in the Undergraduate Office, either through direct assistance from one of the staff advisers or through referral to other offices on campus. The Undergraduate Office handles student petitions, transfer evaluation, articulation and degree certifications.

Advising. As soon as you arrive on campus, you should consult with your departmental staff adviser, whose name and office hours you can obtain at the department office. The departmental staff adviser is aware of the requirements for your major and can assist you with planning your program.

Mandatory Advising. The College has implemented a mandatory advising system through the online registration system. You are required to meet with your adviser once a year, during a specific quarter, which is determined by the number of units you have completed. When you enroll in classes for your advising quarter, you will be told that you have an advising hold on your registration. You may enroll in classes for and during this quarter. If you meet with your adviser during this quarter, there will be no difficulties with subsequent registration. If, however, you fail to meet with your adviser...
Advising Checkpoints. You should consult with your faculty adviser at two, possibly three, critical stages in your academic career:

- Before you complete 90 units of degree credit, including transfer work, you must develop in consultation with your faculty adviser a proposal for a quarter-by-quarter program of courses showing how you will meet your educational goals and graduation requirements. You must also have declared a major by this time. Filing this plan with your adviser does not preclude subsequent modifications of the plan or a change of major.

- When you complete 135 units of degree credit, including transfer work, you may pick up Degree Check materials from the Letters and Science Advising Office and consult your adviser concerning course selection and satisfaction of requirements in the major.

- Before you complete 195 units of degree credit, including transfer work, you must develop in consultation with your faculty adviser a firm study plan, in the form of a quarter-by-quarter program that will satisfy all remaining degree requirements as expeditiously as possible. This plan will be filed with your adviser. If the plan indicates that you will have to register beyond the 225-unit limit in order to meet degree requirements, you must contact the Undergraduate Education and Advising Office immediately. Exceptions to the 225-unit limit are granted by the dean only rarely. Typically, approval is granted only to allow completion of minimum degree requirements.

If you have not met with your faculty adviser before these established checkpoints, a hold may be placed on your registration as a reminder.

Peer Advisers. Student-to-student advising is an important part of the university advising services. The College of Letters and Science dean's office peer advisers are available in the Undergraduate Education and Advising Office, 200 Social Sciences and Humanities Building, and on a weekly basis in the campus residence halls to talk with students about their academic concerns.
Advising Services

Educational Opportunity Program (EOP)

228 North Hall
530-752-3472

The Educational Opportunity Program serves students by assisting them with their academic, social and personal adjustments to the university environment; coordinates EOP new student orientation programs; and serves as liaison to staff, faculty and administrators. The office's diverse peer staff is particularly sensitive to differing social, cultural and ethnic concerns. Students interested in pursuing the helping professions can receive training and experience through the Peer Adviser Counselor training program.

EOP Information Office services are also accessible at various locations on campus, such as the Colleges of Agricultural and Environmental Sciences, Letters and Science and Engineering; Learning Skills Center; The House; and all ethnic studies departments. You are invited to telephone or stop by the EOP Information Office on the second floor of North Hall or at any of the outreach locations to find out more about the peer support services.

The First Resort

1st floor lobby, South Hall
530-752-2807 or 530-752-3323

The First Resort is a place to go if you are feeling bogged down by university red tape, registration procedures, course selection, choosing a major or other general advising questions. The student advisers here can either answer your questions or put you in contact with others who can. The staff can give you advice and assistance from the point of view of someone who has "been there." The First Resort maintains a referral service, a listing of courses of 1 to 3 units and other valuable resources. If you have a problem, remember—start with The First Resort.

STUDENT CONDUCT

Student Judicial Affairs
3200 Dutton Hall
530-752-1128; http://sj.a.ucdavis.edu

Students enrolling or seeking enrollment in the university assume an obligation to act honestly, ethically and responsibly in a manner compatible with the university's function as an educational institution. Rules concerning student conduct, student organizations, use of university facilities and related matters are set forth in both university policies and campus regulations.

Standards for student conduct are included in the UCD Code of Academic Conduct, the Student Activities Handbook, the Guide to Residence Hall Life and the University of California Policies Applying to Campus Activities, Organizations and Students. The operation of the campus student disciplinary system is outlined in the booklet Administration of Student Discipline. These policies and regulations are available from the Office of Student Judicial Affairs and on the World Wide Web. A summary of student conduct expectations is published each quarter in the Class Schedule and Registration Guide.

Misconduct and Discipline

Misconduct for which students are subject to discipline includes, but is not limited to, plagiarism; cheating; knowingly furnishing false information to the university; sexual or other physical assault; threats of violence; possession of weapons; harassment, including stalking, sexual harassment or "fighting words"; forgery; theft; vandalism; illegal possession, use or sale of drugs or alcohol; hazing; obstruction or disruption of university activities or functions; alteration or misuse of university documents, records, keys or identification.

Disciplinary sanctions that may be imposed range from a warning to dismissal, and may include restitution.
and/or assigned community service. Alleged violations of campus or university standards should be referred to the Office of Student Judicial Affairs. If complaints cannot be resolved informally between Student Judicial Affairs, the accused student and the referring party, the case may be referred to a hearing before the Student Conduct Committee, Campus Judicial Board, or a hearing officer. The president of the university, through the chancellor, has ultimate authority for the administration of student discipline.

Student Responsibilities

You are responsible for complying with the announcements and regulations printed in this catalog, in the Class Schedule and Registration Guide, on the SJA Web site and with all policies, rules and regulations of the university and this campus. You will not be able to register or receive transcripts of record or diplomas until you have met all university obligations.

Student Judicial Affairs

Student Judicial Affairs supports the standards of the campus by responding to alleged violations of university policies or campus regulations. The office coordinates the informal resolution process and provides information and assistance about how to file formal complaints of alleged unfair policies or practices, arbitrary treatment, prohibited discrimination or harassment (based on sex, race, religion, disability, etc.) or violations of student rights to obtain access to or prevent disclosures from campus records. The office can help with conflict resolution and provide interpretations of university policies and regulations.

Resolving Academic Problems

Grade Changes

Grades may not be changed once they have been submitted to the Office of the Registrar unless 1) a clerical error has been made (e.g., a homework score is missing) or 2) a procedural error has affected the student’s grade (e.g., misapplication of grading procedures, arbitrary treatment or prohibited discrimination). If you believe you received an incorrect grade due to a clerical or procedural error, ask your instructor to file a grade change form with the Office of the Registrar. If your instructor does not agree, you may request a change of grade by filing a grade change petition with the Office of the Registrar. Requests must be made by the fifth week of the following quarter (see the Class Schedule and Registration Guide).

The Academic Senate Committee on Grade Changes reviews requests for grade change and has no authority to reevaluate student work, but can change the grade if it finds a documented clerical or procedural error. If the alleged procedural error involves arbitrary treatment or prohibited discrimination, the Grade Change Committee may refer the case to the Student-Faculty Relationships Committee, or the student may file a formal grievance under the policy on student discrimination complaints or the Faculty Code of Conduct. See the SJA website at http://sja.ucdavis.edu for more information.

Other Grievances

If you need a requirement waived or any other type of variance, contact your faculty adviser or the appropriate dean’s office for information on your college’s procedures. If you cannot get satisfaction through normal channels, contact the ASUCD Grievance Center or the Committee on Student-Faculty Relationships (see below).

Discrimination/ Harassment

If you believe that you have been discriminated against or harassed, you may contact the office of Student Judicial Affairs (see left) or the ASUCD Grievance Center (see below) for information and assistance. It is important to seek assistance as soon as possible, as a 30-day time limit applies to some grievance processes. Advice is also available from the Sexual Harassment Information Line (752-2255). Graduate students may contact Graduate Studies (752-0650) and/or the Graduate Student Association (752-6108).

ASUCD Grievance Center

ASUCD Grievance Center
7 South Hall
530-754-4131; 530-752-6101 (ASUCD Academic Affairs); 530-752-3339 (ASUCD Campus Affairs)

The ASUCD Grievance Center advocates students’ academic and nonacademic concerns to the faculty and administration. Grievance counselors assist students one-on-one, directing them to appropriate channels through which to state their academic grievances (e.g., student-faculty relations, sexual harassment, grade change problems, prejudicial treatment in the classroom and problems with academic procedure and policy) and nonacademic grievances (e.g., campus facilities, campus safety, ASUCD, and any other nonacademic concerns). All information discussed between counselors and students is completely confidential. Students can get counseling, referrals and support to aid in the resolution of these matters.

Committee on Student-Faculty Relationships

Academic Senate Office
356 Mrak Hall
530-752-3920

If students with a grievance feel they cannot get satisfaction through normal procedures, they may contact the Committee on Student-Faculty Relationships for assistance. The committee is advisory and can make recommendations to the office having authority to resolve the problem. The chair and/or other designee may also meet informally with the students involved with the grievance.

TUTORING AND LEARNING RESOURCES

EOP Tutoring

EOP tutoring is a free service for EOP students. If you are having difficulty with your course work, the Learning Skills Center offers tutoring in many course areas. Tutoring is provided in groups and on a drop-in basis. For students in academic difficulty, a limited amount of one-to-one tutoring is also available. Although primary
emphasis is on the assignments in your classes, tutorial services may also be used to improve study habits and learning skills. The tutoring program is staffed by students carefully selected for both their knowledge of course content and their sensitivity to the needs of students being tutored.

The Learning Skills Center offers pre- and co-classes in mathematics, physics and statistics for EOP students. Pre-classes help prepare EOP students for the regular university class they usually take the following quarter. Co-classes provide supplementary instruction for EOP students enrolled in the regular class. The LSC offers pre-classes for Mathematics 16A, 21A and Physics 9A. The LSC also offers co-classes for the Mathematics 16 and 21 series, the Physics 9 series and Statistics 13. All pre-classes carry 3 workload units and co-classes carry 1 workload unit. These units count toward minimum progress and financial aid eligibility, but do not count toward graduation.

Learning Resource Centers
Student Housing
Lisa Papagni
530-754-6022

Learning Resource Centers are located in the Segundo, Tercero and Cuarto residence hall areas. They offer the following services to all residence hall students: PC computer terminals (Macintosh conversion software), printers, scanners and staff assistance. Other resources include a reference library, CD ROM’s, language tapes and an exam file, study groups and a quiet place to study. The staff also provides free computer software tutoring and programs.

Learning Skills Center
2205 Dutton Hall
530-752-2013

At the Learning Skills Center you can receive help with such things as general study skills, math/science study skills, writing essays and term papers, reading efficiency, English as a second language, time-management skills, test-taking skills and test anxiety reduction.

Learning specialists can help you individually, or you may participate in workshops covering specific areas of study. The Learning Laboratory has self-help tapes and films that let you work at your own pace. The LSC library contains a variety of programmed instructional materials, reference books, preparation materials for the GRE, MCAT and LSAT exams, and a file of course examinations given in past quarters. Most materials may be checked out.

Under certain circumstances, the center also provides individual tutoring sessions for students on academic probation or subject to dismissal. Group and drop-in tutoring is available to all students. Come in and ask about our services, which are free to all UC Davis students.

Special Transitional Enrichment Program
Learning Skills Center
2205 Dutton Hall
530-752-2013

Freshman EOP students admitted by special action are expected to participate in the Special Transitional Enrichment Program (STEP). Selected regularly admitted EOP students are encouraged to do so. The program begins in summer and continues through the first academic year, providing preparatory course work and developing academic skills. It helps students adjust academically and socially to the campus by strengthening their learning skills and study habits, and by providing an extensive orientation to campus life.

INTERNSHIPS AND CAREER SERVICES

Internship Programs
The Internship and Career Center
2nd and 3rd floor, South Hall; Buehler Alumni and Visitors Center
530-752-2855; http://icc.ucdavis.edu

You can take advantage of one of the hundreds of organized internships through the Internship and Career Center or initiate your own.

An internship may be full time or part time, credit or non-credit, voluntary or involving a stipend, depending on your needs and interests and the availability of openings. Internship experiences must emphasize learning rather than routine activities, include field supervision by a qualified professional and, where appropriate, the faculty member responsible for giving credit. Academic credit is awarded only for experiences planned and approved in advance by the sponsoring faculty member.

The Internship and Career Center
2nd and 3rd floor, South Hall; Buehler Alumni and Visitors Center
530-752-2855; http://icc.ucdavis.edu

If you are an undergraduate, graduate or alumnus, ICC can help you identify your abilities and interests and relate them to jobs; gain access to practical experience to increase your competitiveness in the job market; and find out how and where to look for the jobs you want. If you are considering dropping out of the university for a term or longer, an adviser can also give you information about internships and employment opportunities.

The Career and Graduate Study Resource Room (1st floor, South Hall) contains materials that can help you learn how your major field of study can be translated into job opportunities, and data concerning types of employment graduates have obtained. Useful to job-seekers—and available free of charge—is ICC’s Career Resource Manual, which provides guidelines for preparing a resume, tips on being interviewed and information on employment in government, business and education.

The office solicits and maintains job vacancy listings, arranges employment interviews and schedules on-campus recruiting by employers.

Education and Graduate Placement Services
The Internship and Career Center
3rd floor, South Hall
530-752-7841

Any student enrolled in the teaching credential program or pursuing a master’s or doctoral degree in order to teach should register with the Education and Graduate Placement Office.

Services include teaching job vacancy listings, placement files (professional dossiers), special workshops on writing teaching resumes and curriculum vitae, on preparing for interviews, and individual advising.
Advisers maintain contact with school district personnel and work with undergraduate students to explore teaching through internships. The office sponsors the Graduate Career Options Program for advanced degree candidates originally planning a teaching career and now considering other career options.

Human Corps Program
The Internship and Career Center
2nd floor, South Hall
530-752-3813

Human Corps is the student community services program at UC Davis. Public service work can be a rewarding and satisfying experience that may also improve your qualifications for the job market. Community service may or may not be compensated through wages, academic credit or transcript notation and can vary from a one-day activity to a long-term commitment.

The Human Corps is a referral center for students who want to perform community service and as a resource for agencies and campus units with service opportunities. The office has a database and directories with information about nonprofit agencies in California, community service opportunities throughout the world and employment in the non-profit or public sectors after graduation.

STUDENT RESOURCE AND INFORMATION CENTERS

Campus Violence Prevention Program
Fire and Police Building, Kleber Hall Drive
530-752-3299; jmbeeman@ucdavis.edu

The Campus Violence Prevention Program (CVPP), formerly Rape Prevention Education Program (RPEP), explores myths and exposes the realities of sexual violence, relationship violence and hate-related activities, focusing on prevention through education. The program offers discussions, workshops, self-defense classes, short-term crisis intervention, referrals and support groups for victims/survivors of all types of interpersonal violence, 24-hour crisis intervention and advocacy and training for peer counselors and professionals. A circulating library of books, videos and articles on related issues is available. Call for drop-in hours or to make an appointment.

Cross-Cultural Center
Information:
Winnie LaNier, Director
Corner of East Quad and Shields road
530-752-4287; 530-752-5067 (fax); ccc@ucdavis.edu; http://ccc.ucdavis.edu

The Cross-Cultural Center fosters a multi-ethnic and multi-cultural community through educational and cultural programs, and leadership development opportunities. Everyone is welcome and encouraged to participate in the many programs, special events and activities sponsored by the center.

Lesbian, Gay, Bisexual and Transgender Resource Center
Allison Subasic, Coordinator
University House Annex
530-752-2452; http://lgbcenter.ucdavis.edu

The Lesbian, Gay, Bisexual and Transgender (LGBT) Resource Center has information and resources about lesbian, gay, bisexual and transgender issues and offers a safe, supportive environment. Students who are studying or researching these issues are encouraged to use the center’s resources. The center also serves as a meeting place for local organizations or support groups.

Resources include a library with books on topics ranging from domestic partnership issues to lesbian humor; local and national newspapers and magazines; a resource database and files on local resources, including health professionals, legal services, clubs, organizations and community contacts; and a bulletin board exchange, where community members may advertise special events and services. The LGBT Resource Center is open Monday through Friday; call for daily hours.
Services for International Students and Scholars (S.I.S.S.)

Services for International Students and Scholars
530-752-0864; siss@ucdavis.edu

Services for International Students and Scholars assists international students, faculty and researchers throughout their programs of study, teaching and research at UC Davis, offering orientation, personal and cultural advising, and information and assistance with U.S. Immigration and Naturalization Services regulations. The office serves as a liaison with home governments and sponsors, and provides orientation to the U.S. university system.

All new and transfer international students must attend a special orientation program held just before each quarter begins. The orientation helps new students with registration, class enrollment, making housing arrangements, immigration regulations, and finding campus services and community resources. Orientation and check-in for new international faculty and researchers is held each week. Students and scholars should report to SISS as soon as possible after arriving in Davis.

Women's Resources and Research Center (WRRC)

North Hall, First Floor
530-752-3372; 752-0222 (fax); http://wrrc.ucdavis.edu

The Women's Resources and Research Center educates the campus community about women's issues and concerns, promotes an understanding of the role and impact of gender in our lives and in our society, helps women of diverse backgrounds achieve their intellectual, professional and personal goals, and advocates for women's full inclusion, equality and advancement.

The WRRC's staff can answer questions, locate resources and help you with personal, academic or work-related concerns. Services and resources include lectures, workshops and forums; a library staffed by a full-time librarian; resource listings of campus and community services such as health care, counseling, child care, women's organizations and legal resources; child emergency notification service for student parents; and specialized programs, discussion groups and individualized consultation for faculty and graduate students on research, academic, career and personal topics.

Student Special Services
South Silo
530-752-2007

Student Special Services coordinates a variety of programs and services to meet the special needs of students.

Disability Resource Center
530-752-3184 (voice) or 752-6833 (TTY)
http://drc.ucdavis.edu

The Disability Resource Center (DRC) provides services to students with disabilities who are eligible for reasonable accommodation under either Section 504 of the Rehabilitation Act or the Americans with Disabilities Act. The staff of Disability Specialists assist students with disabilities in identifying accommodations that will ensure the student has equal access to educational opportunities at UC Davis. For information about DRC services, please call us or visit our Web site.

Reentry Student Services
530-752-2005

Reentry Student Services helps students who have returned to the university after several years of life and work experience. The office provides admissions assistance, information, orientation and peer support, and provides referral assistance through the Reentry Resource Network. The office sponsors an annual Reentry Day for prospective reentry students on the last Saturday in February.

Transfer Student Services
530-752-2200

Transfer Student Services helps students who have transferred from other institutions of higher education, coordinating transfer student matters among existing student services units to aid in an easy and smooth transfer to the university. It also sponsors special receptions and workshops for new transfers and publishes an annual Transfer Guide of available campus services.

Veterans Affairs
530-752-2020

Veterans Affairs assists veterans, dependents and reservists with a number of services, including certifying course attendance to the Department of Veterans Affairs, coordinating a tutorial assistance program, providing advice and support, and helping with educational fee waivers, work study and financial aid concerns. To initiate a benefit claim, write or drop by with your letter of admission.

The Humanities/Social Sciences Building, one of the newest on campus, was designed by renowned architect Antoine Predock.
change of Address.
The way you become a student at the university. Every UC Davis student must register each quarter by the deadline. Registration includes enrolling in classes, paying fees and other financial obligations, filing your current address with the Office of the Registrar, and completing and filing other information forms.

If you are a new or reentering student you must also:

- Obtain a student ID.
- Submit a Statement of Legal Residence (see Appendix).
- Return the completed Medical History form, evidence of rubella immunity, results of a tuberculin skin test and the Insurance Information Request form. These forms are mailed to each new student by the Student Health Center.

Change of Name. Petitions to change your name on official university records can be obtained from the Office of the Registrar. (Students planning to graduate should file this petition no later than the 5th week of the quarter in which they intend to graduate.)

Change of Address. Be sure to inform the Office of the Registrar of any change of address. Important registration materials, information and announcements are mailed to students throughout the year, so keep your campus/local mailing address, your billing address and your permanent address up to date. Failure to file your current address can result in a hold on your registration. You can update your address in three ways:

- Correct your information on the “Student Data” section of your RSVP registration form and turn it in to the Office of the Registrar.
- Use the form available from the “Student” menu of the Office of the Registrar Web site.
- At the Office of the Registrar kiosks in Mrak Hall and the MU, adjacent to the Campus Information Center.
- Complete a Change of Address form, available at the Office of the Registrar.
- Call our Voice Mail Form at 754-9427.

New graduate students who have been registered previously at UC Davis as undergraduates are considered to be new students.

Late Registration
Late registration privileges extend through the 10th day of instruction, but you will be assessed a fee of $50.00 to defray the extra clerical costs of late registration. Registration after the deadline will be allowed only if action or inaction on the part of the university delays registration. A recommendation from an appropriate administrative unit will be required, and the registration fee must be paid with cash, cashier’s check, credit union check, university check or fee credit.

Enrolling in Courses
RSVP and Web Registration. Students enroll in courses by using the UC Davis telephone registration system, RSVP (Register Students Via Phone, 530-752-7787) or by using Web Registration on the World Wide Web.

The Class Schedule and Registration Guide, available several weeks before the start of each quarter, explains registration procedures, gives class meeting times and locations, changes to the General Catalog, and provides the most up-to-date information on fees and registration.

The Office of the Registrar World Wide Web site, http://registrar.ucdavis.edu, includes each quarter’s “Schedule of Classes,” RSVP and Web Registration information, the “Open Courses” list, General Catalog, academic calendar and other general information.

Registration Priority. Access to registration (RSVP and Web Registration) is by priority groups. The groups are established according to student class level, as determined by the number of units completed. Undergraduate classification is determined by the number of quarter units you have completed:

<table>
<thead>
<tr>
<th>Class Level</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshman</td>
<td>0.0–44.9</td>
</tr>
<tr>
<td>Sophomore</td>
<td>45.0–89.9</td>
</tr>
<tr>
<td>Junior</td>
<td>90.0–134.9</td>
</tr>
<tr>
<td>Senior</td>
<td>135.0 or more</td>
</tr>
</tbody>
</table>

Study List. You are officially registered in all courses listed on your individual study list. You are responsible for completing each of the courses.

To confirm your study list (class schedule), you can call RSVP or view and print your class schedule at Office of the Registrar Kiosks in Mrak Hall and the MU or online using Web Registration. You can also check your grades using RSVP, the Kiosk or Web Registration.

Adding and Dropping Courses
You can adjust your schedule by adding or dropping courses until the published deadlines.

The last day to add courses is the 12th day of instruction. The last day to drop courses without dean’s permission or fee is the 20th day of instruction, except for those courses designated by departments as 10-day-drop courses. You will need to obtain the permission of your dean and pay a $3.00 fee to drop a designated 10-day-drop course after the 10th day of instruction or to drop any other courses after the 20th day of instruction.
Advisers play a major role in making sure students are taking the courses they need to graduate.

The Class Schedule and Registration Guide for each quarter lists the add and drop deadlines and explains how to use RSVP and Web Registration to adjust your schedule and what add/drop procedures and fees apply after the published deadlines. The academic calendar in the front of this catalog also lists the course add and drop deadlines.

Late Drop

To drop a course after the deadline (but before the day of the scheduled final examination), you need approval of the dean of your college or school. Graduate students must have their adviser’s approval in order to drop courses. A $3.00 fee applies to late drops. Permission to drop courses after the deadline may be granted only in exceptional circumstances.

Late Add

To add a course after the deadline (but before the day of the scheduled final examination), you need approval of the department. A $3.00 fee applies to late adds.

Retroactive Drop

Occasionally, in exceptional circumstances, students are allowed to drop a course after the course is completed. Reasons for seeking a retroactive drop are very specific: medical problems, severe emotional difficulties, or recent death or severe illness in the immediate family. Petitions are available from the Office of the Registrar and should include a detailed account of the problem, appropriate documentation and an adequate explanation of why an I grade or late drop was not taken during the quarter in which the problem occurred. The instructor’s signature is required on the petition. A $3.00 fee is applicable on all retroactive drops.

Retroactive Add

In some rare circumstances, students are allowed to add a course after the course is completed. Petitions for retroactive adds are available from the Office of the Registrar. Each petition must include the reason for the student’s failure to add the course during the quarter in which it is offered. The petition must be supported by the instructor’s signed approval, together with a statement from the instructor indicating knowledge of the student’s participation and performance during the presentation of the course in question and the instructor’s understanding as to the reason for the student’s failure to add the course before the end of the quarter. A course grade must be assigned by the instructor. A $3.00 fee is applicable on all retroactive adds.

COURSE LOAD

Normal Progress. Students are expected to graduate in 12 quarters (four years). To do this, students should plan to complete an average of 15 units per quarter (15 units per quarter for 12 quarters totals 180 units). It is understood that for various reasons students will occasionally need to take fewer than 15 units per quarter. However, students must meet the minimum progress requirements of the campus.

Minimum Progress Requirements. Minimum progress is defined as a total of 39 units (including workload units) passed, calculated at the end of every quarter for the preceding three quarters of enrollment. Undergraduate students falling below this requirement will be subject to academic disqualification. Under minimum progress, a student will earn the 180-unit minimum degree requirement within 14 quarters of enrollment. Normal progress would achieve 180 units in 12 quarters (four years).

Minimum progress requirements do not apply to students who have been granted part-time status or to students who have their dean’s approval to carry less than the minimum progress load because of medical disability, employment, a serious personal problem, a recent death in the immediate family, or a serious accident involving the student.

Certification of Full-Time Status. Undergraduate students must carry a study load of at least 12 units (including workload units) each quarter in order to be certified as full-time students for insurance and financial aid purposes or to compete in intercollegiate athletics. Graduate students must carry a study load of at least 12 units each quarter in order to be certified as full-time students for insurance and financial aid purposes.

Course Load Limits in the College of Letters and Science. Freshman students in their first year and transfer students in their first quarter of residence may not take more than 17 units each quarter. For all other Letters and Science students, the study list may not exceed 21 units each quarter. These unit limitations include non-credit remedial courses and repeated courses, but not make-up work to remove incomplete grades.

Course Loads in the College of Engineering. Because of the large number of units in some of the double-major programs, students must take more than 15 units per quarter to finish in four years.

Part-Time Student Status

If, for reasons of occupation, family responsibility, health or, for one term only, graduating senior status, you are unable to attend the university on a full-time basis, you may qualify for enrollment in part-time status. Students may change status between full-time and part-time as their circumstances change. To be considered eligible, undergraduate students must be registered...
in 10 units (including workload units) or fewer by the tenth day of instruction that quarter, and graduate students must be registered in 6 units or fewer by the tenth day of the instruction. Minimum progress requirements are waived for part-time students. Undergraduate petitions are available at the Office of the Registrar and require approval by the Registrar. Graduate petitions are available at Graduate Studies and approved by the Dean of Graduate Studies. Part-time students have use of the same facilities and are eligible for the same services, including Student Health Services, as full-time students.

THE MAJOR
You'll find a complete list of the majors offered at UC Davis in a chart at the front of this catalog.

Declaration of Major
College of Agricultural and Environmental Sciences. Students must declare a major by the time they have completed 120 units. Failure to declare a major at this point may result in a hold on further registration. In order to declare a major, you must meet with your faculty adviser and/or advising associate, fill out a Change of Major petition available at the Office of the Registrar or dean's office and file the petition with the dean's office. If you have completed 120 units, you must prepare a study plan with your adviser and/or advising associate at the same time. You are accepted into a major only after your major department and the dean's office have approved the Change of Major petition. With the approval of the College Executive Committee, additional requirements, such as completion of a particular set of required courses with a specified grade point average (usually well above a C average), may be introduced as conditions for acceptance into any major at any time.

College of Engineering. Students must declare a major when they apply to the College of Engineering. Their freedom to change majors thereafter may be limited.

College of Letters and Science. Students must declare a major by the time they have completed 90 units. If you have not declared a major by this point, a hold may be placed on your registration. Such a hold would be removed only when your Declaration of Major petition is filed in the deans' office. Petitions can be obtained from faculty advisers, department offices or the Office of the Registrar. As a part of the declaration procedure, you must, in consultation with a faculty adviser, prepare a projected plan of study. You are accepted into the major when your adviser and the dean have approved the petition.

To be accepted into a major, you must have a C average in all courses you have completed that are required for that major, as well as a C average in the upper division courses you have taken toward the major. With the approval of the College Executive Committee, additional requirements, such as completion of a particular set of required courses with a specified grade point average (usually well above a C average), may be introduced as conditions for acceptance into any major at any time.

If your performance is unsatisfactory after you have declared a major program, you may be required by the dean to withdraw from that major, upon written recommendation from the chair of the department or the curriculum committee that administers the major.

Change of Major Within a College
To change from one major to another within a college, you will need the consent of the department or committee in charge of your proposed new major. Admission into a major program may be denied by the dean or by the dean if your grade point average (GPA) in courses required for the selected major is less than 2.0.

Procedures for change of major within a college are the same as for declaration of major and the same conditions apply. If you wish to change to a major that has admission restrictions, you must comply with the special procedures and requirements for that major.

Except under unusual circumstances, no change of major will be permitted after you attain senior standing (135 units). It is not possible to change or declare a major in the quarter in which you file to graduate.

College of Engineering. The above provisions may not apply to students in the College of Engineering, whose freedom to change majors is limited. Please contact the Engineering dean's office for specific change-of-major requirements.

Change of Major Accompanied by Change of College
A change petition, available at the dean's office and Office of the Registrar, must be endorsed by a faculty adviser of the new major you are selecting and signed by the dean of the college from which you wish to transfer. In addition, admission to the new college will require that dean's approval. Permission to transfer from one college to another may be denied or deferred if you are in academic difficulty or have a GPA of less than 2.0 in courses that are required by the new major.

College of Engineering. Requirements for changing to an engineering major vary by major. Please consult the department responsible for the major or the Engineering dean's office for current requirements, or consult http://www.engr.ucdavis.edu/college/information/chmaj.htm.
Multiple Majors

College of Agricultural and Environmental Sciences. A student choosing to major in multiple majors must petition the departments responsible for the major(s), and the dean. The dean’s approval of declaration for multiple majors is subject to the following:

1. At least 80 percent of the upper division units required to satisfy course and unit requirements in each major selected must be unique and may not be counted toward the upper division unit requirements for any other selected major. Courses with substantial overlap in content will not count as part of the 80 percent.

2. If the major/program differ in the number of upper division units required, the major/program requiring the smaller number of units will be used to compute the minimum number of units that must be unique.

3. The student must be in good academic standing and have a C average in the upper division courses taken toward the major/program.

4. Multiple majors will not be approved for the following majors: biochemistry; biological sciences; cell biology; evolution and ecology; genetics; microbiology; neurobiology, physiology, and behavior and plant biology.

College of Engineering. Engineering has several established double majors. Enrollment in combinations of engineering majors other than the established double majors or in an engineering major and a non-engineering major may be possible. A change of major petition is required; this should be filed in the Undergraduate Office and is subject to approval. Double-major students must satisfy the requirements for both majors. Degree requirements for such double majors ordinarily cannot be completed within four academic years.

The Department of Computer Science does not allow double majors of Computer Science and Engineering and Computer Engineering, or Computer Science and Engineering and Electrical Engineering, or Computer Science and Engineering and Computer Science.

If you want to double major in any over-subscribed engineering major, you will be subject to the additional restrictions for transferring into those majors and must satisfy the requirements of both majors.

College of Letters and Science. Students choosing to major in multiple subjects must notify the dean’s office of their decision by submitting for approval a petition endorsed by faculty advisers in the majors. The dean’s approval of the declaration of more than one major is subject to the following conditions:

1. At least 80 percent of the upper division units used to satisfy course and unit requirements in each major selected must be unique and may not be counted toward the upper division unit requirements of any other major undertaken. Courses with substantial overlap in content will not count as part of the 80 percent.

If the major programs differ in the number of upper division units required, the major program requiring the smaller number of units will be used to compute the minimum number of units that must be unique.

2. At the time of request, a substantial part of the preparatory subject matter and at least two upper division courses in each major must have been successfully completed.

All degree requirements must be completed within the 225-unit limit.

Combination proposals that cannot be approved are two or more majors

1. in the following group: biochemistry; biological sciences; cell biology; evolution and ecology; exercise science; genetics; microbiology; neurobiology, physiology, and behavior; and plant biology; or,

2. offered by the same discipline, except art history and art studio.

A student who completes all requirements for approved multiple majors in which one major normally leads to an A.B. degree and another normally leads to a B.S. degree, will receive a B.A.S. degree. A single degree is granted to students who graduate with multiple majors.

Cross-College Majors

College of Agricultural and Environmental Sciences. The College does encourage multiple majors between colleges whenever your academic interests and abilities indicate this to be the best route. After endorsement of the Change of Major petition by the appropriate faculty in the colleges involved, each dean may approve the petition if there are sufficient differences between the requirements for the major programs you wish to study. At least 80 percent of the upper division units used to satisfy course and unit requirements in each major selected must be unique and not duplicate those of the other major. In planning for multiple majors, you should determine the total requirements needed for each major as well as for graduation from each college involved.

All degree requirements must be completed within the 225-unit limit.

The same conditions apply for cross-college majors as for multiple majors. Cross-college programs will not be approved if the majors involved are available within a single college as well. For example, cross-college
programs between the colleges of Letters and Science and Agricultural and Environmental Sciences will not be approved if one of the majors is biochemistry; biological sciences; cell biology; evolution and ecology; genetics; microbiology; neurobiology, physiology and behavior; or plant biology.

College of Engineering. Enrollment in a combination of an engineering major and a non-engineering major may be possible. A change of majors petition must be filed in the Undergraduate Office and is subject to approval. Such double-major students must satisfy the requirements for both majors. Degree requirements for such double majors ordinarily cannot be completed within four academic years.

College of Letters and Science. The same conditions apply for cross-college majors as for multiple majors. Cross-college programs will not be approved if the majors involved are available within a single college as well. For example, cross-college programs between the colleges of Letters and Science and Agricultural and Environmental Sciences will not be approved if one of the majors is biochemistry; biological sciences; cell biology; evolution and ecology; genetics; microbiology; neurobiology, physiology and behavior; or plant biology.

Individual Major

Students with academic interests not covered by an established major have the opportunity to develop an individual major. Such a major requires the selection of interrelated courses totalling a minimum of 45 upper division units from two or more areas of study. If you choose this option you will work closely with faculty advisers to develop a coherent and rigorous academic program. This program is then submitted to a faculty committee for review and approval. Submit the proposed program to the committee prior to reaching 120 units, or by the fourth full week of the fifth quarter before graduation, whichever is earlier. If you wish to undertake an individual major, request the appropriate forms from your dean's office. Program requirements are outlined under Individual Major in the Programs and Courses section of this catalog. The College of Engineering does not offer an individual major.

THE MINOR

If you are interested in two or more areas of study, you should consider completing one or more minor programs. Minor program requirements are listed in the “Programs and Courses” chapter of this catalog under the department that offers them. You will find a complete list of the minors offered at UC Davis in a chart at the front of this catalog.

A minor consists of 18 to 24 units in upper division courses specified by the department or program offering the minor. Courses used to satisfy the requirements of a minor, including those completed elsewhere, must be approved by an adviser in the sponsoring department or program. For minors offered by the College of Agricultural and Environmental Sciences, at least half of these units and courses must be completed in residence on the Davis campus. You are also expected to complete all courses that are prerequisite to the upper division courses required for the minor. Minors offered by the College of Letters and Science do not require that a portion of the units be completed at UC Davis.

To request certification of a minor, you must have a grade point average of 2.0 in all courses required for the minor. At most, one course used in satisfaction of your major may be applied to your minor. If you elect more than one minor, these minors may not have any courses in common.

If you want to have completion of a minor certified on your transcript, you must obtain a minor petition from your dean's office and file it no later than the deadline for filing for graduation. You can elect only one minor in a subject area. Requirements for the minor must be met by the time of graduation.

No minors are available in the College of Engineering, although students in Engineering may, with the approval of the Engineering dean's office and the adviser in the minor department, elect a minor in either the College of Letters and Science or in the College of Agricultural and Environmental Sciences. You must pick up a minor petition in the office of the college that offers your minor and have the completed petition approved by the minor adviser and then certified by the Undergraduate Office of the College of Engineering. The Undergraduate Office in the College of Engineering has the primary responsibility for certifying minors for engineering students and should be consulted before you begin the minor sequence.

ACADEMIC CREDIT

Units of Credit

Academic work at the university is measured by “units of credit.” In conjunction with the letter grade you receive from the course instructor, units of credit give a fairly accurate evaluation of the amount of time you have devoted to a given subject. Units of credit also make it possible to anticipate the amount of work involved in a particular course and enable you to transfer from one campus or university to another without undue difficulty. (To convert quarter units to semester units, multiply by 0.66; from semester to quarter units, multiply by 1.5.)

Units of credit are assigned to courses based on the “Carnegie unit,” which assigns 1 unit of credit for three hours of work by the student per week. Usually this means one hour of lecture or discussion led by the instructor and two hours of outside preparation by the student. In laboratory courses, two or three hours of work in the laboratory are normally assigned 1 unit of credit.

In most courses at UC Davis, the standard procedure prevails, so that a 3-unit course meets for three hours a week, a 4-unit course for four hours, and so on. Courses that are an exception to this pattern may require additional class time or give more demanding assignments. If you have questions about the number of units assigned to a course, you should check the expanded course descriptions (if your college or department provides them) or ask the instructor what is required in terms of outside reading, term papers, problem sets or field trips. These are not always spelled out completely in the General Catalog. By knowing the amount of work that will be required, you can plan your course load more systematically and realistically.
Credit by Examination

Under certain prescribed conditions, currently registered students in good standing may receive course credit by taking an examination without formally enrolling in a course. You may obtain a petition and a copy of the prescribed conditions from the Office of the Registrar. The petition is subject to the approval of the instructor giving the examination and the department involved.

The completed petition, accompanied by a fee of $5.00, must be presented for final approval to the dean of your college or school, or if you are a graduate student, to the dean of Graduate Studies.

The credit received for the examination may not duplicate any credit you have already earned toward your degree. You may not use credit by examination to repeat any course you have taken previously, regardless of the grade you received in that course. The final results will be reported to the Office of the Registrar, which will assign you the appropriate grade and grade points. Since failure to pass the examination will be recorded as an F, you are encouraged to prepare fully for such an examination before attempting it.

You may also receive credit for learning in nonacademic settings through credit by examination.

To earn credit through the credit by examination process, the examination must be given by a UC Davis instructor and be for a course listed in the current General Catalog. Students are not eligible to take a credit by examination in a quarter in which they are not currently enrolled.

Concurrent Credit from Another Institution

A student may not obtain transfer credit for courses taken at a non-University of California campus in a term during which the student is registered at UC Davis. A variance can be obtained only by petitioning the dean of your college well in advance of the desired registration. When a variance is granted, units earned are counted toward minimum progress for the term in which the dual registration occurs. Summer Session courses are exempt from this regulation.

Students may gain credit for courses taken during the summer at other institutions, provided the courses parallel those given in the University of California. Assurance that such credit will be accepted, however, can be given only after the courses have been completed. You should arrange to have the transcripts of your Summer Session grades sent to Undergraduate Admissions and Outreach Services for evaluation.

Intercampus Visitor Program

Qualified undergraduates may take advantage of educational opportunities on other University of California campuses as an Intercampus Visitor (ICV). This program enables students who have completed at least one year in residence on their home campus and have maintained a grade point average of at least 2.0 to take courses not available on their home campus, to participate in special programs, or to study with distinguished faculty members on other campuses of the university. Students who meet the above requirements should complete an application available in the Office of the Registrar.

Summer Sessions

Every summer, several thousand students earn units, complete their undergraduate degrees, expand their knowledge, do research, take special study courses, meet prerequisites or take courses that are often over-enrolled during the academic year by participating in Summer Sessions at UC Davis. More than 7,000 students enrolled in 1999.

Summer Sessions offers more than 200 lower and upper division courses in a wide range of subject areas that provide full university credit transferable to most campuses. Since admission is open to virtually all adults, Summer Sessions traditionally attracts students from universities and colleges, high school graduates and many other qualified applicants. Admission to a summer session, however, does not guarantee or imply admission to the university’s regular academic quarters.

In 2001, the Office of Summer Sessions will offer two six-week sessions, which will run from June 25 to August 3 and from August 6 to September 14. All UC Davis undergraduates will automatically receive our 2001 Summer Sessions Catalog and application materials by the end of April; non-UC Davis undergraduates should contact us by phone, e-mail, Internet address or in writing to the address above.

Summer abroad and special programs offered in 2000 included Community Resources Development in San Francisco; Literature of the Wilderness in McCall, Idaho; the study of volcanoes in Hawaii; and other special topic programs of different lengths. In 2000, students had the opportunity to study in England, France, Germany, Spain, Mexico, Italy, Japan and Peru.
If you are interested in taking a particular class at a nearby California State University or community college campus, you may now do so through the Intersegmental Cross Enrollment program. Enrollment is limited to one course per term and participating students need the approval of both the home and the host campus. (Please note that the Los Rios Community College district is NOT participating in the program.)

Senate Bill 361 requires that UC, CSU and the California Community Colleges permit students to enroll in one course per term at a campus of either of the other two systems on a space available basis at the discretion of the two campuses. This program aims to encourage community college students to enroll concurrently in courses offered at local universities, potentially increasing the number of community college transfers, including students from underrepresented groups.

Students must meet certain qualifications and be certified by their home campus as to eligibility, residence, fee, financial aid and health status. Generally, students will be allowed to add a class, if space is available, after the add/drop period on the host campus. To add a course, students must obtain the faculty member's approval and signature on a Cross-Enrollment form, available at their home campus Registrar's Office. The student takes the signed form to the Registrar's Office at the host campus for processing. If you are interested in participating, come to the service counter at the Office of the Registrar, 12 Mrak Hall, for information.

University Extension

Credit for a limited number of units may be granted for specified University Extension courses, subject to the regulations of the individual colleges (see Bachelor's Degree Requirements section). No grade points are assigned for courses completed through University Extension.

EXAMINATIONS

Midterms

In undergraduate courses for which a midterm examination is required, each student has the right to take the midterm (or submit the take-home examination as opted by the instructor) during one of the regularly scheduled meetings of the class as published in the Class Schedule and Registration Guide. The scheduling of a midterm examination at a time other than a regularly scheduled class meeting requires mutual consent of the instructor and each student involved in the change. Any instructor who does not consent in writing to the change in the final examination time waives the right to take the examination as originally scheduled. Departures from the published examination schedule should be carried out so as not to disadvantage students who are unable to accept the alternate schedule. An in-class final examination may not be rescheduled for a date earlier than the first day of finals week. The due date for a take-home final examination may not be rescheduled for a date earlier than the first day of finals week. A student who is improperly denied the right to take a required final examination on the published date (or submit the take-home examination as opted by the instructor) may file a petition with the Executive Council of the Davis Division of the Academic Senate by the end of the next regular term for appropriate action.

Requirements. Except under certain specified circumstances, Academic Senate Regulations require that final examinations be given in all undergraduate courses. Final examinations may be given in graduate courses. Exceptions to the regulation would be independent study courses, courses that consist of laboratory work only, and courses in which the examination has been waived (course descriptions will include the statement, “no final examination”).

At the instructor's option, the final examination may be completely or in part a take-home examination. The writing time (in undergraduate courses) of a take-home and an in-class final examination together should not exceed three hours. In each course in which a final examination is required, the students have the right to take the final examination (and/or submit the take-home examination) at the time published in the Class Schedule and Registration Guide.

An instructor may release each student's original examination, or a copy, at any time. Otherwise, the instructor will keep the exams, or copies thereof, until the end of the next quarter and students may pick up their exams during this period.

Disabilities. Students with documented disabilities may be entitled to in-class accommodations. The student shall provide the instructor with a letter from the Disability Resource Center (DRC) recommending those academic accommodations that the instructor is responsible for providing. Students must request accommodation as soon as possible, to allow the university reasonable time to evaluate the request and offer necessary adjustments. No accommodations shall alter the nature of the academic demands made of the student nor decrease the standards and types of academic perfor-
Information

A, B, C and D are the grades courses taken in University Extension. The value of the grade point average is computed on courses taken at the University of California, with the exception of the grades IP, P, S, NP and U, which are not included in grade point computations. Incomplete (I) grades are not included in the GPA at the end of the quarter, but are counted as F in determining if a bachelor's degree candidate has earned the minimum 2.0 GPA required for graduation.

A student at UC Davis is expected to maintain a C (2.0 GPA) or better in all work undertaken in the university. If you fall below a C average, you are considered “scholastically deficient” (see Probation and Dismissal).

Passed/Not Passed (P/NP) Grading

Subject to regulation by the faculties of the colleges and schools, an undergraduate student in good standing may request to take specific courses on a Passed/Not Passed basis. Such requests must be submitted and confirmed before the 25th day of instruction.

The grade P is assigned for a grade of C– or better. Units thus earned are counted in satisfaction of degree requirements but are not counted in determining your grade point average.

The intent of this option is to encourage exploration in areas in which you have little or no previous experience by alleviating grading pressures. The maximum number of units graded P that will be accepted for degree credit is one third of the units completed in residence on the Davis campus. Consequently, at least two thirds of the units completed in residence at Davis and presented in satisfaction of degree requirements must be in courses taken for a letter grade.

In specific approved courses instructors will assign only Passed or Not Passed grades. Such courses count toward the maximum number of units graded P allowable toward the degree. If you are planning to take courses on a P/NP basis, you should also familiarize yourself with the requirements of your particular school or college, which may have placed conditions or restrictions in addition to the university requirements. If you plan to attend graduate or professional school, you should consult with Advising Services regarding Passed/Not Passed grading.

If you elect the P/NP grading option for courses graded upon completion of a two- or three-quarter sequence (In-Progress grading), a petition must be submitted before half of the time covered by the IP grading has elapsed. The P/NP grading will then be in effect for the entire course sequence.

If you receive a D or an F in a course, you may not repeat it using the P/NP option. If you receive an Incomplete in a course you took for a letter grade, you may not complete the course on a Passed/Not Passed basis.

College of Agricultural and Environmental Sciences: The Passed/Not Passed option should be used only for elective courses, not for courses taken to fulfill major requirements. An NP grade in a course required by the major could prevent graduation. When in doubt, check with your faculty adviser before electing to take a course on a Passed/Not Passed grading basis.
College of Engineering: Students enrolled in any undergraduate major offered by the College of Engineering may not exercise the Passed/Not Passed grading option for any course work presented in satisfaction of course or unit requirements for any undergraduate major or degree offered by the College of Engineering. Additionally, undergraduate students may not exercise the P/NP option for any course offered through the College of Engineering. Courses offered only on a P/NP basis are acceptable for specific program area degree requirements.

College of Letters and Science: Students enrolled in the College of Letters and Science are subject to an additional limitation on the number of units that may be completed employing the Passed/Not Passed grading option (see Bachelor's Degree Requirements for the college in the “Undergraduate Education” chapter). Graduating seniors, and other students planning to undertake graduate or professional studies, should consult an adviser before electing for Passed/Not Passed grading in courses required for the major program.

Satisfactory/Unsatisfactory (S/U)
The grade of S is awarded to graduate students for work in graduate courses that otherwise would receive a grade of B– or better and for work in undergraduate courses that otherwise would receive a grade of C– or better.

Graduate students, under certain circumstances, may be assigned grades of S or U, but units earned in this way will not be counted in calculating the grade point average. Petitions to elect S/U grading are available from the Graduate Studies Office and must be signed by your graduate adviser. Graduate students may petition to take no more than one course per quarter on an S/U grading basis. A graduate course in which a C, D or F grade is received may not be repeated with the S/U option.

In specific approved courses, instructors will assign only Satisfactory or Unsatisfactory grades. Such courses count toward the maximum number of units graded S allowable toward the degree, as specified by each degree program.

In-Progress (IP) Grading
For a course extending over more than one quarter (designated “deferred grading only, pending completion of sequence” in course descriptions), evaluation of student performance is deferred until the end of the final quarter. Provisional grades of IP are assigned in the intervening quarters and are replaced with the final grade at the completion of the sequence. In order to gain credit toward graduation, a student must successfully complete the entire sequence. (See above for electing P/NP grading for a course graded in-progress.)

Incomplete Grades
The grade of I may be assigned when a student's work is of passing quality and represents a significant portion of the requirements for a final grade, but is incomplete for a good cause as determined by the instructor. (Good cause may include current illness, serious personal problems, an accident, a recent death in the immediate family, a large and necessary increase in working hours or other situation of equal gravity.)

You may replace an I grade with a passing grade and receive unit credit (and grade points if the instructor assigns a letter grade) provided you satisfactorily complete the course work as specified by the instructor. In order to change your records, you must obtain a petition from the Office of the Registrar and present it to your instructor for completion and mailing.

An I grade must be replaced with a letter grade (or P or S grade) before the end of the third succeeding quarter (excluding summer sessions) of the student's academic residence, or the grade will revert to an F (or NP or U). If a student's degree is conferred before the expiration of the time limit for an I-grade conversion, the graduated student shall have until the end of the third quarter succeeding the quarter in which the I grade was assigned to replace the I grade. If the grade is not replaced by then, the I grade will remain on the student's record.

You may not re-enroll for credit in a course for which an I grade has been assigned. An undergraduate student whose record shows more than 16 units of I grades will be subject to disqualification. A graduate student who accumulates more than eight units of I grades will be subject to probation.

Incomplete grades will not be included in your grade point average at the end of a quarter. At the time of graduation, however, any remaining I grades are included when your grade point average is computed, in order to determine whether you have achieved the 2.0 average required for the bachelor's degree. An Incomplete grade, in these computations, has the same effect as a grade F, NP or U, depending on which option you have exercised. Therefore, it is recommended that students not delay the clearance of incomplete grades so as not to jeopardize graduation.

Retroactive Grade Changes
All grades except I and IP are final when filed by an instructor at the end of the quarter. No final grade except I may be revised by examination or the submission of additional work after the close of the quarter.

If, however, a clerical or procedural error in the reporting of a grade by the instructor can be documented, you may request a change of grade with a petition available from department offices. The request must be made by the fifth week of the following quarter.

Grade changes for “clerical” errors (such as incorrect addition of points), upon documentation, are automatically granted. Requests to interchange P, NP, S, or U grades with normal letter grades based upon student need (such as to allow graduation or to meet entrance requirements for professional school) do not involve clerical or procedural errors and are automatically denied. Thus, students should exercise the Passed/Not Passed or Satisfactory/Unsatisfactory grading options with caution.

Students are reminded of their responsibility to be aware of the procedures and regulations contained in this catalog and the Class Schedule and Registration Guide, to verify their class schedules, and to familiarize themselves with the expectations of their instructors. No changes, except completion of an I grade as noted above, can be made to the student's record once he or she has graduated.
Repeating Courses

Undergraduate students may only repeat courses in which they received a D, F or NP. Courses in which students received a grade of D or F may not be repeated on a P/NP grading basis. (Courses in which a grade of NP was received may be repeated on a P/NP grading basis.) Degree credit for a repeated course will be given only once, but the grades assigned for both the first and second time a course is taken will appear on the student’s transcript. In computing the GPA of undergraduates who have received a grade of D, F or NP, only the grade and corresponding grade points earned the second time a course is taken will be used, up to a maximum of 16 units for all courses repeated. After the 16-unit maximum is reached, the GPA shall be based on all grades assigned and total units attempted.

Repeating a course more than once requires approval by the appropriate college dean. Departments may restrict the repetition of a course if it is a prerequisite to a course the student has already completed with a grade of C– or better.

Graduate students, with the consent of the appropriate graduate adviser and the dean of Graduate Studies, may repeat any course in which they received a C, D, F or U, up to a maximum of 9 units for all courses repeated. Courses in which a grade of C, D or F has been earned may not be repeated on a S/U basis. (Courses in which a grade of U was received may be repeated on a S/U basis.) Degree credit for a repeated course will be given only once, but the grades assigned for both the first and second time a course is taken will appear on the student’s transcript. In computing the GPA of graduate students who have received a grade of C, D or F, only the most recently earned grade for each course and corresponding grade points will be used, up to a maximum of 9 units for all courses repeated. After the 9-unit maximum is reached, the GPA shall be based on all grades assigned and total units attempted.

Mid-Term Grade Standing

Students wishing to know their grade at the mid-quarter should ask the instructor. Those who have deficient grades (D, F or NP) are urged to confer with their advisers.

Final Grades

Grades are generally available about three weeks after a quarter has ended. You can check your grades in a number of ways:

- Call RSVP to hear your grades, available on the dates published by the Office of the Registrar
- Use the Office of the Registrar kiosks, MU and lower level of Mrak Hall.
- Have your grades mailed to you, by bringing a stamped, self-addressed envelope with your student photo ID card to the Office of the Registrar before the end of the quarter

Transcripts

A record of each student's academic work at UC Davis is retained permanently by the Office of the Registrar. Copies of your official transcript may be obtained from that office for $4.00 a copy. Application for a transcript of record should be made at least two weeks in advance of the time needed.

Transcripts of all work done through University Extension or Concurrent Enrollment should be requested directly from the University Extension Office, 1333 Research Park Drive, Davis, CA 95616. Transcripts of work completed at another campus of the university or at another institution must be requested directly from the campus or institution concerned.

PROBATION AND DISMISSAL

The following provisions apply to all undergraduates. Graduate and professional students with scholarship deficiencies are subject to action at the discretion of their respective deans.

Scholastic Deficiencies

A student will be placed on probation or subject to disqualification for failure to meet qualitative or quantitative standards of scholarship.

The qualitative standards of scholarship require that a student maintain a C average (2.0) or better for all work undertaken in the university and for the work undertaken in any one quarter.

A student will be placed on probation for qualitative reasons if, at the end of any quarter, the student’s grade point average (GPA):

- is less than 2.0, but not less than 1.5, for the quarter, or
- is less than 2.0 for all courses taken within the University of California.

A student will be subject to disqualification for qualitative reasons if, at the end of any quarter,

- the student’s grade point average is less than 1.5 for the quarter, or
- the student’s grade point average is less than 1.5 for all courses taken within the University of California.
the student has attempted more than 16 units graded I (Incomplete),
or
the student has spent two consecutive quarters on academic probation.

In the case of probation or disqualification the official transcript will state “not in good standing.” Once a student has met qualitative standards for scholarship, the notation will be removed from the transcript.

The quantitative standards, referred to as minimum progress requirements, define scholarship in terms of the number of units that you must satisfactorily complete. It is assumed that a student will earn the 180-unit minimum degree requirement within 12 quarters (four years). This means students must plan to complete, on average, 15 units per quarter. Because occasions arise which prevent students from achieving normal progress towards the degree, the campus has established minimum progress requirements, to which students must adhere. Minimum progress is defined as a total of 39 units passed, calculated at the end of every quarter for the preceding three quarters of enrollment.

A student will be subject to disqualification for quantitative reasons if the total number of units passed at UC Davis is less than 39, calculated at the end of every quarter for the preceding three quarters of enrollment.

Quantitative standards are not reflected on the official transcript.

The following courses may be counted toward unit minimum progress:

- Required non-credit courses, e.g., Mathematics B, will be evaluated according to the “Carnegie unit” rule and counted as units passed
- Repeated courses passed to improve D or F grades
- Courses passed in Summer Sessions at UC Davis or at another accredited school and transferred to UC Davis will be counted as units passed (applied to the quarter of registration just preceding the summer session)
- Courses passed by examination in accordance with policies established by the Divisional Committee on Courses (applied to quarter in which exam is taken)
- Courses that are IP (in progress) will be counted as units passed
- Courses graded I will be counted as units passed when replaced by a passing grade (applied to the quarter in which the I grade is received)

The dean of the student’s college may grant a student a minimum progress variance of one or more quarters for an acceptable reason.

Minimum progress requirements do not apply to students who have part-time status or to students who have their dean’s approval to carry less than the minimum progress load because of medical disability, employment, a serious personal problem, a recent death in the immediate family, or a serious accident involving the student.

Dismissal

Dismissal for either qualitative or quantitative reasons (defined above) is based on the decision of the dean of the college in which you are enrolled. Such dismissal is from the University of California system and not simply the college or the Davis campus. Should a former Davis student later wish to be readmitted on the Davis campus, the authority to do so rests with the dean of the college from which the student was dismissed. If you are dismissed from your college, you will automatically receive a full refund of registration fees paid.

See your faculty adviser or go to the dean’s office of your college if you need academic advising about probation and dismissal.

Transfer with Scholastic Deficiencies

To transfer from one University of California campus to another, or from one college or school to another on the same campus, a disqualified or probational student must obtain the approval of the dean whose jurisdiction is being sought. Following the transfer, the student is subject to supervision by the faculty of the new college, school or campus.

HONORS AND PRIZES

Scholarships

228 Voorhies Hall
530-752-2804; http://faoman.ucdavis.edu/schol.htm
By mail:
Scholarship Office
University of California
One Shields Avenue
Davis, CA 95616-8696

Students with outstanding academic records who show promise of continued scholarly achievement are encouraged to apply for scholarship recognition and awards. Awards include a financial honorarium or stipend.

Deans’ Honors Lists

According to Davis campus regulations, the quarterly Dean’s Honors List includes names of students who have completed, for a letter grade, a minimum of 12 units in a specific quarter with a grade point average equal to or higher than the minimum grade point average attained by the upper 16 percent of those registered in the same class level and college during that quarter. Honors lists will be posted quarterly outside deans’ offices, and a notation of these honors will be placed on each student’s permanent record by the Office of the Registrar.

Graduation Honors

Honors at graduation are awarded to students who have a grade point average in the top percent of their college as shown in the table below. (The College of Letters and Science requires that additional criteria be met for high and highest honors—see explanation below.)
An honors notation is made on students' diplomas and on their permanent records in the Office of the Registrar.

College of Letters and Science. Graduation with “honors” requires that a student meet the appropriate grade point requirement described in the above table for all UC courses completed. Students who meet the grade point requirement for graduation with honors, and who complete the Honors Program of the College of Letters and Science, may be recommended by their departments for graduation with high honors or highest honors on the basis of an evaluation of their academic achievements in the major and in the honors project in particular. A notation shall appear on the student's official transcript indicating that the 194H Honors Thesis was completed. Graduating students will not be awarded honors with the bachelor's degree if more than eight units of grade I (Incomplete) appear on their transcripts. The College Committee on Honors may consider exceptions to this condition. Petitions for this purpose should be submitted to the dean's office.

The Honors Program of the College of Letters and Science

The Honors Program in the College of Letters and Science permits students to pursue a program of study in their major at a level significantly beyond that defined by the normal curriculum. It represents an opportunity for the qualified student to experience aspects of the major that are representative of advanced study in the field. Successful completion of the College Honors Program is a necessary prerequisite to consideration for the awarding of high or highest honors at graduation.

Entrance into the honors program requires that a student have completed at least 135 units with a minimum grade point average of 3.5 in courses counted toward the major. Other prerequisites for entrance into the program are defined by the major. The program consists of a project whose specific nature is determined by consultation with the student's major adviser. It may involve completion of a research project, a scholarly paper, a senior thesis, or some comparable assignment depending on the major. The project will have a minimum duration of two quarters and will be noted on the student's record by a variable unit course number or special honors course designation. Successful completion of the honors program requires that a minimum of six units of credit be earned in course work for the project.

Davis Honors Challenge

530-752-9797; http://www-honors.ucdavis.edu

The Davis Honors Challenge is a campuswide program for highly motivated students who are interested in enhancing their education through special courses, closer contact with faculty and dynamic interaction with academic peers.

DHC courses are limited in size so that participants receive substantial individual attention from faculty. In return, students are expected to participate actively in analyzing real world problems. Honors courses and small honors sections of regular courses also encourage individual student participation and self-challenge. Students satisfactorily completing the program will receive transcript notation for each academic year of participation.

First and second year students take two honors courses and one problem-oriented interdisciplinary seminar per academic year. Second year students have the option to substitute an honors contract for an honors course. Third year students are required to complete two honors contracts and one upper division honors seminar, a team-based project in conjunction with an outside interested party. Fourth year students participate in a year long project to identify real world problems, apply research, critical thinking, problem solving and communication skills to develop viable solutions for their outside party.

Other components of the DHC include honors living learning communities, a mentorship program and a service learning program. Each of these programs is designed to enhance students' college experience.

Entering first year students who file a “Statement of Intent to Register” at UC Davis will be mailed detailed information about the DHC application process. Continuing students may obtain information and an application from the DHC Office after the start of spring quarter.

Integrated Studies

530-752-9760

Integrated Studies is a campuswide, invitational, first-year residential honors program, now in its fourth decade. Integrated Studies offers theme-oriented, specially designed, interdisciplinary honors courses that satisfy General Education requirements. Approximately 70 students live in an Academic Residential Community on campus and take three limited-enrollment honors courses (open only to Integrated Studies students) and two seminars.

Holders of Regents Scholarships, the university's most prestigious scholarship awards, are guaranteed places in Integrated Studies. Other highly qualified students are also invited to participate and are selected to create a balanced community of students from all three undergraduate colleges and the Division of Biological Sciences.
Prizes and Awards

The University Medal is the highest campus honor awarded to a graduating senior in recognition of superior scholarship and achievement. A College or School Medal is also given to the outstanding graduating student in each of the colleges and professional schools.

Departmental citations, special awards and prizes are also awarded to students for superior achievement and scholarship.

College of Agricultural and Environmental Sciences. Each year the outstanding graduating senior in the College is awarded a silver medal, known as the “Agricultural and Environmental Sciences Medal.” Scholastic excellence (in a minimum of six quarters at UC Davis) is the primary basis for choosing the recipient. The Mary Regan Meyer Prize is awarded to an outstanding graduate who has demonstrated expertise and an interest in serving humanity. The Charles E. Hess Award is awarded to the graduate with the most noteworthy record of public/community service while at UC Davis. The Kinsella Memorial Prize, in honor of John E. Kinsella, is awarded annually to an outstanding individual who submits his or her Ph.D. dissertation during the spring, fall or winter quarter immediately preceding the due date for nomination.

College of Engineering. Each year outstanding senior students in engineering are selected by their grade point averages as nominees for the M.S. Ghausi Medal. Academic excellence is the primary basis for selecting the recipient of the award.

College of Letters and Science. Graduating seniors with a distinguished academic record may be recommended by the faculty as nominees for the College’s Herbert A. Young Medal. Each June, one medalist is selected from among the graduates of the current academic year. The Leon H. Mayhew Award is conferred upon the outstanding graduate from a disciplinary area other than that of the College medalist. Academic excellence is the primary basis for selecting the recipients of these awards. The Lawrence J. Andrews prize is awarded to a student entering the senior year who not only has achieved academic excellence but who also has demonstrated interests outside of pure scholarship.

Chancellor’s Award

This award recognizes students who have distinguished themselves through their excellence in and contribution to undergraduate research and encourages others to become involved in these types of efforts. Recipients of the award receive a certificate of commendation and inscribed plaque from the president of the university.

In conjunction with the Chancellor’s Award, Professor Dean Simonton of UC Davis’ Department of Psychology established an endowment for funding a cash prize of $500 for each year’s student recipient.

Honorary Societies

Election to an honorary society is one of the most prestigious awards a student can receive. At UC Davis, the following honorary societies are represented:

- Alpha Kappa Delta (Sociology)
- Alpha Omega Alpha (Medicine)
- Alpha Zeta (College of Agricultural and Environmental Sciences)
- Delta Phi Alpha (German)
- Golden Key (All colleges and schools)
- Kappa Omicron Nu (Family and Consumer Sciences)
- Omicron Delta Epsilon (Economics)
- Order of Omega (Fraternities—Sororities)
- Order of the Coif (Law)
- Phi Alpha Theta (History)
- Phi Beta Kappa (College of Letters and Science)
- Phi Kappa Phi (All colleges and schools)
- Phi Sigma (Biological Sciences)
- Phi Zeta (Veterinary Medicine)
- Pi Delta Phi (French)
- Pi Mu Epsilon (Mathematics)
- Pi Sigma Alpha (Political Science)
- Prytanean Honor Society (All colleges—undergraduate women only)
- Psi Chi (Psychology)
- Sigma Pi Sigma (Physics)
- Sigma Xi (All colleges and schools—research)
- Tau Beta Pi (Engineering)

LEAVING UC DAVIS

Graduation

Each candidate for an undergraduate degree must file an Application for Graduation with the Office of the Registrar for the quarter in which the candidate plans to receive the degree. The dates for filing are published in the Academic Calendar at the front of this catalog and the quarterly Class Schedule and Registration Guide.

Students in the College of Agricultural and Environmental Sciences must have their Major Certification form evaluated by the dean’s office before their candidacy for a degree can be finalized (see Bachelor’s Degree Requirements for the college in the Undergraduate Education chapter).

Leave of Absence: Planned Educational Leave Program (PELP)

The Planned Educational Leave Program allows students to suspend academic work at UC Davis, leave the campus and later resume studies at UC Davis with a minimum of procedural difficulties.

Any registered student on the Davis campus, undergraduate or graduate, is eligible to enroll in the Planned Educational Leave Program, although restrictions may be imposed on the number of times a student can participate in the program. To apply for PELP, complete an application, including a brief written explanation of the reason for leaving the campus and stating when you intend to resume academic work at UC Davis. You must then obtain approval from the dean of your college or...
school. Applications for PELP are available at the Office of the Registrar and should be filed with the Office of the Registrar no later than the first day of instruction.

An application fee of $40 is charged, payable when you enroll in the PELP program. This fee is identical to that paid by a student who withdraws and is required to pay a readmission fee upon return.

The minimum Planned Educational Leave is one full quarter; the maximum leave is one full academic year. Applications for PELP should be filed no later than the first day of instruction. While approved applications can be accepted as late as the tenth day of instruction, filing after the first day of instruction will entitle you to only a partial refund of fees paid, in accordance with the Schedule of Refunds. The Schedule of Refunds refers to calendar days beginning with the first day of instruction. The effective date for determining a refund of fees is the date the completed and approved PELP form is returned to the Office of the Registrar. (See the "Fees, Expenses and Financial Aid" chapter.)

While students may receive academic credit at other institutions and transfer this credit to UC Davis (subject to rules concerning transfer credit), participants are reminded that the intent of the program is to “suspend academic work.” Therefore, students should carefully evaluate the desirability of taking academic work while away from the campus during PELP. Students enrolled in PELP are not eligible to enroll in concurrent courses at the Davis campus, or to earn academic credit at Davis during the PELP leave.

Readmission is guaranteed assuming you resume regular academic work at the agreed-upon date and satisfy any holds that may have been placed on your registration. Students who do not return at the agreed-upon date and who do not officially extend their leave will be automatically withdrawn from the university.

You will not be eligible to receive all normal university services during the planned leave. Certain limited services, however, such as placement and student employment services, counseling and faculty advising are available. Students on Planned Educational Leave may purchase a health care card from the Student Health Service and may retain library privileges by purchasing a library card. International students should consult Services for International Students and Scholars to find out what effects the Planned Educational Leave will have on their status. Grants and other financial aids will be discontinued for the period of the leave, but every effort will be made, where legally possible, to allow you to renegotiate loan payment schedules and to ensure the availability of financial aid upon your return.

Withdrawal
Withdrawals may be granted by the university for emergency reasons or for good cause. In order to withdraw, you must first obtain approval from the dean of your college or school. Unauthorized withdrawals will jeopardize registration privileges and result in failing grades.

Petitions for withdrawal (Notice of Cancellation/Withdrawal) are available at the Office of the Registrar. The following signatures are required on withdrawal petitions: laboratory or course instructor; dean of your college or graduate faculty adviser; Student Accounting Office. A percentage of fees paid may be refunded, in accordance with the Schedule of Refunds (see the "Fees, Expenses and Financial Aid" chapter). The effective date for determining a refund of fees is the date the completed withdrawal form is returned to the Office of the Registrar.

If you are receiving financial aid, you must report your change of status immediately, in person or by mail, to the Financial Aid and Student Accounting Offices. If you are receiving veterans benefits, you must also report your withdrawal to the Veterans Affairs Office.

Retroactive Withdrawals. Petitions for retroactive withdrawals may be obtained from the Office of the Registrar. Reasons for seeking such are medical problems, severe emotional difficulties, or death or severe illness in the immediate family. Petitions should include a detailed account of the problem, appropriate documentation and an adequate explanation of why withdrawal was not taken during the quarter in which the problem occurred.
UNDERGRADUATE EDUCATION
UNDERGRADUATE EDUCATION

Students may choose from over 150 major programs in a wide variety of disciplines offered by the three undergraduate colleges. Minor programs, more than 60 in all, are offered by the College of Agricultural and Environmental Sciences and the College of Letters and Science.

College of Agricultural and Environmental Sciences

Office of the Dean
228 Mrak Hall
530-752-0108; http://www.aes.ucdavis.edu

Major programs in the College of Agricultural and Environmental Sciences highlight the multiple connections among agricultural sciences, environmental sciences and human sciences within the larger context of the quality of life in the global economy. The majors fall into three broad areas of study described below. Majors in a fourth area of study, the biological sciences, are offered through both the College of Agricultural and Environmental Sciences and the College of Letters and Science and are administered by the Division of Biological Sciences. Refer to the following section, “Division of Biological Sciences,” for more information. The College of Agricultural and Environmental Sciences also offers two collegewide degree programs and two collegewide non-degree programs.

The Undergraduate Programs

Agricultural Sciences

These majors prepare students in animal biology and the management of environmental resources as needed to develop sustainable animal production technologies. Also considered is the impact of production and management processes on animal health and welfare, human diet and health, and the natural environment.

The majors that focus on plant science provide a strong background in the context of agricultural and environmental systems and societal needs; ecological understanding of food and fiber production systems; biological and economic principles that underlie management decisions in agribusiness; and a basic background in all areas of plant biology, including plant development, plant protection, biotechnology and postharvest physiology.

Majors:
Agricultural Systems and Technology, B.S.
Animal Biology, B.S.
Animal Science, B.S.
Animal Science and Management, B.S.
Avian Sciences, B.S.
Biotechnology, B.S. (see also Plant Science)
Crop Science and Management, B.S.
Entomology, B.S.
Plant Biology, B.S.
Viticulture and Enology, B.S.

Minors:
Agricultural Computing and Information Systems
(Agronomy)
Agricultural Entomology (Entomology)
Animal Science
Apiculture Entomology (Entomology)
Avian Sciences
Entomology
Environmental Horticulture
Fungal Biology and Ecology (Plant Pathology)
Insect Ecology (Entomology)
Medical-Veterinary Entomology (Entomology)
Nematology
Precision Agriculture (Biological and Agricultural Engineering)

Environmental Sciences

These majors focus on the broad facets of the human and natural environments and their interactions. They draw on the social, physical and biological sciences as needed to prepare students for leadership and advanced studies in the areas of natural resource management, environmental quality and stewardship, community planning and design, and public policy decision making.

Majors:
Atmospheric Science, B.S.
Environmental and Resource Sciences, B.S.
Environmental Biology and Management, B.S.
Environmental Horticulture and Urban Forestry, B.S.
Environmental Policy Analysis and Planning, B.S.
Environmental Toxicology, B.S.
Hydrology, B.S.
Landscape Architecture, B.S.
Soil and Water Science, B.S.
Wildlife, Fish and Conservation Biology, B.S.

Minors:
Applied Biological Systems Technology (Biological and Agricultural Engineering)
Atmospheric Science (Land, Air and Water Resources)
Energy Policy (Environmental Studies)
Environmental Policy Analysis (Environmental Studies)
Environmental Toxicology
Geographic Information Systems (Biological and Agricultural Engineering)
Geographic Studies (Environmental Design)
Hydrology (Land, Air and Water Resources)
Landscape Restoration (Environmental Horticulture)
Soil Science (Land, Air and Water Resources)

Human Sciences

These majors foster a deeper understanding of the multiple connections between scientific and cultural issues in the context of human health and the quality of life. Basic physical and biological science, social science, design, and economic principles are taught in this context, linking food and fiber production to consumption, emerging knowledge to societal applications and policy, and human development to active, informed citizenship. Emphasis is on linking resources for humans with humans as resources. Physiological, social, and aesthetic dimensions of the human experience are explored.

Majors:
Clinical Nutrition, B.S.
Community and Regional Development, B.S.
Design, B.S.
Fermentation Science, B.S.
Fiber and Polymer Science, B.S.
Food Biochemistry, B.S.
Food Science, B.S.
Human Development, B.S.
Managerial Economics, B.S.
Nutrition Science, B.S.
Textiles and Clothing, B.S.

Minors:
Aging and Adult Development
(Community Development)
Agricultural and Managerial Economics
(Agricultural and Resource Economics)
Community Development (Human and Community Development)
Community Nutrition (Nutrition)
Fiber and Polymer Science (Textiles and Clothing)
Food Service Management (Nutrition)
Human Development
(Community Development)
Nutrition and Food (Nutrition)
Nutrition Science (Nutrition)

Textiles and Clothing

Collegewide Programs
The collegewide programs cut across all of the above areas, providing students in a variety of majors with a background in such areas as public policy, economic principles in a global context, and the intersections among environmental, agricultural and socio-economic issues. Collegewide programs also include non-degree, lower division curricula aimed at providing students with a foundational knowledge base and the potential for developing individualized programs.

Majors:
Individual Major, B.S.
International Agricultural Development, B.S.

Minors:
International Agricultural Development
Science and Society

Non-degree programs:
Exploratory
Science and Society

Division of Biological Sciences
College of Agricultural and Environmental Sciences and College of Letters and Science

Dean's Office
202 Life Sciences Addition
530-752-0410; http://www.dbs.ucdavis.edu/undergrad

The Division of Biological Sciences is an intercollege unit that coordinates campuswide programs in basic biology and administers undergraduate programs in the core disciplines of biology on behalf of the College of Agricultural and Environmental Sciences and the College of Letters and Science.

The division is organized into five sections that represent major themes of modern biology: Evolution and Ecology; Microbiology; Molecular and Cellular Biology; Neurobiology, Physiology, and Behavior; and Plant Biology. The individual sections offer nine specialized majors, each focusing on one of the core disciplines of basic biology. The major in Biological Sciences and the Bodega Marine Laboratory Program are offered by the entire division.

The Undergraduate Programs

Biological Sciences
This biological sciences major is broad in concept, designed to span the numerous core disciplines of biology. The major covers most dimensions of the study of life, ranging from molecules and cells to populations of organisms. While emphasizing breadth, the biological sciences major also requires the student to select an area of emphasis that provides concentrated attention to one facet of biology at the upper division level. Each area of emphasis coincides with one of the divisional sections.

Major:
Biological Sciences, A.B., B.S.

Minor:
Biological Sciences

Evolution and Ecology
The major in evolution and ecology offers the student a broad background in the theoretical and empirical basis of our understanding of the evolution and ecology of living organisms. The program of study begins with a core of introductory courses in mathematics, physical sciences, and biology. These are followed by survey courses in evolution and ecology and more specialized courses that allow the student to focus his or her studies.

Major:
Evolution and Ecology, A.B., B.S.

Exercise Science
The major in Exercise Science is an integrative program of study, encompassing the physiological, biomechanical and behavioral aspects of exercise and physical activity. Our focus is on both the acute and adaptive effects of physical activity (and inactivity). Exercise science deals with the mechanisms and consequences of activity from the molecular to the organismal (human ecological) level. We examine these mechanisms and consequences during growth, development, aging, disease and in altered environmental conditions. The exercise science major encompasses the critical aspects of an integrative program in applied human biology.

Major:
Exercise Science, A.B., B.S.

Minor:
Exercise Science

Microbiology
Microbiology deals with bacteria, yeasts and other fungi, algae, protozoa, and viruses. These microorganisms are ubiquitous in nature and play a crucial role in areas such as agriculture, biotechnology, ecology, medicine, and veterinary science. The field of microbiology contributes to areas of fundamental inquiry such as biochemistry, cell biology, evolution, genetics, molecular biology, pathogenesis, and physiology.

Major:
Microbiology, A.B., B.S.

Molecular and Cellular Biology
The Section of Molecular and Cellular Biology offers three majors. The biochemistry major introduces students to the chemistry of living organisms and the experimental techniques that are used to probe the
structures and functions of biologically important molecules. Students who enjoy both chemistry and biology and who are comfortable with quantitative approaches to problem solving will find biochemistry a rewarding field of study.

The cell biology major provides a comprehensive understanding of the cell, the basic structural and functional unit of all living organisms. The major emphasizes the principles that govern how biomolecules interact with one another to organize themselves into higher order structures that comprise cells and how cellular organization and function contribute to the development, maintenance, and reproduction of adult organisms.

The genetics major provides a broad background in the biological, mathematical, and physical sciences basic to the study of heredity and evolution. The major is sufficiently flexible to accommodate students interested in the subject either as a basic discipline in the biological sciences or in terms of its applied aspects such as biotechnology, medicine, and agriculture.

Majors:
- Biochemistry, B.S.
- Cell Biology, B.S.
- Genetics, B.S.

Neurobiology, Physiology, and Behavior

The neurobiology, physiology, and behavior major emphasizes the understanding of vital functions common to all animals. All animals perform certain basic functions—they grow, reproduce, move, respond to stimuli, and maintain homeostasis. The physiological mechanisms upon which these functions depend are precisely regulated and highly integrated. Actions of the nervous and endocrine systems determine behavior and the interaction between organisms and their physical and social environments. Students in this major will study functional mechanisms; the control, regulation, and integration of these mechanisms; and the behavior which relates to those mechanisms at the level of the cell, the organ system, and the organism.

Major:
Neurobiology, Physiology, and Behavior, B.S.

Plant Biology

Plant biology is the study of plants as organisms. It includes the newer disciplines of cellular and molecular plant biology and the traditional areas of botany, such as anatomy, morphology, systematics, physiology, mycology, phycology, ecology, and evolution. The major provides breadth in diverse areas of plant biology and depth in one of several areas of specialization.

Major:
Plant Biology, A.B., B.S.

Minor:
Plant Biology

Divisionwide Program

Bodega Marine Laboratory Program

A full quarter of undergraduate course work in marine biology is available each spring quarter at the Bodega Marine Laboratory (BML) located in Bodega Bay, CA. Course offerings include lecture and laboratory instruction in the developmental biology and physiological adaptation of marine organisms, population biology and ecology, a weekly colloquium, and an intensive individual research experience under the direction of laboratory faculty (Biological Sciences courses 120, 120P, 122, 122P, 123; Neurobiology, Physiology, and Behavior 141, 141P). The program is residential, with students housed on the laboratory grounds. Participants are assessed a room and board fee in addition to standard campus registration fees.

College of Engineering

Undergraduate Advising Office
1050 Engineering II
530-732-0553; http://www.engr.ucdavis.edu

Engineering is the profession in which the physical and biological sciences are applied in a practical way for the benefit of society. As an engineering student, you will learn to observe and describe technological problems and to seek useful solutions to them. Your skills upon graduation will be useful to you not only as an engineer, but also as a professional in management, sales, operations, manufacturing, and other fields.

Fifteen undergraduate engineering curricula, including five formal double-major programs, are offered. Each of these is a four-year program leading to the degree of Bachelor of Science. Ten programs are accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology (ABET), the nationally recognized accrediting body for engineering curricula: Aeronautical Science and Engineering, Biological Systems Engineering, Chemical Engineering, Civil Engineering, Computer Engineering, Computer Science and Engineering, Electrical Engineering, Electrical Engineering/Materials Science and Engineering, Materials Science and Engineering, and Mechanical Engineering.

The four-year undergraduate program is divided into two parts: the Lower Division Program and the Upper Division Program.

Lower Division Programs. If you enter the College of Engineering with fewer than 90 quarter units of credit, follow the lower division program specified for your major. If you enter the College with 90 or more quarter units of credit, you must fulfill the requirements for transfer students outlined in this chapter under “College of Engineering, Unit Requirements.”

Upper Division Programs. If you have completed the requirements for the lower division program or have entered the College of Engineering with more than 90 quarter units of credit, you should follow the upper division requirements for the major you have selected from the programs that follow.

Minor Programs: The College of Engineering does not offer minor programs.

The Undergraduate Programs

Applied Science

The Department of Applied Science offers a major in Optical Science and Engineering. The objective of the Optical Science and Engineering program is to provide a basic education in the fundamental principles of optics combined with key courses in physics, mathematics,
and the engineering applications of optics. There is a rapidly growing national demand for engineers educated in optical science and engineering. Much of the high-technology infrastructure is based upon optics and its applications, the most prominent being optical digital information transmission. In addition, engineers trained in optical science and engineering are in strong demand in health care and life science, optical sensing for environmental and weather applications, energy-use reduction, commercial camera and space-program optical applications, and national defense applications.

Biological and Agricultural Engineering

The Department of Biological and Agricultural Engineering offers two majors. Biological Systems Engineering majors learn to combine the science and art of engineering with the science of biology to design systems that influence, control, or use biological materials and organisms for improving the quality of life. Specific objectives include designing systems to process biological materials into consumer products; designing machines to interact with biological systems in disciplines ranging from agriculture to medicine; managing, recycling, and using wastes; developing systems to protect and preserve our natural resources and environment; developing and improving processing systems for food; designing equipment and systems that improve nutrition and diets; and minimizing waste discharge to the environment.

Food engineering majors use engineering science principles in conjunction with biological, chemical, and physical sciences to produce, process, package, store, and distribute food efficiently. *The Food Engineering major is not open to new students.*

Chemical Engineering and Materials Science

The Department of Chemical Engineering and Materials Science offers four majors, including two approved double majors.

Chemical Engineering majors learn to apply chemical and engineering principles to create useful products ranging from antibiotics to zirconium, from petroleum to plutonium, from agricultural chemicals to plastics. Specific objectives include the design of industrial processes as diverse as integrated circuit materials production, integrated waste management, and petroleum refining.

Chemical/Biochemical Engineering majors combine chemical engineering studies with studies in the life sciences and bioprocess engineering. Bioprocess engineering is the application of engineering principles to develop, optimize, and commercialize manufacturing processes. Specific objectives include pharmaceuticals production, environmental repair, industrial chemical production, and food production.

Materials Science and Engineering majors learn to understand the relationships among microscopic structure, properties, and behavior of materials in order to produce new and improved materials with capabilities far superior to common metals, alloys, and ceramics. Specific objectives include the development of materials for high-speed transportation systems, surgical and dental implants, new generations of power plants, and solid-state electronic devices in computer and optical communications technology.

Majors:

Chemical Engineering, B.S.

Chemical Engineering/Materials Science and Engineering, B.S.

Chemical/Biochemical Engineering, B.S.

Materials Science and Engineering, B.S.

Civil and Environmental Engineering

Civil Engineering majors learn to apply the principles of the physical and biological sciences and engineering to plan and design systems to improve the quality of life. Specific objectives include providing potable water and freedom from disease-carrying wastes; protecting the natural environment; mitigating the effects of earthquakes and other natural disasters; designing land-, water-, and air-transportation systems; and building roads and structures.

Majors:

Civil Engineering, B.S.

Civil Engineering/Materials Science and Engineering, B.S.

Computer Science and Engineering

The field of computer science and engineering encompasses the organization, design, analysis, theory, programming, and application of digital computers and computing systems. The curriculum develops versatile engineers with backgrounds spanning a broad computer/software spectrum. The Computer Science and Engineering major provides a solid background in mathematics, physics, chemistry, and electronic circuits and systems—all supporting the computer hardware and software courses that form the focus of the curriculum. A key theme is the hardware/software interaction in computer system design; this theme is reflected in the balance between hardware and software course requirements and in the orientation of the courses themselves. The major requires more humanities and social science electives than other college majors, in order to produce the verbal skills and intellectual breadth demanded by today’s employers.

Major:

Computer Science and Engineering, B.S.

Electrical and Computer Engineering

Electrical Engineering majors learn to apply the principles of the physical sciences and engineering to the design, analysis, development, production, and evaluation of electronic systems. Specific objectives include the provision of systems for communications, control, signal processing, integrated circuit fabrication, optoelectronics, consumer electronics, and digital systems.

Computer Engineering majors study the design, development, analysis, organization, theory, programming, and application of digital computers. Specific objectives include developing the student’s ability to design both software and hardware. In comparison to the Computer Science and Engineering major, the Computer Engineering major provides greater emphasis on hardware in the key hardware/software interaction in computer system design.
Majors:
Computer Engineering, B.S.
Electrical Engineering, B.S.
Electrical Engineering/Materials Science and Engineering, B.S.

Mechanical and Aeronautical Science Engineering
Aeronautical Science and Engineering majors learn to apply the principles of the physical sciences and engineering to vehicles whose motion is determined by aerodynamic forces. Specific objectives include the design, development, and manufacture of aircraft and other transportation systems integrating the disciplines associated with aerodynamics, propulsion, structures, and guidance/control.

Mechanical Engineering majors learn to apply physical and mechanical principles to the design and manufacture of machines and products, energy conversion systems, and equipment for guidance and control. Specific objectives include the provision of products and processes for intelligent manufacturing systems, biomechanical and sports equipment, power generation systems, propulsion for transportation, integration of vehicles and automated highways, and applications of computer and automation technologies.

Majors:
Aeronautical Science and Engineering, B.S.
Mechanical Engineering, B.S.
Mechanical Engineering/Materials Science and Engineering, B.S.

College of Letters and Science
Office of Undergraduate Education and Advising
Room 200, Social Sciences and Humanities Building
530-752-0392; http://www-lsdo.ucdavis.edu/

Major programs in the College of Letters and Science provide students systematic exposure to the key principles, methods, findings and representations of a selected area of study. In pursuing a major, students gain intellectual depth and competency in that subject matter, explore important linkages with collateral fields of inquiry, and are encouraged to engage in independent study.

Most of the academic programs offered through the college are grouped in three divisions: Humanities, Arts, and Cultural Studies; Mathematical and Physical Sciences; and Social Sciences. One collegewide degree program, the individual major, also is available. A set of majors in the basic biological sciences are offered through both the College of Letters and Science and the College of Agricultural and Environmental Sciences and are administered by the Division of Biological Sciences. Refer to the earlier section, “Division of Biological Sciences,” for more information.

The Undergraduate Programs
Division of Humanities, Arts, and Cultural Studies

These majors focus centrally on the artifacts, expressions and concerns of humankind in various cultures and times. They provide students the opportunity to explore the creation, performance and analysis of works of art, the language and customs of non-English speaking societies, the theory and criticism of literature, and the peoples and cultures of this nation and its hemisphere. Students interested in studying these types of issues may select from more than 20 different majors.

Majors:
African American and African Studies, A.B.
American Studies, A.B.
Art History, A.B.
Art Studio, A.B.
Asian American Studies, A.B.
Chicana/Chicano (Mexican-American) Studies, A.B.
Chinese, A.B.
Classical Civilization, A.B.
Comparative Literature, A.B.
Dramatic Art, A.B.
English, A.B.
French, A.B.
German, A.B.
Italian, A.B.
Japanese, A.B.
Medieval Studies, A.B.
Music, A.B.
Native American Studies, A.B.
Nature and Culture, A.B.
Religious Studies, A.B.
Russian, A.B.
Spanish, A.B.
Women's Studies, A.B.

Minors:
African American and African Studies
American Studies
Art History
Art Studio
Asian American Studies
Chicana/Chicano (Mexican-American) Studies
Chinese
Classical Civilization
Comparative Literature
Dramatic Art
English
Film Studies

Rain or shine, students head to the Coffee House for a bagel—they consume about 200 dozen every day.
French
German
Global and International Studies
Greek
Italian
Jewish Studies
Japanese
Latin
Medieval Studies
Music
Native American Studies
Nature and Culture
Religious Studies
Russian
Social and Ethnic Relations
Spanish
Women's Studies

Division of Mathematical and Physical Sciences
These majors focus primarily on the description and interpretation of the structure, processes and events of the physical universe. They provide students the opportunity to explore in depth the structure, properties and reactions of substances; fundamental mathematical techniques and models and their application to the interpretation and explanation of phenomena; studies of matter and energy and their interconversions; the nature and development of computer languages; and earth and environmental processes. Students interested in studying these types of subjects may select from seven different majors. The division strongly encourages undergraduates to enroll in undergraduate research projects with one-on-one instruction by faculty scholar/researchers.

Majors:
Applied Physics, B.S.
Chemistry, A.B., B.S.
Computer Science, B.S.
Geology, A.B., B.S.
Mathematics, A.B., B.S.
Physics, A.B., B.S.
Statistics, A.B., B.S.

Minors:
Computer Science
Environmental Geology
Geology
Geophysics
Mathematics
Physics
Statistics

Division of Social Sciences
These majors focus largely on issues and problems that characterize social, cultural, political, and economic life across human societies. They provide students the opportunity to explore the relationships between people and the groups and organizations of which they are a part, the antecedents of individual behavior, the development of political and economic systems, the social forces that have shaped the contemporary world, and the foundations of language, thought, knowledge and perception. Students interested in studying these types of issues may select from more than a dozen different majors.

Majors:
Anthropology, A.B., B.S.
Communication, A.B.
East Asian Studies, A.B.
Economics, A.B.
History, A.B.
International Relations, A.B.
Linguistics, A.B.
Philosophy, A.B.
Political Science, A.B.
Political Science–Public Service, A.B.
Psychology, A.B., B.S.
Sociology, A.B.
Sociology–Organizational Studies, A.B.

Minors:
Anthropology
Communication
East Asian Studies
Economics
Economy, Justice and Society
Education
History
History and Philosophy of Science
Linguistics
Philosophy
Political Science
Psychology
Sociology
War-Peace Studies

Collegewide Program
Students whose academic interests cannot be satisfactorily met through the completion of an established major have the opportunity to develop an individual major. Individual majors may reflect the most recent trends in scholarship and research and are typically interdisciplinary in nature. The major proposal is developed in close and active consultation with two faculty advisers from the academic disciplines most closely related to the subject matter of the individual major. Careful faculty guidance and review assure that individual majors are comparable in academic rigor and intellectual coherence to those regularly available through the departments and programs of the college.

Major:
Individual Major, A.B., B.S.

BACHELOR'S DEGREE REQUIREMENTS
You must satisfy four groups of requirements before you can become eligible for candidacy for the bachelor's degree. (See box on next page.) The four groups are:

- University requirements, which apply to all colleges;
- General Education requirement, which applies to all colleges;
- College requirements; and
- Major requirements.

Detailed information on university requirements, the General Education requirement and college requirements can be found in this chapter.

Every student is responsible for seeing that all of his or her degree requirements are fulfilled.
UNIVERSITY REQUIREMENTS

All students must fulfill the following University of California requirements.

Subject A: English Requirement

The university requires every undergraduate student to demonstrate college-level proficiency in English composition. Satisfaction of the Subject A requirement is a prerequisite to all other undergraduate courses in English.

The requirement, as determined by Undergraduate Admissions, may be met in one of the following ways:

- By achieving a score of 680 or higher on the SAT II-Writing Test.
- By achieving a grade of 5, 4, or 3 on the College Board Advanced Placement Examination in English.
- By entering the university with credentials showing the completion of an acceptable 3 semester-unit or 4 quarter-unit college-level course in English composition with a grade of C or better.
- By writing a passing essay on the Subject A Examination. This examination may be taken only once prior to enrollment. It is offered in the spring at local sites throughout California; a student admitted for fall quarter who has not already satisfied the Subject A requirement must take this examination. An out-of-state student or any California freshman admitted after mid-April will take another form of the Subject A Examination, which will be offered on the UC Davis campus during the orientation period each quarter. For the time and location consult the Class Schedule and Registration Guide, published before the beginning of each quarter.

If you have not satisfied the requirement in one of the ways described above, you must enroll in English 57 during your first quarter of residence at the university, or as soon thereafter as space is available in the course. English 57, offered by Sacramento City College on the Davis campus, counts as 4.5 units on your study list and toward minimum progress but is not transferable as units toward graduation. To satisfy the requirement, students must pass the Subject A Examination offered as the final examination for English 57. Students failing the examination must repeat English 57. If the requirement has not been satisfied by the end of your third quarter, and you were not required to take courses for non-native speakers of English in the Linguistics program, you may be disenrolled from the University.

Students whose native and school language is not English, and some students whose schooling combines work in the United States and in another country, must demonstrate proficiency in English. The level of proficiency must meet the standards of both the non-native speakers of English program and the Subject A program. The results of the Subject A Examination and a special examination in English administered during the orientation period each quarter determine whether a student has met the Subject A requirement or must take specific course work in the Linguistics program. Students held for Linguistics course work have three quarters to meet the Subject A requirement plus the number of quarters required in Linguistics.

American History and Institutions

The American History and Institutions requirement ensures that every graduating student will have at least
a minimum knowledge of the background of this country’s development and an understanding of the political, economic and social interrelationships of its way of life. You may meet this requirement in any of these ways:

- By offering one high school unit in American history, or 1/2 high school unit in American history and 1/2 high school unit in civics or American government, with a grade of C or better in each course.
- By completing any one of the following courses:
 - African American and African Studies 10, 100, 120, 121
 - Asian American Studies 1, 2
 - Economics 111A, 111B
 - Native American Studies 1, 10, 55, 116, 130A, 130B, 130C
 - Political Science 1, 5, 100, 101, 102, 103, 104, 105, 106, 108, 109, 113, 130, 131, 160, 163

(Students electing to offer one of the above courses are subject to the rules for prerequisites and majors.)

- By presenting evidence that the requirement has been accepted as satisfied at another campus of the university.
- By presenting evidence that the requirement has been satisfied through courses in the area of American History and Institutions at another collegiate institution whose credits are acceptable for transfer to UC Davis.
- By successful completion of the Advanced Placement Examination in American History or American Government and Politics.

International students, regardless of the type of visa they hold, must meet the university’s American History and Institutions requirement for graduation.

Unit Requirement

A minimum of 180 quarter units is required for graduation. These must be distributed according to the minimum requirements set forth by the faculty of your college.

A maximum of 12 units of Internship Courses (92, 192, or a combination) may be counted toward the 180-unit bachelor’s degree requirement.

The acceptability of transfer courses for unit credit is determined by Undergraduate Admissions and Outreach Services. The acceptability of such courses toward specific requirements is determined by the individual college or school.

Students should refer to the Advanced Placement Examination chart and their transcripts to eliminate the possibility of duplication of credit.

Residence Requirements

The minimum residence requirement for a bachelor’s degree at the University of California is one academic year (three quarters). Thirty-five of the final 45 quarter units completed by each candidate must be earned while in residence on the Davis campus. Each summer session in which a student completes a course of at least 2 quarter units may be counted as half a quarter’s residence. Not more than 18 of these 35 quarter units may be completed in summer session courses at UC Davis.

Regularly approved courses (laboratory, field, or other individual work) done outside of a regular session but under the direction of a department of instruction may be accepted upon the recommendation of the department in partial fulfillment of the residence requirement for the bachelor’s degree. Registration is with the consent of the instructor only.

University Extension courses are not accepted as part of the university residence requirement.

There are additional residence requirements for students enrolled in the Colleges of Letters and Science and Engineering. If you are planning to study abroad during your senior year, you should consult your college dean’s office.

With the approval of the dean of a student’s college or school, a candidate for the bachelor’s degree who was in active service in the armed forces of the United States in the year preceding the awarding of the degree may be recommended for the degree after only one quarter of university residence in which the candidate completes at least 16 units or passes a comprehensive examination in the major or field of concentration.

Scholarship Requirement

To receive a bachelor’s degree, you must obtain twice as many grade points as units (a 2.0 GPA) for all courses you have attempted in the university. An exception to this rule is made for those students undertaking certain honors courses. Grades earned in University Extension courses are not used in calculating individual grade point averages. For specific college requirements consult the college sections following.

GENERAL EDUCATION REQUIREMENT

The General Education (GE) requirement promotes the intellectual growth of all undergraduates by ensuring that they acquire a breadth of knowledge that will enlarge their perspectives beyond the focus of a major and serve them well as participants in a knowledge-based society. It seeks to stimulate continued intellectual growth by providing students with knowledge not only of the content but also of the methodologies of different academic disciplines. It involves students in the learning process by its expectation of considerable writing and class participation. It encourages students to consider the relationships between disciplines.
The GE requirement has three components:
- **Topical Breadth**, **Social-Cultural Diversity** and **Writing Experience**.

Topical Breadth

A GE course in *topical breadth* addresses broad subject areas that are important to the student's general knowledge. It takes a critical, analytical perspective on knowledge, considering how knowledge has been acquired and the assumptions, theories, or paradigms that guide its use.

Topical breadth courses are grouped into three broad subject areas of knowledge:

1. **Arts and Humanities.** Courses in this area provide students with knowledge of significant intellectual traditions, cultural achievements and historical processes.
2. **Science and Engineering.** Courses in this area provide students with knowledge of major scientific ideas and applications. They seek to communicate the scope, power, limitations and appeal of science.
3. **Social Sciences.** Courses in this area provide students with knowledge of the individual, social, political and economic activities of people.

Social-Cultural Diversity

Courses in social-cultural diversity teach students the significance of the many patterned differences that characterize human populations—particular differences of gender, race, ethnicity, sexuality, religion or social class.

Writing Experience

A GE course in writing experience normally requires a minimum of five pages of writing in a block, which will be evaluated for content, use of language and logical coherence.

Fulfilling the General Education Requirement

Topical Breadth Component: 6 courses

To fulfill the topical breadth component of the General Education requirement you must successfully complete three approved courses in each of the two subject areas of topical breadth other than the one that includes your major. To identify the area of topical breadth to which your major belongs, refer to the chart at the back of this catalog. Each academic major has been assigned to one of the three subject areas of GE topical breadth. If you have any questions concerning the subject area to which your major is assigned, consult your college dean’s office.

- **Double majors** will satisfy the topical breadth subject areas to which they are assigned. You will still be responsible for completing any topical breadth subject area in which you do not have a major. If, for example, two majors are assigned to the same subject area, you will need to complete the topical breadth component in each of the other two other subject areas. If, on the other hand, you complete two majors that have been assigned to two different areas of topical breadth then you will be responsible for completing the topical breadth component in only the remaining subject area.

- **Individual majors** are assigned to an area of *topical breadth* at the time they are approved by your college.

- **Each minor** has also been assigned to one of the three subject areas of *topical breadth*. A minor assigned to a subject area other than the area of your major will satisfy the GE course requirement for *topical breadth* in that subject area.

- **Courses in your major** may count toward the *topical breadth* component when those courses are also assigned to subject areas other than the area of your major.

- **A course approved in more than one *topical breadth* subject area** may only be offered in satisfaction of one of those subject areas.

Social-Cultural Diversity Component: 1 course

To fulfill the social-cultural diversity component of the GE requirement, you must successfully complete one course from the approved list at the back of this catalog.

Writing Experience Component: 3 courses

To fulfill the *writing experience* component of the GE requirement, you must successfully complete three courses from the approved list at the back of this catalog.

- **Subject A.** You must satisfy the university Subject A requirement before you take any *writing experience* course for GE credit. If you take an approved *writing experience* course but have not yet satisfied the Subject A requirement, you will not receive GE *writing experience* credit for that course.

Additional Conditions

1. **Letter grading.** All courses taken to fulfill the GE requirement must be taken for a letter grade. No GE credit will be awarded for a course that you take on a Passed/Not Passed basis.

2. **College and university composition requirements.** The following GE courses may not be used to satisfy university or college requirements in composition and GE writing experience simultaneously: Communication 1, Comparative Literature 1, 2, 3, 4, English 1, 3, 18, 19, 101, 102, 104A, 104B, 104C, 104D, 104E, Native American Studies 5.

 Remember: You must satisfy the university Subject A requirement before you take any *writing experience* course for GE credit.

3. **Courses approved for multiple GE components.** Courses approved for more than one component of the GE requirement (*topical breadth*, *writing experience* and *social-cultural diversity*) will be accepted toward satisfaction of all components for which the course has been approved.

4. **Approved GE courses.** You cannot claim GE credit for any course you completed before it was an approved GE course.

GE Exemption

IGETC, TCC, and UC Reciprocity. You are exempt from the UC Davis GE requirement if you come from a California community college and are certified as having successfully completed the “Intersegmental General Education Transfer Curriculum” (IGETC) or “Transfer Core Curriculum” (TCC), or if you come from another
Approved General Education Courses

A list of the courses that provide General Education credit for 2000-2001 appears in the back of this catalog. These courses may be used to fulfill the GE Requirement for students entering UC Davis in 1996-97 and thereafter. Please note that you cannot claim GE credit for a course you completed before it was an approved GE course. This list is subject to change. You should check the Class Schedule and Registration Guide each quarter for the most current information.

General Education Theme Options

General Education theme options are sets of GE courses sharing a common intellectual theme. Faculty from the College of Agricultural and Environmental Sciences have worked collaboratively to develop sets of complementary courses in several areas of interest. These GE theme options are not a separate element of the GE requirement, but a way of selecting your GE courses so that you may benefit from a coherent focus of study while completing the GE requirement.

Completion of a theme satisfies the GE requirement for students with majors assigned to the GE topical breadth area of Arts and Humanities. Students with majors assigned to the topical breadth area of either Science and Engineering or Social Science will need to complete additional GE courses in Arts and Humanities to satisfy the campus GE requirement.

Beginning a theme option does not prevent you from later choosing to take other approved GE courses to fulfill the GE requirement. If you choose to mix courses from a theme option and the broader GE course lists, you will need to make sure that the combination of courses you select will complete the campus GE requirement.

COLLEGE REQUIREMENTS FOR THE BACHELOR’S DEGREE

College of Agricultural and Environmental Sciences

Unit Requirements

Of the required 180 units counted toward a degree, 54 units must be upper division work.

Unit Credit Limitations

In addition, the following unit limitations apply to all majors:

- Not more than 6 units can be Physical Education 1 and 6
- Not more than 20 units can be courses numbered 90X, 92, 97T, 97TC, 99, 190C, 190X, 192, 197T, 197TC, or 199
- Not more than 12 units can be courses numbered 92 and/or 192 (credit will not be given for 192s or 199s taken before the completion of 84 units)
- Not more than 5 units per quarter of Special Study courses (99, 194H, 199)
- Not more than 9 units of professional courses (numbers 300–499) may be used toward the 54 upper division units

Limitation on Credit for Units Graded P

The Academic Senate limits the total number of courses graded P, including units earned in courses graded “P/NP only,” to one third of the units completed on the Davis campus. The P/NP option is to be used only for elective courses and should not be used for major requirements.

Credit in University Extension Courses

Students in residence may apply a maximum of 9 units of credit earned in some Open Campus courses taken through University Extension toward the 180-unit requirement provided written approval has been obtained from the Dean before registering. Units of credit allowed by the Dean may be less than the number of units listed for a course. No grade points are assigned for courses completed through Open Campus or University Extension.

Registration Beyond the 225-Unit Limit

Students may not exceed 225 units; registration for enrollment when the limit has been reached may only be approved by the Dean. A petition to complete excess units may be picked up in the Dean’s office or in your major department.

Residence Requirement

Thirty-five of the final 45 quarter units completed by each candidate must be earned while in residence on the Davis campus. Not more than 18 of these 35 quarter units may be completed in summer session courses at UC Davis.

Scholarship Requirement

Students in the College are required to attain a minimum grade point average of 2.0 for all courses specified as depth subject matter in their major. Only grades earned in courses taken at UC Davis are included in the grade point calculation. Each candidate must complete
a program of study either as prescribed in (a) a major approved by the Undergraduate Majors and Courses Subcommittee and printed in this catalog, or (b) an individual major approved by the Individual Major Subcommittee.

English Composition Requirement

The English Composition requirement can be met in one of two ways:

1. by completing, before you have completed 120 units, either two courses emphasizing written expression or one course emphasizing written expression and one course emphasizing oral expression, with a grade of C- (or P) or better. The following UC Davis courses satisfy this requirement:
 - (a) one course must be selected from English 1, 3, 18, 19, 101, 102A, 102B, 102C, 102D, 102E, 102F, 102G, 104A, 104B, 104C, 104D, 104E, or 104F (courses with primary emphasis in writing skills);
 - (b) one course selected from the courses not selected above, or from Communication 1, Comparative Literature 1, 2, 3, 4, or Native American Studies 5 (courses emphasizing either writing or speaking skills);

OR

2. by passing the English Composition Examination administered by the College of Letters and Science upon completion of 70 units of degree credit (the examination does not yield credit).

English Composition Examination. The English Composition Examination will be offered on the following dates for the 2000-2001 academic year:

- October 21, 2000
- January 27, 2001
- April 28, 2001

There are no examinations given during the summer. Sign-up rosters will be posted on the bulletin board near the main English Department office (176 Voorhies), Monday until Friday at noon (or until they are filled) just preceding each Saturday examination date. Sign-ups must be done, in person, by noon Friday. The English Composition Examination form, available at the UCD Bookstore, is required. This is a no-fee examination.

General Education

You should consult your Dean's Office or department adviser in advance to determine exactly how your General Education courses will apply toward your major.

You can choose one of four General Education theme options to help plan your GE courses. The themes, Global Population and Environmental Issues; Biodiversity and Cultural Diversity; Food and Fiber; and Changing Agriculture are described in more detail in the section “General Education Theme Options” in the General Education section at the back of this catalog.

Study Plan Approval

A Study Plan provides for attainment of specific long-term goals and should allow for the acquisition of prerequisite knowledge for courses to be taken in subsequent quarters, the fulfillment of College and major requirements; a proper balance between the demands of the courses and your ability to master the subject matter; and meeting the minimum progress requirements (see the “Academic Information” chapter).

In conjunction with a faculty adviser and/or staff adviser, you must plan and prepare a program that specifies your goals and shows how the graduation requirements will be met. It is a regulation that a written “study plan” be filed with your faculty adviser or staff adviser by the end of the second quarter of the junior year (having completed not more than 120 units either in residence and/or by transfer).

You may be denied registration for future quarters if you do not comply with this regulation. However, filing this study plan does not preclude a change of major or program modifications.

Major Degree Certification

A Major Certification is completed during the quarter you plan to graduate. At that time, you and your faculty adviser and/or staff adviser check to see that all major requirements have been completed. The Dean's Office completes the degree certification by verifying that all college and university requirements have been satisfied and will notify you with a copy of the Major Certification form.

Degree Requirement Changes

On occasion, the faculty make changes in the requirements that students must satisfy to obtain the baccalaureate degree. So that you will not be penalized by changes that may work to your disadvantage and so that you will benefit by changes that assist you in completing your degree requirements, it is college policy that you may choose to fulfill the university, college and major requirements in effect at the time you were registered at UC Davis. If you have transferred to UC Davis from a community college, state college, or another university, you may follow the requirements as stated in any UC Davis catalog in effect either during the three years immediately preceding your transfer to Davis or at the time you first registered at that institution, whichever is most recent. Once you have chosen the year of the General Catalog under which you wish to be governed, you must satisfy all of the university, college and major requirements specified in that catalog.

College of Engineering

Unit Requirements

Each candidate for the degree of Bachelor of Science in Engineering must satisfactorily complete an approved curriculum in engineering. Each curriculum consists of a specified Lower Division Program (or an approved equivalent program for students who transfer into the
College with 90 or more quarter units) and a specified Upper Division Program. No unit of coursework you complete may be used to satisfy two different degree requirements (except where the catalog specifically indicates otherwise). Detailed requirements for the approved curricula are given in the “Programs and Courses” section of this catalog; to see the courses required in your major, consult this section. The minimum number of required units in the combined Lower and Upper Division Programs varies, with the curriculum, from 180 to 195. **You are responsible for planning your program and satisfactorily completing all degree requirements.**

You may, for good cause, request a modification of particular degree requirements by submitting a student petition. These petitions, which are available in the Undergraduate Office, can be a valuable aid in resolving individual program conflicts or other special problems. Such petitions are subject to approval by the Student Petitions Committee, a body of seven professors and six (non-voting) students. A negative decision by the committee may be appealed to the College faculty for action at a regular meeting.

Transfer students. To be eligible for transfer, you must have at least 90 transferable quarter units. You will be classified as having upper division status, but you will be required to complete the lower division requirements for your major before your lower division is considered complete. You may, however, start your upper division program while completing your lower division requirements provided you meet all prerequisites for the upper-division courses.

All engineering majors are impacted. For your application for transfer to be considered, you need to have completed a substantial proportion of your lower-division requirements.

For more specific advice on your requirements, see the transfer counselor at your institution, consult Project Assist (available at community college transfer centers) or consult with the advisers in the Engineering dean’s office.

<table>
<thead>
<tr>
<th>Subject Areas</th>
<th>Minimum Quarter Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics</td>
<td>(calculus, differential equations, linear algebra, vector analysis) ..22</td>
</tr>
<tr>
<td>Physical and biological sciences</td>
<td>(typically, at least 10 units must be in general chemistry and at least 12 units in physics courses designed for engineering and physical science students) ..22-26</td>
</tr>
<tr>
<td>Engineering</td>
<td>(lower division subjects such as graphics, properties of materials, surveying, computer programming, statics and circuit theory. These courses must include statics, circuits and the programming language required by your major. Students majoring in Mechanical, Aeronautical, Materials Science, Civil, Electrical or Computer Engineering, or Computer Science may have additional course requirements specific to their respective majors. Because of additional lower division chemistry requirements, Chemical Engineering majors may elect to take only 10 units—programming language, circuit theory and statics—of engineering in their lower division programs) ..22-26</td>
</tr>
<tr>
<td>Written expression</td>
<td>(two courses in university level composition) ..8</td>
</tr>
<tr>
<td>General Education</td>
<td>(courses that are similar to courses acceptable for General Education credit for engineering students) ..5-12</td>
</tr>
<tr>
<td>Additional subjects</td>
<td>(Chemical Engineering majors should cover quantitative analysis and one course in organic chemistry with a laboratory component during their sophomore year) ..7-8</td>
</tr>
<tr>
<td>Total</td>
<td>..90</td>
</tr>
</tbody>
</table>

Once you have completed the Lower Division Program and fulfilled these specified subject area requirements, you need not take additional lower division courses, except those that are prerequisite to upper division courses in your curriculum. For additional information on core prerequisite courses, please contact your department or college adviser.

Credit in University Extension Courses. Appropriate courses taken through University Extension may be used for degree credit; however, you may use a maximum of 16 units of courses taken through University Extension for degree credit. Simultaneous registration in resident courses and Extension courses requires prior approval by the College’s Associate Dean for Undergraduate Studies. Such approval will be given only for a limited number of credits. No grade points are assigned for courses completed in University Extension.

Residence Requirement

In addition to fulfilling the university residence requirement, you must complete at least 35 of the final 45 units characteristic of your curriculum in engineering while registered in the College.

Scholarship Requirement

In addition to meeting the university scholarship requirement, you are required to maintain a 2.0 grade point average for all coursework within Engineering.
Undergraduate Education

English Composition Requirement (Upper Division)

After completing 70 quarter units, you may elect to satisfy the upper division English Composition requirement by passing the English Composition Examination administered by the College of Letters and Science. (You should take it early in your junior year and must take it before your last quarter. Units of credit are not given for passing this examination.)

Or, upon completion of 90 quarter units, you may satisfy this requirement by completing English 101, 102A, 102B, 102C, 102D, 102E, 102F, 102G, 104A, or 104E with a grade of C– or higher.

This requirement is in addition to the expository writing course requirement (English 1 or 3; Comparative Literature 1, 2, 3 or 4; or Native American Studies 5) specified in the Lower Division Programs.

During the 2000-2001 academic year, the English Composition Examination will be offered on the following three Saturdays: October 21, 2000; January 27, 2001; and April 28, 2001. Sign-up rosters will be posted on the bulletin board near the main English Department office (176 Voorhies), Monday until Friday at noon (or until they are filled) just preceding each Saturday examination date. You must sign up, in person, by noon on Friday. You must obtain the English Composition Examination form, available at the UCD Bookstore, to take the exam.

Engineering Design Requirement

Engineering design is the process of devising a system, component, or process to meet certain needs. Design involves a decision-making process (often iterative), in which the basic sciences, mathematics and engineering sciences are applied to convert resources optimally to meet a stated objective. Among the fundamental elements of the design process are the establishment of objectives and criteria, synthesis, analysis, construction, testing and evaluation. You must take an appropriate amount of such design course work through a combination of required and restricted elective courses. Specific comments about design are included in individual curricula descriptions. You should also review the design content of your individual program with your adviser in the course of completing the upper division advising worksheet.

Electives

In general, there are three kinds of elective courses in the engineering curricula: General Education, technical, and unrestricted. Transfer students have an additional set of electives: Physical and Biological Sciences electives.

General Education Electives. Because, as an engineer, you will be a significant participant in the human setting, you will need to have a breadth of education that will allow you to deal with contemporary social issues and to understand the impact of engineering solutions on the global and societal context. To these ends, you will need to take a minimum of 24 units (33 units for Computer Science and Engineering majors) of General Education electives.

Since all engineering majors are in the Science and Engineering GE topical breadth area, you will fulfill the campus GE requirement by taking courses in the Arts and Humanities and the Social Sciences areas.

In satisfying the GE requirement, note that (a) you must take GE courses for a letter grade, and (b) you must satisfy the Subject A requirement before you can receive GE writing experience credit for any course. In consultation with your academic adviser, you should attempt to design a coherent approach to contemporary issues by using your GE electives.

The list of Arts and Humanities and Social Sciences electives appears at the end of this catalog. Note that you may not take the following courses for GE credit if you are a College of Engineering student:

- Agricultural Education 100, 160, 172
- Animal Science 141, 148
- Applied Science 137
- Civil and Environmental Engineering 165
- Engineering 160
- Entomology 158
- Environmental and Resource Sciences 10
- Fiber and Polymer Science 110
- Food Science and Technology 2
- Geology 115N
- Physics 137, 160
- Plant Biology 141
- Political Science 192A, 192B
- Statistics 10
- Viticulture and Enology 3

Technical electives permit you to tailor a program to your own academic and career objectives. For some, the technical electives offer the opportunity to prepare for a specific occupation. For others, they offer an opportunity to broaden a background in the sciences and engineering.

You may receive technical elective credit to a maximum of 6 units for any combination of engineering courses numbered 190C, 192, 197, 198 and 199, unless further restrictions are imposed on your major. Academic credit for 199 courses is limited to a maximum of 5 units per quarter for each substantially different project. Academic credit for engineering internship courses (192s) is also limited to a maximum of 5 units per quarter.

With the exception of the following courses, all upper division courses in engineering, physics, chemistry, mathematics and statistics may be taken as technical electives. The courses which may not be used are:

- Applied Science Engineering 137 (restricted to one unit of technical elective)
- Physics 137 and 160 (restricted to one unit of technical elective), 194HA, 194HB, 195, 197T, 198, 199
- Chemistry 194HA, 194HB, 194HC, 197, 198, 199
- Engineering 160 (restricted to one unit of technical elective)
- Mathematics 192, 194, 197TC, 198, 199
- Statistics 102

In addition to upper division engineering, physics, chemistry, mathematics and statistics courses, the following courses may be taken as technical electives:

- Agricultural Systems and Environment, any upper division course except 101 and 188 through 199
Anatomy, Physiology, and Cell Biology 100
Animal Biology 102, 103
Animal Genetics 101, 107, 108, 109, 111
Animal Science 104, 105
Applied Biological Systems Technology 110L, 134, 161, 163, 170, 175, 180, 181, 182
Atmospheric Science 110, 111, 115, 116, 120, 121A, 121B, 124, 128, 133, 149, 150, 158, 160
Biological Sciences 1A, 1B, 1C, 101, 102, 103, 104, 120, 120P, 122, 122P
Chemistry 2B, 2BH (if not used for your major requirement), 2C, 2CH, 8A, 8B
Economics 140
Environmental Horticulture 100, 102, 105, 120, 125, 130, 133, 144, 145, 149, 150
Environmental Science and Policy 100, 110, 121, 123, 128, 134, 134L, 137, 137L, 140, 141, 147, 149, 170, 170L
Fiber and Polymer Science 100, 150, 161, 161L
Management 11A, 11B
Microbiology 102, 102L, 105, 110, 120, 120L, 140, 150, 155L, 160, 162
Molecular and Cellular Biology 120L, 121, 122, 123, 126, 140L, 141, 142, 150, 150L, 160L, 161, 162, 163, 164, 166
Neurobiology, Physiology, and Behavior, any upper division course
Plant Pathology 120, 123, 130
Soil Science 100, 102, 105, 107, 109, 111, 112, 118, 120
Wildlife, Fish and Conservation Biology 100, 102, 102L, 110, 110L, 111, 111L, 120, 120L, 121, 122, 123, 130, 131, 136, 140, 141, 151, 152, 153, 154, 156, 157

You are urged to discuss the selection of technical elective courses with your academic adviser.

Unrestricted electives. If your curriculum allows for unrestricted electives, you may count any course for which university credit is allowed as an unrestricted elective in the engineering curricula.

Physical and Biological Science electives. Engineering students are required to have 26 units in sciences, typically 10 units of chemistry and 16 units of physics. If you transfer into the College of Engineering with advanced standing, you are required to complete 26 units of physical and biological science by graduation, but you need to have completed only 5-10 units of chemistry (depending on major) and 12 units of physics by the time you transfer. You may make up the remaining 4 units by taking 4 additional units of chemistry, 4 additional units of physics, or 4 units in courses selected from any of the curricula listed below, with the restrictions that follow.

Atmospheric Science
Biological Science
Chemistry
Evolution and Ecology
Geology
Microbiology
Molecular and Cellular Biology
Neurobiology and Behavior
Physics
Plant Biology

All courses in these departments numbered 10 and 190–199 are excluded for credit, as are the following courses:

Evolution and Ecology 138
Geology 1, 3-3G-3L, 4, 116-116G, 135
Physics 137, 160
Plant Biology 1, 11, 12

Degree Check

Use the Degree Requirement Check sheets for each of the curricula for monitoring your progress toward a degree. The Undergraduate Office will prepare only one unofficial preliminary degree check for you (preferably at the end of your junior year). You should also request a follow-up degree check during the quarter before you plan to graduate. To have this degree check prepared, submit a signed Degree Check Request. The office will call you to schedule an appointment. You can get further information concerning these services and the forms for requesting a degree check or an exit interview in the Undergraduate Advising Office.

Degree Requirement Changes

Since engineering is a rapidly developing profession, curricular changes are made by the faculty from year to year. To ensure that you benefit from these changes, the College of Engineering has established a policy that you
must fulfill the degree requirements stated in the College of Engineering Bulletin for the year in which you complete degree work or in the Bulletin for the year immediately preceding.

College of Letters and Science

Unit Requirements

A minimum of 180 units is required for the bachelor's degree. Of these units, 64 must be earned in upper division courses.

Registration Beyond the 225-unit Limit. You are normally expected to fulfill all degree requirements within the 180- to 225-unit range. Once 225 units have been completed (excluding units awarded for College Board Advanced Placement Examinations), you may register only with the permission of the dean. Such permission is rarely granted, and then typically only to allow completion of minimum degree requirements. You will be expected to adhere to a program of courses agreed upon and to meet other conditions that may have been set. Approval must be obtained before you will be permitted to register for courses for the quarter following completion of 225 or more units.

If you are in good standing, you will be able to complete 12 quarters or the equivalent (e.g., four years) of college work even if you have earned more than 225 units before you finish your fourth year. You must petition for continuation, however, and file the quarter-by-quarter course program you have planned.

Unit Credit Limitations

For certain courses, limits have been established on the number of units that can be counted towards the 180-unit minimum required for the degree. To avoid discovering just before graduation that you are short units, keep track of the number of units you have taken in each of the following categories.

Limitation on Credit for Graduate and Professional Courses. Undergraduates may enroll in graduate and professional courses in the 200, 300 and 400 series subject to the restrictions described in the Academic Information section in this catalog. Graduate and professional courses that have been completed will be listed on the student's transcript in the usual manner. However, the units earned may be counted toward degree requirements only under the conditions listed below.

Within the limitations A, B and C given below, undergraduate students in the College may count an unlimited number of units in graduate 200 series courses and up to a combined total of 9 units in 300 and 400 series professional courses toward degree requirements. These units, however, are not counted as upper division units unless this is granted by petition to the dean.

A. The recommendations of the instructor in the course and the department chairperson—in addition to approval from the dean—must be obtained by petition in order to receive credit toward the degree for the following kinds of courses:

- all graduate courses 200–298, whether offered by a department or program outside of or within the College of Letters and Science
- all professional courses 300–398 for teachers offered outside of the College of Letters and Science
- all postgraduate professional courses 400–498 offered outside of the College of Letters and Science
- all variable unit courses 300–398 and 400–498 offered within the College of Letters and Science

B. The minimum eligibility conditions for an undergraduate student in the College to petition for degree credit for a 200, 300, or 400 series course are a UC grade point average of 3.3 and completion of 18 upper division units basic to the subject matter of the course. These eligibility conditions may be waived, however, upon the recommendation of the course instructor and concurrence of the department chairperson if the student's preparation warrants exception.

C. Undergraduates in the College cannot receive degree credit for special study courses 299, 399, or 499.

Limitation on Credit for Units Graded P. Excluding courses that are graded on a Passed/Not Passed (P/NP) basis only, the number of units graded P that may be accepted towards a degree in the College of Letters and Science is limited to not more than one fourth of the units completed in residence on the Davis campus. The Academic Senate limits the total number of courses graded P, including units earned in courses graded “P/NP only,” to one third of the units completed on the Davis campus. This limitation applies to all Davis undergraduates, including Letters and Science students.

Limitation on Credit for University Extension Courses. Students may apply credit earned in University Extension courses toward the 180-unit requirement only when written approval has been obtained from the dean before registration. The degree credit allowed by the dean for Extension courses is usually less than the unit value listed in the course description. A maximum of 9 units may be offered for elective credit only. Such units and courses may not be applied toward fulfillment of the Area, Foreign Language, Upper Division, or Residence requirements of the College. No grade points are assigned for courses completed in University Extension.

Other Unit Credit Limitations. The following are additional courses that have limits on the number of units that can be counted toward your degree.

- **Internship courses (numbers 92, 192):** 12 units maximum including internship units taken at other institutions. (See under Nonstandard courses below.)
- **Nonstandard courses (92, 97T, 97TC, 99, 192, 194H, 197T, 197TC, 199 and similar courses):** 30 units maximum or one-sixth of the units taken at UC Davis, whichever is the smaller. (Note the separate unit limits on internship, special study and tutoring courses; and major limitations.)
English Composition Requirement

The English Composition requirement can be met in one of two ways:

1. by passing the English Composition Examination upon completion of 70 units of degree credit (the examination does not yield credit);

OR

2. by completing with a grade of C– (or P) or better

 (a) one course from English 1, 3, 18, 19, Comparative Literature 1, 2, 3, 4, or Native American Studies 5; and

 (b) English 101, 102A, 102B, 102C, 102D, 102E, 102F, 102G, 104A, 104B, 104C, 104D, 104E, or 104F (which must be taken after 84 units have been completed).

Transfer Courses in English Composition. Transfer courses considered by the dean to be equivalent or comparable to English 1, 3, 18, 19, 101, 104A, 104B, 104C, 104D, 104E, Comparative Literature 1, 2, 3, 4, or Native American Studies 5 will be accepted toward satisfaction of the English Composition requirement. Note that English 101 and 104A, 104B, 104C, 104D, 104E, and 104F or the equivalent must be taken after you have completed 84 units of transferable degree credit.

If your transfer work does not include an acceptable English composition course taken after you had completed or accumulated 84 units, you may fulfill the requirement by examination (see below) or take English 101, 102A, 102B, 102C, 102D, 102E, 102F, 102G, 104A, 104B, 104C, 104D, 104E, or 104F at UC Davis.

English Composition Examination. This academic year, the no-fee examination will be offered on the following Saturday mornings:

- October 21, 2000
- January 27, 2001
- April 28, 2001

There are no examinations given during the summer. Sign-up rosters will be posted on the bulletin board near the main English Department office (176 Voorhies). Monday until Friday at noon (or until they are filled) just preceding each Saturday examination date. You must sign up, in person, by noon Friday. The English Composition Examination form, available at the UCD Bookstore, is required.

Area (Breadth) Requirement

The College Breadth Requirement promotes the intellectual growth of students by asking them to acquire a broader background of knowledge than is provided by the usual major. The Breadth requirement also guides students in exploring the interdependence of knowledge and, in the case of the A.B. degree, provides students the opportunity to become acquainted with performance in the fine arts.

A.B. degree—satisfaction of the campus General Education requirement plus completion of one of the following options:

a. a “Mini Minor” consisting of a minimum of three approved upper division courses in a single Letters and Science department or program other than the major (and which are not offered in satisfaction of major requirements);

OR

b. a minimum of three approved lower or upper division courses in Art, Music, or Dramatic Art from outside the student’s major;

OR

c. a certified minor from any UC Davis college or program.

The Letters and Science faculty believes that the completion of a certified minor is often the best way for a student to obtain structure and coherence in pursuit of intellectual breadth.

For the purposes of options a and b above, all courses are considered as approved except: courses bearing less than 3 units of credit, internship courses, non-standard courses, directed group study courses, and courses used to satisfy the College English Composition Requirement.

B.S. degree—a total of 90 units in natural sciences/mathematics; and satisfaction of the General Education requirement.

Courses numbered 92, 97T, 97TC, 98, 192, 197T, 197TC, 198, and from 200 through 499 cannot be counted toward satisfaction of the natural sciences/mathematics Area requirement. A maximum of 10 units in special study courses (99, 194H, 199) may be counted toward that portion of the Area requirement. Courses used to satisfy the English Composition and Foreign Language requirements may not be counted toward the Area requirement. Subject to the restrictions just listed, courses acceptable for fulfilling the 90-unit natural sciences/mathematics Area requirement are:
Foreign Language Requirement (A.B. and B.A.S. degrees)

The Foreign Language requirement may be satisfied in any language offered at UC Davis, or for which transfer credit is allowed from another academic institution (including American Sign Language).

You may also satisfy this requirement by examination in a language not offered on the Davis campus. In this case, the Dean's Office will assist you in making arrangements to take an examination on another University of California campus, with a faculty member who teaches the language in question.

Satisfaction of the Requirement. Plan to complete the Foreign Language Requirement by the end of your first or second year, as program priorities permit. This is particularly important if you plan to apply for the university's Education Abroad Program. The Foreign Language requirement may be satisfied by examination or completion of language courses as follows:

1. **Foreign Language Placement Test.** This test does not yield unit credit—it only determines whether the Foreign Language requirement has been met, or at which point in the language sequence you should enroll.

You may validate your knowledge of a language learned in high school by taking this test. A test may not be taken, however, in a language for which you have already received degree credit. If you are a transfer student, consult your Graduation Requirement Degree Check, which is issued by the Dean's Office within a quarter after enrollment.

2. **College Board SAT II: Subject Test.** Earning a qualifying score of at least 550 on a College Board Foreign Language Subject Test satisfies the requirement. This test may be taken at any time during your high school career. Once your score is on file at Undergraduate Admissions and Outreach Services, notify the Letters and Science Dean's Office so that satisfaction of the College requirement can be noted on your record.

3. **College Board Advanced Placement Examination.** A score of 5, 4, or 3 on any foreign language College Board Advanced Placement Examination, with the exception of Latin, taken in high school will satisfy the Foreign Language requirement.

4. **Course Completion in College (or the equivalent).** A.B. and B.A.S. degrees—15-unit level in one language (e.g., Spanish 3 or Japanese 3). B.S degree—none, but as is required in the major program.

If you have successfully completed the second or third year of a language in the tenth or higher grade in high school you may receive unit credit for course 1 of that language on a P/NP grading basis only. Although a Passed or Not Passed grade will be charged to your P/NP option, no petition is required. [See “Passed/Not Passed (P/NP) Grading” in the “Academic Information” chapter.]

5. **Proficiency Examination.** If you have not completed the required level language course, but assume you have attained equivalent knowledge, you may satisfy the language requirement by passing a proficiency examination. For more information, consult the appropriate foreign language department.

Major Program Requirements

Requirements for major programs are described in the Programs and Courses section of this catalog. These requirements are fulfilled by completing a major program offered by a teaching department or program committee in the College of Letters and Science (see the list of majors) or an individual major program approved by the College's Committee on Individual Majors.

No more than 6 units in internship courses (numbered 92, 192, or similar internship courses), may be accepted in satisfaction of the requirements of major programs. Courses numbered 97T, 97TC, 197T and 197TC do not satisfy unit or course requirements in the major.

Degree Check

Before the beginning of your senior year, take some time to consider your goals and to plan the academic program for your final year as an undergraduate. To plan properly and to ensure that you get the most out of your remaining education and complete all graduation
requirements as well, you should know what requirements remain unsatisfied. To help you in these efforts, the Undergraduate Education and Advising Office provides informational materials and instructions on how to evaluate your progress on college and university requirements. Many departments provide similar information regarding your major requirements.

Once you have completed 135 units of degree credit, you should contact your faculty adviser for a check of your major requirements. At approximately this point, the Undergraduate Education and Advising Office will provide each student with one official degree check summarizing your progress in fulfilling college and university requirements.

Degree Requirement Changes
On occasion, the faculty makes changes in the requirements that students must satisfy to obtain the baccalaureate degree. So that you will not be penalized by changes that may work to your disadvantage and so that you will benefit by changes that assist you in completing your degree requirements, it is College policy that you may choose to fulfill the university and College requirements (see General Education requirement for an exception) as stated in any UC Davis General Catalog in effect at any time you were registered in a postsecondary institution of higher education (i.e., community college, college, or university). Once you have chosen the year of the General Catalog under which you wish to be governed, you must satisfy all of the university and college requirements specified in that catalog.

With respect to the completion of your major requirements, most of the majors in the College of Letters and Science require completion of the major degree requirements in effect at the time you officially declared your major. However, because departments differ in how they handle these matters, check with the department or major program office if you have any questions about which requirements apply to you.
GRADUATE STUDIES
250 Mrak Hall
530-752-0650;
http://eddie.ucdavis.edu/gspub/

UC Davis offers advanced degrees in more than 70 graduate programs. Students’ graduate study is guided by either departments or graduate groups. Graduate groups are composed of individual faculty members with similar disciplinary or research interests. The group structure, used extensively at Davis, permits faculty to be affiliated with graduate programs in more than one discipline and offers students flexibility and breadth by crossing the administrative boundaries of the various departments, colleges, schools and sometimes campuses. In keeping with UC Davis’ progressive spirit, the group structure also allows for expansion of established degree programs and facilitates the development of new ones. Almost half of the graduate programs at Davis are sponsored by graduate groups. You will find a list of the graduate degrees available at UC Davis in the front of this catalog.

Graduate study is administered by the Graduate Council, a standing committee of the Davis Division of the Academic Senate and by the dean of Graduate Studies. A universitywide Coordinating Committee on Graduate Affairs determines general policies and establishes common procedures.

Preparing for an Advanced Degree
Admission to a graduate program at the University of California requires a bachelor’s degree that is comparable to a degree from the University of California both in distribution of academic subject matter and in scholarship achievement.

The primary requirement for admission to any program is evidence of intellectual achievement and promise. Your application will be evaluated primarily on the basis of your transcript to assure that your qualifications meet minimum standards as set by universitywide and UC Davis Graduate Councils. Generally, you must have a minimum B average in undergraduate course work from an institution of acceptable standing to be considered for admission. Graduate programs frequently require submission of additional materials such as a separate application form, Graduate Record Examination (GRE) scores, letters of recommendation, portfolios, or examples of written work to assist in selecting from among qualified applicants. Admission to graduate study is limited by the number of spaces available in major programs. Not all eligible applicants can be admitted.

UC Davis is committed to maintaining excellence, preserving fairness and promoting diversity in its student population. In addition to an applicant’s past scholastic achievement, admissions criteria include an applicant’s potential for service in the field, keeping in mind the needs of our society and of underrepresented and disadvantaged communities. Criteria also attempt to take into account any prior disadvantages applicants have experienced that may bear on future achievements and services.

Applying for Admission

World Wide Web (applications for admission):
https://secureweb.ucdavis.edu:2443/

March 1 Deadline for international students to file applications for admission to graduate standing, with complete credentials, with the program or department

April 1 Deadline for United States residents to file applications for admission to graduate standing, with complete credentials, with the program or department

Applications are accepted for fall quarter only. You may apply for admission to graduate study via the World Wide Web at https://secureweb.ucdavis.edu:2443/. If you apply electronically, the $40 nonrefundable application fee and official transcripts from each college and university you have attended must be mailed directly to the program to which you are applying.

You should begin the application process as early as possible in the academic year, since many programs have early deadlines. In addition, your chances for appointment as a teaching or research assistant or of receiving financial support are greatly enhanced by applying early. The application deadlines are as noted above, unless otherwise indicated by the program, or until your proposed graduate program is full, whichever occurs first.

If you do not apply electronically, you may request the application for admission and fellowship from the Office of Graduate Studies, University of California, One Shields Avenue, Davis, CA 95616. The completed application form, the application fee and official transcripts must be sent directly to the program to which you are applying. Supplemental application materials required by the graduate program must be sent directly to the graduate adviser for that program.

The Graduate Admissions Advisory Committee for the program will submit its recommendation and evaluation to Graduate Studies; final admission decisions rest with the dean of Graduate Studies. This approval procedure applies to all applicants, including those seeking a transfer to UC Davis from another UC campus.

Applications for the degrees of Juris Doctor, Doctor of Medicine, Doctor of Veterinary Medicine, Master of Business Administration and Master of Preventive Veterinary Medicine must be filed directly with the appropriate professional school.

Readmission

April 1 Deadline to file applications for readmission to graduate status with Graduate Studies

If you were formerly registered at UC Davis as a graduate student and wish to return to pursue the same
Graduate Studies

Studies

94

Intramural sports each year draw more than 13,100 students for men's and women's teams

degree objective in the same major, you must apply for readmission and pay the readmission application fee of $40. The readmission application must be filed with Graduate Studies by April 1 (or earlier if the program specifies an earlier date). Readmission to quarters other than fall is granted on an exception basis by special petition to the dean of Graduate Studies. If you are seeking to return to a new degree program and/or new major, you must apply for admission along with other new applicants. Obtain an application from the Graduate Studies office. Transcripts of all work undertaken since you were last registered in graduate status at Davis must be presented with the application. (There is no assurance of reentry, as applicants for readmission will be considered in competition with other applicants for the program.)

International Students

Assessment of a foreign degree is based on the characteristics of the national system of education, the type of institution attended and the level of study completed.

If you are an international student with credentials from universities outside the U.S., you should begin the application process as early as a year in advance. Official copies or certified copies of all transcripts in English and in the original language are required before your application can be processed. Do not attempt to convert your grade point average or ranking to a U.S. equivalent. Graduate Studies will determine your eligibility using U.S. guidelines for credential evaluation. Completed applications from international students along with the nonrefundable $40 application fee must be received by the program to which you are applying by March 1, unless your proposed program has an earlier deadline.

International students may also apply via the World Wide Web at https://secureweb.ucdavis.edu:2443.

English Requirement. If English is not your native language and you have not studied at an institution where English was the language of instruction, you will be required to demonstrate proficiency in English by submitting your test scores from the Test of English as a Foreign Language (TOEFL). This test is given six times each year by the Educational Testing Service, CN6151, Princeton, NJ 08541-6151. The minimum score required for admission to graduate study at UC Davis is 550 or 213 on the Computer Based Test; some programs may require a higher score.

Visas. If you need a certificate of eligibility for a student visa issued by UC Davis, you will be required to complete a certification of finances form showing the availability of sufficient funding for your graduate program (see International Student Services in the “Academic Advising” chapter for complete details). No financial aid of any kind (grants, loans, fellowships, scholarships, or work-study awards) is available to international students during their first year of registration at UC Davis.

Program of Study

New students are assigned an adviser within the appropriate department or graduate group who assists them in planning a program of study. The program will depend to some degree on the student's undergraduate training and may include undergraduate courses to remove deficiencies. Each student must satisfy the degree requirements as published in the Graduate Program Directory, or as documented by the program. Additional requirements for study may be established by the department or group and approved by the Graduate Council. These requirements often include a core of required courses, but considerable flexibility is permitted to suit individual needs. Undergraduates at Davis who plan to pursue graduate study should consult with their major adviser early in their senior year to guarantee adequate preparation.

A graduate degree is awarded to recognize a student's command of a wide range of knowledge in an academic field. It is not awarded merely for fulfillment of technical requirements, such as residence, or the completion of specific courses.

Master's Degree

Students working toward a master's degree must be registered in residence for at least three quarters. Two regular six-week Summer Sessions may count as the equivalent of one quarter. Usually, all work for the master's degree is done in residence on the Davis campus. With the consent of the graduate adviser and the dean of Graduate Studies, however, some work taken elsewhere may be credited toward your degree. The normal limit for such transfer credit is 6 units from another institution, or 12 concurrent units, or up to one half of the unit requirement if the courses were taken at another UC campus—providing the units were not used to satisfy requirements for another degree.

A master's degree may be awarded upon completion of one of two basic plans in which either a thesis or a comprehensive examination is required.

Ph.D. Degree

The Doctor of Philosophy degree, as granted at the University of California, means that the recipient possesses knowledge of a broad field of learning and has given evidence of distinguished attainment in that field; it is a warrant of critical ability and powers of imagination and synthesis. It means, too, that the candidate has presented a dissertation containing an original contribution to the knowledge of the chosen field of study.

Students working toward a doctorate must be registered
and in university residence for a minimum of six regular quarters. Experience indicates that it takes considerably longer than this to complete a degree program. Two consecutive regular Summer Sessions may count as the equivalent of one regular quarter.

There is no university unit requirement for the doctoral degree. However, individual programs have course requirements that must be completed before admission to the qualifying examination.

The Qualifying Examination is administered by a committee appointed by the dean of Graduate Studies. The examination is intended to demonstrate critical thinking ability, powers of imagination and synthesis and broad knowledge of the field of study. Upon recommendation of the Qualifying Examination Committee, and with the approval of the Graduate Council, the examination may be repeated one time.

After successful completion of the Qualifying Examination, the student must file for Advancement to Candidacy for the degree. At this time, a committee is appointed to direct the research problem and guide in the preparation of the dissertation.

Graduate students in certain Ph.D. programs may participate in a Designated Emphasis, a specialization that might include a new method of inquiry or an important field of application which is related to two or more existing Ph.D. programs. The Designated Emphasis is awarded in conjunction with the Ph.D. degree and is signified by a transcript designation; for example, “Ph.D. in History with a Designated Emphasis in Critical Theory.” Programs approved as Designated Emphases include Biotechnology; Computational Science; Critical Theory; Economy, Justice and Society; Feminist Theory and Research; International Nutrition; Native American Studies; Second Language Acquisition; and Social Theory and Comparative History.

Intercampus Exchange Program

A graduate student registered on any campus of the university may become an intercampus exchange student with the approval of the graduate adviser, the chairperson of the department or group on the host campus and the dean of Graduate Studies on both the home and the host campuses.

An intercampus exchange student has library, health service and other student privileges on the host campus, but is considered a graduate student in residence on the home campus. The grades obtained in courses on the host campus are transferred to the home campus and entered on the student’s official graduate transcript. Application forms may be obtained in Graduate Studies and must be submitted five weeks before the beginning of the quarter in which you wish to participate in the program. Petitions received after the first day of the quarter will not be processed.

Fellowships, Assistantships and Loans

World Wide Web (applications for fellowships and scholarships): http://eddie.ucdavis.edu/gspub/support/studsup.htm

Financial support for graduate study at UC Davis is available in several forms: teaching and research assistantships, financial aid and fellowships/scholarships.

Financial aid, which is available to U.S. citizens, permanent residents or immigrants only, is awarded on the basis of demonstrated financial need and is administered by the Financial Aid Office. Federal financial aid includes student loans, grants and work-study funding.
You may apply for financial aid before you have been admitted. To be considered for financial aid, or for any awards based on financial need, you must file a “Free Application for Federal Student Aid” (FAFSA) at http://www.fafsa.ed.gov no later than March 1, prior to the fall quarter enrollment. This form, submitted directly to the Federal Student Aid Program Office, Iowa City, IA, is used to determine financial need only. Contact the Graduate Financial Aid Office for information regarding loans, grants and work-study.

Fellowships and graduate scholarships are awarded primarily on the basis of scholarship and promise of outstanding academic and professional achievement. Fellowship awards can include a stipend, fees and/or nonresident tuition. Considered in evaluations are the Graduate Record Examination (GRE) scores, undergraduate and graduate grade point averages, academic transcripts, statement of purpose, letters of recommendation and other documentation such as publications or awards. The minimum cumulative undergraduate or graduate grade point average required for a stipend or in-state fee award is 3.5 (A=4.0); for nonresident tuition fellowships the minimum is 3.25. Applicants must be U.S. citizens, or permanent residents of the U.S., or immigrants. U.S. citizens and permanent residents are eligible for nonresident tuition fellowships for their first three quarters only at UC Davis. New international students may be awarded nonresident tuition fellowships, but not stipend or in-state fee fellowships, in their first three quarters.

Applications for fellowships and graduate scholarships are due by January 15 for awards beginning fall quarter. Information for both new and continuing students and application materials for fellowships and graduate scholarships are available on the World Wide Web. You may print the application forms, complete them and submit them by mail. The fellowship applications may not be submitted electronically.

Entering students submit the “Application for Graduate Admission and Fellowship,” continuing students file an “Application for Fellowships and Graduate Scholarships for Continuing UCD Graduate Students” with their graduate program.

Graduate Certificate Program for Engineers

For engineers who already have a degree, the College of Engineering offers a Graduate Certificate Program. This program consists of course work in selected engineering subjects and requires fewer units than the degree programs. The purpose of the Graduate Certificate Program is to provide practicing engineers with an opportunity to develop additional expertise in specific areas and to explore new fields of technical interest.

General requirements for the program are

- 15 or 16 units of specified graduate course work, or a combination of specified graduate and undergraduate course work
- Admission to Graduate Studies

Further information on the Graduate Certificate Program may be found in the *College of Engineering Bulletin.*

Teacher Credential Programs

Division of Education
Student Services Office
2078 Academic Surge
530-752-0757; jgmacdonald@ucdavis.edu; http://education.ucdavis.edu/

Department of Agronomy (Agriculture Teaching Credential) Agricultural Education Program Office
132 or 155 Hunt Hall
530-752-3040 or 752-4369

The Division of Education offers programs for students interested in becoming elementary or secondary teachers. The elementary education program prepares you to teach all the subjects commonly taught in an elementary classroom. In addition, it offers the option of receiving in-depth training for teaching in a bilingual (Spanish) or English as a Second Language classroom. The secondary education program is designed to prepare teachers who will work in grades 7 through 12 in the following areas: English, science (biology, chemistry, geoscience and physics), math and physical education.

To apply you need to have done the following:

- completed a bachelor's degree;
- completed most of the required course work in the area in which you want to teach, or have taken the PRAXIS and SSAT exams in the area in which you want to teach;
- taken the California Basic Education Skill Test (CBEST);
- worked with school-age children; and,
- met Graduate Studies minimum GPA requirement (3.0).

There are additional requirements that we encourage you to take as undergraduates. Information is available in the Student Services Office.

The teaching credential program starts in the fall quarter only and is nine months long. It is a full-time professional program with a rigorous schedule. Student teachers are in classrooms in the morning and early afternoon and back on campus in the afternoon and evening for course work. The student teaching assignments generally are in the following communities: Winters, Woodland, Dixon, Vacaville, Fairfield, Sacramento and West Sacramento. Student teachers are required to participate in the schools in the role of a regularly credentialed teacher. A typical course schedule follows:

- student teaching
- teaching methods courses [on how to teach your subject area(s) and grade level(s)]
- reading methods course
- computer education course
- health education course
- special education course

Upon satisfactory completion of all requirements, you will be recommended to receive a California teaching credential.

Applications and filing deadlines should be obtained from the Division of Education or from the Department of Agronomy (agricultural education).

The teacher education program is also available to
upper division students who have a 3.3 GPA and room in their schedule for a full-time teaching program. Satisfactory completion of your degree and the credential program would entitle you to a nonrenewable preliminary credential. Within five years you must complete a graduate year of study to be eligible for an additional credential. Specific requirements may be obtained from the Student Services staff in the Division of Education.

Students considering teaching as a career should consult the Division of Education or the Department of Agronomy as early as their freshman year. Because of the complexity of the Teacher Preparation and Licensing Law and the requirements of Davis campus programs, students are encouraged to maintain close contact with education advisers throughout their undergraduate years.

UC Davis/CSU Sacramento Collaborative Elementary Credential Program

The Collaborative Elementary Credential Program offers accelerated course work for the CLAD or BCLAD elementary credential during the summers; the supervised field experience is completed during the academic year. This program is designed to meet the needs of emergency credential holders and working professionals who are changing careers.

Seminar in College Teaching

Teaching Resources Center
17 Wellman Hall
530-752-6050; http://trc.ucdavis.edu/trc/grads/colteach.html

The Seminar in College Teaching is intended to introduce graduate students to the principles and methods of designing and delivering college-level courses in their respective fields. The course deals with a broad range of tasks involved in the teaching of these classes, including developing course objectives, preparing lectures, selecting and giving assignments, writing tests, evaluating student work and other related strategies of class management. If there is sufficient interest, the Seminar will be taught each quarter.

The Seminar meets in nine weekly three-hour sessions during the quarter. A typical session involves two hours of discussion/lecture/demonstration and one hour of practicum in which the participants will be involved at a more experiential level. The course is presented by members of the TRC professional staff, with occasional guest presentations by members of the UC Davis faculty.

It is understood that the Seminar in College Teaching is an elective experience for the participants and that the primary requirements of work and study in their respective fields should be given the highest priority. For this reason, individuals who wish to take the Seminar are strongly encouraged to enroll during a quarter when their work and travel schedules will allow full participation. In order to be certified as having completed this seminar, participants are expected to attend every session and fulfill the required brief assignments in a satisfactory and timely manner.
SCHOOL OF LAW
School of Law, Admission Office
530-752-6477; http://kinghall.ucdavis.edu
lawadmissions@ucdavis.edu

The School of Law offers a three-year professional curriculum leading to the degree of Juris Doctor. In addition to the traditional professional curriculum, the School provides professional skills training in interviewing and counseling, negotiation and dispute resolution and trial practice. It also offers opportunities for practical experience through clinical programs and for in-depth study of an area of law in an individualized program of classroom work, research, writing, or experience in the community. The School seeks to promote critical evaluation of law and legal institutions in a broad perspective, integrating non-legal disciplines with professional legal education.

The School is fully accredited by the American Bar Association, is a member of the Association of American Law Schools, and has a chapter of the Order of the Coif.

Preparing for the Study of Law

No specific college major is required for admission to the School of Law, and there is no prescribed pre-legal program. Your college record and Law School Admission Test (LSAT) score must, of course, demonstrate that you are highly qualified for the study of law.

As a pre-law student, you should plan a course of study that will give you a broad cultural background and include intensive work for a substantial period of time in selected fields of study. Pre-law students should develop the ability to think critically. They should gain an understanding of people and institutions and know how to gather and weigh facts, to solve problems and think creatively. They should be able to read rapidly with comprehension, and express themselves clearly, completely and concisely, both orally and in writing.

You can get help with program planning from the Pre-Law Advising Office, 227 Voorhies Hall, 752-3009.

For additional information, see the Official Guide to U.S. Law Schools, a publication of the Law School Admission Council in cooperation with the American Bar Association and the Association of American Law Schools. This book includes material on the law and lawyers, pre-law preparation, applying to law school and the study of law, together with individualized information on all ABA approved law schools. It can be found at college and major bookstores or ordered from Law Services, http://www.lsac.org, 215-968-1001, Box 2400, Newtown, PA 18940-0998. You can also contact Law Services via e-mail at lsacinfo@lsac.org. The LSAT/LSDAS Registration and Information book is also available in the Law School Admission Office and the Pre-Law Advising Office on campus.

Applying for Admission

February 1 Deadline for filing applications for admission for 2000–2001 to the School of Law

1. Request application forms and the school catalog from the Office of Admissions, School of Law, University of California, 400 Mrak Hall Drive, Davis, CA 95616-5201 or post an e-mail request to: lawadmissions@ucdavis.edu. Return your completed application to that office, plus a $40 nonrefundable application fee, in the form of a check or money order made payable to the Regents of the University of California.

The last date for filing completed application forms, together with all supporting documents, including LSAT scores, Law School Data Assembly Service (LSDAS) reports and letters of recommendation, is February 1 of the year in which admission is sought. Early filing of all application materials is strongly recommended and will materially assist the School of Law Admissions Committee in its considerations.

2. You must take the Law School Admission Test and register with the Law School Data Assembly Service so that the score will be reported to the school. You are urged to take the test as early as possible, and no later than December preceding the year in which admission is sought.

Testing centers are located in all parts of the United States and in many foreign countries. Tests are given four times a year: February, June, September and December. The completed test application blank, accompanied by the required fee, should be postmarked approximately six weeks before the date of the test to ensure that you will be registered for that test date.

To obtain application forms, information about the test, specific test dates and the location of testing centers, write to: Law Services, Box 2000, 661 Penn Street, Newtown, PA 18940-0998. You can also contact Law Services via e-mail at lsacinfo@lsac.org. The LSAT/LSDAS Registration and Information book is also available in the Law School Admission Office and the Pre-Law Advising Office on campus.

3. Register with the LSDAS no later than December 1 by completing and mailing the registration form supplied in each LSAT/LSDAS Registration and Information book. Have a transcript from each college or university you have attended sent directly to Law Services. Complete instructions and a mailing envelope are available in the book.

4. Submit an official transcript of college work completed during the first semester or quarter of your senior year directly to the School of Law as soon as it is available. Failure to do so may delay consideration of your application materials. Successful applicants must submit directly to the School of Law a final transcript showing the award of a bachelor's degree.

5. Provide two letters of recommendation from objective and responsible persons to whom you are well known. At least one of these letters should come from a faculty member under whom you studied while in college. There are three options for submission of recommendations: (1) use the envelopes provided in the School of Law catalog and follow the instructions for submission of recommendations with the admission application; (2) submit recommendations to LSAC for inclusion with your LSDAS report; (3) have your career center, prelaw office, or other campus recommendation service send the letters directly to the School or Law. Your application cannot be considered until two letters have been received.

Your application will be reviewed by the School of Law Admissions Committee, which seeks students of demonstrated academic ability, as evidenced by LSAT scores and the undergraduate grade point average (GPA). The committee seeks students of diverse backgrounds and considers economic factors, advanced
degrees or other advanced studies, significant work experience and extracurricular and community activities during and after the college years. An applicant’s growth, maturity and commitment to the study of law are also major considerations. Students are admitted only on a full-time basis and only in August.

6. When accepted by the School of Law, you are simultaneously admitted to Graduate Studies on the Davis campus of the university for the program leading to the degree of Juris Doctor. If you intend to pursue studies leading to other graduate degrees, or wish to become a candidate for a Combined Degree Program (see opposite), you must make separate application to Graduate Studies before commencing such studies.

Admission to Advanced Standing

If you have completed at least one year of full-time law course work in another approved law school, you may be considered for admission to advanced standing with credit for not more than one year of such work. The application filing period is June 1–30. No application for advanced standing will be considered until the Office of Admissions has received transcripts for all prior law school work.

Application procedures for advanced standing are the same as described above with the addition of (1) a letter of good standing including class rank from the dean of any law school previously attended; (2) at least one letter of recommendation from a law professor; (3) transcripts of all law school work; (4) LSAT score (no need to register with LSDAS—a copy of the report previously submitted to the school you are presently attending will suffice); and (5) an official transcript from the school where you earned your undergraduate degree, stating the date the degree was conferred. The deadline for transfer applications is June 30 of the year for which transfer is sought. Committee decisions on advanced standing are normally made in late July or early August of the year in which admission is sought.

Students who have been disqualified at another law school will not be admitted to this school.

Recruitment of Underrepresented Groups

The students and faculty of the School of Law recognize the great need for lawyers from underrepresented groups. The School, therefore, actively solicits applications from those groups that reflect the many diverse populations of California but, traditionally, have been underrepresented in the law school population.

The School of Law, in cooperation with the Association of American Law Schools (AALS) and the Council on Legal Education Opportunity (CLEO), participates in programs designed to increase the number of law students from underrepresented groups. CLEO applications may be obtained by writing to: Council on Legal Education Opportunity, 1420 N Street, N.W., Terrace One, Washington, D.C. 20005.

Applications for the Prelaw Summer Institute for American Indians and Alaskan Natives may be obtained from the American Indian Law Center, P.O. Box 4456-Station A, Albuquerque, NM 87196 (505-277-5462).

The Mexican-American Legal Defense and Education Fund (MALDEF) has scholarships available for Latino students who have applied to law school. Applications may be obtained by writing to MALDEF, 634 So. Spring Street, 11th Floor, Los Angeles, CA 90014 (213-629-2512, ext. 146).

Program of Study

The professional curriculum requires six semesters for completion and extends over a period of three years. It is for full-time students only; no part-time or evening program is offered. New students are admitted only at the beginning of the fall semester.

After satisfactorily completing the professional curriculum of 88 semester units and the required period of resident study, you will receive the degree of Juris Doctor. Students who fail to attain satisfactory grades may be required to withdraw from the School at the end of any academic year.

The first year’s work is prescribed and provides the essential foundation for subsequent legal study. Satisfactory completion of the first-year courses is, in all cases, prerequisite to second- and third-year courses. The work of the second and third years is elective. The courses of the professional curriculum are listed in the “Programs and Courses” section of this catalog. Courses taken in summer sessions at other accredited law schools may, with prior permission, be credited toward the units required for the professional degree.

Combined Degree Programs

Students may find a combined degree involving law and another discipline such as economics, business, sociology, or science advantageous. To encourage this kind of study, the School, in conjunction with other schools and university departments, has established Combined Degree Programs. Under these programs, a student may work toward a J.D. degree and a master’s degree in another discipline at the same time. In some instances it may be possible to work on a Ph.D. degree as well. Students working toward a combined degree are required to spend their first year at the law school.
Normally, a Combined Degree Program will take at least four years. You will usually be able to earn up to 10 semester-hours of law school credit for work in the related discipline and normally can complete the combined degrees in less time than it would take to earn the two degrees separately. The first year of the Combined Degree Program must be taken entirely in the School of Law. During the remaining years, course work may be divided between the law school and the related discipline. You must satisfy the admission requirements for both programs and file applications with both units.

Students have pursued degree programs in combination with UC Davis departments for the M.A. degree in economics, philosophy, computer science and sociology, and with the School of Management for the M.B.A. degree. The law school will attempt to work out an additional program if you are interested in other disciplines. You may enroll in the Combined Degree Program any time before the beginning of your third year in law school. If you are interested in pursuing a Combined Degree Program, and have made a separate application to another school or department, you should notify the School of Law if that application is accepted.

School of Law Academic Calendar 2000-2001

The School of Law operates on a semester system rather than the quarter system used on the remainder of the Davis campus.

<table>
<thead>
<tr>
<th>FALL 2000</th>
<th>SPRING 2001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction Week</td>
<td>Mon.-Fri., Aug. 14-18</td>
</tr>
<tr>
<td>Law School instruction begins</td>
<td>Mon., Aug. 21</td>
</tr>
<tr>
<td>Labor Day holiday</td>
<td>Mon., Sept. 4</td>
</tr>
<tr>
<td>Veteran’s Day holiday</td>
<td>Fri., Nov. 10</td>
</tr>
<tr>
<td>Thanksgiving holiday</td>
<td>Thurs.-Fri., Nov. 23-24</td>
</tr>
<tr>
<td>Martin Luther King, Jr., holiday</td>
<td>Mon., Jan. 15</td>
</tr>
<tr>
<td>President’s Day holiday</td>
<td>Mon., Feb. 19</td>
</tr>
<tr>
<td>Spring recess</td>
<td>Mon.-Fri., March 26-30</td>
</tr>
<tr>
<td>Law School instruction ends</td>
<td>Fri., Dec. 1</td>
</tr>
<tr>
<td>Reading period</td>
<td>Sat.-Wed., Dec. 2-6</td>
</tr>
<tr>
<td>Law School examination period</td>
<td>Thurs.-Thurs., Dec. 7-21</td>
</tr>
<tr>
<td>Law School Commencement</td>
<td>Sat., May 19</td>
</tr>
</tbody>
</table>

*Friday, February 23 is treated as a Monday for class schedule purposes.

The LL.M. Program

University Extension
530-757-8569; 530-575-8596 (fax)
CMcmillin@unexmail.ucdavis.edu

The law school LL.M. (Master of Laws) program integrates American and foreign law students at all levels of study. For foreign law graduates, the program provides an opportunity to gain a basic knowledge of the United States legal system. United States law school graduates and selected foreign LL.M. candidates may also seek admission on a thesis rather than a course basis. Other opportunities available to all graduate law students include developing special expertise in a particular area and doing special projects and original research under the direction of a faculty member.

Each LL.M. candidate must successfully complete a minimum of 20 semester units of work, usually 10 units each semester. Foreign LL.M. students must enroll in the 1-unit course *Introduction to Legal Research* and the 2-unit course *Introduction to the Law of the United States*. They earn the remainder of their required course credit in regular elective J.D. courses. Each foreign student must also complete an intellectually rigorous legal research and writing project, constituting at least 2 units of credit.

All LL.M. candidates begin their year of study with a complete orientation in the academic and social life of the law school, the UC Davis campus and the city of Davis. LL.M. students are encouraged to enroll in the School of Law’s Orientation in U.S.A. Law Program, given in the month before the LL.M. Program begins.
ACADEMIC ADVISING

GRADUATE SCHOOL OF MANAGEMENT

GRADUATE SCHOOL OF MANAGEMENT
The Graduate School of Management offers a full-time, two-year program leading to the Master of Business Administration degree. The program provides both entry-level and mid-career students with an understanding of management approaches to problem solving and an awareness of the environment within which public and private management decisions are made. Successful completion requires not only a sophisticated understanding of a variety of functional skills in finance, marketing, production, program evaluation and accounting, but also an understanding of computers, information systems and the application of scientific methods to the identification and solution of management problems.

Preparing for the Study of Management

A bachelor’s degree and a strong interest in professional management are prerequisites for admission to the Graduate School of Management. The school seeks students from diverse professional and academic backgrounds and does not limit its consideration to applicants from any particular category of majors. Entry-level and mid-career applicants are considered, and women and minorities are encouraged to apply.

Although the program has no specific subject prerequisites, it is strongly recommended that students complete the following course work before enrolling:

Accounting—an introductory course in financial accounting.

Economics—introductory courses in micro- and macroeconomics.

Mathematics—an introductory course in calculus.

Statistics—one course in elementary statistics.

Applying for Admission

Deadlines for filing applications for admission for 2000-2001 to the School of Management:

<table>
<thead>
<tr>
<th>Application Deadline</th>
<th>Decision made no later than</th>
</tr>
</thead>
<tbody>
<tr>
<td>February 1, 2001</td>
<td>March 31</td>
</tr>
<tr>
<td>April 1, 2001</td>
<td>May 31</td>
</tr>
</tbody>
</table>

Interviews are highly recommended but not required, unless the applicant has less than two years of work experience. A completed application should be on file before scheduling an interview.

Admission is for the fall quarter only. Application materials can be obtained in the following ways:

- call 530-752-7399
- e-mail the Graduate School of Management at gsm@ucdavis.edu
- print the application materials from the Web site at www.gsm.ucdavis.edu
- apply electronically through GradAdvantage MBA (www.gradadvantage.org) or Multi-App (www.multi-app.com) or Embark (www.embark.com)

Complete and return your application, with all supporting documents, by the deadlines given above. The application fee is $40.00.

In addition to your application, you need to submit:

- Transcripts from all colleges or universities previously attended.
- Graduate Management Admission Test (GMAT) taken within the last five years of the admission date. Applicants must take the GMAT no later than April to be considered for fall admission. For further information and registration forms contact: Graduate Management Admission Test, Educational Testing Service, P.O. Box 6103, Princeton, NJ 08541-6103; 609-771-7330; www.gmat.org.
- Three letters of recommendation. Applicants currently enrolled in school should include one recommendation from a professor. For individuals who are out of school, recommendations from employers or business associates are acceptable.

The GSM “Briefcase Brigade” makes an appearance in the annual Picnic Day parade.
Three essays on specific topics.

Personal interviews are not required, although visits from applicants are welcomed. To schedule an interview or visit, call 530-754-4080, or e-mail sebutzke@ucdavis.edu.

International Students

Foreign students for whom English is a second language must take the Test of English as a Foreign Language (TOEFL) by March 1, and receive a minimum score of 600 on the paper based test, or 250 on the computer based test. To receive registration forms, write to: TOEFL, Educational Testing Service, P.O. Box 6155, Princeton, NJ 08541-6155; 609-771-7100; www.toefl.org.

International students must show proof of financial support for one academic year including tuition and living expenses upon being admitted to the program.

Criteria for Admission

The major criterion of the committee granting admission is what an applicant has to gain from, and offer to, the program. Consideration of an applicant’s undergraduate performance includes a review of trends in scholastic performance and areas of academic strength as well as an assessment of overall grade point averages. Admissions standards and grading policies of the schools attended are also considered. Both verbal and quantitative scores on the GMAT are used to evaluate measurable general aptitude for management. Background and maturity as indicated by employment history, service and activity records, recommendations and the applicant’s essays are factors in the committee’s evaluation. Professional management experience is not required for admission but is favorably considered.

Program of Study

The hallmark of the two-year UC Davis MBA program is its flexibility. Students are required to take seven core courses and then choose three additional breadth courses which will prepare them for in-depth study in their concentration. The series of core courses in the first year focus on all basic disciplines of business—accounting, economics, finance, marketing, organizational behavior and statistics.

As early as the first year of study, students are able to integrate elective courses into their personal curriculum. Elective courses place an emphasis on real-world application of management principles. Students can focus on one or more of the ten “standing” concentrations, or may design their own concentration. The concentrations include accounting, agricultural management, finance, international management, information technology, management science, marketing, public sector management, technology management and general management.

MBA Program for Working Professionals

In addition to the above full-time program, the Graduate School of Management offers an evening MBA Program for Working Professionals. Students enrolled in the MBA Program for Working Professionals pay a flat rate of $1,345.00 per course.

Application Deadline

| Decision made no later than | May 15, 2001 | July 15 |

Interviews are required and may be scheduled once your application is submitted.

If you would like more information about the evening program, please contact the Graduate School of Management Admissions office at 530-752-7399 or visit the Web site (www.gsm.ucdavis.edu).
School of Medicine
530-752-2717; http://www-med.ucdavis.edu

The Doctor of Medicine degree requires the satisfactory completion of a four-year course of study composed of 15 consecutive quarters. Course work is conducted on the Davis campus; at the UC Davis Medical Center, Sacramento; and in nearby affiliated hospitals.

Preparing for the Study of Medicine

When you apply to the School of Medicine, you must submit the results from the Medical College Admission Test (MCAT), so it is recommended that you take the MCAT by the spring before application. Information can be obtained at your undergraduate institution or directly from MCAT Program, Box 4056, Iowa City, IA 52243; Telephone 319-337-1357. To be acceptable for the entering class of fall 2001, the MCAT must be taken no later than fall 2000. No scores before August 1997 will be accepted.

Applicants must also meet the following academic requirements:

A. Must have completed at least three years of study in an accredited college or university in the United States or Canada. A minimum of 90 semester hours or 135 quarter units of college-level work is required. Courses in highly specialized fields are acceptable only at the discretion of the medical school.

B. Must have completed satisfactorily before matriculation each of the following courses:

<table>
<thead>
<tr>
<th>Quarter Units</th>
<th>Semester Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. English, 1 year or its equivalent</td>
<td>12 6</td>
</tr>
<tr>
<td>2. Biological science, 1 year including laboratory, or its equivalent</td>
<td>12 8</td>
</tr>
<tr>
<td>3. General chemistry, 1 year including laboratory, or its equivalent</td>
<td>12 8</td>
</tr>
<tr>
<td>4. Organic chemistry, 1 year or its equivalent. If two or more undergraduate organic chemistry courses are offered, it is recommended that you elect the more rigorous option</td>
<td>12 8</td>
</tr>
<tr>
<td>5. Physics, 1 year including laboratory or its equivalent</td>
<td>12 8</td>
</tr>
<tr>
<td>6. Mathematics, course work sufficient to satisfy prerequisites for integral calculus. (Course work through integral calculus is recommended)</td>
<td>6 4</td>
</tr>
</tbody>
</table>

(You will find helpful experience and knowledge gained in biochemistry, genetics and embryology.)

C. Must demonstrate the potential to perform academically at least as well as the average of the current first year class. This reflects the School of Medicine’s generally higher standards and our emphasis on potential as judged from the application as a whole, including but not limited to MCAT and GPA scores.

For additional information, contact the School of Medicine Admissions Office and request A Guide for Prospective Students.
and reports of teachers, advisers and interviewers with regard to intellectual capacity, motivation, emotional stability and personal dedication.

The majority of openings in the entering class will be awarded to students who are California residents. However, the School of Medicine participates in the program of the Western Interstate Commission for Higher Education (WICHE) and residents of participating states will be considered as residents for purposes of admission. For more information, write the WICHE at Post Office Drawer P, Boulder, CO 80302.

The School of Medicine selects students for admission with a view to meeting the needs of society, of the medical profession and of the School. Because we live in a pluralistic society, and the educational experience is enhanced by the interaction of students from various backgrounds, the School desires diversity in its student body. This is reflected in the School’s commitment to expand opportunities in medical education for individuals from groups underserved in medicine as the result of socioeconomic disadvantage and to increase the number of physicians practicing in underserved areas. Therefore, the Admissions Committee, composed of individuals from a variety of backgrounds and representative of a broad spectrum of medical sciences, evaluates applicants in terms of all relevant factors. These include academic credentials, with due regard to how they may have been affected by disadvantages experienced by the applicant, such personal traits as character and motivation, experience in the health sciences and/or the community, career objectives, and the ability of the individual to make a positive contribution to society, the profession and the School.

Transfer with Advanced Standing

Currently enrolled students in good standing at approved medical schools in the United States or Canada may apply for admission to the third year of study. In order to provide the best facilities and clinical resources, however, we must limit the number of students in our clinical clerkships. Therefore, applications for transfer to the third year are considered on a space-available basis.

Deadline for application is April 1 of the year of transfer. A nonrefundable application fee of $40.00 is required. Applicants must provide medical school transcripts, and if accepted, must pass Part I of the USMLE at their current institution. Available spaces may be filled by the Admissions Committee based upon the entire content of an application, or they may request additional information including letters of recommendation and a personal interview. All applicants for transfer must meet the usual requirements for admission, as well as satisfactorily completing the equivalent of two years of study at the medical school. Applicants will be notified of the Admissions Committee’s decision starting April 30.

Program of Study

Doctor of Medicine. The curriculum for the M.D. degree is normally a four-year program that provides comprehensive training for the practice of medicine, and provides a blend of basic sciences training and clinical experience. Although the emphasis during the first two years is on the basic-science foundations of medicine, medical students are introduced to patient care during their very first quarter of study, reflecting the school’s commitment to the training of highly skilled clinicians. Several volunteer clinics, largely staffed by UC Davis medical students, provide an ideal setting for hands-on clinical experience.

Combined Degree Program. In addition to the Doctor of Medicine degree, the School of Medicine at Davis offers two formal combined M.D./Ph.D. programs that trains physicians to meet, respond to and solve the broad diversity of problems and dilemmas facing current and future health care.

Meeting this challenge requires those capable of advancing our biological sciences knowledge base, and others who can recognize and solve the ethical, political and humanitarian issues that confront the broad delivery of health care to all. Hence, the field for the Ph.D. In the joint degree program at UC Davis can be any graduate program offered on the Davis campus, extending beyond the traditional biological sciences boundaries, and strongly encouraging candidates to seek degrees in social sciences and humanities. All requirements for both degrees are met in a course of study that usually lasts seven years. To be admitted, and be concurrently enrolled in both degree programs, students must apply for separate admission to both the M.D. and Ph.D. programs and obtain permission of the School of Medicine M.D./Ph.D. Advisory Committee. Funding for two competitive fellowships is awarded annually to students enrolled in the M.D./Ph.D. program.

The University of California, Berkeley, School of Public Health allows students to pursue a Masters of Public Health degree in conjunction with the M.D. degree at Davis. Most typically, the public health portion of this program is taken immediately following completion of the third year clinical clerkships. A directed focus in public health is viewed as a natural extension of the school of medicine mission in the training of primary care physicians.

Advisory Committee. Inquiries about admission to graduate education should be directed to the Dean of Graduate Studies, University of California, One Shields Avenue, Davis, CA 95616. For more information...
concerning the combined-degree programs, contact Ed Dagang, Office of Admissions, School of Medicine, University of California, One Shields Avenue, Davis, CA 95616-8661.

Family Nurse Practitioner/Physician Assistant Program. The Family Nurse Practitioner/Physician Assistant (FNP/PA) credential program educates health care professionals to act as members of a health care team, and improves the availability of culturally relevant primary health care in underserved populations throughout central and northern California. Enrollment in these courses (see Medicine, School of, Department of Family and Community Medicine) is limited to students who are enrolled in the FNP/PA program.

Academic Calendar

The School of Medicine operates on a different schedule from the rest of the campus. A detailed academic calendar may be obtained from the Office of Curricular Support, 2427 Tupper Hall, University of California, One Shields Avenue, Davis, CA 95616.

The program is a continuous four-year academic experience, with the first year commencing in fall quarter. A six-week break is scheduled between the first and second year academic schedule following spring quarter. The second year concludes with a three- to four-week period for preparation for USMLE Step 1 examination. The third and fourth year clinical experiences begin in summer and continue through spring.

With approval, students may extend the first two years over three years and use the additional time to individualize their programs. This alternative time is highly suitable for including research experiences and/or meeting other academic objectives. Flexibility in the third and fourth years also permits alternate scheduling.
SCHOOL OF VETERINARY MEDICINE

School of Veterinary Medicine
Office of the Dean
Surge IV

The mission of the School of Veterinary Medicine is to provide the best possible health care for animals through teaching, research and public service. Students are offered a rigorous four-year program of study that prepares them for diverse career opportunities in veterinary medicine.

Preparing for the Study of Veterinary Medicine

To be considered for admission to the School, you must have completed 108 quarter units (72 semester units) in an accredited college or university and have completed the following courses:

Lower Division Required Sciences

<table>
<thead>
<tr>
<th>Course</th>
<th>Quarter Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Chemistry</td>
<td>15</td>
</tr>
<tr>
<td>Organic Chemistry</td>
<td>6</td>
</tr>
<tr>
<td>Physics</td>
<td>6</td>
</tr>
<tr>
<td>Biological Sciences</td>
<td></td>
</tr>
</tbody>
</table>

Upper Division Required Sciences

<table>
<thead>
<tr>
<th>Course</th>
<th>Quarter Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Embryology</td>
<td>4</td>
</tr>
<tr>
<td>Genetics</td>
<td>4</td>
</tr>
<tr>
<td>Biochemistry</td>
<td>4</td>
</tr>
<tr>
<td>Physiology</td>
<td></td>
</tr>
</tbody>
</table>

Additional Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Quarter Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required English</td>
<td>12</td>
</tr>
<tr>
<td>Required Humanities and Social Sciences</td>
<td>12</td>
</tr>
<tr>
<td>Required Statistics</td>
<td>4</td>
</tr>
</tbody>
</table>

(To convert semester units to quarter units, multiply by \(\frac{3}{2}\). For example, a 4-unit semester course is equivalent to a 6-unit course in the quarter system.)

You should plan your preveterinary medical education carefully. The required courses should be spaced to permit maximum scholastic achievement. An undergraduate major should be selected on the basis of individual interest and aptitude; there is no advantage gained toward admission by selecting one major over another. If you have definite areas of interest within the general field of veterinary medicine, you are encouraged to take courses (for example, computer science, agricultural economics, molecular and biochemical genetics) that will broaden your background in these areas. Some specialized areas include laboratory animal medicine, exotic animal medicine, public health, food animal practice and biomedical research.

Examinations. You must take the General Aptitude Test of the Graduate Record Examination (GRE) by October 1st of the year you apply for admission. Applications for the exams and additional information may be obtained from the Educational Testing Service, Box 23470, Oakland, CA 94623-0470. The GRE must be taken within five years of the time you submit your application. The highest scores will be used when the GRE is taken more than once.

Grade Point Average. To be considered for admission, you must have a minimum grade point average of 2.50 for both the required sciences and the cumulative grade point average. Applicants who do not meet the minimum grade point average can qualify for admission by receiving GRE scores in the upper 30th percentile for the combined General Aptitude Test scores. Applicants who do not have transcripts with letter grading can qualify for consideration with these same scores or by receiving a bachelor's degree with honors.

Practical Experience. Admission to the School requires extensive experience with animals. This experience should entail more than having family pets and should include experience with several animal species if that experience includes activities that give an appreciation and understanding of the veterinary profession. The minimum requirement for animal, veterinary and biomedical science experience is 180 hours (4.5 weeks). This experience should also include working with veterinarians, to give you an understanding of the duties and responsibilities of a practitioner and the breadth of veterinary medicine.

Applying for Admission

October 1, 2000 Deadline for filing applications for admission to enter Fall 2001 to the School of Veterinary Medicine

The Veterinary Medical Colleges Application Service (VMCAS) is the central distribution, collection and processing service for applications to the School of Veterinary Medicine and to other veterinary colleges.

Students are admitted to the School of Veterinary Medicine in the fall only. You may request an application any time after July 1 by writing to the Office of the Dean—Student Programs, School of Veterinary Medicine, University of California, One Shields Avenue, Davis, CA 95616 or by calling 530-752-1383.

Students interested in admission to the School of Veterinary Medicine are urged to request an Announcement of the School of Veterinary Medicine at an early date so that all minimum academic requirements and deadlines are met.

Applicants with disadvantaged backgrounds (cultural, economic, social, educational, disabled and other factors) are encouraged to apply to the Veterinary Medical Opportunity Program (VMOP). For further information and advising services, write or call the Office of the Dean—Student Programs at 530-752-1383.

Letters of Evaluation. Three letters of evaluation are required and are submitted with your VMCAS application. Letters should be requested from those who know you well, who understand academic and professional demands and have had the opportunity to evaluate your personal qualities and potential as a professional person. The evaluator should be willing to write a thorough, comprehensive letter on your behalf.

Interviews. Interviews may be requested, as deemed necessary, by the Dean and Admission Committee to obtain additional information. The Dean and Admission Committee may require additional evaluation procedures for selecting candidates for admission.

Out-of-State and Foreign Applicants. California residents are given priority for admission to the school. A
small number of uniquely qualified applicants who are not California residents may be admitted as nonresidents. The criteria for determining residency are explained in Residence for Tuition Information in the Appendix of this catalog. Specific questions should be addressed to the Legal Analyst—Residence Matters, 111 Franklin St., 8th Floor, Oakland, CA 94607-5206. No other persons are qualified to give rulings on residency.

If you are from a country other than the United States, you must include a certified English version of your college transcript, and, if English is your second language, the official scores from the Test of English as a Foreign Language (TOEFL) taken within five years of the date when your application is submitted.

Criteria for Selection

I. Academic Factors (50-60%)
 A. College course work:
 1. GPA of all undergraduate and graduate course work
 2. GPA of required science course work
 3. GPA of last two years of college work (minimum of 45 semester units)
 B. Graduate Record Examination:
 1. General Aptitude Test (Verbal, Quantitative and Analytical)

II. Non-Academic Factors (40-50%)
 A. Narrative (5-20%)
 B. Letters of Evaluation (5-20%)
 C. Interviews (0-20%)

Applicants will also be evaluated for their understanding of the profession and the responsibilities of being a veterinarian, interest in serving the public, maturity, motivation and other qualities necessary for successful academic and professional work.

Program of Study

Doctor of Veterinary Medicine. To receive a Doctor of Veterinary Medicine degree, students must study veterinary medicine for the equivalent of 12 quarters of 10 weeks each. A grade point average of 2.0 (C), computed on all courses taken in the School, is required and students must satisfactorily complete all required work as determined by the faculty of the School.

Master of Preventive Veterinary Medicine. Applicants for candidacy to the Master of Preventive Veterinary Medicine (M.P.V.M.) degree program must have completed the Doctorate in Veterinary Medicine or the equivalent, final admission decisions rest with the Admissions Committee, M.P.V.M program. Application deadline for August admission is March 15. International applicants are encouraged to apply as early as possible.

The M.P.V.M. degree normally takes one year to complete; however, some students may require as much as two years to finish the program. Students who intend to complete the program in one calendar year must begin the program in August. Candidates for the M.P.V.M. degree must satisfactorily complete a total of 40 units of course work while in residence. This includes 27 units of required courses in epidemiology, biostatistics, information management and a minimum of 13 units of approved electives. Students must also complete a research study which culminates in a written report and oral presentation. A committee consisting of three faculty members reviews each paper for acceptability and assigns an appropriate grade.

Application forms and information about the program are available from the Director, M.P.V.M. Program, Office of the Dean, School of Veterinary Medicine, University of California, One Shields Avenue, Davis, CA 95616.
Combined Program. Students may enroll in the combined D.V.M./M.P.V.M. program in which the M.P.V.M. degree may be awarded by the end of the fall quarter of the fifth year or as soon thereafter as all requirements for both the D.V.M. and M.P.V.M. degrees are completed, allowing students to complete the M.P.V.M. program within six months after normal completion time of the D.V.M. degree, rather than 15 months, as would be the case if taken sequentially.

Master of Science and Doctor of Philosophy. General information regarding these degrees will be found in the Announcement of Graduate Studies, available from Graduate Studies, University of California, One Shields Avenue, Davis, CA 95616. For more detailed information, write to the chairperson of the department in which you want to study.

School of Veterinary Medicine Academic Calendar 2000-2002

Fall Quarter 2000
- Orientation for 4th-year students: Friday, Sept. 1
- Labor Day Holiday: Monday, Sept. 4
- Instruction begins for 4th-year students: Tuesday, Sept. 5
- Orientation for 1st-year students: Wed. and Fri., Sept. 13 and 15
- Instruction begins for 1st-, 2nd- and 3rd-year students: Monday, Sept. 18
- Veteran’s Day Holiday: Friday, Nov. 10
- Thanksgiving Holiday: Thu.–Fri., Nov. 23-24
- Instruction ends: Friday, Dec. 8
- Finals end

Winter Quarter 2001
- Instruction begins for 4th-year students: Tuesday, Jan. 2
- Instruction begins for 1st-, 2nd- and 3rd-year students: Tuesday, Jan. 2
- M. L. King Holiday: Monday, Jan. 15
- Job Fair: Saturday, Jan. 27
- President’s Day Holiday: Monday, Feb. 19
- Instruction ends: Friday, March 16
- Finals end: Friday, March 23

Spring Quarter 2001
- Instruction begins: Monday, Apr. 2
- Awards Ceremony: Wednesday, May 16
- Memorial Day Holiday: Monday, May 28
- Instruction ends: Friday, June 8
- Finals end: Thursday, June 14
- Commencement: Friday, June 15

Fall Quarter 2001
- Orientation for 4th-year students: Friday, Aug. 31
- Labor Day Holiday: Monday, Sept. 3
- Instruction begins for 4th-year students: Tuesday, Sept. 4
- Orientation for 1st-year students: Wed. and Fri., Sept. 12 and 14
- Instruction begins for 1st-, 2nd- and 3rd-year students: Monday, Sept. 17
- Veteran’s Day Holiday: Monday, Nov. 12
- Thanksgiving Holiday: Thu.–Fri., Nov. 22-23
- Instruction Ends: Friday, Dec. 7
- Finals End: Friday, Dec. 14

Winter Quarter 2002
- Instruction begins for 4th-year students: Wednesday, Jan. 2
- Instruction begins for 1st-, 2nd and 3rd-year students: Wednesday, Jan. 2
- M. L. King Holiday: Monday, Jan. 21
- Job Fair: Saturday, Jan. 26
- President’s Day Holiday: Monday, Feb. 18
- Instruction Ends: Friday, Mar. 15
- Finals End: Friday, Mar. 22

Spring Quarter 2002
- Instruction Begins: Monday, Apr. 1
- Awards Ceremony: Wednesday, May 15
- Memorial Day Holiday: Monday, May 27
- Instruction Ends: Friday, June 7
- Finals End: Thursday, June 13
- Commencement: Friday, June 14

All dates are subject to change without notice.

School of Veterinary Medicine

Dogs need their teeth cleaned, too; the veterinary school trains doggie dentists to take care of canine canines.
COURSES

Undergraduate Courses

Lower Division Courses
These courses, numbered 1–99, are open to all students for lower division credit, but are designed primarily for freshmen and sophomores.

Upper Division Courses
These courses, numbered 100–199, are open to all students who have met the necessary prerequisites as indicated in the catalog course description. Preparation should generally include completion of one lower division course in the given subject or completion of two years of college work.

Variable-Unit Courses
Subject to approval by the department chair, an instructor may arrange to give a special study course (numbers 90X, 92, 97T, 97TC, 98, 99, 190X, 192, 194H, 197T, 197TC, 198, 199) to interested students. Theses courses may be offered fall, winter, or spring quarter as determined by the department.

- 90X/190X (Seminar) are seminar courses for in-depth examination of a special topic within the subject area.
- 92/192 (Internship) courses enable individual students to obtain practical experience to complement their educational goals or to explore potential career interests and opportunities. Students must have completed 84 units before enrolling in course 192.
- 97T/197T (Tutoring) and 97TC/197TC (Tutoring in the Community) are courses for students who want to tutor in a subject in which they are proficient—generally in their major field—while enrolled as an undergraduate.
- 98/198 (Directed Group Study) courses are set up on a one-time basis for a group of students in a subject for which no regular courses have been established.
- 99 (Special Study for Undergraduates) is a course arranged for an individual student who shares with an instructor an academic interest that cannot be accommodated within the formal course structure.
- 194H (Special Study for Honors Students) courses are for individual students with honor status, as determined by the department offering the course, and who have completed 84 units.
- 199 (Special Study for Advanced Undergraduates) courses are the upper division counterparts of course 99, and involve supervised independent study and research requiring adequate background in the subject proposed for study as well as prior completion of 84 units.

Credit in courses 99, 194H and 199 is limited to a total of 5 units per term.

Autotutorial Courses are courses in which students instruct themselves at their own pace. These courses can be identified by the letters AT on their course numbers, e.g., 13AT, 141AT.

Research Conference Courses are courses in which advanced undergraduate students may participate in advanced undergraduate student may participate in

Graduate Courses
Courses numbered 200–299 are open to graduate students and to undergraduates who have completed 18 units of upper division work basic to the subject matter of the course. However, admission is subject to the approval of the instructor in charge of the course. Grading in 290C courses and variable-unit 299 or 299D courses is Satisfactory/Unsatisfactory.

Professional Courses for Teachers and Nurse Practitioners
Courses numbered 300–399 are teacher-training courses in the Division of Education and in other departments and are especially intended for teachers or prospective teachers. Included are courses designed to provide instruction to teaching assistants. Also included are courses for certification of family nurse practitioners and physician assistants. These courses are open only to students enrolled in those programs.

Other Professional Courses

Here is a sample of how a course is listed in this catalog.

190. Proseminar in Nutrition (1)
Seminar—1 hour. Prerequisite: senior standing; course 111. Discussion of human nutrition problems. Each term will involve a different emphasis among experimental, clinical and dietetic problems of community, national and international scope. May be repeated for credit with consent of instructor. (P/NP grading only.)—I, II, III. (I, II, III) Smith

Top line: course number; title; units.

Paragraph following: course instructional format; prerequisite; course description; grading if other than letter grading; quarter offered 2000-2001; quarter offered 2001-2002 (in parentheses); instructor (if specified).

Quarters offered: the quarter in which a course is intended to be given is shown as follows:

I. Fall Quarter (September to December) or Fall Semester (August to December), School of Law
II. Winter Quarter (January to March) or Spring Semester (January to May), School of Law
III. Spring Quarter (April to June)
IV. Summer Quarter (July to September) for students in the School of Medicine only

Alternate Year Designation

Some course descriptions will include the phrase “Offered in alternate years.” If the course will be offered in the 2000-2001 academic year, the quarter designation immediately follows the description. If the course will be offered in the 2001-2002 academic year, the quarter designation is inside parentheses.

Multi-Quarter Courses

A series of course numbers followed by two or three letters (for example, Physics 110A-110B-110C) is continued through three successive quarters, ordinarily from September to June. The first quarter course listed this way is a prerequisite to the second, and the second is prerequisite to the third. On the other hand, where A and B portions of a course are listed separately (for example, Economics 160A and 160B), the A course is not a prerequisite to B, unless it is specifically mentioned in the list of prerequisites.

Expanded Course Descriptions

Because of space limitations, you may find that the descriptions in the General Catalog do not include all the information you would like about a course. The faculty has responded to this need by writing the “Expanded Course Descriptions,” giving more detailed explanations about each course offering. These descriptions are available each quarter to assist students in selecting their courses. They contain such information as course goals, texts used, preparation required of students, basis for grading, course format, special assignments (papers, field trips, etc.), and a topical outline of the material to be covered.

Copies of the “Expanded Course Descriptions” are available for on-campus use at the Shields Library Reference and Periodicals desks, the College deans’ offices, advisers’ offices, advising centers, departmental offices, and at The First Resort.

The course offerings and instructors listed in this catalog are subject to change without notice. For more current quarter offerings and instructors, refer to the Class Schedule and Registration Guide, available in the UC Davis Bookstore.

Sports Illustrated in 1999 named UC Davis the top Division II school for women athletes.
African American and African Studies

(College of Letters and Science)
Jacob K. Olupona, Ph.D., Director
Program Office, 2201 Hart Hall (530-752-1548)
World Wide Web: http://cougar.ucdavis.edu/aas

Committee in Charge
Moradewun Adejunmobi, Ph.D. (African American and African Studies)
Bobbie J. Bolden, M.A. (African American and African Studies, Dramatic Art)
Carl G. Jordensen, Ph.D. (Sociology)
Jacob K. Olupona, Ph.D. (African American and African Studies)
Ella Ray, Ph.D. (African American and African Studies)
Donald Rothchild, Ph.D. (Political Science)
Riche Richardson, Ph.D. (English)
John O. Stewart, Ph.D. (African American and African Studies)
Patricia A. Turner, Ph.D. (African American and African Studies)
Clarence E. Walker, Ph.D. (History)

Faculty
Moradewun Adejunmobi, Ph.D., Assistant Professor
Bobbie J. Bolden, M.A., Lecturer
Jacob K. Olupona, Ph.D., Professor
Ella Ray, Ph.D., Assistant Professor
John O. Stewart, Ph.D., Professor
Patricia A. Turner, Ph.D., Professor

Affiliated Faculty
Kristee Haggins, Ph.D., Adjunct Assistant Professor

The Major Program
The African American and African Studies Program provides courses on the history and culture of African Americans. The program provides students with a multi-disciplinary learning experience. Students in the major take selected courses in other programs and departments that complement courses offered within African American and African Studies. Majors and minors are also encouraged to take advantage of internship programs.

The Program. Students are encouraged to combine an examination of African American history and culture in the U.S.A. with African or diaspora studies. The emphasis in African American (U.S.A.) culture includes courses on the history, culture, arts, and literature of African Americans, the patterns of their socio-political and cultural movements, and the struggle with racism as a social and psychological problem. The emphasis in African Studies focuses on the social organization, culture, and religion of West African societies. The diaspora emphasis includes courses on the African heritage in the Americas, Islam in Africa and the Americas, African religion in the diaspora and cinema studies. In addition, students may choose to do special research projects.

Career Alternatives. Students completing the African American and African Studies major are well prepared for employment in the Office of Education, human service units, county social service programs, and counseling services. The major is also an appropriate background for work in community organizations like the Urban League, NAACP, Urban Affairs, and Office of Economic Opportunity, or future study in graduate school.

A.B. Major Requirements:
The major program must be developed in consultation with an African American and African Studies faculty member, and approved by the program’s Major Adviser.

UNITS
Preparatory Subject Matter 28

African American and African Studies 10 4
One course from African American and African Studies 12, 15, 50, 51, 52, 80 .. 4
One course from Anthropology 2; Economics 1A, 1B; Geography 2; Sociology 1; Political Science 1, 2; Psychology 1 .. 4
One course from Chican/Asian Studies 10; Native American Studies 1, 10; American Studies 45; Asian American Studies 1, 2 ... 4
Two courses from History 15, 17A, 17B .. 8
One course from African American and African Studies 54, 155A, Dramatic Art 41A, 41B, Music 28, 105, 106, 107 .. 4

Depth Subject Matter ... 36
One course from African American and African Studies 150A, 150B, 151, 152, 155A, 156, 157, 160, 170, 171 .. 4
One course from African American and African Studies 111, 123, 130, 133, 141, 145 .. 4

A coordinated program of upper division courses, selected and approved in consultation with the major advisers and chosen to reflect the student's major emphasis .. 24

(These areas of emphasis are offered as guidelines for students in the major. They are not the only areas students may choose for the major.)

Culture of African American emphasis: African American and African Studies 107A, 107B, 153; Anthropology 140A, 140B; History 177A, 177B; Political Science 167, 171; Anthropology 140A, 140B; History 115A, 116; Political Science 134, 146.

Total Units for the Major .. 64

Major Adviser. M. Adejunmobi

Minor Program Requirements:

UNITS
African American and African Studies .. 24
One course from African American and African Studies 10, 15, or 80 .. 4

American History and Institutions. This University requirement can be satisfied by completion of African American Studies 10, 100. (See also under University requirements.)

Related Upper Division Courses
The following courses are offered by faculty members in other disciplines and focus on African and African American people and their culture.

Anthropology 104, 139A, 139B, 140, 153; Art History 150, Community and Regional Development 151, 152, 153, 159A, 159B, 172; Dramatic Art 155; Education 150; English 179, 181; Geology 125A, 125B; History 102, 115A, 115B, 115C, 116, 177; Music 113B; Political Science 134, 138, 146, 151, 167, 176; Sociology 129, 130.

Courses in African American and African Studies (AAS)

Lower Division Courses
10. Introduction to Afro-American Culture and Society (4)
Lecture—4 hours. Introduction to the contemporary Black American experience by critically examining historical, political and social and economic factors that have affected the development and status of Afro-American people.—I. (I.) Turner

12. Introduction to African Studies (4)
Lecture/discussion—4 hours. Introduction to African Studies which will focus on the various disciplinary perspectives through which African society and culture are generally studied. A survey of methods, resources and conceptual tools for the study of Africa. GE credit: ArtHum, Div, Wrt.—II. (II.) Olupona, Adejunmobi

15. Introduction to African American Humanities (4)
Lecture—3 hours; discussion—1 hour. Introduction to the humanist tradition developed by writers, philosophers, and artists of African descent in the West. Attention given to African sources, as well as European, Caribbean, Latin-American, and North American variations on this tradition. GE credit: ArtHum, Div, Wrt.—I. (I.) Ray, Stewart

16. Verbal and Performance Arts in Africa (4)
Lecture/discussion—4 hours. African verbal arts; oral texts from different African cultures. Types of critical response to oral texts, role of oral artists, context and esthetics of oral performance in Africa. GE credit: ArtHum, Div, Wrt.—II. (II.) Ray, Stewart

17. Women in African Societies (4)
Lecture/discussion—4 hours. Gender relations in traditional and contemporary African society. Involvement of African women in politics, religion, the economy, the arts. African responses to feminist theory. Images of women in African literature. GE credit: Div, Wrt.—I. (I.) Adejunmobi

50. Black Images in Popular Culture (4)
Lecture—2 hours; discussion—2 hours. A survey of the depictions of Blacks in popular culture (popular press, stage, radio, film, television, advertising) from the middle of the sixteenth century to the present. GE credit: ArtHum, Div, Wrt.—III. (III.) Turner
51. History of Afro-American Dance (4)
Lecture—2 hours; discussion—2 hours. Evolution of African American dance, tracing its history and development from West Africa through the Caribbean and to the United States. Investigates the social relevance of African American dance and the artistic merits and contributions of African American choreographers and performers.—Ill. (III.) Bolden

52. African Traditional Religion (4)
Lecture—2 hours; discussion—2 hours. Introduction to the traditional religions of the sub-Saharan African peoples: emphasis on myths, rituals and symbols in West, East, Central and South African indigenous religions. Examines themes such as sacred kingship, divination system, women, prophecy, conversion and adaptation to Islam and Christianity. GE credit: ArtHum, Div, Wrt.—Ill. (III.) Ulpolina

54. University Gospel Choir (2)
Rehearsal—4 hours. Prerequisite: consent of instructor; open to any student in the university. Rehearsal, study, and performance of Gospel music. May be repeated for credit. (Same course as Music 54.) (P/NP grading only.)—I, II, III. (I, II, III.) Lymus

60. Introduction to Black Politics (4)
Lecture—4 hours. Introduction to the analysis of Afro-American politics, using conceptual frameworks from political science and other social sciences. GE credit: SocSci, Div, Wrt.—Ill. (III.)

99. Special Study for Undergraduates (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)

Upper Division Courses

100. Survey of Ethnicity in the U.S. (4)
Lecture—4 hours. History, culture, philosopy, and current problems of groups considered ethnic minorities in the United States as viewed by the groups themsevles. GE credit: ArtHum, Div.—II. (II.) Turner

101. Introduction to Research in the Afro-American Community (4)
Lecture—4 hours. Prerequisite: course 10 or consent of instructor. Introductory survey of Afro-American Studies methods and techniques; problems and methodology in Afro-American Studies.—III. (III.)

107A. African Descent Communities and Culture in the Caribbean and Latin America (4)
Lecture—2 hours; discussion—1 hour; term paper. Prerequisite: upper division standing. Origin and development of African descent communities and culture in the Caribbean and Latin America: (a) the evidence for pre-Columbian arrivals; (b) the African slave trade and its aftermath; (c) the emergence of the African-creole cultures. Offered in alternate years. GE credit: ArtHum, Div, Wrt.—(I.) Stewart, Ray

107B. African Descent Communities and Culture in North America (4)
Lecture—2 hours; discussion—1 hour; term paper. Prerequisite: upper division standing. Origin and development of African descent communities and culture in the U.S.A., Canada, and Mexico from the African slave trade to contemporary urban society. Offered in alternate years. GE credit: ArtHum, Div, Wrt.—(I.) Stewart, Ray

107C. African Descent Communities and Culture in Europe and Asia (4)
Lecture—2 hours; discussion—1 hour; term paper. Prerequisite: upper division standing. The study of early African kingdoms, their relationship with Europe and Asia, and the development of African descent communities and culture in Europe and Asia from the African slave trade to the post-colonial era. Offered in alternate years. GE credit: ArtHum, Div, Wrt.—(I.) Stewart, Ray

110. West African Social Organization (4)
Lecture—4 hours. Prerequisite: course 101 or consent of instructor. Ecology, population, social organization, and survival culture of West Africa in the pre-colonial, colonial, and post-colonial periods. GE credit: SocSci, Div.—II. (II.) Ulpolina, Adejumobi

111. Cultural Politics in Contemporary Africa (4)
Lecture/discussion—4 hours. Prerequisite: upper division standing or course 12. Themes and style of new cultural forms in Africa as displayed in art, music, film and writing, especially in regard to blending of indigenous and foreign influences. Social and political forces shaping contemporary cultural expression. Offered in alternate years. GE credit: ArtHum, Div, Wrt.—(II.) Adejumobi

123. The Black Female Experience in Contemporary Society (4)
Lecture—4 hours. Prerequisite: upper division standing or consent of instructor. Black female social, intellectual, and psychological development. Black women's contributions in history, literature, and social science; life experiences of Black women and philosophical underpinnings of the feminist movement. GE credit: ArtHum, Div.—III. (III.)

130. Education in the African American Community (4)
Lecture—2 hours; discussion—1 hour; fieldwork—3 hours. Prerequisite: course 10 or 100, and completion of the Subject A requirement. Examination of the history of the education of African Americans in the United States. Examination and critique of contemporary theories concerning the schooling of African Americans. (Former course 140.)—I. (I.)

133. The Black Family in America (4)
Lecture—4 hours. Prerequisite: upper division standing or consent of instructor. Analysis of social research to examine relationships between Black family structures, patterns of functioning, and political, economic, and social conditions. Examination of role differentiation within families by race and social class. GE credit: SocSci, Div.—III. (III.) Ray

141. Psychology of the African American Experience (3)
Lecture—2 hours; discussion—1 hour. Prerequisite: course 10 or consent of instructor. Introduction to the psychological issues faced by African-Americans. Analysis of issues from European/Western and Afrocentric frame of reference. Emphasis on Optimal Theory, a psychological theory based on an Afrocentric world view.—III. (III.) Haggins

145A. Black Social and Political Thought (4)
Lecture—4 hours. Prerequisite: course 10, 80, 145A, or consent of instructor. Exploration and critical analysis of selected theoretical writings of Black intellectuals, and especially political and social thinkers, in the Americas. GE credit: SocSci, Div.—III. (III.)

145B. Black Intellectuals (4)
Lecture—4 hours. Prerequisite: upper division standing. Afro-American visual arts tradition, folk and formal, in historical and cultural context, from 1600 through Reconstruction. GE credit: ArtHum, Div.—I. (I.)

150A. The Afro-American Visual Arts Tradition: A Historical and Cultural Study (4)
Lecture—4 hours. Prerequisite: upper division standing. Afro-American visual arts tradition, folk and formal, in historical and cultural context, from Reconstruction to present. GE credit: ArtHum, Div.—II. (II.)

150B. The Afro-American Visual Arts Tradition: A Historical and Cultural Study (4)
Lecture—4 hours. Prerequisite: upper division standing. Afro-American visual arts tradition, folk and formal, in historical and cultural context, from Reconstruction to present. GE credit: ArtHum, Div, Wrt.—II. (II.)

151. Afro-American Vernacular Music and Verbal Arts (4)
Lecture—2 hours; discussion—2 hours. Sociology of African-American musical forms like spiritual, song, minstrelsy blues, rhythm and blues, jazz, gospel, soul and contemporary pop, and related verbal arts like preaching, rapping.—III. (III.) Turner

152. Major Voices in Black World Literature (4)
Lecture—2 hours; discussion—1 hour; term paper. Prerequisite: upper division standing, completion of course 15 or comparable course in literature or the humanities. The recurrence of cultural tropes in the works of major black world authors and formation of an African-oriented canon. Principal activities include critical reading and the discovery of literature as a cultural resource. GE credit: ArtHum, Div, Wrt.—II. (II.) Stewart

154. University Gospel Choir (2)
Rehearsal—4 hours. Prerequisite: consent of instructor; open to any student in the university. Rehearsal, study, and performance of Gospel music. May be repeated for credit. (Same course as Music 154.) (P/NP grading only.)—I, II, III. (I, II, III.) Lymus, Stewart

155A. African American Dance and Culture in the United States, Brazil and the Caribbean (4)
Lecture/discussion—4 hours. A comparative study of the African American dance forms in the U.S.A., Brazil, Haiti, Cuba, Jamaica, Barbados, and Trinidad. Examination of ritual, folk, and popular dance forms and the sociological factors that have influenced these forms. (Same course as DramArt 155A.)—III. (III.) Bolden

156. Language and Identity in Africa and the African Diaspora (4)
Lecture/discussion—4 hours. Prerequisite: upper division standing or course 12. Relationship between language and identity in literature from Africa and the African Diaspora. Use of pidgins, Creoles, translation from African languages and impact of language policies. GE credit: Div.—II. (II.) Adejunmobi

157. Literature and Society in South Africa (4)
Lecture/discussion—4 hours. Prerequisite: upper division standing or course 12. Political and social developments in 20th-century South Africa as illustrated by a range of South African writing. Response of different writers to race relations, impact of government policy on types and context of writing. Offered in alternate years. GE credit: Div, Wrt.—III. (III.) Adejunmobi

160. African American Folklore (4)
Lecture—2 hours; discussion—1 hour; fieldwork—3 hours. Prerequisite: course 10. Theory and history of African American folklore and folklife, including music, material culture, oral narrative, proverbs, and humor. African and Caribbean cultural influences on New World folk genres will be probed. GE credit: ArtHum, Div.—III. (III.) Turner

162. Islam in Africa and the Americas (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course in African American or Religious Studies 12, preferably course 110 or Religious Studies 60. A comparative and historical survey of Islam in the regional and cultural settings of Sub-Saharan Africa and the Americas. GE credit: ArtHum, Div, Wrt.—III. (III.) Ulpolina

163. African Religions in the Americas (4)
Lecture—2 hours; discussion—2 hours. Prerequisite: course 10; course 15 or consent of instructor. Comparative study of African religious heritage in the Americas: Jamaica, Trinidad, Cuba, U.S.A., Haiti, and Brazil. Emphasis on the origins and development of Candomblo, Santeria, Shango, Vodun, and Rastafarianism in the New World. (Former course 153.) GE credit: ArtHum, Div, Wrt.—III. (III.) Ulpolina
170. African American Film and Video (4)
Lecture/discussion—2 hours; term paper; film viewing—2 hours. Prerequisite: one of courses 15, 50, or English 160, or 162. A comparative approach in the study of fictional film and video produced and directed by African Americans, drawing on the social sciences and black feminist theory to examine and discuss selected works. GE credit: ArtHum, Div, Wrt.—II. (Il.) Ray

171. Black African and Black European Film and Video (4)
Lecture/discussion—2 hours; term paper; film viewing—2 hours. Prerequisite: one of courses 15, 50, or English 160 or 162. A comparative approach in the study of dramatic films and videos that treat black life in Africa and Europe. Critical attention will focus on the imaginative construction of ethnicity, race, nationality, gender, and sexuality in each particular work. GE credit: ArtHum, Div.—III. (III.) Ray

190. Topics in African and African-Diaspora Studies (4)
Lecture/discussion—3 hours; term paper. Prerequisite: upper division standing in African American and African Studies or consent of instructor. Intensive treatment of a special topic or problem in African or African Diaspora Studies. May be repeated once for credit when topic differs.—III. (III.)

192. Internship in African American and African Studies (1-8)
Internship—3-24 hours. Prerequisite: upper division standing, completion of 12 units of upper division study in African American and African Studies courses and consent of instructor. Enrollment limited to African American and African Studies majors and minors. Supervised internship in community, government, or private institutions, in all subject areas offered by the African American and African Studies Program. May be repeated for credit for a total of 12 units. (P/NP grading only.)

197T. Tutoring in Afro-American Studies (1-5)
Tutoring—1-5 hours. Prerequisite: consent of major committee; upper division standing with major in Afro-American Studies. Leading of small voluntary discussion groups affiliated with one of the department's regular courses. May be repeated for credit for a total of 6 units. (P/NP grading only.)

198. Directed Group Study (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)
Animal Biology

(College of Agricultural and Environmental Sciences)

Faculty. Faculty includes members of the Departments of Animal Science, Entomology, Nematology; and Wildlife, Fish, and Conservation Biology.

The Major Program

The Animal Biology major offers students training in the biological and natural sciences as they apply to animals. The major covers the basic biological sciences that explain animal evolution, systematics, ecology, physiology and molecular biology. Students are not restricted to the study of a particular group of animals. Emphasis is on biological principles that can be used in research or in solving societal problems associated with animals in agriculture, urban areas, or natural environments.

The Program. The Animal Biology major consists of core courses in the biological sciences that build an understanding of animal biology from the molecular to the ecological and evolutionary levels of organization. After completing these core courses, students have the option of specializing in various interdisciplinary aspects of animal biology, and plan their chosen emphasis of study as part of a required discussion course and in consultation with their advisor. The Animal Biology major emphasizes courses on biological principles as opposed to courses on animal care and husbandry. This program includes a senior thesis, which each student designs to bridge the disciplines of the major.

Internships and Career Alternatives. The program and interests of each student in solving societal problems guides him or her to logical internship and career choices. On- and off-campus internship opportunities are available in research laboratories, in field situations, with governmental agencies, with private industry, and in international programs. A degree in Animal Biology prepares students for careers in research, teaching, governmental regulation, health or agriculture as each relates to the integrative biology or ecology of animals. Careers in veterinary medicine, animal husbandry and animal management are open to Animal Biology majors, however, other preparation may be required. Students in the major gain research experience and may choose to continue their training at the graduate or professional level in a variety of biological disciplines.

B. S. Major Requirements

| UNITS | General Education Requirement | S SocSci | ArtHum | SciEng | Wrt
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>See College requirement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Preparatory Subject Matter

<table>
<thead>
<tr>
<th>UNITS</th>
<th>Biological Sciences 1A-1B-1C</th>
<th>Chemistry 2A-2B-2C, 5A-BB or 118A-118B</th>
<th>Mathematics 16A-16B-16C</th>
<th>Physics 7A-7B-7C</th>
<th>13 or 100 or 102 or Agricultural Systems and Environment 120</th>
</tr>
</thead>
<tbody>
<tr>
<td>69-71</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Animal Biology 50A, 50B, 50C

<table>
<thead>
<tr>
<th>UNITS</th>
<th>Animal Biology 50A, 50B, 50C</th>
<th>Breadth/General Education</th>
<th>Depth Subject Matter</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>32-37</td>
</tr>
</tbody>
</table>

Biological Sciences 101; Animal Biology 102 and 103

<table>
<thead>
<tr>
<th>UNITS</th>
<th>Neurobiology, Physiology, and Behavior 101 or Entomology 102 or Wildlife, Fish, and Conservation Biology 121</th>
<th>Anatomy, Physiology and Cell Biology 100 or Entomology 101</th>
<th>Evolution and Ecology 100 and 101 or 102 or Agricultural Sciences and Policy 121</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td></td>
<td>3-4</td>
<td>8</td>
</tr>
</tbody>
</table>

Animal Biology 187

<table>
<thead>
<tr>
<th>UNITS</th>
<th>Animal Biology 189 and 189D</th>
<th>Restricted Electives</th>
<th>Unculated Electives</th>
<th>Total Units for the Major</th>
<th>Master Adviser</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-6</td>
<td></td>
<td></td>
<td>25</td>
<td>15-40</td>
<td>J. Granett</td>
</tr>
</tbody>
</table>

Advising Center for the major, including peer advising, is located in 1202 Meyer Hall, (530) 754-7915.

Courses in Animal Biology (ABI)

Lower Division Courses

50A. Animal Biology Laboratory (2)
Lecture/laboratory—4 hours. Scientific methods for answering questions in animal biology by doing exercises to demonstrate hypothesis testing and reporting, short laboratory, population and field experiments. Maintain notebooks, analyze data, interpret results and write reports.—III. (III.) Granett

50B. Animal Biology (3)
Lecture—3 hours. Prerequisite: Biological Sciences 1B, course 50A. Basic biological disciplines important to an understanding of practical animal biology issues including the evolution of animal groups, genetic mechanisms, animal physiology as it relates to maintenance and production, and aspects of comparative anatomy, behavior and ecology.—II. (II.) Page

50C. Animal Biology (3)
Lecture—3 hours. Prerequisite: Biological Sciences 1B, 1C, courses 50A, 50B. Animal management and conservation. Societal concerns arising from management and conservation issues, including economics, aesthetics, regulations, safety, public perspectives and advocacy.—III. (III.) Mench

92. Internship in Animal Biology (1-12)
Internship—3-36 hours. Prerequisite: consent of instructor. Office, laboratory or field-work or on campus in research, governmental regulation, policy making, and private enterprise dealing with animal related issues of production, welfare, pest management, biodiversity and the environment. All requirements of Internship Approval Request form must be met. (P/NP grading only.)

98. Directed Group Study (1-5)
(P/NP grading only.)

99. Special Study for Undergraduates (1-5)
(P/NP grading only.)

Upper Division Courses

102. Animal Biochemistry and Metabolism (4)
Lecture—4 hours. Prerequisite: Chemistry 2A-2B, 8A-8B. Water and biological buffers; thermodynamics of metabolism; structure and function of biomolecules; enzyme function; kinetics; membrane biology; control of digestion and absorption; carbohydrate metabolism. Not open for credit to students who have completed Biological Sciences 102 or Nutrition 110.—I. (I.) Calvert

103. Animal Biochemistry and Metabolism (4)
Lecture—4 hours. Prerequisite: course 102. Transport, physiological function and metabolism of lipids and amino acids; nutritional requirements for carbohydrates, lipids and amino acids, structure and function of vitamins; mineral metabolism. Not open for credit to students who have completed Biological Sciences 102 or Nutrition 110.—II. (II.) Calvert

187. Animal Biology Seminar (2)
Seminar—1 hour; discussion—1 hour. Prerequisite: junior standing, courses 50A, 50B, 50C. Seminar leading to development of the Major Proposal for the Animal Biology major.—I. (I.) Granett

189. Senior Practicum (2)
Independent study—6 hours. Prerequisite: junior standing, courses 50A, 50B, 50C, and 187; course 189D concurrently the first time course 189 is taken. The practicum may be an experimental research project, a library research project or some other creative activity that will serve as a capstone experience for the Animal Biology major. May be repeated once for credit. (P/NP grading only.)—II, III, (I, II, III.)

189D. Senior Practicum Discussion (1)
Discussion—1 hour. Prerequisite: junior standing, courses 50A, 50B, 50C, and 187; course 189D required concurrently. Course helps prevent or solve problems during the students’ senior practicum activity. (P/NP grading only.)—II, III, (I, II, III.)

192. Internship in Animal Biology (1-12)
Internship—3-36 hours. Prerequisite: completion of 84 units and consent of instructor. Office, laboratory or fieldwork or on campus in research, governmental regulation, policy making, and private enterprise dealing with animal related issues of production, welfare, pest management, biodiversity and the environment. All requirements of Internship Approval Request form must be met. (P/NP grading only.)

198. Directed Group Study (1-5)
(P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5)
(P/NP grading only.)
Applied Biological Systems Technology

(College of Agricultural and Environmental Sciences)
Faculty. See under Department of Biological and Agricultural Engineering.
Minor Program. The Department of Biological and Agricultural Engineering offers a minor in Applied Biological Systems Technology for non-engineering students interested in becoming familiar with engineering terminology and procedures. Course work provides knowledge of material properties, design procedures, fabrication principles, and hardware practices.

Minor Program Requirements:

Applied Biological Systems Technology

| UNITS |
|-----------------|-----------------|
| Choose one course from Applied Biological Systems Technology 15, 16, or 17 |-------------------------------| |
| Applied Biological Systems Technology | 170 |-------------------------------| |
| Select at least nine units from Applied Biological Systems Technology 101, 103, 110L, 121, 134,142, 145, 147, 161, 163, 165, 175 |-------------------------------| |
| Select the remaining units from: Agricultural Systems and Environment 110A, Animal Sciences 118, 119, 143, 146, Environmental Horticulture 125, Food Science and Technology 102A, 110A, 110B; Hydrologic Science 110, Plant Biology 172, 172L, 196; Viticulture and Enology 140 |-------------------------------| |

Minor Advisor. R.H. Piedrahita.

Courses in Applied Biological Systems Technology (ABT)

Lower Division Courses

15. Wood Properties and Fabrication (2)
Lecture—1 hour; laboratory—3 hours. Physical principles and properties of wood as related to strength, design procedures, and selection and use of woodworking equipment. Experience in working with wood. (P/NP grading only.)—III. (III.) Grimmer

16. Metal Properties and Fabrication (2)
Lecture—1 hour; laboratory—3 hours. Study of metal properties and of techniques for fabricating in metal. Physical principles, design considerations, effects of techniques on quality and appearance, and evaluation procedures. Experience in working with metal. (P/NP grading only.)—I. (I.) J. Rumsey

17. Plastic Properties and Fabrication (2)
Lecture—1 hour; laboratory—3 hours. Study of the properties of plastic materials and the fundamentals of fabrication techniques. Experience in working with common plastics, with applications to biological systems. (P/NP grading only.)—III. (III.) Jenkins

49. Field Equipment Operation (2)
Lecture—1 hour; laboratory—3 hours. Operation, adjustment, and troubleshooting of farm tractors and field equipment. Principles of operation, equipment terminology and uses of tillaging, cultivating, thinning, and planting equipment. Typical sequences in cropping practices. (P/NP grading only.)—I, III. (I, III.) J. Rumsey

52. Field Equipment Welding (2)
Lecture—1 hour; laboratory—3 hours. Intermediate welding to include hardfacing and inert gas welding. Class projects on repair and fabrication by welding. Troubleshooting and major repair of field equipment. (P/NP grading only.)—II. (II.) Rumsey

98. Directed Group Study (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)

99. Special Study for Lower Division Students (1-5)
(P/NP grading only.)

Upper Division Courses

101. Engine Technology (3)
Lecture—2 hours; laboratory—3 hours. Prerequisite: upper division standing or consent of instructor. Principles of 2-stroke cycle, 4-stroke cycle gasoline and 4-stroke cycle diesel engine construction and operation. Engine systems, performance, troubleshooting, and overhaul.—II. (II.) Rumsey

110L. Experiments in Food Engineering (2)
Laboratory—6 hours. Prerequisite: Food Science and Technology 110B (may be taken concurrently). Use of temperature sensors; measurement of thermal content and heat transfer in foods; refrigeration, freezing, concentration and dehydration of foods.—II. (II.) Singh

121. Animal Housing and Environment Management (2)
Lecture—2 hours. Prerequisite: Animal Science 1 or 2. Optimal structures and environments for animal growth and comfort; heat and moisture transfer principles; heating, cooling, ventilating principles and equipment; animal housing design; environmental regulations and waste management practices. Offered in alternate years.—(II.) Zhang

142. Equipment and Technology for Small Farms (2)
Lecture—1 hour; laboratory—3 hours. Types and characteristics of agricultural equipment and technologies appropriate for small commercial farming. Adjustment and calibration of equipment. Selection of and budgeting for equipment. (Same course as International Agricultural Development 142.)—III. (III.) J. Rumsey, Plant

145. Field Equipment Technology (2)
Lecture—1 hour; laboratory—3 hours. Prerequisite: upper division standing and Physics 1A or 5A. Function, construction, and operating principles of field equipment for harvesting fruit, nut, vegetable, and field crops. Principles of operation and construction of hydraulic systems. Function and application of pumps, motors, and valves for controlling field equipment.—III. (III.) J. Rumsey

147. Field Equipment Management (2)
Lecture—2 hours. Prerequisite: course 49 (may be taken concurrently) or consent of instructor. Fundamentals of field machinery management to include machinery capacity, selection from capacity and economic standpoints, scheduling, acquisition options, and trade-in considerations. Estimation of operating costs of field machinery.—I, II, III. (I, II, III.) J. Rumsey

161. Water Quality Management for Aquaculture (3)
Lecture—5 hours. Prerequisite: Biological Sciences 18, Mathematics 168B, Chemistry 2B. Basic principles of water chemistry and water treatment processes as they relate to aquatic cultural systems. Offered in alternate years.—II. Piedrahita

163. Aquaculture Systems Engineering (3)
Lecture—3 hours. Prerequisite: course 161. Design of aquacultural systems: design methodology, principles of fluid mechanics, site selection and facility planning, management operations, computer modeling. Offered in alternate years.—III. Piedrahita

165. Irrigation Practices for an Urban Environment (2)
Lecture—2 hours. Prerequisite: Physics 1A or 5A. Basic design, installation, and operation principles of irrigation systems for turf and landscape: golf courses, parks, highways, public buildings, etc. Emphasis on hardware association with sprinkler and drip-irrigation systems.—III. (III.) Hills

170. Design in Biological Systems Technology (3)
Lecture—2 hours; laboratory—3 hours. Prerequisite: Physics 1A or 5A and course 15, 16, or 17. Introduction and application of design procedures and tools. Techniques are presented for solving design problems and selecting appropriate materials. Catalog and handbook utilization, government safety regulations, and environmental considerations are discussed.—II. (II.) Miles

175. Introduction to Precision Agriculture (3)
Lecture—2 hours; laboratory/discussion—3 hours. Prerequisite: Agricultural Systems and Environment 21 or the equivalent computer experience. Concepts of precision agriculture. Variability in yield, field monitors and mapping, remote sensing, variability in plant and soil conditions, global positioning system (GPS), geographic information system (GIS), sensors and actuators, map controlled variable rate application (VRT), socioeconomic aspects of precision agriculture.—I. (I.) Upadhyaya

180. Introduction to Geographic Information Systems (5)

181. Geographic Information Systems Modeling (5)
Lecture—2 hours; laboratory—9 hours. Prerequisite: course 180. Advanced topics in Geographic Information Systems (GIS), such as raster-based GIS (GRID), triangular irregular network (TIN), and networks. Use of GIS ARC/INFO for remote sensing and modeling of environmental terrain, transportation, hydrology, and site specific crop management.—II. (II.) Wallender

182. Environmental Analysis with Geographical Information Systems (GIS) (5)
Lecture—2 hours; laboratory/discussion—6 hours. Prerequisite: course 180; course 181 recommended. Ecosystem and landscape modeling with emphasis on hydrology and solute transport. Spatial analysis of environmental risk analysis including ecological risk assessment. Precision farming. Natural resource management. Spatial database structures. Remote sensing applications. Data quality and error analysis in GIS. (Same course as Hydrologic Science 182.)—III. (III.) M. Zhang
190C. Research Conference for Advanced Undergraduates (1)
Discussion—1 hour. Prerequisite: consent of instructor. Research conferences for specialized study in applied biological systems technology. May be repeated for credit. (P/NP grading only)—I, II, III (I, II, III.)

192. Internship in Applied Biological Systems Technology (1-5)
Internship—3-15 hours. Prerequisite: upper division standing; approval of project prior to period of internship. Supervised internship in applied biological systems technology. May be repeated for credit. (P/NP grading only.)

197T. Tutoring in Applied Biological Systems Technology (1-5)
Tutorial—1-5 hours. Prerequisite: upper division standing and consent of instructor. To provide teaching experience to upper division undergraduate students. Activities will vary depending on the nature of the course. May include (but not limited to) assistance in laboratory sessions, advising on projects, tutoring on course material, and grading of homework assignments. (P/NP grading only.)

198. Directed Group Study (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5)
(P/NP grading only.)

Graduate Courses

233. Pest Control Practices (3)
Lecture—2 hours; laboratory—3 hours. Prerequisite: graduate standing or consent of instructor. Practical and theoretical considerations of pest control systems and techniques. Design, selection, and use of mechanical systems for field, orchard, greenhouse, and vector control use. Biological, legal, and environmental considerations in pest control and pesticide application.—II. (II.) Giles

280. Introduction to Scientific Visualization (2)
Lecture—1 hour; laboratory—3 hour. Prerequisite: one year of calculus; graduate standing. Visualization of scalar fields, isosurfaces, vector fields, terrain, and animations: Applications to chemistry, geology, physics, and environmental sciences. IBM's Visualization Data Explorer (DX) is the general purpose software package for data visualization and analysis.—I. (I.) Wallender, Joy, Hamann, Max

290C. Graduate Research Conference (1)
Discussion—1 hour. Prerequisite: consent of instructor. Research problems, progress, and techniques in applied biological systems technology. May be repeated for credit. (S/U grading only)—I, II, III (I, II, III.)

298. Group Study (1-5)

299. Research (1-12)
(S/U grading only.)

Professional Course

317. Teaching Agricultural Mechanics (2)
Lecture—1 hour; laboratory—3 hours. Prerequisite: a course in physics; 6 units related to agricultural mechanics; enrolled in Agricultural Education Teacher Credential Program. Preparation of the teacher to plan, organize, and conduct an agricultural mechanics program in secondary schools. Development of and presentation of lesson plans and teaching aids. Review of subject matter in metal fabrication, power and machinery and agricultural structures areas.—II. (II.) J. Rumsey
Agricultural Education

(College of Agricultural and Environmental Sciences)

Faculty. See under the Department of Agronomy and Range Science.

Major Program. An undergraduate program leading to a bachelor of science degree is offered in Agricultural Systems and Environment with a specialization in Agricultural and Environmental Education.

Advising Center for the major is located in 152 Hunt Hall (530-752-1715). Since many majors in the college do not offer the minimum preparation necessary for entering the Agriculture Teaching Credential program, you should seek counseling as early as possible. See also the Teacher Education Program.

Graduate Study. For graduate study, refer to the Graduate Studies chapter of this catalog. The Department of Human and Community Development offers a program of study leading to the M.Ed. degree. Further information may be obtained from the Department and the Graduate Announcement.

Graduate Adviser. L.S. Whent (Agronomy and Range Science).

Courses in Agricultural Education (AED)

Questions pertaining to the following courses should be directed to the instructor or to the Agricultural Education Program Office, 152 Hunt Hall.

Lower Division Courses

92. Internship—(1-12)
Internship—3–36 hours. Prerequisite: lower division standing; consent of instructor. Supervised internship off and on campus in areas of agricultural education. (P/NP grading only.)

98. Directed Group Study—(1-5)
Directed Group Study. May be repeated for credit up to a maximum of 18 units. (P/NP grading only.)

99. Special Study for Undergraduates—(1-5)
Special Study for Undergraduates. May be repeated for credit. (P/NP grading only.)

Upper Division Courses

100. Concepts in Agricultural and Environmental Education—(3)
Lecture—2 hours; laboratory—3 hours. Prerequisite: upper division standing. Philosophy and nature of formal and non-formal agricultural and environmental education programs. Emphasis on understanding the role of the teacher and observing a variety of programs. GE credit: SocSci, Wrt.—I, II, III. (I, II, III.) Whent

101. Planning for Instructional Programs—(3)
Lecture—3 hours. Philosophy and organization of vocational education, with particular reference to educational principles for agriculture commerce, home economics, and industry. GE credit: SocSci, Wrt.—II. (II.) Whent

102. Teaching Methods in Agricultural Education—(3)
Lecture/discussion—2 hours; field work—6 hours. Prerequisite: acceptance into the Teacher Education Program; course 306B (concurrently). Development of teaching strategies with special emphasis on the designing of learning experiences, instructional execution, and use of teaching aids in agricultural education.—I, II, III. (I, II, III.) Whent

103. Resource Development: Agricultural Education—(3)
Lecture—3 hours. Prerequisite: courses 306A, 306B. Selection and implementation of community resources in teaching.—III. (III.) Whent

104. Seminar in Agricultural Education—(2)
Seminar—2 hours. Discussion of selected critical issues in agricultural education. May be repeated for credit with consent of instructor. (P/NP grading only.)—II. (II.) Whent

105. Internship—(1-12)
Internship—3–36 hours. Prerequisite: upper division standing; consent of instructor. Supervised internship off and on campus in areas of agricultural education. (P/NP grading only.)

106. Directed Group Study—(1-5)
Directed Group Study. May be repeated for credit. (P/NP grading only.)

107. Special Study for Advanced Undergraduates—(1-5)
Special Study for Advanced Undergraduates. May be repeated for credit. (P/NP grading only.)

Professional Courses

300. Directed Field Experience in Teaching—(2)
Discussion—1 hour; field experience—3 hours. Prerequisite: course 100. Experience as teaching assistant in agriculture or home economics programs in public schools. May be repeated once for credit. (P/NP grading only.)—I, II, III. (I, II, III.) Zilbert

301. Planning for Instructional Programs—(3)
Lecture—3 hours. Prerequisite: course 100; course 300 (may be taken concurrently). Development of teaching strategies with special emphasis on the designing of learning experiences, instructional execution, and use of teaching aids in agricultural education.—II. (II.) Zilbert

302. Teaching Methods in Agricultural Education—(3)
Lecture—2 hours; laboratory—2 hours. Prerequisite: course 100, course 300 (may be taken concurrently). Development of teaching strategies with special emphasis on the designing of learning experiences, instructional execution, and use of teaching aids in agricultural education.—I, II, III. (I, II, III.) Whent

306A. Field Experience with Future Farmers of America and Supervised Experience Programs—(4)
Lecture/discussion—2 hours; field work—6 hours. Prerequisite: acceptance into the Teacher Education Program; course 306B (concurrently). Development of understanding of the Future Farmers of America and supervised occupational experience programs through planning, conducting, and evaluating actual programs.—I, II, III. (I, II, III.) Whent

306B. Field Experience in Teaching Agriculture—(5-18)
Student teaching (corresponds with public school session). Prerequisite: acceptance into the Teacher Education Program; course 306A (concurrently). Student teaching including supervision of occupational experience programs and youth activities in secondary schools or community colleges. May be repeated for credit up to a maximum of 18 units.—I, II, III. (I, II, III.) Whent

323. Resource Development: Agricultural Education—(3)
Lecture—3 hours. Prerequisite: courses 306A, 306B. Selection and implementation of community resources in teaching.—III. (III.) Whent

390. Seminar: Issues in Agricultural Education—(2)
Seminar—2 hours. Discussion of selected critical issues in agricultural education. May be repeated for credit with consent of instructor. (P/NP grading only.)—III. (III.) Whent

Quarter Offered: I–Fall; II–Winter; III–Spring; IV–Summer. 2001–2002 offering in parentheses.

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
Agricultural Computing and Information Systems

(College of Agricultural and Environmental Sciences)
This minor is for students interested in applying modern computer technology to management problems in agriculture, resource management, and other areas. Course work provides knowledge of the use of information technology and the methodology of applied quantitative and systems analysis. The minor is offered by the Department of Agronomy and Range Science.

Minor Program Requirements:

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural Computing and Information Systems</td>
<td>18</td>
</tr>
</tbody>
</table>

Two or three of the following courses: Agricultural Systems and Environment 120, 121, 122, Animal Science 128. (The third course may be taken in substitution for a course from either of the elective groups.)

Remainder of the units to be made up of courses in one or both of the following groups: 6-12

- **Computer systems, statistics, and simulation:**

- **Communication and business organization:**
 - Agricultural and Resource Economics 112, Agricultural Education 171, 172, Community and Regional Development 168, Communication 103, 136

Minor Adviser. R.E. Plant (Agronomy and Range Science), J. Fadel (Animal Science).

Advising Center is located in 152 Hunt Hall (530-752-1715).
Agronomy and Range Science

Faculty
Montague W. Demment, Ph.D., Professor
R. Ford Denison, Ph.D., Associate Professor
Jorge Dubcovsky, Ph.D., Associate Professor
Jan Dvorak, Ph.D., Professor
Theodore C. Foin, Jr., Ph.D., Professor
Shu Geng, Ph.D., Professor
Melvin R. George, Ph.D., Lecturer
Paul L. Gepts, Ph.D., Professor
Sham S. Goyal, Ph.D., Lecturer
James E. Hill, Ph.D., Lecturer
Leland F. Jackson, Ph.D., Lecturer
Judy A. Jernstedt, Ph.D., Professor
Stephen R. Kaffka, Ph.D., Professor
Emilio A. Laca, Ph.D., Assistant Professor
William C. Liebhardt, Ph.D., Lecturer
Donald A. Phillips, Ph.D., Professor
Richard E. Plant, Ph.D., Professor
Daniel H. Putnam, Ph.D., Lecturer
D. William Rains, Ph.D., Professor
Kevin J. Rice, Ph.D., Professor
Kenneth W. Tate, Ph.D., Lecturer
Steven R. Temple, Ph.D., Lecturer
Larry R. Teuber, Ph.D., Professor
Robert L. Travis, Ph.D., Professor
Chris van Kessel, Ph.D., Professor
Thea A. Wilkins, Ph.D., Associate Professor

Emeriti Faculty
Robert W. Allard, Ph.D., Professor Emeritus
R. William Breidenbach, Ph.D., Lecturer Emeritus
Ivan W. Buddenhagen, Ph.D., Professor Emeritus
William J. Clawson, M.S., Lecturer Emeritus
Beecher Crampton, M.S., Lecturer Emeritus
Ray C. Huffaker, Ph.D., Professor Emeritus
Subodh K. Jain, Ph.D., Professor Emeritus
Milton B. Jones, Ph.D., Lecturer Emeritus
Horton M. Laude, Ph.D., Professor Emeritus
William M. Longhurst, Ph.D., Professor Emeritus
Robert S. Loonan, Ph.D., Professor Emeritus
Vern L. Marble, Ph.D., Lecturer Emeritus
Duane S. Mikkelsen, Ph.D., Professor Emeritus
Maurice L. Peterson, Ph.D., Professor Emeritus
Y. P. Puri, Ph.D., Lecturer Emeritus
Calvin O. Qualset, Ph.D., Professor Emeritus
Charles A. Raguse, Ph.D., Professor Emeritus
Charles W. Schaller, Ph.D., Professor Emeritus
Raymond C. Valentine, Ph.D., Professor Emeritus
Barbara D. Webster, Ph.D., Professor Emeritus
William A. Williams, Ph.D., Professor Emeritus

Courses. See the Agricultural Systems and Environment, Agricultural Education, Agronomy, Plant Biology, and the Range Science course listings.
Agricultural and Environmental Chemistry (A Graduate Group)

Andrew L. Waterhouse, Ph.D., Chairperson of the Group
Group Office, 126 Cruess Hall (530-752-1415)

Faculty
Douglas O. Adams, Ph.D., Associate Professor (Viticulture and Enology)
Cort Anastasio, Ph.D., Assistant Professor (Land, Air and Water Resources)
Charles W. Bamforth, Ph.D., Professor (Food Science and Technology)
Everett Bandman, Ph.D., Professor (Food Science and Technology)
Linda F. Bisson, Ph.D., Professor (Viticulture and Enology)
Roger B. Boutil, Ph.D., Professor (Viticulture and Enology)
William H. Casey, Ph.D., Professor (Land, Air and Water Resources)
M. Judith Charles, Ph.D., Assistant Professor (Environmental Toxicology)
Andrew J. Clifford, Ph.D., Professor (Nutrition)
Richard S. Criddle, Ph.D., Professor (Molecular and Cellular Biology)
Carroll E. Cross, M.D., Professor (Internal Medicine)
Susan E. Ebeler, Ph.D., Associate Professor (Viticulture and Enology)
Robert G. Flocchini, Ph.D., Professor (Land, Air and Water Resources)
J. Bruce German, Ph.D., Professor (Food Science and Technology)
Bruce D. Hammock, Ph.D., Professor (Entomology)
William R. Horwath, Ph.D., Assistant Professor (Land, Air and Water Resources)
You-Lo Hsieh, Ph.D., Professor (Textiles and Clothing)
Norman Y. Kado, Ph.D., Associate Adjunct Professor (Environmental Toxicology)
Peter B. Kelly, Ph.D., Associate Professor (Chemistry)
Annie J. King, Ph.D., Professor (Animal Science)
John M. Krocbit, Ph.D., Professor (Food Science and Technology)
Mark J. Kurth, Ph.D., Professor (Chemistry)
Yu-Bang Lee, Ph.D., Professor (Animal Science)
Fumio Matsumura, Ph.D., Professor (Environmental Toxicology)
Michael J. McCarthy, Ph.D., Professor (Food Science and Technology)
Tadeusz F. Molinski, Ph.D., Professor (Chemistry)
Ann C. Noble, Ph.D., Professor (Viticulture and Enology)
David S. Reid, Ph.D., Professor (Food Science and Technology)
Gerald F. Russell, Ph.D., Senior Lecturer (Food Science and Technology)
James R. Sanborn, Ph.D., Researcher (Entomology/Pesticide Regulation)
Neil E. Schoe, Ph.D., Professor (Chemistry)
Takayuki Shibamoto, Ph.D., Professor (Environmental Toxicology)
Charles F. Shoemaker, Ph.D., Professor (Food Science and Technology)
R. Paul Singh, Ph.D., Professor (Biological and Agricultural Engineering)
Gary M. Smith, Ph.D., Professor (Food Science and Technology)
Kevin M. Smith, Ph.D., Professor (Chemistry)
Randal J. Southard, Ph.D., Professor (Land, Air and Water Resources)
Gang Sun, Ph.D., Assistant Professor (Textiles and Clothing)
Ronald S. Tjeerdema, Ph.D., Professor (Environmental Toxicology)
Andrew L. Waterhouse, Ph.D., Associate Professor (Viticulture and Enology)
Thomas M. Young, Ph.D., Assistant Professor (Civil and Environmental Engineering)
Robert J. Zasoski, Ph.D., Professor (Land, Air and Water Resources)

Emeriti Faculty
Donald G. Crosby, Ph.D., Professor Emeritus
Al L. Tappel, Ph.D., Professor
John R. Whitaker, Ph.D., Professor
S. Haig Zeronian, Ph.D., D.Sc., Professor

Affiliated Faculty
Lowell L. Ashbaug, Ph.D., Associate Researcher (Crocker Nuclear Lab)
Diane M. Barrett, Ph.D., Associate Specialist (Food Science and Technology)
Christian E. Butzke, Ph.D., Assistant Specialist (Viticulture and Enology)
Britt Holmen, Ph.D., Adjunct Professor (Civil and Environmental Engineering)
Carl K. Winter, Ph.D., Associate Specialist (Food Science and Technology)

Graduate Study. The Graduate Group in Agricultural and Environmental Chemistry offers programs of study and research leading to the M.S. and Ph.D. degrees. Study relates to the chemical and biochemical aspects of foods, wine, fibers/polymers, pesticides, and environmental pollution. Detailed information regarding graduate study may be obtained by writing the Group Chairperson.

Graduate Advisers: D.O. Adams (Viticulture and Enology), C.F. Shoemaker (Food Science and Technology), Y.-L. Hsieh (Textiles and Clothing), T. Young (Civil and Environmental Engineering), R.J. Zasoski (Land, Air and Water Resources).

Courses in Agricultural and Environmental Chemistry (AGC)

Graduate Courses
290. Seminar (1) Seminar—1 hour. Selected topics in agricultural and environmental chemistry, presented by students. (S/U grading only)—I, II, III. (I, II, III.)

298. Group Study (1-5) Prerequisite: consent of instructor. The chemistry and biochemistry of foods, nutritional chemicals, pesticides, and other special topics as they apply to agricultural and environmental chemistry.

299. Research (1-12) Arrangements should be made well in advance with a faculty member of the Group in Agricultural and Environmental Chemistry. (S/U grading only.)
Graduate Courses

205. Experimental Design and Analysis (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: Agricultural Systems and Environment 120 or the equivalent. Graduate students in agricultural and environmental sciences will be introduced to the research process and statistical methods to plan, conduct and interpret experiments. Not open for credit to students who have completed course 205A. (Former course 205A.)—II. (II.) Dubcovsky

206. Multivariate Systems and Modeling (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: Agricultural Systems and Environment 120 or the equivalent. Graduate students in the biological and environmental sciences will be presented multiple regression, multivariate and computer modeling methods needed to conduct research experiments and analyze multivariate data systems. Not open for credit to students who have completed course 205B. (Former course 205B.)—III. (III.) Laca

211. Principles and Practices of HPLC (2)
Lecture—1 hour; laboratory—3 hours. Prerequisite: undergraduate physics and chemistry, Biological Sciences 102, 103 recommended. Principles and theory of HPLC involving various modes of separation and detection. Optimization of separation using isocratic and gradient elution. Develop practical knowledge about the use, maintenance and troubleshooting of HPLC equipment, including HPLC columns. Development of new HPLC methods.—II. (II.) Goyal

221. Advanced Plant Breeding (4)
Lecture—3 hours, laboratory—3 hours. Prerequisite: course 205; Genetics Graduate Group 201D or Animal Genetics 107; Plant Science 113. Philosophy, methods, and problems in developing improved plant species. Topics include: inbreeding, heterosis, progeny testing, breeding methodology, index selection, germplasm conservation, and breeding for stress resistance. Laboratories include tours of breeding facilities and calculation and interpretation of quantitative data. Offered in alternate years.—(III.) Teuber

290. Seminar in Crop Growth, Production and Utilization (1-2)
Seminar—1-2 hours. Topics of current interest related to plant growth processes, production and management systems, and utilization of cultivated food, feed and fiber crops.—I. (I.)

291. Seminar in Plant Breeding and Evolution of Cultivated Plants (1-2)
Seminar—1-2 hours. Topics of current interest related to plant breeding systems and the origins and evolution of cultivated plants.—II. (II.)

297T. Tutoring in Agronomy (1-5)
Tutoring—1-5 hours. Prerequisite: graduate standing; consent of instructor; and course to be tutored or the equivalent. Designed for graduate students who desire teaching experience but are not teaching assistants. May be repeated for credit for a total of 5 units. Same course may not be tutored more than one time. (S/U grading only.)

298. Group Study (1-5)
(S/U grading only.)

299. Research (1-12)
(S/U grading only.)
Art History

(College of Letters and Science)
Dianne S. Macleod, Ph.D., Program Director
Department Office, 111A Art Building (530-752-0105)
World Wide Web: http://tcr2.ucdavis.edu/ArtHistory-Home

Faculty
Katharine Burnett, Ph.D., Assistant Professor (East Asian Languages and Cultures, Art History)
Dianne Sachko Macleod, Ph.D., Professor
Lynn Roller, Ph.D., Professor (Classics, Art History)
Jeffrey Ruda, Ph.D., Professor
Blake Stimson, Ph.D., Assistant Professor
Diana Strazdes, Ph.D., Assistant Professor

Emeriti Faculty
Mary H. Fong, Ph.D., Professor Emerita
Robert J. Grigg, Ph.D., Professor Emeritus
Seymour Howard, Ph.D., Professor Emeritus

The Major Program
Art History is the study of the visual arts in civilization. It examines changing values in all fields of visual culture, including painting, sculpture, graphics, photography, architecture, film, the mass media, and forms of popular expression. Its interdisciplinary reach encompasses literature, history, anthropology, sociology, philosophy, gender studies, critical theory, and cultural studies. Art History emphasizes visual as well as verbal literacy, providing more than the standard advantages to a liberal arts education.

The Program. The student majoring in art history begins with courses that survey the arts of Asia, Europe, and the United States. More specialized lecture courses and proseminars follow in Ancient, Renaissance, Baroque, Modern, and Contemporary American, European, and Asian art and culture. At the same time, students are encouraged to complement the major with advanced work in related disciplines such as classics, religion, history, philosophy, literature, sociology, anthropology, gender studies, American studies, East Asian studies, and foreign languages.

Career Options. A major in Art History develops critical thinking and the integration of research and knowledge. It provides an excellent grounding for professions as diverse as law, medicine, and business. The major prepares students for advanced study in Art History, Architecture, and Cultural Studies. It also serves as the foundation for careers in teaching, arts, administration, museums, galleries, historic preservation, art libraries, publishing, journalism, advertising, art conservation, and art investment. As the world becomes increasingly flooded with images, critical visual "reading" skills become more and more important for a wide variety of careers.

A.B. Major Requirements:

Preparatory Subject Matter ...20
Art History 1A, 1B, 1C, and 1D (Art History 25 may be substituted for one of the above) ...20

Depth Subject Matter ..16
One course in each of the following area(s) ..16
(a) Ancient Mediterranean: Art History 154A, 154B, 155, 157, 171, 174
(b) Asian: Art History 163A, 163B, 163D, 164
(c) European and American before 1865: Art History 178A, 178B, 178C, 179B, 182, 183A, 188D
(d) European and American since 1865: Art History 183B, 183C, 185, 186, 188E, 189
One additional non-Western area may be substituted for any of these four areas, with consent of the major adviser.

Art History 190...4
Five additional upper division Art History courses ...20

Minor Program Requirements:

One course in three of the following four areas ...12
(a) Ancient Mediterranean: Art History 154A, 154B, 155, 157, 171, 174
(b) Asian: Art History 163A, 163B, 163D, 164
(c) European and American before 1865: Art History 178A, 178B, 178C, 179B, 182, 183A, 188D
(d) European and American since 1865: Art History 183B, 183C, 185, 186, 188E, 189

One additional non-Western area may be substituted for any of these four areas, with consent of the major adviser.

Two additional Art History courses, of which at least one must be upper division; Art History 190 strongly recommended ..8

Honors Program. An Honors Program is available to Art History majors who are seriously considering attending graduate school. To be eligible for the program, a student must have a grade point average of 3.7 in the major. In addition to meeting the standard major requirements, the honors student completes at least one quarter of language in German or Chinese, one undergraduate proseminar (course 190), and writes an honors thesis (course 194). Students participating in this Program are candidates for Departmental recommendation for graduation with High or Highest Honors. See the Academic Information chapter, Letters and Science honors section, of this catalog and consult the department for more information.

Teaching Credential Subject Representative. Department Chairperson. See also the Teacher Education Program.

Graduate Study. The Program in Art History offers studies leading to the Master of Arts degree in History of Art as preparation for further graduate study or professional work. Further information may be obtained by writing to the Graduate Adviser or consulting the Graduate Announcement.

Courses in Art History (AHI)

Lower Division Courses

1A. Ancient Art (4)
Lecture—3 hours; discussion—1 hour. Art of the pagan Mediterranean world from the prehistoric coves to the fall of the Roman Empire. GE credit: ArtHum.—I. (I.) Roller

1B. Medieval and Renaissance Art (4)
Lecture—3 hours; discussion—1 hour. Christian, Barbarian, Moslem, and Classical traditions in European Art from the fourth through the sixteenth centuries. GE credit: ArtHum.—II. (II.) Ruda

1C. Baroque to Modern Art (4)
Lecture—3 hours; lecture/discussion—1 hour. Survey of developments in western art and visual culture from 1600–present. Major artists and movements, theories of visuality, focused study on changing interpretations of class, gender, sexuality, and ethnicity from the Baroque period through modernism, to the present. May be repeated for credit. GE credit: ArtHum, Div.—III. (Ill.) Macleod, Stimson

1D. Arts of Asia (4)
Lecture—3 hours; discussion—1 hour. Introduction to major forms and trends in the arts and material culture of Asia from the Neolithic to the contemporary emphasizing the visual manifestation of secular and religious ideas and ideals. GE credit: ArtHum, Div.—I. (I.) Burnett

10. Twenty Monuments (4)
Lecture—3 hours; film viewing—1 1/2 hours; lecture/discussion—0.5 hour. Art history through focused analyses of about 20 world-historical monuments and artistic ideas by all members of the Art History faculty. Slide lectures are complemented by a weekly program of influential films raising issues and controversies. GE Credit: ArtHum.

25. Introduction to Architectural History (4)
Lecture—3 hours; discussion—1 hour. Formal and social history of architecture, examining design principles, major traditions, and concepts of architectural history with a focus on issues in Western architecture. Emphasis on nineteenth and twentieth centuries. GE credit: ArtHum.

Quarter Offered: I–Fall; II–Winter; III–Spring; IV–Summer; 2001–2002 offering in parentheses.

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
Upper Division Courses

110. Cultural History of Museums and Art Exhibitions (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 1A or 1B or 1C or 1D. Evolution of museums in the modern world from the “cabinet of curiosities” of sixteenth-century Europe to the modern “art center.” The changing motives behind collecting, exhibiting, and interpretation of objects. Attention to museums’ historical legacies and their continuing philosophical dilemmas. Offered in alternate years. GE credit: ArtHum, Wrt.—I. Srazdzes

150. Arts of Subsaharan Africa (4)
Lecture—3 hours; term paper or gallery studies and review. Traditional arts and crafts of sub-Saharan Africa; particular attention to the relationships between sculpture and culture in West and Central Africa. GE credit: ArtHum, Div.

151. Arts of the Indians of the Americas (4)
Lecture—3 hours; term paper or gallery studies and review. Development of art in North America, emphasizing ancient Mexico. South American relationships and parallels. Recent and contemporary Indian arts and crafts from Alaska to Chile. GE credit: ArtHum, Div.

152. Arts of Oceania and Prehistoric Europe (4)
Lecture—3 hours; term paper. Traditional arts of aboriginal Australia, Melanesia, Polynesia, and Micronesia, as seen in their cultural prehistory. GE credit: ArtHum, Div.

153. Art, Storytelling and Cultural Identity in the Pacific (4)
Lecture/discussion—3 hours; term paper. Representation of the cultural identities of indigenous and migrant groups of the Pacific in visual arts and storytelling. Offered in alternate years. GE credit: ArtHum, Div, Wrt.

154A. Early Greek Art and Architecture (4)
Lecture—3 hours; gallery study and term paper. Prerequisite: upper division standing. Examination of the history and significance of major monuments in Greek art and architecture from the Homeric, Geometric Age to the Golden Age and the death of Socrates. GE credit: ArtHum, Wrt.—Roller

154B. Later Greek Art and Architecture (4)
Lecture—3 hours; gallery studies and term paper. Prerequisite: upper division standing. Examination of the history and significance of monuments in Greek art and architecture from the Silver Age of Aristotle to Alexander the end of the Hellenistic Age and the death of Cleopatra. GE credit: ArtHum, Wrt.—Roller

155. Roman Art (4)
Lecture—3 hours; term paper or gallery studies and review. The art of Republican and Imperial Rome. GE credit: ArtHum, Wrt.—II. Roller

163A. Chinese Art (4)
Lecture—3 hours; term paper or gallery studies and review. A survey from the beginning to the twelfth century focusing on the major art forms that are tradition- ally known as well as newly discovered through archaeology in China. GE credit: ArtHum, Div, Wrt.—II. Burnett

163B. Chinese Painting (4)
Lecture—3 hours; term paper or gallery studies and review. The unique form of ink painting, with or without colors, depicting human and animal figures, flowers-and-birds, and landscape—the favorite and enduring theme of the Chinese scholar-painter. GE credit: ArtHum, Div, Wrt.—Burnett

163C. Painting in the People’s Republic of China (4)
Lecture—3 hours; term paper. Prerequisite: course 1D or upper division standing. Analysis of the interaction between art and politics in the emergence of China into the modern world. Integration of Western influence, implementation of Mao Zedong’s thought on art, and the formation of contemporary Chinese painting. GE credit: ArtHum, Div, Wrt.—Burnett

163D. Visual Arts of Early Modern China (4)
Lecture—3 hours; term paper. Prerequisite: course 163B or consent of instructor. Variable topics in Chinese art history during the 17th-19th centuries, considering artists’ statements (visual and textual) within their historical contexts, asking what was at stake in the art form of a particular time and place, and how regional styles can be repeated for credit with consent of instructor. GE credit: ArtHum, Div, Wrt.—II. Burnett

164. The Arts of Japan (4)
Lecture—3 hours; term paper and/or gallery studies and review (determined by instructor each quarter course offered). Study of the significant achievements in architecture, painting, sculpture, and decorative arts from prehistoric age to nine- teenth century. GE credit: ArtHum, Div, Wrt.—III.

168. Great Cities (4)
Lecture—3 hours; term paper. Transformation in architecture and urban form in Paris, London, and Rome in the context of varying social, political, and economic systems as well as very different cultural traditions, concentrating on the years 1830-1914. Offered in alternate years. GE credit: ArtHum, Wrt.

175. Architecture and Urbanism in Mediterranean Antiquity (4)
Lecture—3 hours; extensive writing. Prerequisite: a lower division Classics course (except 30, 31); course 1A recommended. Architecture and urban development in the ancient Near East, Greece, and Rome. Special emphasis on the social structure of the ancient city as expressed in its architecture, and on the interaction between local traditions and the impact of Greco-Roman urbanism. (Same course as ArtHum 175D.) Offered in alternate years. GE Credit: ArtHum, Div, Wrt.—II. Roller

176A. Art of the Middle Ages: Early Christian and Byzantine Art (4)
Lecture—3 hours; term paper or gallery studies and review. Painting, sculpture and architecture of the early Christian era and Byzantine Empire: through the later Roman Empire in the West and to the final capture of Constantinople in the East. GE credit: ArtHum, Wrt.

176B. Art of the Middle Ages: Early Medieval and Romanesque Art (4)
Lecture—3 hours; term paper or gallery studies and review. Painting, sculpture and architecture of western Europe in the early medieval era; from the rise of the barbarian kingdoms through the twelfth century. GE credit: ArtHum, Wrt.

176C. Art of the Middle Ages: Gothic (4)
Lecture—3 hours; term paper or gallery studies and review. Painting, sculpture and architecture in northern Europe from the twelfth through the fifteenth centuries.

177A. Northern European Art (4)
Lecture—3 hours; term paper or gallery studies and review. Painting and sculpture of the fifteenth century in Austria, Germany, France and the Lowlands, including such artists as Jan van Eyck and Hieronymus Bosch. GE credit: ArtHum, Wrt.

177B. Northern European Art (4)
Lecture—3 hours; term paper or gallery studies and review. The art of Republican and Imperial Rome. GE credit: ArtHum, Wrt.—II. Roller

178A. Italian Renaissance Art (4)
Lecture—3 hours; term paper or gallery studies and review. Giotto and the origins of the Renaissance; painting and sculpture in Italy from Nicola Pisano through Lorenzo Monaco, with emphasis on Duccio, Giotto, and other leading artists of the early fourteenth century. GE credit: ArtHum, Wrt.—I. (III.) Ruda

178B. Italian Renaissance Art (4)
Lecture—3 hours; term paper or gallery studies and review. Early Renaissance in Florence; fifteenth-century artists from Donatello and Masaccio through Botticelli, in their artistic and cultural setting. GE credit: ArtHum, Wrt.—Ruda

178C. Italian Renaissance Art (4)
Lecture—3 hours; term paper or gallery studies and review. Early Renaissance in Florence; fifteenth-century artists from Donatello and Masaccio through Botticelli, in their artistic and cultural setting. GE credit: ArtHum, Wrt.—Ruda

179B. Baroque Art (4)
Lecture—3 hours; term paper or gallery studies and review. Seventeenth-century painting, including such artists as Caravaggio, Rubens, Rembrandt, and Velázquez. Offered in alternate years. GE credit: ArtHum, Wrt.—II. (II.) Ruda

182. British Art and Culture, 1750–1900 (4)
Lecture—3 hours; term paper. Prerequisite: course 1C recommended. British painting in relation to the position of women in society and the rise of the middle-class art market. Topics include Hogarth and popular culture, Queen Victoria and the female gaze, and Pre-Raphaelite artists and collectors. Not offered every year. GE credit: ArtHum, Wrt.—II. (III.) Macleod

183A. Art in the Age of Revolution, 1750–1850 (4)
Lecture—3 hours; term paper. Prerequisite: course 1C recommended. Emergence of modernism in Europe from the late 18th century to the middle of the 19th century. Major artistic events viewed against a revolutionary backdrop of changing attitudes toward identity, race, and gender. Not offered every year. GE credit: ArtHum.—II. Macleod

183B. Impressionism and Post-Impressionism: Manet to 1900 (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 1C recommended. Inno- vations of Impressionists, Post-Impressionists, and Symbolists in relation to social changes. Assessment of role of dealers and critics, myth of the artist-genius, and gender relations in French art and culture of the late 1800s. GE credit: ArtHum, Div, Wrt.—II. (I.) Macleod

183C. Modernism in France, 1880–1940 (4)
Lecture—10 hours; discussion—3 hours; fieldwork—11 hours. Course will take place as a 3-week summer course in France. A survey of gender and patronage in the development of modern art in France. Post-Impressionism, Fauvism, Cubism, and Surrealism are considered in relation to the intervention of dealers and women collectors in the formulation of modernism. GE credit: ArtHum, Div, Wrt.—summer (I.) Macleod

183D. Modern Sculpture (4)
Lecture—3 hours; term paper or gallery studies and review. Sculpture from Neo- Classicism to the present.

184. Twentieth Century Architecture (4)
Lecture—3 hours; term paper. Prerequisite: course 25 recommended. Major move- ments in architecture of the twentieth century in Europe and America. Formal innova- tions are examined within the social, political, and economic contexts in which they emerged. GE credit: ArtHum, Wrt.—II. (II.) Macleod

Quarter Offered: I=Fall; II=Winter; III=Spring; IV=Summer, 2001-2002 offering in parentheses.

Lecture/discussion—4 hours. Prerequisite: one course in art history, or upper divi-
sion standing and a major or minor in the arts or humanities recommended. Social,
cultural, aesthetic, and theoretical development for artists and their audiences in the
context of larger issues like the Mexican, Russian and German revolutions, WWI, the
Depression, WWII., etc., and a critical-theoretical inquiry into questions of mod-
ernism, modernity, and avant-gardism. Offered in alternate years. GE Credit: ArtHum, Div, Wrt.—Stimson

186. Art After Modernism, 1948–Present (4)
Lecture/discussion—4 hours. Prerequisite: one course in art history, or upper divi-
sion standing and a major or minor in the arts or humanities recommended. Social,
cultural, aesthetic, and theoretical developments for artists and their audiences in the
context of such larger issues as McCarthyism, The New Left, free love, feminism,
Reaganomics, globalization, etc., and a critical-theoretical inquiry into questions of neoavantgardism, postmodernism, and postmodernity. Offered in alternate years.
Not open for credit to students who have completed course 183E. GE credit: ArtHum, Div, Wrt.—I, Stimson

188A. The American Home (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 188B or any lower
division course in Art History or Design; not open to freshmen. American domestic
architecture and its responsiveness to cultural, aesthetic, and technical developments for artists and their audiences in the
context of such larger issues as McCarthyism, The New Left, free love, feminism,
Reaganomics, globalization, etc., and a critical-theoretical inquiry into questions of neoavantgardism, postmodernism, and postmodernity. Offered in alternate years.
Not open for credit to students who have completed course 183E. GE credit: ArtHum, Div, Wrt.—I, Stimson

188B. Architect of the United States (4)
Lecture—3 hours; discussion—1 hour. Major movements from colonial times to the
present. The role of buildings in a changing society, the interplay of styles with
factors, such as regionalism, social and political issues, and the role of women in the
design and decoration of the American home. Offered in alternate years. GE Credit: ArtHum, Div, Wrt.—Strazdes

188D. American Painting and Sculpture to the Civil War (4)
Lecture/discussion—3 hours; term paper. Prerequisite: one lower division Art History
course or junior standing. Major movements in American painting and sculpture to
1865. Colonial portraiture, development of history painting, rise of genre painting,
and the Hudson River School of landscape painting. Emphasis on European cultural
currents and their effects. GE credit: ArtHum, Div, Wrt.—(II.) Strazdes

188E. American Painting and Sculpture from the Civil War to World War II (4)
Lecture/discussion—3 hours; term paper. Prerequisite: one lower division course in
Art History or junior standing. Major developments in American painting and sculp-
ture from 1865 to 1940. The American adaptations of Barbizon painting, French
Impressionism, late 19th-century American Realism, the Ashcan School, Modernism
Ideologies, Regionalism. GE credit: ArtHum, Div, Wrt.—Strazdes

189. Photography in History (4)
Lecture/discussion—4 hours. Prerequisite: one course in art history, or upper divi-
sion standing and a major or minor in the arts or humanities recommended. Social,
cultural, aesthetic and technical developments in the history of photography includ-
ing patronage and reception, commercial, scientific, political and artistic applica-
tions, and a Critical-theoretical inquiry into photography’s impact on the social
category “art” and the history of subjectivity. Offered in alternate years. GE Credit:
ArtHum, Div, Wrt.—III. Strazdes

190. Undergraduate Seminar (4)
Lecture—3 hours; term paper. Prerequisite: consent of instructor. Intended primar-
ily for senior and junior students in the history of art. Assigned readings, discus-
sions, and a substantial paper in a particular area of art history will introduce the
student to methodology and techniques of art historical research. May be repeated
once for credit. Limited enrollment.—I, II, III, (I, II, III) Stimson

190A-H. Undergraduate Proseminar in Art History (4)
Lecture/discussion—3 hours; term paper. Prerequisite: Art History major, minor, or
other significant training in Art History recommended. Study of a broad problem or
theoretical issue. Emphasis on research, writing, and discussions in topic chosen:
Mediterranean Antiquity, (B) Medieval. (C) Renaissance, (D) American Art, (E) Gen-
dering of Culture, (F) Chinese Art and Material Culture, (G) Japanese Art and Mate-
rival Culture, (H) Late Modern Art and Theory. May be repeated once for credit when
topic changes.—I, II, III, (I, II, III) Stimson

192. Internship (2–12)
Internship—term paper or catalogue. Supervised program of internships at profes-
sional art institutions such as museums, galleries, and art archives including col-
lctions of slides and photographs. May be repeated once for credit. (P/NP grading
only)

194H. Special Study for Honor Students (4)
Independent study—12 hours. Prerequisite: course 190 or the equivalent, as deter-
mined by the major adviser. Open only to students in the Art History Honors Pro-
gram. Independent study of an art historical problem outlined in the writing of an
honors thesis under the supervision of a faculty guidance committee.

198. Directed Group Study (1-5)
(P/NP grading only)

199. Special Study for Advanced Undergraduates (1-5)
(P/NP grading only)

Graduate Courses

200A. Visual Theory and Interpretive Methods (4)
Discussion—3 hours; extensive writing. Close study of selected recent develop-
ments in interpretive methodology used by art historians and other analysts of visual
culture and the place of those developments within art history’s history and in the
larger field of social, cultural and historical analysis. May be repeated once for
credit.—I. (I.) Macleod, Stimson

200B. Research and Writing Methods in Art History (4)
Discussion—3 hours; term paper. Restricted to graduate students in art history.
Development of the research, writing, and editing skills necessary for producing
publishable work. Focus on reference tools used by art historians and the mechan-
ics of scholarship, from question framing and organization of ideas to writing clear,
effective prose.—II. (II.) Burnett, Ruda, Strazdes

200C. Thesis Writing Colloquium (4)
Discussion—3 hours; term paper. Prerequisite: course 200B concurrently. Restricted
to graduate students in art history. Structured, supportive environment for second-
year art history graduate students writing masters’ theses. Students produce sub-
stantial sections of their theses, contributing them to the group writing and editing
exercises. May be repeated twice for credit. (S/U grading only)—II. (II.) Burnett, Ruda, Strazdes

250. Problems in Art Historical Research (4)
Seminar—3 hours; term paper. Major topics in art historical research, emphasizing
special methods of investigation, and of historical and critical analysis. May be
repeated for credit.—II. Stimson

251. Seminar in Tribal Arts (4)
Seminar—3 hours; term paper. Selected topics in the art and aesthetics of small scale
societies. May be repeated for credit when topic differs and with consent of
instructor.

254. Seminar in Classical Art (4)
Seminar—3 hours; term paper. Selected areas of special study in classical art of the
Greek and Roman tradition. Course may be repeated for credit with consent of
instructor.

263. Seminar in Chinese Art (4)
Seminar—3 hours; paper. Selected areas of special study in Chinese Art. May be
repeated for credit with consent of instructor.—II. Burnett

276. Seminar in Medieval Art (4)
Seminar—3 hours; term paper. Selected areas of special study in medieval art from
Earliest Christian to late Gothic. May be repeated for credit with consent of
instructor.

278. Seminar in Italian Renaissance Art (4)
Seminar—3 hours; term paper. Selected areas of special study in Italian art from the
fourteenth to the sixteenth century. May be repeated for credit with consent of
instructor.—III. Ruda

283. Seminar in Visual Culture and Gender (4)
Seminar—3 hours; term paper. Selected areas of special study in the relationship
between visual culture and gender in Europe and America from 1750 to present. May
be repeated for credit with consent of instructor. Offered in alternate years.—I.
Macleod

288. Seminar in European and American Architecture (4)
Seminar—3 hours; term paper. Exploration of selected topics in European and
American architectural history with concentration on the Modern Period. May be
repeated for credit with consent of instructor.—(II.) Strazdes

299. Individual Study (1-6) I, II, III. The Staff (Program Director in charge)
(S/U grading only)

Professional Course

390. Introduction to Teaching Art History for Teaching Assistants (1)
Discussion—1 hour. Designed for teaching assistants with emphasis on problems and
procedures encountered by teachers of undergraduate art history. (SU grading only)

396. Teaching Assistant Training Practicum (1-4)
Prerequisite: graduate standing. May be repeated for credit. (S/U grading only)

Professional Courses

401. Museum Training: Curatorial Principles (4)
Seminar—3 hours. Approved for graduate degree credit. Study of private and pub-
lc collections. Museum personalites. Acquisition of works of art; ethics of appraisal.
Auction and sales: methods and catalogues. Registration. Technical problems of the
museum. Connoisseurship. Collateral reading. Visits to museums. Seminar with
assigned readers.—II. (II.) Ruda

402. Museum Training: Exhibition Methods (4)
Seminar—3 hours. exhibition. Approved for graduate degree credit. History of exhi-
bition methods in private and public collections. Comparisons of different types of
museums and their exhibition problems. Lighting and techniques of display with
emphasis on current actual design. Museum exhibition with unusual presentation forms.—(I, II.)

Note: Various of the above courses are not offered each year; please check the
quarterly Class Schedule and Registration Guide.
American Studies

American Studies offers an alternative approach to the study of American experience for students who feel too limited by departmental approaches. Lower division, introductory classes explore the ways in which cultural systems shape and reflect life in the United States. These classes pay close attention to the ways in which differences of class, race, gender, generation, ethnicity, religion, and sexual orientation unevenly affect American lives.

The Program. American Studies majors take seven upper division, in-depth classes which difference of class, race, gender, generation, ethnicity, religion, and sexual orientation unevenly affect American lives.

Career Alternatives. As an interdisciplinary program, American Studies provides a good liberal arts and sciences undergraduate education. American Studies maximizes a student's contact with a variety of subject matter and approaches. Graduates have moved into a broad range of career settings, including journalism, law, medicine, nursing, law enforcement, teaching, environmental planning, library science, museum curatorial, and business. Some students discover new career possibilities through their internships in American institutions.

A.B. Major Requirements:

<table>
<thead>
<tr>
<th>Subject Matter</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparatory Subject Matter</td>
<td>24</td>
</tr>
<tr>
<td>One lower division American Studies course</td>
<td>4</td>
</tr>
<tr>
<td>One course from African American and African Studies 10, Asian American Studies 1, Chicano/a Studies 10 or 50, or Native American Studies 10</td>
<td>4</td>
</tr>
<tr>
<td>Two courses from History 17A, 17B, 72A, 72B</td>
<td>8</td>
</tr>
<tr>
<td>One course from English 30A, 30B</td>
<td>4</td>
</tr>
</tbody>
</table>

Depth Subject Matter	44
American Studies 100, 111, 115, 120, and 189	16
American Cultural Themes, choose any two courses from the 130, 140, or 150 series	8

In consultation with an American Studies adviser, the student designs a program of 16 units of upper division course work around a unifying theme, period, or subject matter in American cultures. The course work should come from at least two disciplines or interdisciplinary programs. The student must choose the senior thesis option (190A-190B) for 8 of these 16 units.

Total Units for the Major: 68

Recommended
Completion of the College requirement in English composition before enrollment in American Studies 190A.

Minor Program Requirements:

- American Studies...20
- American Studies, upper division courses...20

No more than 8 units of course 192 may be counted toward this total.

Faculty Advisers. C. Blair, R. Frankenberg, J. Mechling, K. Ono.

Teaching Credential Subject Representative. J. Mechling. See also the Teacher Education Program.

Courses in American Studies (AMS)

Lower Division Course

1A. Technology, Science, and American Culture (4)
Lecture—3 hours; discussion—1 hour. American science and technology as cultural systems, mutual influence and interaction of those systems with other cultural systems, including religion, social thought, art, architecture, literature, music, and commerce. GE credit: ArtHum or SocSci, Div, Wrt.—II. (III.) Mechling

1B. Religion in American Lives (4)
Lecture—3 hours; discussion—1 hour. Religions and spiritual practices in the United States, and their interrelationships with other aspects of U.S. history, society and culture, indigenous and imported faiths, and the impact of immigration, colonization, and culture contact on religious systems. GE credit: ArtHum or SocSci, Div, Wrt.—II. (III.) Mechling

1C. American Lives through Autobiography (4)
Lecture—2 hours; discussion—2 hours. American culture as understood through the individual life stories told by Americans, with attention to the roles of gender, race, ethnicity, social class, and sexual orientation in the individual's life course. GE credit: ArtHum or SocSci, Div, Wrt.—II. (III.) Mechling

1E. Nature and Culture in America (4)
Lecture—3 hours; fieldwork—3 hours. Uses and abuses of nature in America; patterns of inhabitation, exploitation, appreciation, and neglect; attention to California; emphasis on metaphor as a key to understanding ourselves and the natural world; attention to models of healing: stewardship, ecology, the "rights" movement. Offered in alternate years. GE credit: ArtHum or SocSci, Div, Wrt.—II. (III.) Mechling

1F. The Popular Image of Women in America (4)
Lecture—2 hours; discussion—1 hour; directed analysis of popular media. GE credit: ArtHum or SocSci, Div, Wrt.—II. (III.) Mechling

4. Freshman Seminar (2)
Seminar—2 hours. Prerequisite: open only to students who have completed fewer than 40 quarter units. Investigation of a special topic in American Studies through shared readings, discussions, written assignments, and special activities (such as fieldwork, site visits). Emphasis on student participation in learning. Limited enrollment.—II. (III. (II.) Mechling

5. Technology in American Lives (4)
Lecture—2 hours; discussion—2 hours. Prerequisite: completion of Subject A requirement. Technology as both a material cultural force and a symbol in American culture; the lives of engineers at work and play, images of the engineer and technology in popular culture; social political and ethical issues raised by technology. GE credit: ArtHum or SocSci, Div, Wrt.—II. (III.) Mechling

30. Images of America and Americans in Popular Culture (4)
Lecture—3 hours; discussion—1 hour. Investigation of verbal and visual discourses about American identity in various popular culture products, including film, television, radio, music, fiction, art, advertising, and commercial experiences; discourses about the United States in the popular culture of other societies. Offered in alternate years. GE credit: ArtHum or SocSci, Div, Wrt.—II. (III.) Mechling

98. Directed Group Study (1-5)
Prerequisite: consent of instructor. Primarily for lower division students. (P/NP grading only.)

99. Individual Study for Undergraduates (1-5)
(P/NP grading only.)
Upper Division Courses
100. Interdisciplinary Skills (4)
Lecture/discussion—3 hours; term paper. Design and implementation of interdisciplinary research, analysis and writing for American Studies and other cultural studies courses. Library and Internet research skills, project/problem definition, methods of study of texts, individuals, communities. Hands-on, skill-building, focused reading, discussion.—I. (I.) Frankenberg

101A-H. Special Topics (4)
Seminar—3 hours, intensive reading, writing, and special projects. Interdisciplinary group study of special topics in American Culture Studies, designed for non-majors as well as majors. Content will vary according to the instructor and in accord with the following titles: (A) Popular Culture Studies; (B) Women's Studies; (C) Material Aspects of American Culture; (D) American National Character; (E) American Lives Through Autobiography; (F) The Interrelationship Between Arts and Ideas; (G) New Directions in American Culture Studies. (H) Problems in Cross-Cultural American Studies. May be repeated for credit in different subject area only.—I, II, III, (I, II, III) Blair

110. A Decade in American Civilization (4)
Lecture—2 hours; discussion—2 hours. Prerequisite: one of courses 1A, 1B, 1C, 1D, 1E or 1F. Close examination of a single decade in American civilization; the connections between the history, literature, arts, customs, and ideas of Americans living in the decade. Issues and representations of race, class, gender, age, and sexuality in the decade. May be repeated for credit if decades studied are different. GE credit: ArtHum or SocSci, Div, Wrt.—II. (II.) Frankenberg

111. Theories and Practices of Everyday Life in the United States (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: upper division status; preparatory courses for the American Studies major or the equivalent interdisciplinary experience. Introduction to the cultural studies theories and to critical practices that seek to understand everyday life in the United States, with special attention to uncovering the vernacular theories governing these practices.—I. (I.) Ono

115. Living in Bodies: Body Politics in the United States (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: upper division status; preparatory courses for the American Studies major or the equivalent interdisciplinary experience. Examination of human bodies as sites for cultural constructions of identities and “selves” in the United States; attention to bodily norms, crises, and transgressions; the relation between disciplining the body and controlling social categories, including race, gender, class and sexuality.—II. (II.) Frankenberg

120. American Folklore and Folklife (4)
Lecture—3 hours; fieldwork—1 hour. Theory and method of the study of American folk traditions, including oral lore, customs, music, and material folk culture; the uses and meanings of those traditions in various folk communities, including families, ethnic institutions, voluntary organizations, and occupational groups. GE credit: ArtHum or SocSci, Div, Wrt.—II. (II.) Mechling

125. Corporate Cultures (4)
Lecture—2 hours; discussion—1 hour; fieldwork—1 hour. Prerequisite: one course chosen from course 120, Anthropology 2, Psychology 16, or Sociology 1; or consent of instructor. Exploration of the small group cultures of American corporate workplaces, including the role of environment, stories, jokes, rituals, ceremonies, personal style, and play. The effects of cultural diversity upon corporate cultures, both from within and in contact with foreign corporations.—III. (III.) Ono

130. American Popular Culture (4)
Lecture/discussion—3 hours; fieldwork—1 hour. Prerequisite: course 1 or upper division standing. American popular expression and experience as a cultural system, and the relationship between this system and elite and folk cultures. Exploration of theories and methods of discovering and describing patterns and meanings of American popular culture. GE credit: ArtHum or SocSci, Div, Wrt.—II. (II.) Blair

132. Critical Approaches to Media Culture (4)
Lecture/discussion—4 hours; film viewing—2 hours. Critical approaches to the study of contemporary media culture, focusing specifically on film, television, computer, and print media and their products and on the various interrelationships between media and U.S. culture. Offered in alternate years. GE credit: ArtHum or SocSci, Div, Wrt.—II. (II.) Blair

133. Rhetoric of Media on Social Issues (4)
Lecture/discussion—4 hours. An introduction to rhetorical analysis of social issues as depicted within media culture, with specific emphasis on the way media frame messages about new social problems. Not open to students who have taken Rhetoric and Communication 124. Offered in alternate years. GE credit: SocSci, Div, Wrt.—II. (II.) Ono

139. Feminist Cultural Studies (4)
Lecture/discussion—4 hours. Prerequisite: one course in Women's Studies or American Studies. The histories, theories, and practices of feminist traditions within cultural studies. (Same course as Women's Studies 139.) GE credit: SocSci, Div, Wrt.—III. (III.) Frankenberg

151. American Landscapes and Places (4)
Lecture—2 hours; discussion—1 hour; fieldwork—3 hours. Prerequisite: course 1, upper division standing. Comparative study of several American cultural populations, locating a region, including their relationship to a shared biological, physical, and social environment, their intercultural relations, and their relationships to the dominant American popular and elite culture and folk traditions. GE credit: ArtHum or SocSci, Div, Wrt.—II. (II.) Blair

152. The Lives of Children in America (4)
Lecture—2 hours; discussion—2 hours. Experience of childhood and adolescence in American culture, as understood through historical, literary, artistic, and social scientific approaches. GE credit: ArtHum or SocSci, Div, Wrt.—III. (III.) Mechling

153. The Individual and Community in America (4)
Lecture—2 hours; discussion—2 hours. Interdisciplinary examination of past and present tensions between the individual and the community in American experience, as these tensions are expressed in such cultural systems as folklore, public ritual, popular entertainment, literature, fine arts, architecture, and social thought. GE credit: ArtHum or SocSci, Div, Wrt.—II. (II.) Frankenberg

154. The Lives of Men in America (4)
Lecture—2 hours; discussion—2 hours. Interdisciplinary examination of the lives of boys and men in America, toward understanding cultural definitions of masculinity, the ways individuals have accepted or resisted these definitions, and the broader consequences of the struggle over the social construction of gender. GE credit: ArtHum or SocSci, Div, Wrt.—I. (I.) Mechling

155. Symbols and Rituals in American Life (4)
Lecture—2 hours; discussion—2 hours. Prerequisite: course 1. Interdisciplinary examination of selected, richly expressive events (parades, festivals, holidays) and symbols (flags, memorials, temples) which encode nationwide values and understandings (Thanksgiving, New Year’s, etc.) or which realize more limited, special meanings (Mardi Gras, rodeo, Kwanza, graduation, bar mitzvah, etc.). Offered in alternate years. GE credit: ArtHum or SocSci, Div, Wrt.—III. Frankenberg

156. Race, Culture and Society in the United States (4)
Lecture—2 hours; discussion—2 hours. Prerequisite: course 1. Interdisciplinary examination of the significance of race in the making of America; how race shapes culture, identities and social processes in the United States; the interweaving of race with gender, class and nationhood in self and community. GE credit: ArtHum or SocSci, Div, Wrt.—II. (II.) Frankenberg

157. Animals in American Culture (4)
Lecture—3 hours, discussion—1 hour. Animals as symbols in American thought, as found in folklore, popular culture, literature, and art; customs and stories around human-animal interactions, including hunting, religion, foodways, pets, zoos, circuses, rodeos, theme parks, and scientific research on animals. Offered in alternate years. GE credit: ArtHum or SocSci, Div, Wrt.—III. Mechling

160. Undergraduate Seminar in American Studies (4)
Seminar—3 hours; term paper. Prerequisite: open to junior and senior American Studies majors only. Intensive reading, discussion, research, and writing by small groups in selected topics of American Studies scholarship; emphasis on theory and its application to American material. Limited enrollment. May be repeated once for credit when content differs.—II, III, (I, II, III) Schroeder, Mechling

180. Junior Proseminar (2)
Discussion—2 hours. Prerequisite: junior standing in American Studies major. A small-group, intensive study of works frequently cited in American Studies scholarship; emphasis on theory and its application to American materials. May be repeated for credit with consent of instructor.—I, II, III, (I, II, III) Mechling, Turner, Frankenberg

190A. Senior Thesis Research Seminar (4)

190B. Senior Thesis (4)
Independent study—12 hours. Prerequisite: senior standing in American Studies major and course 190A. In consultation with advisor, student writes an extended research paper or discovers and develops a pattern of meaning in American popular culture. GE credit: ArtHum or SocSci, Div, Wrt.—II. (II.) Blair

192. Internship in American Institutions (1-12)
Internship—1-12 hours. Prerequisite: enrollment dependent on availability of intern positions, with priority to American Studies majors. Supervised internship and study within and about key organizations in American civilization at archives, museums, schools, historical societies, governmental and social agencies, etc., with attention to the techniques of participant observation and the collection of ethnographical data. May be repeated for credit for a total of 12 units. (P/NP grading only.)

197T. Tutoring in American Studies (1-5)
Tutorial—1-5 hours. Prerequisite: consent of Chairperson of American Studies Program. Tutoring in lower division American Studies courses, usually in small discussion groups. Periodic meetings with the instructor in charge, reports and readings. May be repeated for credit when the tutoring is for a different course. (P/NP grading only.)

198. Directed Group Study (1-5)
May be repeated for credit when the tutoring is for a different course. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5)
Prerequisite: consent of instructor and Chairperson of American Studies Program. (P/NP grading only)
Graduate Courses

207. The Critical Study of Whiteness (4)
Seminar—4 hours. Prerequisite: Graduate standing in social science, humanities, arts, or cultural studies. Critical study of the emergence and significance of the social and racial status “whiteness” and its cultural practices. The colonial context for emergence of whiteness, its centrality to class, race, gender formation, and to social, cultural, legal, and educational processes. Offered in alternate years.—II. Frankenberg

220. American Folklore and Folklife (4)
Seminar—3 hours; term paper. Prerequisite: graduate standing or consent of instructor. Theory and methods for the study of the folklore and the folk customary behavior of Americans; contributions of folklore studies to scholarship in humanities and social science disciplines.—II. (III.) Mechling, Turner

296. Group Study (1-5)
Prerequisite: consent of instructor. (S/U grading only.)

299. Individual Study (1-12)
Prerequisite: consent of instructor. (S/U grading only.)

Professional Course

396. Teaching Assistant Training Practicum (1-4)
Prerequisite: graduate standing. May be repeated for credit. (S/U grading only.)—I, II, III. (I, II, III.)

Quarter Offered: I—Fall; II—Winter; III—Spring; IV—Summer; 2001-2002 offering in parentheses.

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
Animal Science and Management

(College of Agricultural and Environmental Sciences)

The Major Program

The animal science and management major combines a thorough education in the basic biology of domestic animal species with a strong background in managerial economics. Graduates of this interdisciplinary major will be well positioned to adjust to our rapidly changing world and job market.

The Program. The interdisciplinary program in animal science and management combines a fundamental background in the natural sciences (chemistry, biology, physiology, nutrition, genetics, mathematics, and behavior), with an understanding of economics and humanities. After completing preparatory courses, students focus on both the animal species that interest them (horses, cattle, sheep, companion animals, goats, fish, crustaceans or mollusks, among others) and principles of managerial economics (marketing, finance, business organization or systems analysis).

Students preparing for medical or veterinary school can meet professional entrance requirements with those of this major if they plan ahead.

Career Alternatives. Job opportunities for successful graduates are plentiful and include positions with banking and financial institutions, agribusiness, Peace Corps, and farms of all scales. Most animal science and management graduates are well prepared for professional study (medical, law, veterinary, and graduate business schools) as well as graduate research programs leading to the M.S. or Ph.D. degrees. Advanced degrees open doors to work as extension specialists, farm advisers, and teachers, and prepare students for international service.

B.S. Major Requirements:

UNITS

English Composition Requirement ...7-8

Preparatory Subject Matter ..73-74

Animal Science 1 and 2, and one of Animal Science 15, 18, 41-41L, or 4

Biological Sciences 1A, 1B, 1C ...15

Chemistry 2A, 2B, 8A, 8B ...16

Agricultural Systems and Environment 213

Economics 1A, 1B, Management 11A, 11B18

Mathematics 16A-16B or the more advanced mathematics courses ...6

Agricultural Systems and Environment 120 or Statistics 100, or other
courses in quantitative skills with prior approval of the Master Adviser

Breadth/General Education Subject Matter24

Depth Subject Matter ..43-44

Biological Sciences 101 ..4

Nutrition 115 ..4

Neurobiology, Physiology, and Behavior 1015

Business Management ...19-20

Agricultural and Resource Economics 100A, 130, 140, Animal Sci-
ence 128;

Plus at least one course from:

Agricultural and Resource Economics 18, 112, 113, 118A, 118B,
136, 145, 157, 171A, 171B.

Production/Management/Processing/Marketing11

Animal Science 148;

At least one course from: Animal Science 115, 118, 119, 140, 143,
144, 146;

At least one course from: Animal Science 141, 145, 147.

Restricted Electives ...5-9

At least two additional courses (minimum 5 units; duplicate from:

Depth courses not counted) selected with approval of adviser from:

Animal Science 103, 104, 105, 106, 115, 118, 119, 120, 120L, 123,
124, 125, 126, 127, 131, 136, 137, 140, 141, 142, 143, 144, 145, 146,
147, 192, 193, 194, 195, Avian Sciences 149, Animal Genetics 107,
108, 109, 111, Nutrition 122, 123, 124, Animal Biology 102 (strongly
recommended), Neurobiology, Physiology, and Behavior 121, 121L,
130, Wildlife, Fish, and Conservation Biology 131.

Unrestricted Electives ...21-46

Total Units for the Degree ..180

Major Adviser. J.G. Fadel.

Advising Center for the major (including peer advising) is located in 1202
Meyer Hall (530-754-7915). Students must secure their academic adviser through
this office upon entering the major.
Animal Behavior (A Graduate Group)

Nicola Clayton, Ph.D., Chairperson of the Group
Group Office, Center for Animal Behavior (530-752-4863; Fax: 530-752-8391; e-mail: yntrevitt@ucdavis.edu)

Faculty. The Group includes faculty from 11 departments in three schools and colleges.

Graduate Study. The Ph.D. program in Animal Behavior is an interdepartmental program that trains students for teaching and research in a variety of areas, including anthropology, animal science, ecology, entomology, neurobiology, psychology, physiology, veterinary science, wildlife biology, and zoology. Students choose one of the five areas of specialization: (1) ethology and evolutionary bases of animal behavior, (2) physiological basis of animal behavior, and (3) behavior and conservation of wild animals, (4) behavior and management of domestic animals, and (5) integrative studies. All five specializations emphasize the adaptive and evolutionary bases of animal behavior. Resources available to students, in addition to various departmental facilities, include those of the California Regional Primate Research Center, Bodega Marine Laboratory, and the Agricultural Field Stations. There is an early application deadline of January 15 for fall quarter.

Preparation. Appropriate preparation is a bachelor's or master's degree in a discipline relevant to the biology of behavior. In addition, at least one course from each of the following areas must be taken before admission into the program or before the end of the first year in the program.

Ecology: e.g., Evolution and Ecology 101, Environmental Science and Policy 100 or Entomology 104
Genetics: e.g., Biological Sciences 101
Statistics: e.g., Statistics 102 or Psychology 103, or the equivalent
Evolution: e.g., Evolution and Ecology 100 or 149
Animal behavior: Neurobiology, Physiology and Behavior 102
Systemic physiology: e.g., Neurobiology, Physiology and Behavior 101 or 111

Students are encouraged to engage in some form of research as early as possible during the first year. This pre-dissertation research may be pursued under the guidance of any faculty member of the Group, not necessarily the student's major professor.

Core Requirements. Students take two “breadth” courses, at least one course in statistics, a methodology and grant writing course, and a graduate seminar. Required courses:

Comparative psychology: Psychology 250
Interdisciplinary topics in behavior: Animal Behavior 230A and 298
Methodology and grant writing: Animal Behavior 201
Statistical analysis: at least one of Psychology 205, 207A, 207B, Statistics 206, 106, 108, or 110
Graduate seminars: Animal Behavior 290

In addition, we strongly recommend a course on teaching science: Biological Sciences 310, Psychology 390A, 390B, Animal Behavior 390A, or 390B

Students are strongly urged to obtain at least 30 contact hours of teaching in courses directly related to the subject of animal behavior. This may include assisting with laboratory or field study courses as well as giving lectures to undergraduates.

Specialization. In addition to the requirements listed above, students must also take courses in one of the three areas of specialization with substitution as approved by the adviser.

Courses in Animal Behavior (ANB)

Graduate Courses

201. Scientific Approaches to Animal Behavior Research (3)
Lecture—3 hours. Prerequisite: consent of instructor. Philosophical issues, goals, strategies and tools in field and laboratory research. May be repeated for credit when topics differ.—III. (III.)

230A. Interdisciplinary Approaches to Animal Behavior (3)
Seminar—3 hours; term paper. Prerequisite: consent of instructor. Analysis of literature in behavior and an allied discipline or disciplines that offer the potential, in combination, to advance the understanding of a topic in animal behavior conceptually and empirically. Topics will vary from year to year.—II. (II.)

230B. Interdisciplinary Approaches to Animal Behavior (5)
Workshop—4 days total; discussion—3 hours; term paper. Prerequisite: course 230A the previous quarter. Development of an empirical or theoretical interdisciplinary approach to research on a current topic in animal behavior.

270. Research Conference in Behavioral Ecology (1)
Conference—1 hour. Prerequisite: graduate standing and consent of instructor. Critical presentation and evaluation of current literature and ongoing research in behavioral ecology. Limited enrollment. May be repeated for credit. (S/U grading only.)—II, III. (II, III.)

290. Seminar in Animal Behavior (1-3)
Seminar—1-3 hours. Prerequisite: consent of instructor. Selected topics in animal behavior. (S/U grading only.)—I, II, III. (I, II, III.)

296. Group Study (1-5)
Prerequisite: graduate standing and consent of instructor.

299. Research (1-12)
Prerequisite: and consent of instructor. (S/U grading only.)

Professional Course

396. Teaching Assistant Training Practicum (1-4)
Prerequisite: graduate standing. May be repeated for credit. (S/U grading only.)—I, II, III. (I, II, III.)
Animal Genetics

(Office of Agricultural and Environmental Sciences)

Faculty. See under Department of Animal Science.

Major Program. See the major in Animal Science.

Related Courses. See Agronomy 221, 224; Plant Pathology 215X, Plant Biology 154; Vegetable Crops 220.

Courses in Animal Genetics (ANG)

Questions pertaining to the following courses should be directed to the instructor or to the Animal Science Advising Center, 1202 Meyer Hall (530-754-7915).

Upper Division Courses

101. Animal Cytogenetics (2)
Lecture/discussion—1 hour; laboratory—3 hours. Prerequisite: Biological Sciences 101, 102. Principles and techniques of cytogenetics applied to animal systems; chromosome harvest techniques, analysis of mitosis and meiosis, karyotyping, chromosome banding, cytogenetic mapping, chromosome structure and function, comparative cytogenetics.—III. (III.) Delany

105. Horse Genetics (2)
Lecture—2 hours. Prerequisite: course 15 and Biological Sciences 101. Coat color, parentage testing, medical genetics, pedigrees, breeds, the gene map and genus Equus. Emphasis on understanding horse genetics based on the unity of mammalian genetics and making breeding decisions based on fundamental genetic concepts.—III. (III.) Bowling

107. Genetics and Animal Breeding (5)
Lecture—4 hours; laboratory—3 hours. Prerequisite: Biological Sciences 101. Principles of quantitative genetics applied to improvement of livestock and poultry. Effects of mating systems and selection methods are emphasized with illustration from current breeding practices.—I. (I.) Medrano

108. Methods in Quantitative Animal Breeding
Lecture—3 hours. Prerequisite: course 107. Methods and procedures in quantitative animal breeding, including: expected value, single and multiple trait selection index, restricted selection, embedded traits, categorical traits, and best linear unbiased prediction.—II. (II.) Famula

109. Introduction to Parameter Estimation (1)
Lecture—1 hour. Prerequisite: course 107 or the equivalent; course 108 recommended. Procedures for estimation of repeatability, heritability, and genetic and environmental correlations. Concept of expected value, estimation of variance components and the simulation of biological data.—II. (II.) Famula

111. Molecular Biology Laboratory Techniques (4)
Lecture—2 hours; laboratory—6 hours. Prerequisite: Biological Sciences 1C; Biological Sciences 101, 102, 103. Introduction to the concepts and techniques used in molecular biology; the role of this technology in both basic and applied animal research, and participation in laboratories using some of the most common techniques in molecular biology.—II. (II.) Murray, Williamson

198. Directed Group Study (1-5)
Prerequisite: consent of instructor. Selected topics relating to animal genetics. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)

Graduate Courses

204. Theory of Quantitative Genetics (3)
Lecture—3 hours. Prerequisite: course 107 or the equivalent. Theoretical basis of quantitative genetics and the consequences of Mendelian inheritance. Concepts used to estimate quantitative genetic differences and basis for partitioning the phenotypic variance. Offered in alternate years.—III. Gall

206. Advanced Domestic Animal Breeding (3)
Lecture—3 hours. Prerequisite: course 107 and Animal Science 205; course 204 recommended. Procedures for the genetic evaluation of individuals to include selection indices and mixed model evaluation for single and multiple traits. Methods of estimating genetic trends. Offered in alternate years.—III. Famula

208. Estimation of Genetic Parameters (3)
Lecture—3 hours. Prerequisite: course 107 and Animal Science 205; courses 204 and 108 recommended. General methods for the estimation of components of variance and covariance and their application to the estimation of heritability, repeatability and genetic correlations are considered. Specific emphasis is given to procedures applicable to livestock populations under selection.

211. Genetic Engineering of Animals (2)
Lecture—1 hour; lecture/discussion—1 hour. Review of techniques for the genetic engineering of animals and their limitations and applications. Student-led discussions of recent papers in the field and possible future applications of genetically engineered animals in basic research and applied agricultural and medical research. Offered in alternate years. (S/U grading only.)—III. Murray

212. Sequence Analysis in Molecular Genetics (2)
Lecture/laboratory—2 hours. Prerequisite: Genetics 201A, 201B, 201C, or the equivalents. The use of computer algorithms and on-line databases to analyze nucleic acid and protein sequences in molecular genetics research. Offered in alternate years. (S/U grading only.)—II. Medrano

298. Group Study (1-5)
Prerequisite: consent of instructor. Lectures and discussions of advanced topics in animal genetics. (S/U grading only.)

299. Research in Animal Genetics (1-12)
(S/U grading only.)

Quarter Offered: I—Fall; II—Winter; III—Spring; IV—Summer. 2001-2002 offering in parentheses.

General Education (GE) credit: ArHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
Animal Science

(The College of Agricultural and Environmental Sciences)

Gary B. Anderson, Ph.D., Professor
C. Christopher Calet, Ph.D., Vice Chairperson of the Department
James R. Millam, Ph.D., Vice Chairperson of the Department
Department Office, 2223 Meyer Hall (530-752-1250)
Undergraduate Advising, 1202 Meyer Hall (530-754-7915)
Graduate Advising, 1202 Meyer Hall (530-752-2382)
World Wide Web: http://animalscience.ucdavis.edu

Bodega Marine Laboratory (707-875-2211), P.O. Box 247, Bodega Bay, CA.

Faculty

Thomas E. Adams, Ph.D., Professor
Gary B. Anderson, Ph.D., Professor, Academic Senate Distinguished Teaching Award, UC Davis Prize for Teaching and Scholarly Achievement
R. Leilani Baldwin, Ph.D., Professor, Sesnon Professor of Animal Science
Patricia J. Berger, Ph.D., Professor
C. Christopher Calet, Ph.D., Professor
Ernest S. Chang, Ph.D., Professor (Biological Sciences, Bodega Marine Laboratory)
Douglas E. Cokin, Ph.D., Associate Professor
Mary E. Delany, Ph.D., Assistant Professor
Edward J. DePeters, Ph.D., Professor, Academic Senate Distinguished Teaching Award
Serge Doroshev, Ph.D., Professor
John M. Eadie, Ph.D., Associate Professor
James G. Fadal, Ph.D., Professor
Thomas R. Farnhau, Ph.D., Professor
Graham A. E. Gall, Ph.D., Professor
Ian Garnett, Ph.D., Senior Lecturer
Silas S. C. Hung, Ph.D., Professor
Annie J. King, Ph.D., Professor
Kirk C. Klasing, Ph.D., Professor
Yu-Bang Lee, Ph.D., Professor
Juan F. Medrano, Ph.D., Professor
Joy A. Mchen, Ph.D., Professor
James R. Millam, Ph.D., Professor
James D. Murray, Ph.D., Professor
Anita M. Oberbauer, Ph.D., Associate Professor
Wolfgang Petroff, Assistant Professor
Edward O. Price, Ph.D., Professor
Kathryn Radke, Ph.D., Associate Professor
Janet F. Roser, Ph.D., Professor
Roberto D. Sainz, Ph.D., Associate Professor
Wesley W. Weathers, Ph.D., Professor
Barry W. Wilson, Ph.D., Professor
Richard A. Zinn, Ph.D., Professor

Emeriti Faculty

Ursula K. Abbott, Ph.D., Professor Emeritus
Hans Abplanalp, Ph.D., Professor Emeritus
C. Robert Ashmore, Ph.D., Professor Emeritus
G. Eric Bradford, Ph.D., Professor Emeritus
Wallis H. Clark, Jr., Ph.D., Professor Emeritus
Perry T. Cupe, Ph.D., Professor Emeritus
William N. Garret, Ph.D., Professor Emeritus
C. Richard Grau, Ph.D., Professor Emeritus
F. Howard Kretzer, Ph.D., Professor Emeritus
Robert C. Laben, Ph.D., Professor Emeritus
Glenn P. Lotgreen, Ph.D., Professor Emeritus
James H. Meyer, Ph.D., Professor Emeritus, Chancellor Emeritus
Frank X. Ogasawara, Ph.D., Professor Emeritus
Wade C. Rollins, Ph.D., Professor Emeritus
Robert W. Touchberry, Ph.D., Professor Emeritus
Pran N. Vohra, Ph.D., Professor Emeritus
William C. Weir, Ph.D., Professor Emeritus
Wilboor O. Wilson, Ph.D., Professor Emeritus

Affiliated Faculty

Francine A. Bradley, Ph.D., Lecturer
Fred S. Conte, Ph.D., Lecturer
Ralph A. Ernst, Ph.D., Lecturer
Dennis Hedgecock, Ph.D., Lecturer (Bodega Marine Laboratory)
Alida Mrozenti, M.S., Lecturer, Academic Federation Excellence in Teaching Award
James W. Ohlen, Ph.D., Lecturer
Dana Van Liew, Lecturer

The Major Program

The Animal Science major is devoted to the sciences central to understanding biological function of domestic and captive animals including birds, their care, management, and utilization by people for food, fiber, companionship and recreation. Advances in science and technology, and an ever growing human population, have increased the complexity of issues surrounding the care and management of animals. Specializations within the major allow students to develop a scientific appreciation of animals and their relationship to their environment. Graduates in Animal Science are able to advance the science and technology of animal care in an objective and effective manner for the betterment of animals and society.

The Program. The curriculum provides depth in the biological and physiological sciences and allows students to specialize within the broad field of applied animal science. Study begins with introductory courses in animal science, biology, chemistry, mathematics, and statistics. Students undertake advanced courses in animal behavior, biochemistry, genetics, nutrition, and physiology and the integration of these sciences to animal function, growth, reproduction, and lactation. Students complete the curriculum by choosing a specialization in either an animal science discipline (behavior, biochemistry, genetics, nutrition, or physiology) or in the sciences particular to a class of animals (aquatic, avian, companion, captive, equine, laboratory, livestock, dairy, or poultry).

Career Alternatives. A wide range of career opportunities are available to graduates. The primary goal of the major is to prepare students for graduate study leading to the M.S. and Ph.D. degree; for continued study in a professional school such as veterinary medicine, human medicine or dentistry; for careers in research, agricultural production, farm and ranch management, or positions in business, sales, financial services, health care, agricultural extension, consulting services, teaching, journalism, or laboratory technology.

B.S. Major Requirements:

Written and Oral Expression..0-8

See College requirements

Preparatory Subject Matter...56-60

Animal Science 1, 2, 41, 41L..1
Biological Sciences 1A, 1B, 1C..1
Chemistry 2A, 2B and 8A, 8B or 118A, 118B..16-18
Agricultural Systems and Environment 21..3
Mathematics 16A, 16B or 21A, 21B...6-8
Agricultural Systems and Environment 120 or Statistics 100...............4

Note: Some professional and graduate schools may require additional preparatory subject matter. Please consult the advising center.

Breadth/General Education

See General Education requirement

Depth Subject Matter

Biology (Biological Sciences 101; Animal Genetics 107; Animal Biology 102, 103, Neurobiology, Physiology, and Behavior 101).............22

Integrative Animal Biology (Animal Science 123, 124, and Neurobiology, Physiology and Behavior 121 and 121L)12

Laboratory (Select one course from Animal Genetics 111; Animal Science 106, 136, and 137, Molecular and Cellular Biology 120L; Neurobiology, Physiology, and Behavior 101L; Pathology, Microbiology, and Immunology 126L)

Area of Specialization ..20

Choose one area of specialization below; the program of study must be approved in advance by your faculty adviser.

Animal Science with a Disciplinary Focus..20

Select 20 upper division units, with approval from your faculty adviser, to form a coherent series of courses in one of the following disciplines: animal behavior, biochemistry, genetics, nutrition, or physiology.

At least three courses need to be in a specific discipline.

Select these 20 upper division units from Animal Genetics, Animal Science, or Avian Sciences courses, or Nutrition 115, 122, 123 or other courses approved by your faculty adviser.

Quarter Offered: I=Fall; II=Winter; III=Spring; IV=Summer; 2001-2002 offering in parentheses.
Select additional units to complete the 20-unit total from upper division Animal Science courses, Animal Genetics courses, Avian Science 103, Neurobiology, Physiology, and Behavior 121, 121L, Nutrition 115, 122, 123.

Animal Science—Aquaculture

Animal Science 18 ...4
Animal Science 118, 119 ...8
Additional upper division courses ...8
Select additional units to complete the 20-unit total from upper division Animal Science courses, Animal Genetics courses, Applied Biological Systems Technology 161, Nutrition 124, Wildlife, Fish, and Conservation Biology 121.

Animal Science—Dairy/Livestock

Animal Science 41, 41L ..0
Animal Science 104 ...3
Additional upper division courses ...13
Select 4 or 8 units from Animal Science 143, 144, 146.
Select additional units to complete the 20-unit total from upper division Animal Science courses, Animal Genetics courses, Neurobiology, Physiology, and Behavior 121, 121L, Nutrition 115, 122, 123.

Animal Science—Equine

Animal Science 15 ...3
Animal Science 103 or 104 ..3
Animal Science 115, 141 ...8
Animal Science 125 or 126 ...12
One additional upper division course3
Select from upper division Animal Science courses, Animal Genetics courses, Neurobiology, Physiology, and Behavior 121, 121L, Nutrition 115, 122, 123.

Animal Science—Equine

Minor Adviser, G.A.E. Gall.

Graduate Study. The Department of Animal Science offers a program of study and research leading to the M.S. degree. In addition, the Master of Agriculture and Management (M.A.M.) is offered by the Department of Animal Science in conjunction with the Graduate School of Management. Detailed information about each of these programs may be obtained by contacting the Advising Center listed above.

Graduate Adviser, D.E. Conklin (M.S. degree); I. Garnett (M.A.M. degree).

Courses in Animal Science (ANS)

Lower Division Courses

1. Domestic Animals and People (4)

Lecture—3 hours; laboratory—3 hours. Animal domestication and factors affecting their characteristics and distribution. Animal use for food, fiber, work, drugs, health and recreation; present and future roles in society. Laboratory exercises with beef and dairy cattle, poultry, sheep, swine, laboratory animals, fish, horses, meat and dairy products.

GE credit: SciEng, Wrt.—I. (I.) Famula

2. Introductory Animal Science (4)

Lecture—3 hours; laboratory—3 hours. Prerequisite: course 1 and Biological Sciences 1A recommended. Growth, reproduction, lactation, inheritance, nutrition and disease control in domesticated animals and species used in aquaculture; the application of sciences to animal production. GE credit: SciEng, Wrt.—III. (III.) Garnett

15. Introductory Horse Husbandry (3)

Lecture—3 hours. Prerequisite: course 2 recommended. Introduction to care and use of light horses emphasizing the basic principles for selection of horses, responsibilities of ownership, recreational use and raising of foals.—II. (II.) Roser

18. Introductory Aquaculture (4)

Lecture—3 hours; discussion—1 hour. Historical and contemporary aquacultural practices. Interaction between the aquatic culture environment and the biology of aquatic animals. Impact of economics and governmental policies on the development of aquaculture. Interaction of aquacultural practices with larger societal goals. GE credit: SciEng.—I. (I.) Conklin

21. Livestock and Dairy Cattle Judging (2)

Laboratory—6 hours. Prerequisite: course 1 or 2 recommended. Evaluation of type as presently applied to light horses, meat animals and dairy cattle. Relationship between form and function, form and carcass quality, and form and milk production.—III. (III.) Van Liew

22A. Animal Evaluation (2)

Laboratory—3 hours; fieldwork—30 hours (total). Prerequisite: course 21 or the equivalent. Attendance at 3 one-day weekend field trips required. Continued study of course 22A with emphasis on specific species: swine, beef cattle and sheep. Application of animal science principles to selection and management problem-solving scenarios. Prerequisite to intercollegiate judging competition. Offered in alternate years. (P/NP grading only.)—II. (II.) Van Liew

22B. Animal Evaluation (2)

Laboratory—3 hours; fieldwork—30 hours (total). Prerequisite: course 22A or the equivalent. Attendance at 3 one-day weekend field trips required. Continued study of course 22A with emphasis on specific species: swine, beef cattle and sheep. Application of animal science principles to selection and management problem-solving scenarios. Prerequisite to intercollegiate judging competition. Offered in alternate years. (P/NP grading only.)—II. (II.) Van Liew

Quarter Offered: I—Fall; II—Winter; III—Spring; IV—Summer, 2001-2002 offering in parentheses.

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
120. Principles of Meat Science (3)
Lecture—3 hours. Prerequisite: Biological Sciences 1A. Anatomical, physiological, developmental, and biochemical aspects of muscle underlying the conversion of muscular tissue. Includes nutritional, preservation, microbiology, and public health issues associated with meat products. (Same course as Food Science and Technology 120.) GE credit: SciEng.—III. (III.) Bandman, Lee

120L. Meat Science Laboratory (2)
Discussion—1 hour; laboratory—3 hours. Prerequisite: Biological Sciences 1A; course 120 (may be taken concurrently). Laboratory exercises and student participation in transformation of live animal to carcass and meat, structural and biochemical changes related to meat quality, chemical and sensory evaluation of meat, and field trips to packing plant and processing plant. (Same course as Food Science and Technology 120L.)—III. (III.) Lee, Bandman

123. Animal Growth and Development (4)
Lecture—3 hours; laboratory—3 hours. Prerequisite: Biological Sciences 1B; Biological Sciences 104 and Molecular and Cellular Biology 150 recommended. Growth and development of animals from conception to maturity, viewed from practical and biological perspectives; includes genetic, metabolic, nutritional control of cell and organism function. GE credit: SciEng.—III. (III.) Saniz

124. Lactation (4)
Lecture—3 hours; laboratory—3 hours. Prerequisite: Neurobiology, Physiology, and Behavior 101. Animal Biology 103 (may be taken concurrently); the equivalent background knowledge. Consideration of the biochemical, genetic, physiological, nutritional, and structural factors relating to mammary gland development, the initiation of lactation, the composition of milk and lactational performance. GE credit: SciEng. Wrt.—II. (II.)

125. Equine Exercise Physiology (3)
Lecture—3 hours. Prerequisite: Neurobiology, Physiology, and Behavior 101. Distance learning class broadcast from Cal Poly, Pomona, on basic and applied physiology, including exercising horses. Includes physiological and pharmacological systems, gas analysis, lameness, pharmacology, sports medicine: sport horse performance evaluation and conditioning. (Students and instructor have two-way communication capabilities.)—II. (II.) Roser

126. Equine Nutrition (3)
Lecture—3 hours. Prerequisite: course 15, Nutrition 115. Distance learning class broadcast from Cal Poly, Pomona and CSU Fresno on equine nutrition. Includes equine digestion, digestive physiology, diet development and evaluation, and the relationship of the topics to recommended feeding practices and nutritional portfolios. (G) Meats, (H) Poultry, (I) Sheep, (J) Swine. Up to four different laboratories offered. GE credit: SciEng.—III. (III.) Fadel

131. Reproduction and Early Development in Aquatic Animals (4)
Lecture—3 hours; laboratory—3 hours. Prerequisite: Molecular and Cellular Biology 150; Wildlife, Fish and Conservation Biology 120, 121; or consent of instructor. Physiological and developmental functions related to reproduction, breeding efficiency and fertility of animals commonly used in aquaculture.—III. (III.) Doroshov

136. Techniques and Practices of Fish Culture (2)
Lecture—1 hour; laboratory—3 hours. Prerequisite: Biological Sciences 1A and Chemistry 88 or the equivalent. Daily care and maintenance of fish in the personal aquarium, research, and commercial facilities. Biological and environmental factors important to sound fish management. Laboratories focus on fish culture and include growth trials. GE credit: SciEng.—I. (I.) Hung

136A. Aquatic Animal Growth Laboratory (2)
Lecture—1 hour; laboratory—2 hours. Prerequisite: Animal Biology 102 or Biological Sciences 102 or equivalent. Hands-on experience and practical understanding of fish culture in research, commercial and personal use. Students conduct an 8-week growth trial including experimental design, fish care and maintenance, data collection, interpretation and reporting.—I. (I.) Hung

137. Animal Biochemistry Laboratory (2)
Lecture—1 hour; laboratory—3 hours. Prerequisite: Animal Biology 102 or Biological Sciences 102 or equivalent. Experiments on the biochemical, chemical and biochemical methods, and instruments commonly used in animal science. Wet chemical methods, UV/visible and atomic absorption spectrophotometry, thin-layer and gas-liquid chromatography, commercial chemical kits. Attention to safety.—I. (I.) Hung

140. Management of Laboratory Animals (4)
Lecture—3 hours; laboratory—3 hours. Prerequisite: Animal Genetics 107; Nutrition 115, Neurobiology, Physiology and Behavior 101. Application of the concepts of nutrition, physiology, and genetics to maintenance of experimental animals. Management procedures will be examined in view of experimental needs, good health regulations, and animal health.—I. (I.) Weisker
141. Equine Enterprise Management (4)
Lecture/discussion—4 hours. Prerequisite: course 115. Economics 1A, 1B recommended. Examination of the concepts and principles involved in the operation of an equine enterprise. Essential aspects of equine enterprise management, including equine law, marketing, cash flow analysis, and impact of state and federal regulations. GE credit: SocSci, Wrt.—I, II. (G) Garnett

142. Companion Animal Care and Management (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 42, Biological Sciences 101, Neurobiology, Physiology, and Behavior 101; Animal Biology 102 and 103 recommended. Management and production of companion animals. Integration of the disciplinary principles of behavior, genetics, nutrition, and physiology as related to the care of companion animals.—I, II. (I) Oberbauer

143. Pig and Poultry Care and Management (4)
Lecture—3 hours; laboratory—3 hours; Saturday field trips. Prerequisite: Nutrition 115, Neurobiology, Physiology and Behavior 101. Care and management of swine, broilers and turkeys as related to environmental physiology, nutrition and metabolism, disease management and reproduction.—I, II. (I) Garnett

144. Beef Cattle and Sheep Production (4)
Lecture—3 hours; laboratory—3 hours; one or two Saturday field trips. Prerequisite: course 41, Animal Genetics 107, Nutrition 115, or consent of instructor; a course in Range Science and a course in microcomputing are recommended. Genetics, physiology, nutrition, economics and business in beef cattle and sheep production. Resources used, species differences, range and feedlot emphasis. Opportunities for discussion and integration needed in methods for management of livestock enterprises.—I, II. (I) Lee

145. Meat Processing and Marketing (4)
Lecture—3 hours; laboratory—3 hours. Prerequisite: course 143 or 144 or consent of instructor. Distribution, processing and marketing of meat and meat products. Meat and meat animal grading and pricing. Government regulations and social/consumer concerns. Future trends and impact on production management practices. Includes poultry.—II. (II) Lee

146. Dairy Cattle Production (4)
Lecture—3 hours; laboratory—3 hours; one mandatory Saturday field trip. Prerequisite: course 124, Animal Genetics 107, and Nutrition 115, or consent of instructor. Scientific principles from genetics, nutrition, physiology, and related fields applied to conversion of animal feed to human food through dairy animals. Management and economic decisions are related to animal biology considering the environment and animal well-being. GE credit: SciEng, Wrt.—III, III. (III) DePeters

147. Dairy Processing and Marketing (3)
Lecture—2 hours; laboratory—3 hours. Prerequisite: course 146 or consent of instructor. Examination of distribution systems, processing practices, product quality, impact of government policy (domestic and foreign), marketing alternatives, and product development.—II. (II) Garnett

148. Enterprise Analysis in Animal Industries (4)
Lecture/discussion—4 hours. Prerequisite: course 141 or 145 or 147 or consent of instructor. Examination and application of decision making and problem solving in the production enterprise. The areas of production analysis, problem solving, risk analysis and cost-benefit analysis will be examined in terms of the total enterprise. GE credit: SocSci, Wrt.—III, III. (III) Garnett

149. Farrier Science (3)
Lecture—3 hours. Prerequisite: course 115. Distance learning class broadcast from California Polytechnic State University San Luis Obispo, California Polytechnic State University Pomona, and California State University Fresno. In-depth examination of the structure-function relationship of the equine hoof and how it relates to conformation, injury, and performance.—III. (III) Roser

149L. Farrier Science Laboratory (1)
Laboratory—3 hours. Prerequisite: course 149 (may be taken concurrently) or consent of instructor. The art and science of horseshoeing in equine related fields. Proper use of the tools, materials and techniques in the fabrication of shoes and safe preparation of the hoof for application of shoes. (P/NP grading only.)—II. (I, II) Roser

190C. Research Group Conference (1)
Discussion—1 hour. Prerequisite: advanced standing; consent of instructor. Weekly conference on research problems, progress and techniques in the animal sciences. May be repeated for credit. (P/NP grading only.)

192. Internship in Animal Science (1-12)
Internship—360 hours. Prerequisite: completion of 84 units and consent of instructor. Internship off and on campus in dairy, livestock and aquaculture production, research and management; or in a business, industry, or agency associated with these or other animal enterprises. All requirements of Internship Approval Request Form must be met. (P/NP grading only.)

193. Introduction to the Scientific Method (2)
Lecture—1 hour; discussion—1 hour. Prerequisite: upper division standing. Scientific method in biological research; applications; limitations; use as guide to scientific ethics; interactions among science, scientists, religion, politics, society; issue of use of animals in biological research.—I, II. (I, II) Gaff

194. Research in Animal Science (3)
Laboratory—6 hours; discussion—1 hour. Prerequisite: upper division standing, course 193, one laboratory course in animal biology and consent of instructor. Research with a faculty mentor. Weekly discussion and laboratory on specific research topic. May include a seminar to research group. Choose from sections: (1) Animal Behavior; (2) Animal Genetics; (3) Animal Nutrition; (4) Animal Physiology. May be repeated for credit for a total of four times.—I, II, III. (I, II, III)

194HA-194HB-194HC. Undergraduate Honors Thesis in Animal Science (4-4-4)
Lecture—1 hour; laboratory—9 hours. Prerequisite: Neurobiology, Physiology and Behavior 101, Animal Biology 103; minimum cumulative GPA of 3.2 and selection by the Honors Selection Committee. Students will carry out a research project (chosen from faculty-suggested or approved proposals) during the academic year under the guidance of a faculty member. Upon completion, student will write a thesis and present a public seminar describing his/her research. (Deferred grading only, pending completion of sequence.)

195. Senior Project in Animal Science (3)
Studio—6 hours. Prerequisite: senior standing in animal science and consent of instructor. Project analysis of a specific area of animal science; industry, communication, outreach, marketing, animal welfare, food safety and research are examples. May be repeated for credit for a total of three times. Limited enrollment.—I, II, III. (I, II, III)

197T. Tutoring in Animal Science (1-2)
Tutoring—1-2 hours. Prerequisite: Animal Science 335 or related major; advanced standing; consent of instructor. Tutoring of students in lower division animal science courses; weekly conference with instructors in charge of courses; written critiques of teaching procedures. May be repeated once for credit. (P/NP grading only.)

198. Directed Group Study (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)

Graduate Courses

200. Strategies in Animal Production (4)
Lecture/discussion—4 hours. Prerequisite: consent of instructor. Examines the forces and issues in animal agriculture through the strategic management process.—II. (II) Garnett

206. Models in Agriculture and Nutrition (3)
Lecture—2 hours; laboratory—3 hours. Prerequisite: Mathematics 16B; Statistics 108. Basic model building principles and techniques for statistical and simulation models. Optimization techniques for non-linear experimental designs and management models are presented. Quantitative analysis and evaluation of linear and non-linear equations used in agriculture and nutrition. Offered in alternate years.—Fadel

290. Seminar (1)
Seminar—1 hour. Reports and discussions of topics of interest in genetics, nutrition, and physiology as they apply to animal science. (S/U grading only.)—I, II, III. (II, III)

290C. Research Group Conference (1)
Discussion—1 hour. Prerequisite: graduate standing. Weekly conference on research problems, progress and techniques in the animal sciences. May be repeated for credit. (S/U grading only.)—II, III. (II, III)

291. Current Research in Animal Science (1)
Seminar—1 hour. Prerequisite: graduate standing. Current research in animal science explored at weekly seminars presented by guest lecturers. Discussion of research presented. May be repeated for credit. (S/U grading only.)—I, II, III. (I, II, III)

297. Supervised Teaching in Animal Science (2)
Supervised teaching—6 hours. Prerequisite: consent of instructor. Practical experience in teaching Animal Science at the University level; curriculum design and evaluation; preparation and presentation of material. Assistance in laboratories, discussion sections, and evaluation of student work. An evaluation letter sent to the Graduate Adviser with a copy to the student. (S/U grading only.)—I, II, III. (I, II, III)

298. Group Study (1-5)
Prerequisite: consent of instructor. (Sect. 1, 2, 3—letter grading; from Sect. 4 on—S/U grading only.)

299. Research (1-12)
(S/U grading only.)
Anthropology

(College of Letters and Science)
Robert L. Bettinger, Ph.D., Chairperson of the Department
Department Office, 330 Young Hall (530-752-0745/0746)
World Wide Web: http://www.anthro.ucdavis.edu

Faculty
John M. Beaton, Ph.D., Associate Professor
Robert L. Bettinger, Ph.D., Professor
Monique Bergerhoff-Mulder, Ph.D., Professor
David J. Boyd, Ph.D., Associate Professor
Richard T. Curley, Ph.D., Senior Lecturer
Alexander Harcourt, Ph.D., Professor
Lynne A. Isbell, Ph.D., Associate Professor
Suad Joseph, Ph.D., Professor (Anthropology, Women and Gender Studies)
Martha J. Macri, Ph.D., Professor (Anthropology, Native American Studies)
Henry M. McHenry, Ph.D., Professor
Peter S. Rodman, Ph.D., Professor
Roger Rouse, Ph.D., Assistant Professor
Suzana M. Sawyer, Ph.D., Assistant Professor
G. William Skinner, Ph.D., Professor (Anthropology, Center for Comparative Research)
Carol A. Smith, Ph.D., Professor
David G. Smith, Ph.D., Professor
Janet S. Smith, Ph.D., Professor
Margaret B. Swain, Ph.D., Adjunct Assistant Professor
Carolyn F. Wall, Ph.D., Senior Lecturer
Aram A. Yengoyan, Ph.D., Professor
William G. Davis, Ph.D., Professor Emeritus
Jack D. Forbes, Ph.D., Professor Emeritus
Sarah B. Hrdy, Ph.D., Professor Emerita
Robert L. Bettinger, Ph.D., Chairperson of the Department

The Major Program

Anthropology is the systematic study of human beings as they live in groups. It is a diverse field and the courses at UC Davis are subdivided into four categories—biological, social/cultural, linguistics, and archaeology. The student of anthropology learns about human social life—past and present—and gains a broad understanding of humans and society.

The Program. Students interested in the scientific study of human origins, primate studies and the fundamentals of biology as these relate to Homo sapiens should enroll in the Bachelor of Science degree program. Students interested in ethnography and the ethnology of selected culture areas or linguistics (language in culture and society and linguistic field methods) should enroll in the Bachelor of Arts degree program. Students interested in archaeology (prehistory and the techniques and methods of archaeology) should consult an adviser before choosing one degree program or the other.

Career Alternatives. Although most practicing anthropologists teach in colleges and universities, a bachelor's degree in anthropology can lead to work in museums, in the Park Service, or in other aspects of public archaeology. A Bachelor of Science degree is a suitable major for premedical and predental preparation. A degree in anthropology with appropriate courses in education also can be good preparation for high school teaching in social or natural sciences.

A.B. Major Requirements:

General Education (GE) credit:

DivSciEng = Social Sciences; SocSci = Arts and Humanities; SocCultDiv = Social-Cultural Diversity; Wrt = Writing Experience.

Preparatory Subject Matter

Anthropology 1, 2, 3, 4 ... 20
Statistics 13 or 102 ... 4

Depth Subject Matter

Anthropological linguistics: one course 4
Anthropology 100 ... 4
Biological anthropology: one course 4

Archaeology and prehistory: one course 4
Select 8 units from any upper division Anthropology courses chosen in consultation with an adviser .. 8
Select an additional 12 units in an area of emphasis:

(a) Anthropological Linguistics
Anthropology 110 .. 4
Select two additional courses in anthropological linguistics 8
(b) Social-Cultural Anthropology
Select one course from Anthropology 126B, 128A, 128B, 139AN, 139BN .. 4
Select two additional courses in social-cultural anthropology 8
(c) Biological Anthropology
Anthropology 152 .. 4
Select two additional courses in biological anthropology 8
(d) Archaeology and Prehistory
Anthropology 170 ... 4
Select two additional courses in archaeology and prehistory 8

Total Units for the Major .. 64

B.S. Major Requirements:

Preparatory Subject Matter

Anthropology 1 ... 8
Anthropology 3 or 4 ... 8

Additional units from the list below to achieve a minimum of 45 upper division units.

Biological Sciences 1A, 1B, 1C ... 15
Biological Sciences 2A, 2B, 8A-8B ... 16
Chemistry 2A, 2B, 8A-8B ... 15

Mathematics 16A-16B-16C .. 9
Statistics 13, 32, 100, or 102 .. 3-4

Depth Subject Matter

Six courses in anthropology, including Anthropology 152, 153 and 154A, and the remaining three chosen in consultation with major adviser ... 45

Total units for the Major .. 100-101

Recommended

Anthropology 4, 15, Geology 1, 1L, 3L, Physics 5A, 5B, 5C, or 7A, 7B, 7C; Psychology 1

Major Advisers. A.B. degree: R. Curley; B.S. degree: H.M. McHenry.

Minor Program Requirements:

Anthropology ... 18-25

Additional units from the list below to achieve a minimum of 22 upper division units.

Additional courses from remaining upper division Anthropology courses ... 4

Biological emphasis

Additional courses from Anthropology 126B, 128A, 128B, 139AN, 139BN, 130A, 130B .. 4

Total additional units ... 18-21

Archaeology 152, 153, 154A ... 13

Two additional upper division Anthropology courses chosen in consultation with B.S. degree undergraduate adviser ... 5-8

Quarter Offered: I–Fall; II–Winter; III–Spring; IV–Summer; 2001-2002 offering in parentheses.
Courses in Anthropology (ANT)

Lower Division Courses

1. Human Evolutionary Biology (4)
 Lecture—3 hours; discussion—1 hour. Processes and course of human evolution; primatology; biological and social diversity within Homo Sapiens; human paleontology. GE credit: SciEng, Div.—I, II, III. (I, II, III.) Yenoyan, Curley, Boyd

2. Cultural Anthropology (4)
 Lecture—3 hours; discussion—1 hour. Introduction to cultural diversity and the methods used by anthropologists to account for it. Family relations, economic activities, politics, gender, and religion in a wide range of societies. Current problems in tribal and peasant societies. GE credit: SocSci, Div.—I, II, III. (I, II, III.) Yenoyan, Curley, Boyd

3. Introduction to Archaeology (4)

4. Introduction to Anthropological Linguistics (4)
 Lecture—3 hours; discussion—1 hour. Exploration of the role of language in social interaction and world view, minority languages and dialects, bilingualism, literacy, the social motivation of language change. Introduction of analytical techniques of linguistics and demonstration of their relevance to language in sociocultural issues. GE credit: SocSci, Div.—I, II, III. (I, II, III.) Yenoyan, Curley, Boyd

5. Proseminar in Biological Anthropology (4)
 Seminar—3 hours; term paper. Prerequisite: course 1 and consent of instructor. Core course primarily for majors. Integration of related disciplines in the study of biological anthropology through discussion and research projects. Principal emphasis in human adaptation to the environment. GE credit: SciEng, Wrt.—III. Rodman

15. Behavioral and Evolutionary Biology of the Human Life Cycle (5)
 Lecture—3 hours; discussion—1 hour. Introduction to the biological bases of birth, childhood, marriage, the family, old age, and death. Examines comparative characteristics of nonhuman primates and other animals as well as cross-cultural variation in humans by study of selected cases. GE credit: SciEng, Div.—I, II, III. (I, II, III.) Elston, Beaumont, Beaton

20. Comparative Cultures (4)
 Lecture—3 hours; discussion—1 hour. Introduction to the anthropological study of cultural diversity. Case studies of eight societies will be presented to illustrate and compare the distinctive features of major cultural regions of the world. Concludes with a discussion of modernization. GE credit: SocSci, Div.—III. (III.) Curley

23. Introduction to World Prehistory (4)
 Lecture—3 hours; discussion—1 hour. Broadly surveys patterns and changes in the human species' physical and cultural evolution from earliest evidence for "humanity" to recent development of large-scale complex societies or "civilizations." Lectures emphasize use of archaeology in reconstructing the past. GE credit: SocSci, Div. Wrt.

98. Directed Group Study (1-5)
 Primarily offered for low division students. (PINP grading only.)

99. Special Study for Undergraduates (1-5)
 Prerequisite: consent of instructor. (PINP grading only.)

Upper Division Courses

100. Theory in Social-Cultural Anthropology (4)
 Lecture—3 hours; discussion—1 hour. Prerequisite: course 2 or consent of instructor. Discussion of the theoretical and philosophical developments in cultural anthropology from the 19th century to the present. Not open for credit to students who have completed course 137. (Former course 137.) GE credit: SocSci.—I, II. Yenoyan

101. Human Ecology (4)
 Lecture—3 hours; discussion—1 hour. Prerequisite: one course from course 1, 2, Environmental Studies 30, Genetics 10, or the equivalent. Critical variables in the processes that relate to humans and their environment. Emphasis on the biological, cultural, social, and psychological forces which encourage stability or change in human ecological relationships. (Same course as Environmental Science and Policy.) GE credit: SocSci.—II. (II.) Richerson, Borgerhoff-Mulder

103. Indigenous Peoples and Natural Resource Conservation (4)
 Lecture—3 hours; discussion—1 hour. Prerequisite: course 2 or Geology 1 or Environmental Science and Policy 30. Integration of the interests of resident and indigenous peoples with the conservation of natural resources and ecosystems, using case studies examples from both the developed and the developing world. Offered in alternate years. Not open for credit to students who have completed course 121N. (Former course 121N.)—III. Mulder

104N. Cultural Politics of the Environment (4)
 Lecture—3 hours; discussion—1 hour. Prerequisite: course 2 or consent of instructor. Political economy of environmental struggles. Relationship between social inequality (based on race, class, and/or gender) and ecological degradation. Articulation of local peoples, national policy, and the international global economy in the contestation over the use of environmental resources. Not open for credit to student who has completed course 134N. (Former course 134N.) Offered in alternate years. GE credit: SocSci, Div.—III. Sawyer

(a) Anthropological Linguistics

110. Elementary Linguistic Analysis (4)
 Lecture—3 hours; discussion—1 hour. Prerequisite: course 4 or Linguistics 1. Analytical techniques of articulatory phonetics, phonemics, morphophonemics, and morphology. GE credit: SocSci.

112. Comparative Linguistics (4)
 Lecture—3 hours; discussion—1 hour. Prerequisite: course 110. Linguistic prehistory, historical linguistics, and reconstruction. GE credit: SocSci.

113. Indigenous Languages of North America (4)
 Lecture—3 hours; discussion—1 hour. Prerequisite: course 4. Linguistics 1, or consent of instructor. Survey of indigenous languages of North America, including their classification, linguistic characteristics, areal features, and socio-cultural aspects. GE credit: SocSci, Div.—II. Macri

117. Language and Society (4)
 Lecture—3 hours; discussion—1 hour. Prerequisite: course 4, or Linguistics 1 and course 2. Consideration of language in its social context. Methods of data collection and analysis; identification of socially significant linguistic variables. Contributions of the study of contextualized speech to linguistic theory. GE credit: SocSci, Div.—II, III. (II, III.) J. Smith

119. World Writing Systems (4)
 Lecture—3 hours; discussion—1 hour. Prerequisite: course 4 or Linguistics 1. Survey of major world writing systems, including pictographic, syllabic, and alphabetic scripts used in both the Old and New Worlds in ancient and modern times, examined from linguistic and socio-political aspects. GE credit: SocSci.—(I.) Macri

120. Language and Culture (4)
 Lecture—3 hours; discussion—1 hour. Prerequisite: course 4, or course 2 and Linguistics 1. Culture, cognition, meaning, and interpretation; language and the classification of experience; communication and learning in crosscultural perspective. GE credit: SocSci, Div.—I, II. (I, II.) Harcourt

(b) Social-Cultural Anthropology

122A. Economic Anthropology (4)
 Lecture—3 hours; discussion—1 hour. Varieties of production, exchange, and consumption behavior in precapitalist economies, their interaction with culture and social-political organization, and the theories that account for these phenomena. The effects of capitalism on precapitalist sectors. Not open for credit to students who have completed course 122. (Former course 122.) GE credit: SocSci, Div.—II, III. (II, III.) Davis

122B. Anthropology and Political Economy (4)
 Lecture—3 hours; discussion—1 hour. Prerequisite: course 2 or consent of instructor. Survey of anthropological approaches to the study of political organizations; inter-relationships among political institutions, economic infrastructures and cultural complexity. Not open for credit to students who have completed course 123A. (Former course 123A.) GE credit: SocSci, Div.—I, II. (I, II.) Smith

123AN. Resistance, Rebellion, and Popular Movements (4)
 Lecture—3 hours; discussion—1 hour. Prerequisite: course 2 or the equivalent. Analysis of popular protest in Third World and indigenous societies ranging from covert resistance to national revolutions. Comparative case studies and theories of peasant rebellions, millenarian movements, social bandits, Indian "wars", ethnic and regional conflicts, gender and class conflicts. Not open for credit to students who have completed course 123B. (Former course 123B.)—II. (II.) Smith

123BN. Multiculturalism and Minority Identity (4)
 Lecture—3 hours; discussion—1 hour. Prerequisite: course 2. Recent developments in conceptions of minority identity, from the point of view of minority populations in the Third World, Europe, and the United States. Challenges to existing categories of gender, race and class, as well as nationalism and imperialism. Not open for credit to students who have completed course 123C. (Former course 123C.) Offered in alternate years. (Former course 123C.)—II. (II.) Smith

Quarter Offered: I—Fall; II—Winter; III—Spring; IV—Summer; 2001—2002 offering in parentheses. General Education (GE) credit: ArtHum—Arts and Humanities; SciEng—Science and Engineering; SocSci—Social Sciences; Div—Social-Cultural Diversity; Wrt—Writing Experience.
124. Religion in Society and Culture (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 2. Lecture of anthropological theories of religion with emphasis on non-literate societies. Survey of shamanism, magic, witchcraft, ritual and symbols, and religious movements. Extensive discussion of ethnographic examples and analysis of social functions of religious institutions. GE credit: SocSci, Div, Wrt.—II. (II.) Curley

125A. Structuralism and Symbolism (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 2. Survey of anthropological approaches to understanding the logic of structuralism and symbolism in cultural analysis. Focus on how structural and symbolic interpretations relate to cultural and linguistic universals and to the philosophical basis of relativism in the social sciences. Former course 125B. GE credit: SocSci, Div.—X. Rouse

125B. Postmodernism(s) and Culture (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 2. The U.S.—European postmodern condition. “Modernity” as an incomplete project for subordinated groups. The economic, social, technological and political conditions leading to postmodern aesthetics, in comparison with postcolonialism, feminism and minority discourse. GE credit: SocSci, Div, Wrt.—I.

126A. Anthropology of Development (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 2 or consent of instructor. Topics of development of current critiques. Colonial legacies and post-colonial realities. Roles of the state and NGOs, population migrations, changing gender identities, cash-earning strategies, and sustainability issues. Stress importance of cultural understandings in development initiatives. Case studies emphasizing non-industrial societies. Not open for credit to students who have completed course 126. (Former course 126E.) GE credit: SocSci, Div, Wrt.—II. (II.) Boyd

126B. Women and Development (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 2 or consent of instructor. Current Third World and Western development issues concerning women in agriculture, industrial, and international divisions of labor. Current movements, revolutions, politics of health, education, family and reproduction. Impact of colonialism, capitalism, the world system, and international feminism on women and development. Not open for credit to students who have completed course 131. (Former course 131B.) Offered in alternate years. GE credit: SocSci, Div, Wrt.—I. Joseph

127. Urban Anthropology (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 2 or consent of instructor. Survey of approaches to urban living: political structures, organization of labor, class relations, world views. The evolution of urban life and its contemporary dilemmas. Cross-cultural comparisons discussed through case studies. GE credit: SocSci, Div, Wrt.—I. (III.) Zanges, Rouse

128A. Kinship and Social Organization (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 2. Comparative examination of personal kinship, descent, marriage, household and family organizations; the theories that account for variation, and recent advances in the treatment of these data. Not open for credit to students who have completed course 128. (Former course 128B.) GE credit: SocSci, Div, Wrt.—II. (II.) Davis

128B. Self, Identity, and Family (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 2 or consent of instructor. Exploration of self, identity, and family systems cross-culturally. Impact of class, gender, race, ethnicity, ruralization, urbanization, and globalization on notions of selfhood in different social/cultural systems. Not open for credit to students who have completed course 128B. (Former course 128.) GE credit: SocSci, Div, Wrt.—II. (II.) Davis

130A. Cultural Dimensions of Globalization (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 2. The cultural dimensions of recent economic and political developments frequently termed “globalization.” Offered in alternate years. GE credit: SocSci, Div, Wrt.—II. (II.) Rouse

130BN. Migration and the Politics of Place and Identity (4)
Lecture/discussion—4 hours. Prerequisite: course 2 or consent of instructor. Internal and international migration from an anthropological perspective, including causes, processes, and political, economic, and cultural effects of spatial mobility and displacement. Emphasizes the interplay of identity, place, and power in diverse cultural and historical contexts. Not open for credit to students who have completed course 130D. GE credit: SocSci, Div, Wrt.—II. (II.) Joseph

130C. Latino Migration to the United States (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 2. The experiences of people involved in migration between Latin America and the United States; most significant factors shaping those experiences. Offered in alternate years. GE Credit: SocSci, Wrt.—II. (II.) Zhang

132. Ethnohistory (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 2 and one other course in either history or anthropology. Course focuses on method and interpretation involved in reconstructing the history and cultural experience of those “people without history” who left no documentary record (pre-literate societies, slaves, peasants). Emphasizes cultural comparisons and complementary tools (archaeology, demography, oral history, travel accounts). GE credit: SocSci, Wrt.

133. Cultural Ecology (4)
Lecture—3 hours; discussion—1 hour. Comparative survey of the interaction between diverse human cultural systems and the environment. Primary emphasis given to peoples in relatively undeveloped environments as a basis for interpreting more complex environments. (Same course as Environmental Science and Policy 133.) GE credit: SocSci, Div, Wrt.—III. (III.) Orlove

135. Peasant Society and Culture (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 2. Comparative study of peasant communities, utilizing historical and ethnographic sources: analysis of urban-rural relations; problems of economic development and culture change. GE credit: SocSci, Div, Wrt.—II. (II.) C. Smith

136. Ethnographic Film (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 2. Overview of the use of film in anthropology and its applications to ethnographic research. GE credit: SocSci, Div, Wrt.—II. (II.) Curley

138. Ethnographic Research Methods in Anthropology (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 2 and 137. Basic concepts in and approaches to ethnographic field research. Problem formulation, research design, qualitative and quantitative data collection procedures, and techniques for organizing, retrieving, and analyzing information. Ethnographic description and constructed historical narratives. Students will organize and conduct individual research projects. GE credit: SocSci.—(II.) Boyd

139AN. Race, Class, Gender Systems (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 2. Comparative analysis of class/race/gender inequality, concentrating on the ways in which beliefs about descent, “blood,” and biological difference interact with property and marital systems to affect the distribution of power in society. Not open for credit to students who have completed course 139. (Former course 139.) GE credit: SocSci, Div, Wrt.—II. (II.) Rouse

139BN. Gender and Sexuality (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 2 or consent of instructor. Gender and sexuality in foraging bands, horticultural and pastoral tribes, agricultural and industrial states. Debates on cultural evolution and distribution of gender hierarchies, including causes, politics, economics, religion, social practices, women’s movements on gender and sexuality. Culture, nature, and sexuality. Not open for credit to students who have completed course 130. (Former course 130.) Offered in alternate years. GE credit: SocSci, Div, Wrt.—II. (II.) Joseph

140A. Cultures and Societies of West and Central Africa (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 2. Ethnographic survey of West Africa and Congo Basin with analyses of representative societies which illustrate problems of general theoretical concern. Major consideration will be the continuities and discontinuities between periods prior to European contact and the present. GE credit: SocSci, Div, Wrt.—II. Curley

140B. Cultures and Societies of East and South Africa (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 2. Ethnographic survey of Eastern and Southern Africa with analyses of selected societies which illustrate problems of interest to anthropologists. Major consideration will be given to continuities and discontinuities between periods prior to European contact and the present. GE credit: SocSci, Div, Wrt.—II. (II.) Joseph

141A. Indians of North America (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 2 or consent of instructor. Introductory survey of the Indians of North America: origins, languages, civilizations, and history. GE credit: SocSci, Div, Wrt.

141B. Ethnography of California and the Great Basin (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 2 or consent of instructor. Description and analysis of the native peoples of California and the Great Basin, and their pathways at the time of European contact. (Former course 141D.) GE credit: SocSci, Div, Wrt.

142. Peoples of the Middle East (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 2. Peoples of the Middle East (including North Africa). Discussions of class relations, kinship organization, sex/gender systems, religious beliefs and behavior, ethnic relations, political systems, impact of world systems, political and religious movements and social change. (Former course 136.) GE credit: SocSci, Div, Wrt.—II.

143A. Ethnology of Southeast Asia (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 2. Patterns of culture and social organization from prehistory to the present, in the context of historical, ecological, economic, and political settings. Emphasis on the relation of ethnic minorities to national states. Offered in alternate years. GE credit: SocSci, Div, Wrt.—II.

143B. Philippine Societies and Culture (4)
Laboratory/discussion—4 hours. Prerequisite: course 2. Introduction to the ethnology of the Philippines. Nature and distribution of ethnic groups, social organizations, cultural patterns and social issues. Emphasis on ethnic minorities, rural populations, effects of modernization, and relation of the state to local groups. GE credit: SocSci, Div, Wrt.—II.

144. Contemporary Societies and Cultures of Latin America (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 2. Introduction to contemporary social structure of Latin America. Origins, maintenance and changes in inequalities: economic responses to poverty, sociocultural responses to discrimination, and political responses to powerlessness. GE credit: SocSci, Div, Wrt.—II

146. Peoples and Politics of Mexico and Central America (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 2. Politics and culture in Mexico and Central America from the time of Independence to the present. Non-indigenous as well as indigenous peoples. Regional focus will vary. GE credit: SocSci, Div, Wrt.—II. (II.) C. Smith
147. Peoples of the Pacific (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 2 or consent of instructor. Ethnographic survey of aboriginal cultures of Oceania. Consideration of prehistory, prehistoric, and historical social organization of peoples of Polynesia, Micronesia, and Melanesia. GE credit: SciEng, Div. Wrt.—III. (III.) Boyd

148A. China: Anthropology of a Civilization (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 2. An analysis of the society, culture and political economy of late traditional China to 1949. Special attention is given to spatial differentiation and historically specific social/cultural change. Offered in alternate years. GE credit: SciEng, Div. Wrt.—III. (III.) Skinner

148B. Family, Gender, and Population in Contemporary China (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 2. An analysis of family process, gender relations, and population dynamics in relation to state power in China since 1949. GE credit: SciEng, Div. Wrt.—III. (III.) Skinner

148C. Ethnic Diversity of China (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 2. Patterns of culture and social organization from prehistoric to early twentieth-century Japan. Origins, prehistory, and traditional religious and political systems, marriage and kinship, language and culture. Changes and continuities in traditional and contemporary Japanese culture are addressed. Offered in alternate years. GE credit: SciEng, Div. Wrt.—III. J.S. Smith

149A. Traditional Japanese Society (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 2. Patterns of culture and social organization from prehistoric to early twentieth-century Japan. Origins, prehistory, and traditional religious and political systems, marriage and kinship, language and culture. Changes and continuities in traditional and contemporary Japanese culture are addressed. Offered in alternate years. GE credit: SciEng, Div. Wrt.—III. J.S. Smith

151. Primate Evolution (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 1 or Biological Sciences 1B. Origin and relationships of the prosimians, monkeys, and apes. GE credit: SciEng, Wrt.—III. (III.) McHenry

152. Human Evolution (5)
Lecture—3 hours; discussion—1 hour; term paper. Prerequisite: course 1 or Biological Sciences 1B. Nature and results of the evolutionary processes involved in the formation and differentiation of humankind. GE credit: SciEng, Wrt.—III. (III.) McHenry

153. Human Biological Variation (5)
Lecture—3 hours; discussion—1 hour; term paper. Prerequisite: course 1 or Biological Sciences 1B. Origin, adaptive significance and methods of analysis of genetic differences among human populations. Special attention given to racial differences such as those in blood groups, plasma proteins, red cell enzymes, physiological and psychometric variability. GE credit: SciEng, Wrt.—I. (I.) D.G. Smith

154A. The Evolution of Primate Behavior (5)
Lecture—3 hours; discussion—1 hour; term paper. Prerequisite: course 1. Examines ecological diversity and evolution of social systems of prosimians, monkeys, and apes, placing the social behavior of the primates in the context of appropriate ecological and evolutionary theory. GE credit: SciEng, Wrt.—I. (I.) Rodman, Isbell

154B. Ecology and Sociobiology of Primates (4)
Lecture—2 hours; laboratory—6 hours. Prerequisite: course 154A. Statistics 13 (or the equivalent), and consent of instructor. Consideration of range of data and methods of studying the ecology and sociobiology of primates. Laboratory consists of directed observation of captive primates and local birds with quantitative analysis of observations. GE credit: SciEng, Wrt.—III. (III.) Isbell

155. Comparative Primate Anatomy (4)
Lecture—2 hours; laboratory—4 hours. Prerequisite: Biological Sciences 1B. The functional anatomy of monkeys, apes, and man. Emphasis on the anatomical evidence for human evolution. GE credit: SciEng, Wrt.—II. (II.)

156. Human Osteology (4)
Lecture—2 hours; laboratory—4 hours. Prerequisite: course 1 or the equivalent. Introductory study of the human skeleton, including bone growth, pathology, radiology, evolution, dentition, and variations in race, sex, and age. GE credit: SciEng, Wrt.—III. (III.) McHenry

157. Anthropological Genetics (3)
Lecture—3 hours. Prerequisite: course 1 or Biological Sciences 1A, and Genetics 100, 103, 105, or 106. Processes of micro-evolution responsible for biological differences among human populations. Special attention will be given to the adaptive significance of genetic variation in blood group antigens, serum proteins and red cell enzymes. GE credit: SciEng, Wrt.—II. (II.) D.G. Smith

157L. Laboratory in Anthropological Genetics (2)
Lecture—1 hour; laboratory—3 hours. Prerequisite: course 1 or Biological Sciences 1A, and either Genetics 100 or enrollment in course 157 (concurrently or following). Methods for identifying genetic variation in human blood group antigens, serum proteins and red cell enzymes (hemaglutination), general electrophoresis on starch, cellulose acetate and polyacrylamide, immunodiffusion and immunoelectrophoresis on agarose. (P/NP grading only.) GE credit with concurrent enrollment in course 157 Wrt.—I. (I.) D.G. Smith

158. The Evolution of Females and Males: Biological Perspective (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 1. Current theoretical frameworks for explaining the evolution of sex differences and for understanding the interaction between biological processes and cultural construction of gender roles. GE credit: SciEng, Div. Wrt.—I. (I.) Isbell

159. Archaeology and Prehistory (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 1, 2 and 3. Introduction to history and development of archeological theory and method, with particular emphasis on the basic dependence of the latter on the former. Stress is on historical development of archeology in the New World. GE credit: SciEng, Div. Wrt.—III. (III.) Delacorte

161. Geoarcheology (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 3. Theories, methods, and techniques for studying the geomorphic context of archeological sites. Particular attention to sediment and soil attributes and analyses for understanding important landform features and developmental histories of archeological sites. Offered in alternate years. GE credit: SciEng, Div. Wrt.—I. (I.) Beaton

172. New World Prehistory: The First Arrivals (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 3 or consent of instructor. Survey of data relating to the peopling of the New World. Cultural adaptation and development of early inhabitants of North and South America. Offered in alternate years. GE credit: SciEng, Div. Wrt.—III. (III.)

173. New World Prehistory: Archaic Adaptations (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 3 or consent of instructor; course 170 recommended. Introduction to and survey of prehistoric hunting and gathering adaptations across North America with particular emphasis on the East, Southeast, Midwest, Plains, Southwest, and Northwest. Offered in alternate years. GE credit: SciEng, Div. Wrt.—III. (III.)

176. Prehistory of California and the Great Basin (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 3 or consent of instructor. Description and analysis of the prehistoric peoples of California and the Great Basin from earliest times to European contact. GE credit: SciEng, Div. Wrt.—III. (III.)

177. Hunter-Gatherers (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 1. Study and interpretation of the ancient and modern lifeway in which peoples support themselves with primitive technologies and without benefit of domesticated plants and animals. Offered in alternate years. GE credit: SciEng, Div. Wrt.—III. (III.)

179. Ethnoarcheology (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 3. Relationships between behavior and its archeological consequences. Ethnography by archæologists examines residence patterning, site-formation processes, hunting and gathering, behavior and other cultural activities and how these contribute to modern archeological thinking. GE credit: SciEng, Div. Wrt.—II. (II.)

181. Field Course in Archeological Method (9)
Lecture—6 hours; daily field investigation. Prerequisite: course 3. On-site course in archeological methods and techniques held at a field location in the western United States, generally California or Nevada. Introduces basic methods of archeological survey, mapping, and excavation. GE credit: SciEng—summer. Summer

183. Laboratory in Archeological Analysis (4)
Lecture—2 hours; laboratory—6 hours. Prerequisite: course 181 or consent of instructor. Museum preparation, advanced field investigation, and guidance in preparation of museum material for publication. May be repeated for credit with consent of instructor. Limited enrollment. GE credit: SciEng, Wrt.—III. (III.)

184. Prehistoric Technology: The Material Aspects of Prehistoric Adaptation (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 2 or 3. Examination of the role of lithic, ceramic, textile and wooden implements as factors in prehistoric adaptation, settlement patterns, and culture organization from earliest times to European contact. GE credit: SciEng, Wrt.—II. (II.)

191. Topics in Anthropology (4)
Lecture—3 hours; discussion—3-36 hours. Prerequisite: Upper division standing; consent of instructor. Limited enrollment. GE credit: SciEng—Writing Experience.
2000–2001/2002 UC Davis General Catalog

Quarter Offered: I=Fall; II=Winter; III=Spring; IV=Summer, 2001-2002 offering in parentheses.

General Education (GE) credit: ArHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.

194H. Special Study for Honors Students (1-5)
Prerequisite: open only to majors of senior standing who qualify for honors program. Independent study of an anthropological problem involving the writing of an honors thesis. May be repeated for a total of 15 units. (P/NP grading only.)

197T. Tutoring in Anthropology (1-5)
Tutorial—1-5 hours. Prerequisite: upper division standing with major in Anthropology and consent of Department Chairperson. Leading of small voluntary discussion groups affiliated with one of the department’s regular courses. May be repeated for credit. (P/NP grading only.)

198. Directed Group Study (1-5) (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) (P/NP grading only.)

Graduate Courses

201. History of Anthropological Theory (4)
Lecture—2 hours, discussion—1 hour; term paper. Historical development of the various fields of anthropology with emphasis upon their interrelationships.—I. (I.) Yengoyan

202. History and Theory of Biological Anthropology (4)
Seminar—3 hours; term paper. History of thought in biological anthropology and analysis of major theoretical problems in the field. Suggested for all first-year graduate students lacking intensive preparation in biological anthropology.—II. (II.) Rodman

203. History and Theory of Archaeology (3)
Seminar—3 hours. History of thought in archaeology and analysis of research methods.—I. (I.) Bettenhausen

204. Contemporary Issues in Anthropological Theory (4)
Seminar—3 hours; term paper. Prerequisite: course 2, 137 or consent of instructor. Advanced consideration of fundamental issues in anthropological theory. Emphasis on critical examination of major contemporary debates between proponents of competing theories.—II. (II.) C.A. Smith

205. History and Theory in Anthropological Linguistics (4)
Seminar—3 hours; term paper. History of thought in anthropological linguistics. Consideration of the historical development of fundamental ideas in anthropological linguistics, of major theoretical issues, and of research methodology.—I, II, III. (I, II, III) J.S. Smith

206. Research Design and Method in Social Anthropology (5)
Seminar—4 hours; individual student-instructor session (in-depth work on proposal writing). Prerequisite: consent of instructor. Formulation of research problems and preparation of research proposals; relationships between theory and method, fieldwork, pre-fieldwork preparations, entering the community, field research techniques, and problems of ethics; intensive work on proposal writing. May be repeated once for credit. Limited enrollment.—III. (III.) Rouse

207. Ethnographic Writing (4)
Seminar—3 hours; term paper. Prerequisite: courses 137, 201, or the equivalent. Relationship between conducting participant observation of others and writing it up, emphasizing the processual rift between the reality of fieldwork and its written representation. Study of various literary genres and textual strategies used in cultural anthropology. May be repeated for credit. Offered in alternate years.—I. (I.) Display

210. Aspects of Culture Structure (4)
Seminar—3 hours; term paper. Analysis of various phases of culture, such as religion, economics, law, and folklore. May be repeated for credit when topic differs.—I, II, III. (I, II, III) C.S. Smith, Yengoyan, Rouse

211. Advanced Topics in Cultural Ecology (4)
Lecture/discussion—3 hours; term paper. Topics of current analytical and methodological importance in cultural ecology. Examination of general issues in cultural ecology through study of human responses to and influence on climate. (Same course as Ecology 211.)—II. (II.) Orlove

212. Political Ecology (4)
Lecture/discussion—3 hours; term paper. Prerequisite: graduate standing or consent of instructor. Interdisciplinary seminar evaluating contributions from ecological anthropology, political economy, cultural constructivism, postmodernism, and feminism toward development of theories of political ecology. Historical relationships between local/global power structures, environmental degradation, and resistance movements. Case studies of desertification, deforestation, mining, conservation, development. Offered in alternate years.—II. (II.) Boyd

216. Problems in Archeological Method (4)
Seminar—3 hours; term paper. Techniques for analyzing archeological data; application to various prehistoric cultures. May be repeated for credit with consent of instructor.—II. (II.) Beaton

218. Topics in North American Prehistory (4)
Seminar—3 hours; term paper. Advanced study on current problems in North American prehistory and archaeology. May be repeated for credit only if material is unique for that student, and with consent of instructor.—I. (I.) Bettinger

220. Field Course in Linguistics (4)
Seminar—2 hours; laboratory—2 hours. Prerequisite: courses 110, 111. Techniques of eliciting, recording, and analyzing, work with a native speaker.—III. (III.) Macri

221. Rural Transformation in Postcolonial Societies (4)
Seminar—3 hours; term paper. Prerequisite: courses 223, 365, or consent of instructor. Problems of rural transformation arising out of political and economic interaction between national elites and rural regional and local populations under varying conditions of induced change in postcolonial societies. Attention will be given to the implications of this interaction for rapid economic growth. May be repeated for credit.—I. (I.) Orlove

222. Cities and Citizenship (4)
Seminar—3 hours; term paper. Prerequisite: graduate standing. The nature of modern cities, urban socio-economic life, and urban culture and politics from an anthropological perspective.—I. (I.) Zhang

223. Economic Anthropology (4)
Seminar—3 hours; term paper. Prerequisite: course 122 or consent of instructor. Selected current methodological and theoretical problems in the analysis of nonindustrial economic systems.—III. (III.) Davis

224. Problems in Comparative Religion (4)
Seminar—3 hours; term paper. Advanced study of current problems in the anthropological study of religion.—I. (I.) Curley

225. State and Nation in the Modern World (4)
Seminar—3 hours; term paper. A presentation of current anthropological theories of the origins and nature of the modern nation-state in both the First and Third Worlds, with special reference to state ideology (nationalism) and forms of control. Offered in alternate years.—II. (II.) C.A. Smith

226. Consciousness and Resistance (4)
Seminar—3 hours; term paper. Prerequisite: completion of first-year graduate work or consent of instructor. Consideration of approaches to the study of social inequality, analysis of interactions of subordinate groups. Emphasis on situating approaches to contemporary social theory, concrete research problems, and political strategies. Topics: formation of consciousness and identity; collective action, accommodation to frontal resistance. Offered in alternate years.—I.

227. Behavioral Ecology and Anthropology (4)
Seminar—3 hours; term paper. Prerequisite: graduate standing. An exploration of the links between behavioral ecology and the study of human cultural variation, focusing on social organization, marriage, reproduction, inheritance and subsistence in traditional and historical populations. May be repeated once for credit. Offered in alternate years.—III. (III.) Borgerhoff-Mulder

228. Power and Culture (4)
Seminar—3 hours, extensive writing. Prerequisite: graduate standing or consent of instructor. Exploration of one of the core paradigms within contemporary anthropological inquiry, “culture and power.” Focus on how distinct theoretical perspectives - Marxism, post-Marxism, structuralism, post-structuralism, and feminism - have examined the mutually constitutive nature of culture and power.—I. (I.) Sawyer, Zhang

229. Topics in Gender, Identity, and Selfhood (4)
Seminar—3 hours; term paper. Intersections of gender, identity, and selfhood cross-culturally and historically. How the self is feminized and masculinized, and interfaces with sexual, race, class, work, national, minority, and majority identities under different historical, cultural, and social structural conditions. May be repeated for credit when topic differs.—III. (III.) Joseph

Lecture—1.5 hours; seminar—1.5 hours; term paper. Prerequisite: graduate standing in one of the social sciences including History. Comparative examination of family systems in historical context and of reproductive behaviors and strategizing. A major theme is how family-system norms specify the relative desirability of differently configured offspring sets. Cases are drawn from Western Europe and South and East Asia.—II. (II.) Skinner

232. Political Movements (4)
Seminar—3 hours; term paper. Prerequisite: completion of first-year graduate work recommended. An interdisciplinary approach to political movements of protest, reform, and revolution emphasizing historical comparison and evaluation of major theoretical approaches including world systems, resource mobilization, state and culture, rational choice, moral economy, social class and gender.—I. (I.) Walton

239. Problems in African Society and Culture (4)
Seminar—3 hours; term paper. Diachronic analyses of traditional institutions in sub-Saharan Africa.—I. (I.) Curley

241. Topics in North American Ethnology (4)
Seminar—3 hours; term paper. Advanced study on current problems in North American ethnography and culture history. May be repeated for credit with consent of instructor.—III. (III.) Fortes

245. Ethnology of Northern and Central Asia (4)
Seminar—3 hours; term paper. Prerequisite: a reading knowledge of German, Russian, Chinese, or Japanese. Lectures on the culture aboriginally found north of the Caucasus-Korea line. Supervised study of the primary and secondary sources. Work with informants when available.—III. (III.)

246. Ethnology of Europe (4)
Seminar—3 hours; term paper. Prerequisite: reading knowledge of a European language other than English. Supervised study of the primary and secondary sources dealing with the ethnography and ethnology of the peoples of Europe. Emphasis upon folk, peasant, and minority groups.—II. (II.)
248. **Topics in Chinese Culture and Society (4)**
Seminar—3 hours; term paper. Prerequisite: graduate standing in the social sciences, history, or the humanities. Selected topics in the anthropology of Chinese society. Focus on one or more of the following topics: state-society dynamics, family and gender, city formation and urban life, social movement, labor politics, and religion and ideology in Chinese society. May be repeated for credit when topic differs.—III. (III.) Skinner, Zhang

252. **Human Evolution Seminar (4)**
Seminar—3 hours; term paper. Prerequisite: course 152 or the equivalent; consent of instructor. Study of selected topics in human evolutionary studies. Each year course will focus on one or more of the following: molecular evolution, primate evolutionary biology, Tertiary hominoids, *Australopithecus*, *Homo erectus*, archaic *Homo sapiens*, brain evolution. May be repeated for credit.—II. (II.) McHenry

253. **Seminar in Human Biology (4)**
Seminar—3 hours; term paper. Prerequisite: course 153, 157, or consent of instructor. Study of selected topics in human biology. May be repeated for credit when topics vary. Offered in alternate years.—III. (III.) D.G. Smith

254. **Current Issues in Primate Sociobiology (4)**
Seminar—3 hours; term paper. Prerequisite: course 154B or the equivalent. Analysis of primate behavior, with particular emphasis on preparation for field studies. May be repeated for credit when topic differs.—II. (II.) Isbell, Rodman

258. **Evolution and Human Behavior (4)**
Seminar—3 hours; term paper. Prerequisite: courses 15; 101; 154 A or 154B; 158 or consent of instructor. Focus will be on reproductive strategies and parental investment. May be repeated for credit when topics vary.—I. (I.) Isbell

270. **Anthropology Colloquium Seminar (1)**
Seminar—1 hour. Reports and discussions of recent advances in the four subfields of anthropology. To be presented by guest speakers. May be repeated twice for credit. (S/U grading only.)—I, II, III. (I, II, III.)

292. **Seminar in Linguistic Anthropology (4)**
Seminar—3 hours; term paper. Selected topics in linguistic anthropology. May be repeated for credit when topic differs.—J.S. Smith

298. **Group Study (1-4)**
(S/U grading only.)

299. **Research (1-12)**
(S/U grading only.)

299D. **Dissertation Research (1-12)**
(S/U grading only.)
Anatomy, Physiology, and Cell Biology

(School of Veterinary Medicine)
Charles G. Popper, Ph.D., Chairperson of the Department
Department Office, 1321 Haring Hall (530-752-1174)

Faculty
Hilary P. Benton, Ph.D., Associate Professor
Michael L. Bruss, D.V.M., Ph.D., Professor
Leslie J. Faulkin, Jr., Ph.D., Professor
Dorothy W. Gietzen, Ph.D., Professor
Benjamin L. Hart, D.V.M., Ph.D., Professor
David E. Hinton, Ph.D., Professor
Dallas M. Hyde, Ph.D., Professor
Janine B. Kasper, D.V.M., Lecturer
K. C. Kent Lloyd, D.V.M., Ph.D., Associate Professor
Stuart A. Meyers, D.V.M., Ph.D., Assistant Professor
Kent Pirkenton, Ph.D., Professor in Residence
Charles G. Popper, Ph.D., Professor
Edward S. Schelegle, Ph.D., Assistant Professor
Susan M. Stover, D.V.M., Ph.D., Professor
Fern Tablin, V.D.M., Ph.D., Associate Professor
Reen Wu, Ph.D., Professor

Emeriti Faculty
George H. Cardinet III, D.V.M., Ph.D., Professor Emeritus
Donald L. Curry, Ph.D., Professor Emeritus
Alfred A. Heusner, Docteur-es-Sciences, Professor Emeritus
Walter S. Tyler, D.V.M., Ph.D., Professor Emeritus

Affiliated Faculty
Howard C. Bailey, Ph.D., Assistant Adjunct Professor
Michael J. Evans, Ph.D., Visiting Professor
Gary D. Marty, D.V.M., Ph.D., Assistant Research Pathologist
Lisa A. Miller, Ph.D., Assistant Research Cell Biologist
Laura S. Van Winkle, Ph.D., Assistant Research Cell Biologist

Courses in Anatomy, Physiology, and Cell Biology (APC)

Upper Division Courses

100. Comparative Organology of Vertebrates (4)
Lecture—3 hours; laboratory—3 hours. Prerequisite: Biological Sciences 1B. Integrated study of the organization of cells and tissues into organs and organ systems in vertebrates. The following organ systems will be compared between fish, birds, and mammals: musculoskeletal, gastrointestinal, cardiovascular, respiratory, integumentary, urinary, reproductive, and nervous.—II. (II.) Popper

101. Directed Group Study (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)

102. Special Study for Advanced Undergraduates (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)

Graduate Courses

202. Organology (2)
Lecture—2 hours. Prerequisite: course 100 or the equivalent and consent of instructor. Comparative development, growth patterns, and composition of selected organs: liver, kidney, lung, mammary gland, brain, and a skeletal muscle. Offered in alternate years.—II. (II.)

205. Ultramicroscopic Anatomy (3)
Lecture—3 hours. Prerequisite: histology. The electron microscopic appearance of cells, tissues, and organs of animals emphasizing the structural basis for their physiological functions. Offered in alternate years.—II. (II.)

215. Veterinary Histology (6)
Lecture—3 hours; laboratory—9 hours. Prerequisite: Biological Sciences 1B. The microscopic anatomy of tissues and organs of mammalian and avian species of veterinary significance.—II. (II.)

220. Physiology and Pathophysiology of the Liver (3)
Lecture—2.6 hours; laboratory—1.2 hours. Prerequisite: systemic physiology; biochemistry or physiological chemistry. Topics in functional morphology, physiology, intermediary metabolism, pharmacology, and disorders of the liver. Emphasis on bile formation; bile pigments; bile acids; drug and toxic metabolism; circulation; carbohydrate, lipid and protein metabolism; trace minerals; basic pathological processes; and function tests. (Same course as 420.)—I. (I.) Bruss

284. Ruminant Nutrition and Physiology (3)
Lecture—2.7 hours, laboratory—0.9 hours. Prerequisite: graduate or veterinary student standing. Upper division nutrition courses (e.g., Nutrition 110), upper division systemic physiology (e.g., Neurobiology, Physiology and Behavior 110), Biochemistry (e.g., Biological Sciences 102 and 103) or the equivalent. Basic and applied aspects of ruminant nutrition and physiology, nutritional and metabolic disorders of ruminants. (Same as course 484.)—II. (III.) Bruss, Morris

285. Morphometry of Cells, Tissues and Organs (2)
Lecture—1 hour; laboratory—3 hours. Prerequisite: course 100 or the equivalent, and Statistics 13. At the end of the course, students will be able to define what critical data need to be collected to estimate volumes, surfaces and lengths of organs and their components (e.g., vessels, ducts and airways). Students will also learn how to estimate the number of cells in an organ or tissue, their volumes, products and gene expression using morphometry. Offered in alternate years.—II. (II.) Hyde

290. Seminar (1)
Seminar—1 hour. Discussion and critical evaluation of advanced topics and current trends in research. (S/U grading only.)—I, II, III, (I, II, III.)

291. Topics in Biology of Respiratory System (1)
Seminar—1 hour. Prerequisite: graduate standing and consent of instructor. Topics concerning structure and function of respiratory system. Possible topics include: lung growth, pulmonary reaction to toxicants, pulmonary inflammation, lung metabolism, biology of lung cells, tracheobronchial epithelium, nasal cavity structure and function. May be repeated for credit. (S/U grading only.)—I, II, III. (I, II, III.) Hyde, Popper, Wu, Pirkenton

292. Topics in Neuroscience Research (1)
Seminar—1 hour. Prerequisite: graduate standing and consent of instructor. Students will examine current topics in neuroscience research literature, as well as evaluate rationale, methods, results, interpretation of data, and relevance of studies. Possible topics include pain, autonomic nervous system, neuroendocrinology, neurotransmitter regulation of gene expression, neurotranscerine-immune interactions, stress. (S/U grading only.)

298. Group Study (1-5)
Laboratory—6-15 hours. Prerequisite: consent of instructor.

299. Research (1-12)
Laboratory—6-36 hours. Prerequisite: consent of instructor. (S/U grading only.)

Professional Course

397T. Tutoring in Veterinary Anatomy, Physiology and Cell Biology (1-5)
Laboratory—2 hours, discussion—2 hours. For graduate or professional students who desire teaching experience, but are not teaching assistants. May be repeated for credit. (S/U grading only.)

Professional Courses

410. Equine Locomotor Anatomy (2)
Lecture—10 sessions; laboratory—10 sessions. Prerequisite: Veterinary Medicine 4011 with a grade of C– or better. Normal anatomy of the equine fore and hind limb bones, joints, muscles, ligaments, tendons, nerves and vessels with emphasis on clinically applicable structures.—III. (III.) Stover

420. Physiology and Pathophysiology of the Liver (3)
Lecture—2.6 hours, laboratory—1.2 hours. Prerequisite: systemic physiology; biochemistry or physiological chemistry. Topics in functional morphology, physiology, intermediary metabolism, pharmacology, and disorders of the liver. Emphasis on bile formation; bile pigments; bile acids; drug and toxic metabolism; circulation; carbohydrate, lipid and protein metabolism; trace minerals; basic pathological processes; and function tests. (Same course as 220.)—I. (I.) Bruss

458. Behavioral Therapy (1)
Lecture—1 hour. Prerequisite: first-year standing in the School of Veterinary Medicine or consent of instructor. Approved for graduate degree credit. Clinical application of management, conditioning procedures, hormonal manipulation and drug therapy to resolve common behavioral problems of dogs and cats.—II. (II.) Hart

484. Ruminant Nutrition and Physiology (3)
Lecture—2.7 hours, laboratory—0.9 hours. Prerequisite: graduate or veterinary student standing. Upper division nutrition courses (e.g., Nutrition 110), upper division systemic physiology (e.g., Neurobiology, Physiology and Behavior 110), biochemistry (e.g., Biological Sciences 102 and 103) or the equivalent. Basic and applied aspects of ruminant nutrition and physiology, nutritional and metabolic disorders of ruminants. (Same as course 284.)—III. (III.) Bruss, Morris
Applied Mathematics (A Graduate Group)

E.G. Puckett, Ph.D., Chairperson of the Group
Group Office, 570 Kerr Hall (530-752-8131)
World Wide Web: http://math.ucdavis.edu

Faculty. Consists of members from a variety of departments whose research interests are mathematically oriented. Departments represented include Biological Sciences; Chemistry; Engineering: Computer Science, Chemical and Materials Science, Civil and Environmental, Electrical and Computer, and Mechanical and Aeronautical; Environmental Science and Policy, Epidemiology and Preventive Medicine; Evolution and Ecology, Land, Air and Water Resources, Management; Mathematics; Physics; Radiology; Statistics; and Wildlife, Fish, and Conservation Biology.

Graduate Study. Students prepare for careers where mathematics is applied to problems in the physical and life sciences, engineering, and management. The degree requirements consist of rigorous training in applied mathematics, including course work and a research dissertation under the direction of a member of the Graduate Group in Applied Mathematics. The M.S. degree provides preparation for further study in applied mathematics or an application area, or for a career in industry or public service. The Ph.D. degree provides preparation for a career in research and/or teaching, or in industrial or national research laboratories. Areas of research in the program include differential equations, fluid mechanics, numerical analysis, operations research, systems theory, probability and stochastic processes, mathematical biology, and mathematical physics. Detailed information may be obtained by writing to the Graduate Coordinator, Department of Mathematics.

New applicants are admitted to the fall quarter only.

Preparation. The program encourages application from students who have prior training in engineering, physical and life sciences, mathematics, economics, and related fields. Applicants must have completed two years of undergraduate mathematics, including linear algebra, differential equations, and vector calculus. A rigorous course in advanced calculus is strongly encouraged.

Graduate Advisers. A. Cheer (Mathematics); E.G. Puckett (Mathematics); N. Saito (Mathematics).
Agricultural and Resource Economics

(College of Agricultural and Environmental Sciences)
Colin A. Carter, Ph.D., Chairperson of the Department
Department Office, 2118 Social Sciences and Humanities Building (530-752-1517)
Undergraduate Student Information, 1176 Social Sciences and Humanities Building (530-752-6185)
Graduate Student Information, 1171 Social Sciences and Humanities Building (530-752-6886)
World Wide Web: http://www.agecon.ucdavis.edu

Faculty
Richard Alcauskas, J.D., Lecturer
Julian M. Alston, Ph.D., Professor
Steven Blank, Ph.D., Lecturer
Bayford D. Butler, M.S., Lecturer
Leslie J. Butler, Ph.D., Lecturer
Michael R. Caputo, Ph.D., Professor
Hoy F. Carman, Ph.D., Professor
Colin A. Carter, Ph.D., Professor
James A. Chalfant, Ph.D., Professor
Robert L. Cook, Ph.D., Lecturer
Y. Hossein Farzin, Ph.D., Associate Professor
Racheal Goodhue, Ph.D., Assistant Professor
Richard D. Green, Ph.D., Professor
Arthur Havener, Ph.D., Professor
Thomas W. Hazlett, Ph.D., Professor
Dale M. Heien, Ph.D., Professor
Richard E. Howitt, Ph.D., Professor
Lovell S. Jarvis, Ph.D., Professor
Desmond A. Jolly, Ph.D., Lecturer
Karen Koonsky, Ph.D., Lecturer
Mahlon Lang, Ph.D., Lecturer
Douglas M. Larson, Ph.D., Associate Professor
Philip L. Martin, Ph.D., Professor
Catherine J. Morrison Paul, Ph.D., Professor
Quirino Paris, Ph.D., Professor
Scott Rozelle, Ph.D., Associate Professor
Richard J. Sexton, Ph.D., Professor
Lawrence E. Shepard, Ph.D., Senior Lecturer
Joe J. Stasulat, Ph.D., Lecturer
Daniel A. Sumner, Ph.D., Professor
J. Edward Taylor, Ph.D., Professor
James E. Wilen, Ph.D., Professor
Jeffrey Williams, Ph.D., Professor
Emeriti Faculty
Oscar R. Burt, Ph.D., Professor Emeritus
Harold O. Carter, Ph.D., Professor Emeritus
Jerry Foytik, Ph.D., Professor Emeritus
Benjamin C. French, Ph.D., Professor Emeritus
Varden Fuller, Ph.D., Professor Emeritus
Warren E. Johnston, Ph.D., Professor Emeritus
Gordon A. King, Ph.D., Professor Emeritus
Sylvia Lane, Ph.D., Professor Emerita
Elmer W. Lear, Ph.D., Professor Emeritus
Samuel H. Logan, Ph.D., Professor Emeritus
Alexander F. McCalla, Ph.D., Professor Emeritus
Chester O. McCorkle, Jr., Ph.D., Professor Emeritus
Refugio I. Rochin, Ph.D., Professor Emeritus
J. Herbert Snyder, Ph.D., Professor Emeritus
Richard D. Green, Ph.D., Professor Emeritus
Catherine J. Morrison Paul, Ph.D., Professor Emeritus
Douglas M. Larson, Ph.D., Associate Professor
Mahlon Lang, Ph.D., Lecturer

Major Program and Graduate Study. See the major in Managerial Economics; and for graduate study, see the Graduate Studies chapter in this catalog.

Major Advisers. See the Class Schedule and Registration Guide.

Related courses. See Environmental Biology and Management 110; Environmental Science and Policy 160, 168A, 168B, 173; and courses in Economics.

Courses in Agricultural and Resource Economics (ARE)

Lower Division Courses

1. Economic Basis of the Agricultural Industry (4)
Lecture—4 hours. Agriculture and man; the agricultural industry in U.S. and world economies; production and supply, marketing and demand; agricultural land, capital and labor markets; economic and social problems of agriculture in an urban and industrialized economy emphasizing California. GE credit: SocSci.—III. (III.) McCalla

15. Population, Environment and World Agriculture (4)
Lecture—3 hours; discussion—1 hour. Economic analysis of interactions among population, environment, natural resources and development of world agriculture. Introduces students to economic thinking about population growth, its causes and consequences for world food demand, and environmental and technological limits to increasing food supplies. GE credit: SocSci, Div, Wrt.—I.—I. (I.) Vosti

18. Business Law (4)
Lecture—4 hours. Prerequisite: sophomore standing. General principles of business law in the areas of contracts, business organization, real property, uniform commercial code, sales, commercial paper, employment relations, and creditor-debtor against a background of the history and functioning of our present legal system.—I, III, summer. (I, III, summer.) Alcauskas

49A-49B-49C. Field Practice (1)
Discussion—1 hour; three field trips. Prerequisite: consent of instructor. Field trips and experiences to observe the various management aspects of Agricultural Production. Emphasis will be placed on developing the student’s understanding and awareness of economics and management and their application in agricultural production. (P/NP grading only.)—I, II, III. (I, II, III.) Stasulat

98. Directed Group Study (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)

99. Special Study for Undergraduates (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)

Upper Division Courses

100A. Intermediate Microeconomics: Theory of Production and Consumption (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: Economics 1A, 1B; Mathemtics 16B. Theory of individual consumer and market demand; theory of production and supply of agricultural products, with particular reference to the individual firm; pricing, output determination, and employment of resources under pure competition. (Not open for credit to students who have completed Economics 100 or the equivalent; however, Economics 100 will not serve as prerequisite to course 100B.)—I, II, III. (I, II, III.) Farzin, Paris, Goodhue, Carman, Summer

100B. Intermediate Microeconomics: Imperfect Competition, Markets and Welfare Economics (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 100A. Pricing, output determination, and employment of resources under conditions of monopoly, oligopoly, and monopolistic competition.—I, II, III. (I, II, III.) Wilen, Sexton, Caputo, Constantine

106. Quantitative Methods in Agricultural Economics (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 100A, Statistics 103. Statistical methods for analyzing quantitative agricultural economics data: linear and multiple correlation and regression analysis.—I, II, III. (I, II, III.) Wilen, Sexton, Caputo, Constantine, Green, Chalfant, Taylor, Heien

112. Fundamentals of Business Organization (4)
Lecture—2 hours; discussion—2 hours. Prerequisite: upper division standing or consent of instructor. The role of organizational design and behavior in business and public agencies. Principles of planning, decision making, individual behavior, motivation, leadership, informal groups; conflict and change in the organization.—I, III, summer. (I, III, summer.) Butler

113. Fundamentals of Marketing Management (4)
Lecture—4 hours. Prerequisite: Economics 1A. For non-majors only. Nature of product-marketing by the business firm. Customer-product relationships, pricing and demand; new product development and marketing strategy; promotion and advertising; product life cycles; the distribution system; manufacturing, wholesaling, retailing. Government regulation and restraints. (Not open for credit to students who have completed course 136.)—I, I (I.) Butler
115A. Economic Development (4) Lecture—3 hours; discussion—1 hour. Prerequisite: Economics 1A and 1B. Major issues encountered in emerging from international poverty, problems of growth and structural change, human welfare, population growth and health, labor markets and internal migration. Important issues of policy concerning international trade and industrialization. (Same course as Economics 115A.) GE credit: SocSci, Div.—I, II, (I, II) Taylor, Vosti.

115B. Economic Development (4) Lecture—3 hours; discussion—1 hour. Prerequisite: Economics 1A and 1B. Major macroeconomic issues of developing countries. Issues include problems in generating capital, conduct of monetary and fiscal policies, foreign aid and investment. Important issues of policy concerning international borrowing and external debt of developing countries. (Same course as Economics 115B.) GE credit: SocSci—II, III, (II, III) Woo.

118. Tax Accounting (4) Lecture—4 hours. Prerequisite: Management 11A, 11B; course 18 recommended. Development and application of a framework to understand the tax effects of typical management decisions on both entities and their owners. Impacts that different methods of taxation have on business entities with emphasis on tax planning, using income and deduction strategies, retirement plans, and choice of business entity for tax minimization.—III, (III) Butler.

120. Agricultural Policy (4) Lecture—3 hours; discussion—1 hour. Prerequisite: course 100A or the equivalent. Analytical treatment of historical and current economic problems and governmental policies influencing American agriculture. Uses of economic theory to develop historical and conceptual understanding of the economics of agriculture; public policy influences the nature and performance of American agriculture. GE credit: SocSci.—III. (III) Alston.

130. Agricultural Markets (4) Lecture—3 hours; discussion—1 hour. Prerequisite: course 100A. The history, nature, function, organizational structure, and operation of agricultural markets; prices, costs, and margins; market information, regulation, and controls; cooperative marketing.—III. (III) W. Butler, L.J. Butler.

135. Agribusiness Marketing Plan Development (2) Lecture/discussion—2 hours. Prerequisite: upper division standing. Fundamental components required to develop a marketing plan. Appreciation of the concept of a marketing plan, appropriate research required, including the use of library and Internet, survey and interview instruments, government documents, market analysis, business proposition, action planning, financial evaluation and monitoring. (FINP grading only.)—I, (I, II) L.J. Butler.

136. Managerial Marketing (4) Lecture—4 hours. Prerequisite: course 100A; Statistics 103. Application of economic theory and statistics in the study of marketing. Marketing measurement and forecasting, market planning, market segmentation, determination of optimal product mix, market share and sales cost analysis, conduct of marketing research, marketing models and systems.—II, III, (II, III) Carman, Baydias.

138. International Commodity and Resource Markets (3) Lecture—3 hours. Prerequisite: course 100A, Economics 100 or 104. Basic nature and structure of international trade in agricultural commodities, agricultural inputs, and natural resources. Market dimensions and policy institutions. Case studies to illustrate import and export problems associated with different regions and commodities.—III. (III).

139. Futures and Options Markets (3) Lecture—3 hours. Prerequisite: course 100A; Statistics 103. History, mechanics, and economic functions of futures and options markets; hedging; theory of intertemporal price formation and behavior of futures and options prices; price forecasting; futures and options as policy tools.—I. (I) Carter.

140. Farm Management (6) Lecture—5 hours. Prerequisite: Economics 1A. Farm organization and resources; economic and technological principles in decision making; analytical techniques and management control; problems in organizing and managing the farm business.—II. (II).

142. Personal Finance (3) Lecture—3 hours. Prerequisite: Economics 1B. Management of income and expenditures by the household. Use of consumer credit, savings, and insurance by households; Principles of tax, retirement, and estate planning.—I, II, summer. (I, II, summer) Shepard, Butler.

143. Investments (3) Lecture—3 hours. Prerequisite: course 142 or consent of instructor. Survey of investment institutions, sources of investment information, and portfolio theory. Analysis of the stock, bond and real estate markets from the perspective of the investor.—II. (II) Baydias.

144. Real Estate Economics (3) Lecture—3 hours. Prerequisite: course 100A. The economic theory, analysis, and institutions of real estate markets and related financial markets. Case studies drawn from the raw land, single family, multifamily, industrial and office real estate markets.—I. (I) Shepard.

145. Farm and Rural Resources Appraisal (4) Lecture—3 hours; laboratory—3 hours; field trip. Principles of farm and ranch appraisal; land utilization in relation to problems of development and valuation. Real estate instruments and elements of real estate finance.—II. (I) Johnston.

147. Resource and Environmental Policy Analysis (3) Lecture—3 hours. Prerequisite: Economics 1A; enrollment open to non-majors only. Natural resource use problems with emphasis on past and current policies and institutions affecting resource use; determinants, principles, and patterns of natural resource use; property rights; conservation; private and public resource use problems; and public issues. (Students who have had or are taking course 100A, Economics 100, or the equivalent, may receive only 2 units of credit, so must enroll in course 147M instead.) GE credit: SocSci.—II, (II) Caputo.

147M. Resource and Environmental Policy Analysis (2) Lecture—3 hours. Prerequisite: Economics 1A; enrollment open to non-majors only. Natural resource use problems with emphasis on past and current policies and institutions affecting resource use; determinants, principles, and patterns of natural resource use; property rights; conservation; private and public resource use problems; and public issues. (Students who have had or are taking course 100A, Economics 100, or the equivalent, must enroll in this course (for 2 units) rather than course 147.—II. (II) Caputo.

150. Agricultural Labor (4) Lecture—3 hours; discussion—1 hour. Importance of family and hired labor in agriculture; farm labor market; unions and collective bargaining in California agriculture; simulated collective bargaining exercise; effects of unions on farm wages and earnings. GE credit: SocSci, Div.—II, (II) Martinez.

155. Quantitative Analysis for Business Decisions (4) Lecture—3 hours; discussion—1 hour. Prerequisite: course 100A; Statistics 103. Introduction to selected topics in management science and operations research: decision analysis for management, mathematical programming, competitive analysis, and others.—I, II, III, (I, II, III) Butler, Heien.

156. Introduction to Mathematical Economics (4) Lecture—4 hours. Prerequisite: courses 100A and 155; Mathematics 16C or 21C recommended (students should note that the formal mathematical content of this course is higher than other courses in the curriculum). Linear algebra for economists; necessary and sufficient conditions in static optimization problems; implicit function theorem; economic methodology and mathematics; comparative statics; envelope theorem; Le Chatelier principle; applications to production and consumer models.—I. (I) Green.

157. Analysis for Production Management (4) Lecture—4 hours. Prerequisite: course 100A; Statistics 103. Application of economic theory and quantitative methods in analyzing production management problems including inventory control, production scheduling, quality control, simulation, systems approach, and work measurement.—I, II, (II, III) Whitney, Carman.

171A. Financial Management of the Firm (4) Lecture—3 hours; discussion—1 hour. Prerequisite: course 106; Management 11A-11B. Financial analysis at the firm level: methods of depreciation; influence of the tax structure; inventory, cash, and accounts receivable management; sources of short- and long-term financing, and financial problem solving using a computer spreadsheet program. (Students who have had or are taking Economics 134 may not receive credit for this course.)—I, II, (II, III) Havener.

171B. Financial Management of the Firm (4) Lecture—3 hours; discussion—1 hour. Prerequisite: course 171A. Financial analysis at the firm level: methods of capital budgeting; calculating the cost of capital; dividend policies; mergers and acquisitions; and special current topics in finance.—I, II, (II, III) Baydias, Whitney.

175. Natural Resource Economics (4) Lecture—3 hours; discussion—1 hour. Prerequisite: course 100B or Economics 100 equivalent. Economic concepts and policy issues associated with natural resources, renewable resources, (ground water, forests, fisheries, and wildlife populations) and non-renewable resources (minerals and energy resources, soil). (Same course as Environmental Science and Policy 175.) GE Credit: SocSci.—I. (I) Farzin.

176. Environmental Economics (4) Lecture—3 hours; discussion—1 hour. Prerequisite: course 100B or Economics 100. Role of environment in economic activity and methods for protecting and enhancing environmental quality; implications of market failures for public policy; design of environmental policy; theory of welfare measurement; measuring the benefits of environmental improvement. GE credit: SocSci.—II. (II) Larson.

192. Internship (1-6) Lecture—0 hours. Internship experience off and on campus in all subject areas offered in the Department of Agricultural and Resource Economics. Internships are supervised by a member of the staff. (FINP grading only.)

Quarter Offered: I=Fall; II=Winter; III=Spring; IV=Summer; 2001-2002 offering in parentheses.
194HA-194HB. Special Study for Honors Students (4-4)
Independent Study—3 hours; seminar—1 hour. Prerequisite: Minimum GPA of 3.50; course 100B; courses 106 and 155 (may be taken concurrently), major in Agricultural Economics or Managerial Economics; senior standing. A program of research culminating in the writing of a senior honors thesis under the direction of a faculty adviser. (Deferred grading only, pending completion of senior honors thesis.)—I, II. (P/NP grading.)
197T. Tutoring in Agricultural Economics (1-3)
Hours and days will vary depending upon the course being tutored. Prerequisite: senior standing in Agricultural and Resource Economics and consent of Department Chairperson. Tutor will lead small discussion groups affiliated with one of the department’s regular courses under the supervision of, and at the option of the instructor in charge of the course. (P/NP grading only.)
198. Directed Group Study (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)
199. Special Study for Advanced Undergraduates (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)

Graduate Courses
200A. Microeconomic Theory (5)
Lecture—4 hours; discussion—1 hour. Prerequisite: graduate standing. Linear and non-linear optimization theory applied to develop the theory of the profit-maximizing firm and the utility-maximizing consumer. (Same course as Economics 200A.)—I. (I.) Taylor, Jarvis, Rozelle
200B. Microeconomic Theory (5)
Lecture—4 hours; discussion—1 hour. Prerequisite: course 200A. Characteristics of market equilibrium under perfect competition, simple monopoly and monopolistic competition. Emphasis on general equilibrium and welfare economics; the sources of market success and market failures. (Same course as Economics 200B.)—II. (II.) Helms
200C. Microeconomic Theory (5)
Lecture—4 hours; discussion—1 hour. Prerequisite: course 200B. Uncertainty and information economics. Individual decision making under uncertainty. Introduction to game theory, with emphasis on applications to markets with firms that are imperfect competitors or consumers that are imperfectly informed. (Same course as Economics 200C.)—III. (III.) Makowski
202A. Introduction to Applied Research Methods (3)
Lecture/discussion—3 hours. Prerequisite: courses 204 and 256, or the equivalent; 200A concurrently. Study of philosophy and methodology of applied research in agricultural economics. Methods of conceptualization of researchable topics. Method of communication and constructive criticism.—I. (I.) Challant
202B. Applied Microeconomics I: Consumer and Producer Behavior (3)
Lecture/discussion—3 hours. Prerequisite: courses 200A and 202A; course 200B concurrently. Application of consumer and producer theory in models of individual behavior and market-level phenomena. Implications of consumer and producer theory for specification of empirical models of supply and demand for inputs and outputs and market equilibrium displacement models.—II. (II.) Goodhue
202C. Applied Microeconomics II: Welfare Analysis and Imperfect Competition (3)
Lecture/discussion—3 hours. Prerequisite: course 202B; course 200C concurrently. Methods of applied welfare economics with emphasis on problems arising in agriculture and the environment. Models of imperfectly competitive markets and their application to industries and institutions in the agricultural sector.—III. (III.) Williams
204. Microeconomic Analysis (5)
Lecture—4 hours; discussion—1 hour. Prerequisite: Economics 100 or courses 100A-100B and Mathematics 16A-16B; open to advanced undergraduates with consent of instructor. Economic reasoning and social choice: behavior of firms and households, theory of markets, partial and general equilibrium analysis, welfare economics, illustrations and applications. (Same course as Economics 204.)—I. (I.) Sexton
214. Development Economics (4)
Lecture—4 hours. Prerequisite: course 100A, 100B, Economics 101; course 204 and Economics 160A, 160B recommended. Review of the principal theoretical and empirical issues. Economic analysis has formed development economics. Analysis of economic development theories and development strategies and their application to specific policy issues in developing country contexts. (Same course as Economics 214A.)—I. (I.) Rozelle, Jarvis, Taylor
215A. Microdevelopment Theory & Methods I (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 204A or 204D; course 240A recommended. Agricultural development theory, with a focus on microeconomics. Agricultural household behavior with and without imperfections and uncertainty. Analysis of rural land, labor, credit and insurance markets, institutions, and contract. (Same course as Economics 215A.)—I. (I.) Taylor, Jarvis, Rozelle
215B. Open Macroeconomics of Development (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 204A or 204D, 200D or 205, and 214 and 215A. Models and policy approaches regarding trade, monetary and fiscal issues, capital flows and debt are discussed in the macroeconomic framework and applied to developing country. The basic analytical focus is real exchange rate and its impact on sectoral allocation of resources. (Same course as Economics 215B.)—II. (II.) Kanaeda
215C. Microdevelopment Theory and Methods
Lecture—3 hours; discussion—1 hour. Prerequisite: course 215A. Extension of development theory and microeconomic methods. Agricultural growth and technological change, poverty and some inequality, multisectoral, including village and regional models. Computable general equilibrium models and applications. (Same course as Economics 215C.)—III. (III.) Rozelle, Jarvis, Taylor
215D. Environment and Economic Development (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 200A, 204 or 275. Interdisciplinary course drawing on theoretical and empirical research on interactions between environmental resource use and economic development processes. Analysis of issues emerging at the interface of environmental and development economics. Same course as Economics 215D.—III. (III.) Fairlie
222. International Agricultural Trade and Policy (3)
Lecture—3 hours. Prerequisite: course 100B or 204. Economics 160A or the equivalent. Analysis of country interdependence through world agricultural markets. Partial equilibrium analysis is used to study the impacts of national intervention on world markets, national policy choice in an open economy and multilateral policy issues. Offered in alternate years.—(I.) Carter
231. Supply and Demand for Agricultural Products (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 200A, 202A, and 240A or consent of instructor. Analysis of supply and demand for agricultural commodities emphasizing the effective use of microeconomic theory with econometric methods, and other empirical procedures, in conducting applied analysis of supply and demand at the firm and industry level.—I. (I.) Alston
232. Agricultural Commodity Markets (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 200A, 202A, and 240A or consent of instructor. Economic analysis of industries that produce, market, transport, store, and process basic commodities. Analysis of market equilibrium under perfect and imperfect competition, with and without government involvement.—II. (II.) Williams
233. Agricultural Policy (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 200A, 202A, and 240A or consent of instructor. Nature, formation, evolution, and institutions of economic policy applied to food, agricultural, and rural issues. Examples for detailed consideration: food security, commodity issues, and trade policy. Analytical approaches include static and dynamic welfare analysis, policy design, and political-economic analysis.—III. (III.) Summer
240A. Econometric Methods (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: Statistics 133 and a course in linear algebra or the equivalent. Least squares, instrumental variables, and maximum likelihood estimation and inference for single equation linear regression model; linear restrictions; heteroskedasticity; autocorrelation; lagged dependent variables. (Same course as Economics 240A.)—II. (II.) Challant
240B. Econometric Methods
Lecture—3 hours; discussion—1 hour. Prerequisite: course 240A. Topics include asymptotic theory and instrumental variables, pooled time-series cross-section estimation, seemingly unrelated regression, classical hypothesis tests, identification and estimation of simultaneous equation models, cointegration, error-correction models, and qualitative and limited dependent variable models. (Same course as Economics 240B.)—III. (III.) Havener
240C. Econometric Theory (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 240B. Finite sample theory; nonlinear and dynamic econometric models; asymptotic distribution theory. (Same course as Economics 240C.)—I. (I.)
240D. Topics in Econometrics (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 240B. Advanced topics in nonlinear econometric modeling. Contents may vary from year to year. (Same course as Economics 240D.)—II. (II.)
240E. Topics in Applied Econometrics (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 240A and 240B. Examination of modern econometric techniques used in applied fields of economic research, such as demand analysis, environmental economics, macroeconomics/finance, etc. Emphasis on selection of appropriate tools for individual fields. Course focus will expand topics covered in courses 240A and 240B. (Same course as Economics 240E.)—III. (III.) Layton
252. Applied Linear Programming (4)
Lecture—3 hours; discussion—1 hour. Applied linear programming methods emphasizing uses for business decisions: production, diet, blending, network and related problems.—II. (II.) Howitt
253. Optimization Techniques with Economic Applications (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 200C. Optimization techniques and methods including linear and nonlinear programming. Empirical applications to household, firm, general equilibrium and economic growth problems.—I. (I.)
254. Dynamic Optimization Techniques with Economic Applications (4)
Lecture—3 hours. Prerequisite: course 253 and elementary knowledge of ordinary differential equations. Necessary and sufficient conditions in the calculus of variations and optimal control, economic interpretations, the dynamic envelope theorem and transversality conditions, infinite horizon problems and phase diagrams, local stability and comparative statics of the steady state, comparative dynamics.—II. (II.) Caputo
255. Advanced Topics in Economic Dynamics (3)
Lecture—3 hours. Prerequisite: course 254. Local stability analysis, steady state
comparative statics and comparative dynamics, dynamic duality theory and the
principle of optimality, differential games, numerical solution of deterministic and
stochastic dynamic models using GAMS, stochastic optimal control, plus other
advanced topics in economic dynamics. Offered in alternate years.—(III.) Caputo,
Howitt

256. Applied Econometrics (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 106, Economics 140 or
the equivalent, or consent of instructor. Application of statistical tools to economic
and business analysis. Emphasis on regression analysis, problems of specification,
and model development. (Same course as Economics 256.)—II. (II.) Heinen

258. Demand and Market Analysis (3)
Lecture—3 hours. Prerequisite: courses 204 and 256 or consent of instructor. Quan-
titative and theoretical analysis of the factors affecting supply, demand and price
determination for agricultural products. Emphasis on analytical tools for assessing
the impacts of changes in government policies and macroeconomic variables.—
III. (III.) Paul

275. Economic Analysis of Resource and Environmental Policies (4)
Lecture/discussion—4 hours. Prerequisite: course 204/Economics 204. Develop-
ment of externality theory, market failure concepts, welfare economics, theory of
renewable and non-renewable resource use, and political economic models. Appli-
cations to policy issues regarding the agricultural/environment interface and man-
aging resources in the public domain. (Same course as Environmental Science
and Policy 275.)—III. (III.) Wilen

276. Environmental Economics (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 204 or consent of instruc-
tor. Applications of externality theory to the design of efficient environmental policies.
Evaluation of pollution control policy instruments in light of information limitations and
market imperfections. Methods for nonmarket valuation of the benefits of environ-
mental improvement.—I. (I.) Larson

277. Natural Resource Economics (4)
Lecture—4 hours. Prerequisite: course 254 or consent of instructor. Application of
capital theory and dynamic methods to issues of optimal use of renewable and non-
renewable resources. Examination of policy issues associated with forests, fisheries,
groundwater, energy resources, watersheds, soil, global climate, and wildlife.—III.
(III.) Wilen

293. Analysis of California Agriculture and Resources (3)
Lecture—1.5 hours; fieldwork—45 hours total of field trip, including one 5-day sum-
mer field trip. Review and analysis of production, marketing, and resource issues
facing agricultural firms in California. Application of economic theory and measure-
ment to individual firm and industry decisions in an applied setting. (S/U grading only.)—II. (II.) Johnston

293M. Analysis of California Agriculture and Resources (2)
Lecture—0.5 hours; fieldwork—45 hours total, including one 5-day summer field trip.
Prerequisite: Ph.D. level standing. Review and analysis of production, marketing,
and resource issues facing agricultural firms in California. (S/U grading only.)—II.
(II.) Johnston

298. Directed Group Study (1-5)
Advanced study through special seminars, informal group studies, or group
research on problems for analysis and experimentation. Sections: (1) Managerial
Economics; (2) Agricultural Policy; (3) Community and Regional Development; (4)
Natural Resources; (5) Human Resources; (6) Research Methods and Quantitative
Analysis.

299. Individual Study (1-12)
Sections: (1) Managerial Economics; (2) Agricultural Policy; (3) Community and
Regional Development; (4) Natural Resources; (5) Human Resources; (6) Research
Methods and Quantitative Analysis; and (7) Dissertation Research Prospectus.
(S/U grading only.)

299D. Special Study for Doctoral Dissertation (1-12)
(S/U grading only.)

Professional Course

396. Teaching Assistant Training Practicum
(1-4)
Prerequisite: graduate standing. May be repeated for credit. (S/U grading only.)—I,
II, III. (I, II, III.)
Art Studio

(College of Letters and Science)
Robert Sommer, Ph.D., Chairperson of the Department
Department Office, 111A Art Building (530-752-0105)
World Wide Web: http://art.ucdavis.edu

Faculty
Conrad Atkinson, R.A.S. (honors), Professor
William Henderson, M.F.A., Professor
Lynn Herschman, M.A., Professor
David Hollowell, M.F.A., Professor
Mairaqui Montoya, M.A., Cooperating Professor
Lucy A. Pul, M.F.A., Professor
Annabeth Rosen, M.F.A., Assistant Professor
Cornelia Schulz, M.F.A., Professor, Academic Senate Distinguished Teaching Award

Emeriti Faculty
Richard D. Cramer, M.F.A., Professor Emeritus
Roy DeForest, M.A., Professor Emeritus
Harvey Himelfarb, M.A., Professor Emeritus, Academic Senate Distinguished Teaching Award
Roland C. Petersen, M.A., Professor Emeritus

The Program
The studio art major provides the knowledge and experience necessary for a broad understanding of the visual arts.

The Program. For the beginning student, the major offers an introduction to drawing, composition, sculpture, and art history. Students may then advance to more specialization (drawing, painting, sculpture, printmaking, ceramics, photography, film making, electronic arts, as well as theory and criticism) in upper division work.

Portfolios. Portfolios are not required for admission to the major. However, admitted students, once at Davis, should keep a continuing portfolio of their art work, which is subject to faculty review at such times as when the student is declaring the major, requesting independent study courses, and scheduling an exhibition in the student gallery.

Career Alternatives. The studio art graduate is prepared for graduate work or continuing development as a professional artist or art teacher. Students who have career aspirations in the commercial aspects of the visual arts can acquire a broad general education and a creative foundation in the art studio major, establishing a basis for further specialization in commercial art.

A.B. Major Requirements:

Preparatory Subject Matter: Three courses from Art Studio 2, 3, 4, 5, 16; see prerequisites required for upper division courses
Two courses from Art History 1A, 1B, 1C, 1D, Art Studio 30

Depth Subject Matter: Eight courses, under three different instructors, chosen from Group A, Practice of Art

Total Units for the Major: 64

Recommended
(a) Students interested in drawing and painting should take Art Studio 2, 3, 4 (course 5 is recommended);
(b) Students interested in sculpture should take Art Studio 2, 3, 5 (course 4 is recommended); and
(c) Students preparing for graduate work in any of the environmental design professions should take Art Studio 2, 5, 16.

Major Advisers. See the Class Schedule and Registration Guide.

Minor Program Requirements:

Art Studio...20
Prerequisite courses must be taken prior to enrollment in upper division courses. Independent study courses are not applicable.

Upper division art studio courses chosen in consultation with a faculty adviser (one lower division substitute course permissible)20

Teaching Credential Subject Representative. Department Chairperson. See also the Teacher Education Program.

Graduate Study. The Department of Art offers programs of study and research leading to the M.F.A. degree in the practice of art. Detailed information regarding graduate study may be obtained from the Graduate Admissions Office or the Art Office.

Courses in Art Studio (ART)

Lower Division Courses
2. Drawing I (4) Studio—6 hours. Form and composition in black and white.—I, II, III, (I, II, III) Henderson
3. Drawing II (4) Studio—6 hours. Prerequisite: course 2. Form and composition in color.—II, (II) Henderson
4. Life Drawing (4) Studio—6 hours. Prerequisite: course 2. Form in composition using the human figure as subject.—I, II, III, (I, II, III) Hollowell
5. Sculpture (4) Studio—6 hours. Form in space using plaster and other media.—I, II, III, (I, II, III)
7. Beginning Painting (4) Studio—6 hours; independent study—3 hours. Introduction of a variety of techniques and concepts as related to the practice of painting, to establish a solid base which can be expanded on in upper division painting.—I, (I) Hollowell
10. Introduction to Art Appreciation (3) Lecture—3 hours. The understanding and appreciation of painting, sculpture, architecture and industrial art. Illustrated lectures. Intended for non-majors. GE credit: ArtHum.
16. Descriptive Drawing (4) Studio—6 hours. Objective drawing and rendering; representations of space.—II, (II)
30. Introduction to Contemporary Visual Culture (4) Lecture—3 hours; discussion/laboratory—1 hour. Evaluating visual literacy across the media of fine art, photography, advertising, television and film; media culture; focus on critical decoding of contemporary visual culture. GE credit: ArtHum, Div, Wrt.
98. Directed Group Study (1-5) Prerequisite: consent of instructor. Restricted to lower division students. (P/NP grading only)
99. Special Study for Undergraduates (1-5) Prerequisite: consent of instructor. (P/NP grading only)

Upper Division Courses
Note: Upper division courses are listed under three groups: (A) Practice of Art; (B) Theory and Criticism; (C) Special Study Courses.

Preenrollment in upper division courses is restricted to art majors. Art minors may obtain permission to preenroll by filling out a "Waiver of Restriction" form in the Art office.

101. Painting: Materials and Carriers (4) Studio—6 hours. Prerequisite: courses 2, 3, 4, 5, or consent of instructor. Experimentation in media and their supports.—I, II, III, (I, II, III) Atkinson
102. Painting (4) Studio—6 hours. Prerequisite: course 101 or consent of instructor. Advanced painting in various media including oil and polymers. May be repeated once for credit with consent of instructor.—I, II, III, (I, II, III) Schulz, Henderson, Atkinson
103. Advanced Drawing (4) Studio—6 hours. Prerequisite: course 2, 3, 4, 6, or consent of instructor. Advanced drawing, composition and form in black and white and color. May be repeated once for credit with consent of instructor.—II, (III) Schulz
104. Figure Drawing and Painting (4)
Studio—6 hours. Prerequisite: courses 4 and 101, or consent of instructor. Advanced figure drawing and painting using the human figure as subject. May be repeated once for credit with consent of instructor.—II, III, III, (II, III) Hollowell

110. Photography I (4)
Studio—6 hours. Prerequisite: courses 2, 3, 4, or consent of instructor. Photography as an art form. Experiments with camera and light sensitive materials.—I, II, III, (I, II, III)

111. Photography II (4)
Studio—6 hours. Prerequisite: course 110 or consent of instructor. Art of camera and light sensitive materials: tonal control, multiple exposure, synthetic negatives, etc. May be repeated once for credit with consent of instructor.—II, (II)

113. Interdisciplinarity (4)
Studio—6 hours. Prerequisite: one course in Art History or Art Studio. Focus on the uses of two or more art forms to make a unique art work; also, ideas of collaboration and reconfigured and integrated forms as new methods of expression that do not solely depend on unique authorship.—III, (II, III) Hershman

114. Identity and Technology (4)
Studio—6 hours. Prerequisite: one course in Art History or Art Studio. The notion of “self”, “portraiture” and “identity” as it is defined in an electronic world in which media alters perceptions of belief as individuals and society. Hands-on projects plus theoretical analysis of media.—III, (II) Hershman

116. Video Practice and Theory (4)
Studio—6 hours. Prerequisite: 12 units of lower division art studio classes. Production techniques of video, including shooting, editing, lighting, sound and effects. A conceptual framework for video-art techniques.—II, (II) Hershman

117. Experimental Documentary (4)
Studio—6 hours. Prerequisite: upper division standing. Study of the documentary form with particular attention to hybrid forms of film, video and computer genres. May be repeated once for credit with consent of instructor when topic differs.—III, (III) Hershman

125. Printmaking: Relief (4)
Studio—6 hours. Prerequisite: courses 2, 3, 4, 5, or consent of instructor. Woodcut, linocut, metal-plate relief and experimental uses of other materials.—II, (II)

126. Printmaking: Intaglio (4)
Studio—6 hours. Prerequisite: courses 2, 3, 4, 5, or consent of instructor. Metal plate etching, aquatint, hard and soft-ground, burin engraving and related methods. May be repeated once for credit with consent of instructor.—I, III, (I, III) Atkinson, Berry

127. Printmaking: Lithography (4)
Studio—6 hours. Prerequisite: courses 2, 3, 4, 5, or consent of instructor. Stone and metal-plate lithography and other planographic methods. May be repeated once for credit with consent of instructor.—II

128. Printmaking: Serigraphy (4)
Studio—6 hours. Prerequisite: courses 2, 3, 4, 5, or consent of instructor. Silk screen and related stencil methods. May be repeated once for credit with consent of instructor.

129. Intermedia Printmaking (4)
Studio—8 hours; independent study—1 hour. Prerequisite: courses 125, 126, 127, or 128. Development of intermedia printmaking; advanced methods in each of relief/serigraphy/intaglio/surface, as well as adding serigraphy and digitalized imagery. Student will produce prints in several methods including multiple plate prints. Offered in alternate years.—I, Atkinson

132A. The Tradition of Modernism (4)
Lecture—3 hours; discussion/laboratory—1 hour. Prerequisite: one of course 30, or Art History 183A, 183B, 183C or 184. The emergence of modernism in painting and sculpture, from the early twentieth century to the 1940s. Critical examination of the emergence of modernism, the ideologies it supported, and the exclusions it practiced. Offered in alternate years. GE credit: ArtHwm, Wrt

132B. The Theory of Modernism (4)
Lecture—3 hours; discussion/laboratory—1 hour. Prerequisite: course 132A. Re-examination of materials of Modernist art through a set of critical analytical tools which will help in understanding what cultural and ideological beliefs these art forms sustained. Offered in alternate years. GE credit: ArtHwm, Div, Wrt

141. Sculpture: Material Explorations (4)
Studio—6 hours. Prerequisite: course 5. Primary application and exploration of a single sculptural material. Examination of its properties, qualities and characteristics for three-dimensional expression. May be repeated twice for credit in different subject area with consent of instructor.—I, (II) Puls

142. Sculpture: Ceramics I (4)
Studio—6 hours. Prerequisite: courses 2, 3, 4, 5, or consent of instructor. Introduction to ceramic art. May be repeated once for credit with consent of instructor.—II, (II) Rosen

143. Sculpture: Ceramics II (4)
Studio—6 hours. Prerequisite: course 142 or consent of instructor. Introduction to color, as well as glazing and use of kiln. May be repeated once for credit with consent of instructor.—II, (II) Rosen

144. Sculpture: Figure Modeling (4)
Studio—6 hours. Prerequisite: courses 2, 3, 4, 5, or consent of instructor. Sculpture in various media using the human figure as subject. May be repeated once for credit with consent of instructor.

145. Sculpture: Concepts (4)
Studio—6 hours. Prerequisite: course 5 or consent of instructor. Investigation through the creation of sculpture of the relationship of idea to form and material. May be repeated once for credit in different subject area with consent of instructor.—II, (II) Puls

146. Sculpture: Ceramics III (4)
Studio—6 hours. Prerequisite: course 141, 143, 144, or 145. Advanced form and color. Clay sculpture in relief and round. May be repeated once for credit with consent of instructor.—III, (III) Rosen

147. Theory and Criticism of Photography (4)
Lecture—3 hours; term paper. Prerequisite: course 2 or 5 and one art lecture course. Development of camera vision, ideas, and aesthetics and their relationship to the fine arts from 1839 to the present. GE credit: ArtHwm, Wrt

148. Theory and Criticism: Painting and Sculpture (4)
Lecture—3 hours; term paper. Prerequisite: course 2 or 5, and one art lecture course. Study of forms and symbols in historic and contemporary masterpiece. GE credit: ArtHwm, Wrt, Thebaud

149. Introduction to Critical Theory (4)
Lecture—3 hours, discussion—1 hour. Prerequisite: two of Art History 1B, 1C, or 183F. An overview of 20th century critical theories of culture and their relation to visual art and mass media culture. GE credit: ArtHwm, Div, Wrt

150. Theory and Criticism of Electronic Media (4)
Lecture—3 hours; term paper. Prerequisite: course 116 or 117. The history of electronic media, stressing both critique, application and relationship to art practice. Analysis of the conceptual biases of electronic media as an artistic mode of expression. GE credit: ArtHwm, Wrt, (I, II) Hershman

171. Mexican and Chican@ Mural Workshop (4)
Studio—8 hours; independent study—1 hour. Prerequisite: Chican@/Studies 70 and/or written consent of instructor. The mural: a collective art practice that empowers students and people through design and execution of mural paintings in the tradition of the Mexican Mural Movement; introduces materials and techniques. May be repeated once for credit. (Same course as Chican@/Studies 171)—III, (III) Montoya

179. Special Study for Advanced Undergraduates (1-5)
(P/NP grading only)

191. Internship (2-12)
Internship. Supervised program of internships in artists’ studios and at professional art institutions such as museums, galleries, and art archives including collections of slide and Kodachrome photography. May be repeated for credit for a total of 12 units. (P/NP grading only)

193. Seminar in Art Practice (4)
Discussion/laboratory—8 hours; variable—4 hours. Prerequisite: courses 2 and 3. Upper division standing; taking or having taken courses in upper division painting, drawing, and sculpture. May be repeated for credit. GE credit: ArtHwm, Div, Wrt

196. Directed Group Study (1-5)
(P/NP grading only)

198. Directed Group Study (1-5)
(P/NP grading only)

Graduate Courses

290. Seminar (4)
Seminar—3 hours. Original works produced for group discussion and criticism; associated topics of a contemporary and historical nature. May be repeated for credit.—I, II, III, (II, III, III) Puls, Hershman, Rosen

291. Seminar: Critical Evaluation (1)
Seminar—1 hour. May be repeated for credit. (SU grading only)—II, (II)

292. Seminar: Critical Evaluation (1)
Seminar—1 hour. May be repeated for credit. (SU grading only)—II

299. Individual Study (1-6)
(II)

299D. Comprehensive Project (9)
An original body of work accompanied by a catalog summarizing the student’s aesthetic position. May be repeated for credit. (SU grading only)—II, (II)

Professional Courses

401. Museum Training: Curatorial Principles

402. Museum Training: Exhibition Methods (4)
Seminar—3 hours; exhibition. Approved for graduate degree credit. History of exhibition methods in private and public collections. Comparisons of different types of museums and their exhibition problems. Lighting and techniques of display with emphasis on actual design. Experimentation with unusual presentation forms. Offered in alternate years.—II

Note: Various of the above courses are not offered each year; please check the quarterly Class Schedule and Registration Guide.
Asian American Studies

(College of Letters and Science)
Stanley Sue, Ph.D., Program Director
Program Office, 3102 Hart Hall (530-752-3625)
World Wide Web: http://cougar.ucdavis.edu/asa

Committee in Charge
Roy H. Doi, Ph.D. (Molecular and Cellular Biology)
Rosa Linda Fregoso, Ph.D. (Women and Gender Studies)
Isao Fujimoto, M.A. (Asian American Studies, Human and Community Development)

Darrell Y. Hamamoto, Ph.D. (Asian American Studies)
Wendy A. Ho, Ph.D. (Asian American Studies, Women and Gender Studies)
Kent A. Ono, Ph.D. (American Studies, Asian American Studies)
Karen Shimakawa, Ph.D., J.D. (Asian American Studies, Theatre and Dance)

Steffi San Buenaventura, Ph.D. (Asian American Studies)
Stanley Sue, Ph.D. (Asian American Studies, Psychology)

Faculty
Darrell Y. Hamamoto, Ph.D., Associate Professor
Wendy A. Ho, Ph.D., Associate Professor
Kent A. Ono, Ph.D., Associate Professor
Karen Shimakawa, Ph.D., J.D., Assistant Professor
Steffi San Buenaventura, Ph.D., Acting Associate Professor
Stanley Sue, Ph.D., Professor

Emeriti Faculty
Isao Fujimoto, M.A., Senior Lecturer Emeritus
Isao Fujimoto, M.A.

The Major Program
The Asian American Studies Program offers an interdisciplinary major that examines the experiences of various Asian American groups in the United States. Pertinent to these experiences are the historical, cultural, legal, political, social-psychological, class, and gender contexts for Asian Americans.

The Program: Majors take a prescribed set of lower division and upper division courses in Asian American Studies. Other courses in the major provide the opportunity to develop a knowledge of Asian Americans from either a humanities or social science perspective. For the humanities emphasis, students take courses in an Asian language. They then can opt for a track on literature/culture or history/culture in upper division courses. For the social science emphasis, courses in the social science methodology are required at the lower division level. While Asian language courses are not required for the social science emphasis, students are strongly encouraged to take such courses because of the pertinence of such courses to the major, and because the College has a foreign language requirement. At the upper division level, majors with a social science emphasis can opt for an anthropological or sociological/psychological track.

Career Alternatives: Asian American Studies prepares students for a variety of careers. Given the multicultural nature of society and the increasing relations with different cultural groups, many occupations seek individuals with background and expertise in ethnic relations and cultural issues. Graduates often enter the fields of teaching, research, government service, law, social services, etc., as well as graduate schools for advanced degrees in various disciplines.

A.B. Major Requirements:

<table>
<thead>
<tr>
<th>Humanities Emphasis:</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparatory Subject Matter: Asian American Studies 1, 2</td>
<td>10</td>
</tr>
<tr>
<td>Preparatory Subject Matter: Cantonese 1, 2, 3, Chinese 1, 2, 3, Japanese 1, 2, 3, or equivalent Asian language</td>
<td>15</td>
</tr>
<tr>
<td>At least two lower division courses from the following departments or programs: Asian American Studies, African and African Studies, Chicana/o Studies, Native American Studies, Women and Gender Studies (all lower division courses of at least 4 units are acceptable except those numbered 92, 97T, 98, and 99)</td>
<td>15</td>
</tr>
<tr>
<td>Depth Subject Matter: Asian American Studies 1, 2</td>
<td>8</td>
</tr>
<tr>
<td>Depth Subject Matter: Native American Studies, Women and Gender Studies (all lower division courses of at least 4 units are acceptable except those numbered 92, 97T, 98, and 99)</td>
<td>8</td>
</tr>
<tr>
<td>Depth Subject Matter: Asian American Studies 100, 101, 111, 112, 120, 130, 136, 150, 155, 192</td>
<td>8</td>
</tr>
<tr>
<td>Depth Subject Matter: An additional four courses from Asian American Studies 100, 101, 111, 112, 120, 130, 136, 150, 155, 192 (No more than 4 units of 192 may be counted toward this total)</td>
<td>16</td>
</tr>
</tbody>
</table>

Social Science Emphasis:

Preparatory Subject Matter: Asian American Studies 1, 2 | 8 |
Select four courses from the following: Anthropology 2, 4, 20; Human Development 30; Psychology 41; Communication 1, 3; Sociology 46A, 46B; Statistics 13 (at least two of the courses must be methodological/statistical in nature and selected from Anthropology 2, Psychology 41; Sociology 46A, 46B, or Statistics 13) | 16 |
At least two lower division courses from the following departments or programs: African American and African Studies, Chicana/o Studies, Native American Studies, Women and Gender Studies (all lower division courses of at least 4 units are acceptable except those numbered 92, 97T, 98, and 99) | 8 |

Total Units for the Major: 81

Minor Program Requirements:

Minor Adviser: Consult Program Office.

Courses in Asian American Studies (ASA)

History/Culture Track
Dramatic Art 154, 155; History 191F, 194C, 196B, 173, 178

Total Units for the Major: 78

Minor Adviser: Consult Program Office.

American History and Institutions. This university requirement can be satisfied by one of the following courses in Asian American Studies: 1, 2. (See also Under University Requirements.)

Related Courses: For courses in Asian languages, see Cantonese (below) and Chinese and Japanese (under East Asian Languages and Cultures). For other Asian courses, see East Asian Languages and Culture and East Asian Studies.

Quarter Offered: I–Fall; II–Winter; III–Spring; IV–Summer.

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
Courses in Cantonese (CAN)

Lower Division Courses

1-2-3. Elementary Cantonese (5-5-5)
Lecture—3 hours, recitation—3 hours. Introduction to Cantonese grammar and development of conversational skills in a cultural context. Approximately 250 Chinese characters will be introduced during Cantonese 2 and 3. (Not open to native speakers.)—Chung

4-5-6. Intermediate Cantonese (3-3-3)
Lecture—2 hours; recitation—2 hours. Prerequisite: course 1-2-3 or the equivalent. Development of conversational skills in a cultural context. Community-oriented language materials in health care, social service, and bilingual education will be introduced.—Chung

Courses in Asian American Studies

Upper Division Courses

100. Asian American Communities (4)
Lecture/discussion—4 hours. Prerequisite: course 110. Study of historical and contemporary experiences of various Asian American groups, with the community as the unit of analysis.—I. Hamamoto

101. Language and Educational Issues of Asian Immigrants (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 1 or 2; upper division standing. Analysis of language diversity issues in American society, especially in public schools. Overview of public policies on language and programs, particularly for Asian language minority students. Offered in alternate years.

110. Theoretical Perspectives in Asian American Studies (4)
Lecture/discussion—4 hours. Prerequisite: course 1 or 2; upper division standing. Theories of race and ethnic relations as tools for understanding the Asian American experience with the society as the unit of analysis. GE credit: SocSci, Div.—I. Hamamoto

111. Ethnic Self and Identity (4)
Lecture/discussion—4 hours. Prerequisite: course 101. Study of cultural and social psychological influences on Asian Americans, with the individual as the unit of analysis. GE credit: SocSci, Div.—III. Sue

112. Asian/Pacific American Women (4)
Lecture/discussion—4 hours. Prerequisite: course 1 or 2; upper division standing. Examination of the cultural, social, and political situation of Asian and Pacific American women using theoretical perspectives from social science disciplines: socialization, family dynamics, domestic and political power, economic production, and division of labor. GE credit: SocSci, Div.—I. Ho

120. Biracial and Multiracial Asian Pacific American Experiences (4)
Lecture/discussion—4 hours. Prerequisite: consent of instructor. Introduction to the experiences of biracial and multiracial Asian Pacific people in the U.S., concentrating on theories of race, racial identity formation, culture, media, and anti-racist struggles. Provides critical approaches to the analysis of popular media and academic representations. Offered in alternate years. GE credit: Div.—III. Ono

130. Asian American Literature (4)
Lecture/discussion—4 hours. Prerequisite: course 1 or 2, or consent of instructor. Analysis of Asian American writings as expressions of various cultural themes, psychological issues, interpersonal relationships and sociopolitical influences on the Asian American experience.—Ho

136. Asian American Drama (4)
Lecture/discussion—4 hours. Prerequisite: courses 1, 2, or 130; or consent of instructor. Comparative introduction to the dramatic literature of Asian American playwrights such as Frank Chin, Philip Kan Gotanda, Velina Hasu Houston, David Henry Hwang, Wakako Yamauchi, and others from diverse socio-historical, artistic, and theoretical contexts.—I. Shimakawa

150. Filipino American Experience (4)
Lecture/discussion—4 hours. Prerequisite: course 1 or 2; Examination of the relationship between the Filipino-American community, the Philippine home community and the larger American society through a critical evaluation of the historical and contemporary conditions, problems and prospects of Filipinos in the U.S.—III. San Buenaventura

155. Legal History and the Asian American (4)
Lecture/discussion—4 hours. Prerequisite: course 1 or 2; consent of instructor. Legal history of Asian Americans beginning with the experience of Chinese Americans in the mid-19th century. Includes an examination of laws affecting Asian American communities in immigration, economic activities, and World War II internment.—III. Shimakawa

192. Internship (1-5)
Internship—3-15 hours. Prerequisite: enrollment dependent on availability of intern position with priority to Asian American Studies minors. Supervised internship in community and institutional settings related to Asian American concerns. (P/NP grading only.)

197T . Tutoring in Asian American Studies (1-5)
Tutoring—1-5 hours. Prerequisite: upper division standing and completion of appropriate course with distinction; consent of instructor. Tutoring in lower division Asian American Studies courses in small group discussion. Weekly meetings with instructor. May be repeated for credit once for a given course and also for a different course. (P/NP grading only.)

198. Directed Group Study (1-5)
Prerequisite: consent of instructor. Primarily intended for upper division students. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)
Agricultural Systems and Environment

B.S. Major Requirements:

<table>
<thead>
<tr>
<th>Area of Specialization (choose one):</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sustainable Production Systems</td>
<td>53-57</td>
</tr>
<tr>
<td>Includes food and agricultural production, agroecology, crop improvement, propagation, and pest management. Students may choose between a broad education in sustainable agriculture or focus on one or two areas of agriculture (e.g., agricultural management, agronomy, crop improvement, environmental horticulture, pest management, pomology, vegetable crops, viticulture). Crop biology and ecology depth requirement must be met with Plant Biology 142.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Plant Biology 152 or Biological Science 101</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry 8A, 8B</td>
<td>6</td>
</tr>
<tr>
<td>Agricultural Systems and Environment 106</td>
<td>3</td>
</tr>
<tr>
<td>Soil Science 100</td>
<td>4</td>
</tr>
<tr>
<td>Restricted elective courses chosen with approval of the academic adviser from the following groups:</td>
<td>(minimum 24 units)</td>
</tr>
<tr>
<td>Plant improvement and propagation (Agricultural Systems and Environment 118; Plant Biology 143, 152, 153, 154, 160, 171)</td>
<td></td>
</tr>
<tr>
<td>Plant physiology or plant nutrition (Environmental Horticulture 102; Plant Biology 111, 146, 157, 158, 172, 175; Viticulture and Enology 110)</td>
<td></td>
</tr>
<tr>
<td>Atmospheric, soil or water science (Atmospheric Science 133; Hydrologic Science 100, 110, 124; Soil Science 107, 109, 111)</td>
<td></td>
</tr>
<tr>
<td>Pest ecology and management (Applied Biological Systems Technology 134; Plant Biology 176, 177; Entomology 110, 135; Nematology 100; Plant Pathology 120; Viticulture and Enology 118)</td>
<td></td>
</tr>
<tr>
<td>Agricultural economics (Agricultural and Resource Economics 101A, 120, 130, 147)</td>
<td></td>
</tr>
<tr>
<td>Agricultural management (Agricultural and Resource Economics 100B, 140, 145, 150, 157; Applied Biological Systems Technology 147; Agricultural Systems and Environment 121; Management 100)</td>
<td></td>
</tr>
<tr>
<td>Animal production (Animal Science 41, 41L, 104)</td>
<td></td>
</tr>
<tr>
<td>Policy, social science and ethics (Agricultural and Resource Economics 147, 176; Agricultural Systems and Environment 121; Economics 123; Environmental Science and Policy 161, 175; Plant Pathology 140; Political Science 107)</td>
<td></td>
</tr>
<tr>
<td>Environmental Science and Policy 172</td>
<td></td>
</tr>
<tr>
<td>Unrestricted Electives</td>
<td>13-24</td>
</tr>
</tbody>
</table>

Range and Natural Resources

This specialization brings together courses that provide a unified understanding of the interaction between livestock production and environmental quality in range-lands.

Agriculural Systems and Environment 112, 121, 130, 131, 134, 135, Plant Biology 102	23
Soil Science 100	4
Hydrologic Science 141	4
Wildlife, Fish and Conservation Biology 110, 111, 120, 151	6
Animal Science 41, Nutrition 115	6
Unrestricted Electives	14-23

Agricultural and Environmental Education

This specialization includes preparation in educational foundations, planning and teaching strategies, and development of an agricultural and environmental science emphasis. Along with a broad preparation in the natural sciences, social sciences and agriculture, this specialization prepares the student for entry into a graduate agriculture teaching credential program, for employment in the private sector in areas of training and human resource development, for working in nonformal educational programs involving environmental education, outdoor education, 4-H and other youth organizations, and pursuing further graduate studies in the social or natural sciences.

Soil Science 10 or 100	4
Agriculture Education 100	3
Agriculture Education 300	2
Education 110, 115, 120, or 153	8
Unrestricted Electives	17, 18
Agricultural and environmental science emphasis	12-15

Quarter Offered: I–Fall; II–Winter; III–Spring; IV–Summer; 2001–2002 offering in parentheses.
Courses to be selected in consultation with academic adviser. Students typically will select one area of agriculture to develop a strength by taking three to four courses.

Unrestricted Electives: 27-38

Agricultural Education 190 and other courses in plant, animal and environmental sciences recommended. Students pursuing a teaching credential in agriculture need at least 10 units of Animal Science, 8 units of Plant and Soil Science, 6 units of Agricultural Economics, 4 units of Applied Biological Systems Technology, and 4 units of Environmental Horticulture. See adviser for list of required courses.

Agricultural and Environmental Communications and Information Management 32-42

This specialization provides broad preparation in the agricultural and environmental sciences along with in-depth understanding of communications and information management. The option prepares individuals for careers in agricultural and environmental science journalism, newscasting, information services and industrial communications.

Soil Science 10 or 100 .. 3-4

English 104A or 104C ... 4

Agricultural Education 192 .. 6-9

Agricultural Education 171 and one course from Agricultural Education 172, or Agricultural Systems and Environment 121 or 122 5-6

Communication 130 or 140 .. 4

Agricultural and environmental communications and information emphasis .. 10-15

Courses to be selected in consultation with academic adviser. Students will typically select one area of agriculture to develop a strength by taking three to four courses.

Unrestricted Electives: 28-45

Recommended courses in plant, animal and environmental sciences.

Total Units for the Major ... 180

Major Adviser: R. Plant

Advising Center: located in 152 Hunt Hall (530-752-1715).

Minor Program Requirements:

Agricultural Systems and Environment ... 18

Preparatory material: Statistics 13, 32; Agricultural Systems and Environment 120 or Sociology 42B, or the equivalent.

Select one of the following two tracks:

Sustainable Agriculture track

Agricultural Systems and Environment 105, 150, Plant Biology 142, Soil Science 100 .. 15

Minimum of three units from the following: Agricultural Systems and Environment 107, 110A, 110B, 110C, 112, 170A, 170B .. 3

Range and Natural Resources Track

Agricultural Systems and Environment 121, 130 7

Minimum of 11 units from the following: Agricultural Systems and Environment 131, 134, 135, 150, Environmental Science and Policy 123, 172 .. 11

Minor Advisers: R.E. Plant (Agronomy and Range Science), K.J. Rice (Agronomy and Range Science)

Advising Center: located in 152 Hunt Hall.

Honors. The Senior Honors Thesis (Agricultural and Environmental Sciences 194H) includes two or three successive quarters of guided, scientific and/or scholarly research on an agricultural and/or environmental subject of special interest to the student.

With adviser approval, the Senior Thesis can satisfy up to 12 units of restricted electives in the major.

Courses in Agricultural Systems and Environment (ASE)

Lower Division Courses

1. Agriculture, Nature and Society (3)

Lecture—2 hours; discussion/laboratory—1 hour. Multiple perspectives and connections between agricultural sciences, social sciences, and agriculture. Emphasis on agriculture’s central position between nature and society and its key role in our search for a productive, lasting and hospitable environment. Several full-period field trips provide hands-on learning.―I. (I.) Gradziel

2. Botany and Physiology of Cultivated Plants (4)

Lecture—3 hours; discussion/lab—3 hours. Prerequisite: high school course in biology and chemistry recommended. A holistic introduction to the underlying botanical and physiological principles of cultivated plants and their response to the environment. Includes concepts behind plant selection, cultivation, and utilizat. Laboratory includes discussion and interactive demonstrations.―II. (II.) Salviet, Marrush

7. Molecules, Risk and Public Policy (3)

Lecture—3 hours. Natural functions of molecules, their effects on humans, and their regulation through public policy. Students will learn about molecules that are discussed daily in newspapers. GE credits: SciEng, Wrt

21. Applications of Microcomputers in Agriculture (3)

Lecture—1.5 hours; laboratory/discussion—2 hours; autotutorial—2 hours. Prerequisite: high school algebra. Concepts of computing and applications using personal computers, spreadsheets, databases, management, word processing and communications. Not open for students who have completed Computer Science Engineering 15, 30, 35 or Engineering 5—I, II, III (I, II, III)

49. Organic Crop Production Practices (3)

Lecture—1 hour; discussion—1 hour; field work—3 hours. Principles and practices of organic production of annual crops. Topics include organic crop, soil, and pest management, cover cropping, composting, seedling, transplanting, irrigation, harvesting and marketing. Includes field trips. (P/NP grading only)—III. (III.) Van Horn

92. Internship (1-12)

Internship—3-36 hours. Prerequisite: consent of instructor. Work experience on or off campus in all subject areas pertaining to agricultural and environmental sciences. Internship supervised by faculty member in the animal, plant, and environmental sciences. GE credit: SciEng, Wrt

98. Directed Group Study (1-5)

Prerequisite: consent of instructor. Primarily for lower division students. (P/NP grading only)

99. Special Study for Undergraduates (1-5)

Primarily intended for lower division students. (P/NP grading only)

Upper Division Courses

101. Agriculture and the Environment (3)

Lecture—2.5 hours. Saturday field trip. Prerequisite: course 2 or consent of instructor. Principles underlying the development and functioning of agricultural systems; how agriculture interacts with the environment, and methods for resolving conflicts between agriculture and other segments of society.―II. (II.) Phillips, Demment

105. Concepts in Pest Management (3)

Lecture—2 hours; laboratory/discussion—3 hours. Prerequisite: Biological Sciences 1C or equivalent. Introduction to the ecological principles of integrated pest management, biology of different classes of pests and the types of losses they cause, population assessment, evaluation of advantages and disadvantages of different techniques used for pest management, IFM programs.―II. (III.) Norris

107. Small Fruit Production (2)

Lecture—2 hours; two field trips arranged at mutual convenience. Prerequisite: Biological Sciences 1C or the equivalent. Strawberries (Fragaria), blackberries-raspberries (Rubus), blueberries-cranberries (Vaccinium) as important nutritional resources, their origin, production and utilization with emphasis on recent progress in integrated management. Offered in alternate years.―I. (I.) Shaw

110A. Principles of Agronomic Crop Production in Temperate and Tropical Systems (3)

Lecture—3 hours. Prerequisite: course in general botany or course 2 recommended. Fundamentals of field crop production in temperate and tropical climates. Resource utilization and economic, political and social problems are considered in relation to technological problems and their influences on agricultural development.―II. (II.) Travis, Raines

110B. Management of Agronomic Crops in Temperate and Tropical Systems (3)

Lecture—3 hours. Prerequisite: course in general botany or course 2; course 110A recommended. Application of agronomic principles in production of temperate and tropical crops. Specific crops discussed with reference to management and efficient use of physical and biological resources.―III. (III.) Travis, Raines

110C. Crop Management Systems for Vegetable Production (4)

Lecture—2 hours; laboratory—3 hours; discussion—1 hour. Prerequisite: course 2; course 110A recommended. Horticultural principles applied to production and management systems for vegetable crops. Laboratory and discussion will illustrate efficient field management and resource use practices.―I. (I.) Bloom, Marrush

110L. Principles of Agronomy Laboratory (1)

Laboratory—3 hours. Prerequisite: course 110B (may be taken concurrently). Field-oriented introduction to principles of agronomic crop production.―II. (III.) Travis, Raines

112. Forage Crop Ecology (3)

Lecture—3 hours. Prerequisite: Biological Sciences 1C or consent of instructor. Forages as a world resource in food production. Ecological principles governing the adaptation, establishment, growth and management of perennial and annual forages, including pastures, rangelands and hay; aspects of forage quality which affect feeding value to livestock. Offered in alternate years.―II. (II.) Teuber

118. Seed Production and Quality (4)

Lecture—3 hours; laboratory—3 hours. Prerequisite: course 2 or Biological Sciences 1C, Plant Biology 152 recommended. Principles of crop seed production, storage and utilization. Biological and environmental factors influencing seed quality. Measurement and preservation of seed vigor and viability. Technological aspects of crop establishment from seeds. Laboratories include field trips to seed industry facilities. Offered in alternate years.―III. (III.) Bradford

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
120. Applied Statistics in Agricultural Science (4)
Lecture—3 hours; discussion/laboratory—2 hours. Prerequisite: upper division standing. Applications of statistical methods to the analysis and interpretation of research data in plant, animal, behavioral, food and nutritional sciences. Lectures cover basic concepts and statistical methods. Specialized laboratory sections cover procedures, data processing and interpretations. GE credit: SciEng.—I. (I.) Geng

121. Systems Analysis in Agriculture and Resource Management (4)
Lecture—2 hours; discussion/laboratory—2 hours. Prerequisite: course 21 or equivalent computer experience, and Mathematics 16A. The process of systems analysis and dynamic simulation of biological and environmental systems, use of systems analysis for development of optimal management strategies for agricultural and environmental systems. GE credit: SciEng.—I. (I.) Geng

122. Management of Information for the Agricultural and Environmental Sciences (4)
Lecture—3 hours; laboratory—3 hours. Prerequisite: course 21 or consent of instructor. Introduction to systems and technology for acquiring, storing, manipulating and communicating various types of information including numerical data, text, graphics and multimedia images. Laboratory exercises introduce a wide variety of information management systems used in offices and laboratories. Offered in alternate years.—III. Zilberb

130. Rangelands: Ecology, Conservation and Restoration (3)
Lecture—3 hours. Prerequisite: Biological Sciences 1C; introductory ecological course and junior standing recommended. Introduction to the ecological principles and processes important for an understanding of the dynamics of range ecosystems. Emphasis on ecological and evolutionary concepts underlying management strategies for conserving biological diversity and environmental quality in rangelands. Offered in alternate years. GE credit: SciEng, Wrt.—II. (II.) Rice

131. Identification and Ecology of Grasses (2)
Lecture—7.5 hours; laboratory—20 hours; discussion—5 hours (total for course). Prerequisite: Biological Sciences 1C or course 2; Plant Biology 102 and junior standing recommended. Taxonomy and identification of western grasses. Development of skills in using plant identification keys. Ecology and evolution of grasses in grazing ecosystems. Given the week following spring quarter. Offered in alternate years.—III. Rice

Lecture—2 hours; laboratory—3 hours. Prerequisite: course 21 or the equivalent computer skills. Introduction to GIS and its application to the analysis and management of agricultural, rangeland, and natural resources. Analysis of landscape properties. Field use of global positioning systems. GIS data organization, acquisition, and analysis. Use of Arcview GIS. Not open for credit to students who have completed Applied Biological Systems Technology 180 or 181.—II. (II.) Plant

134. Comparative Ecology of Major Rangeland Systems (3)
Lecture—3 hours; one Saturday field trip required. Prerequisite: course 130 or the equivalent; Environmental Studies 100 recommended. Study of vegetation structure, composition, and succession in North American rangeland communities. Description and comparison of interactions between vegetation and grazing animals on grassland, desert, forested, and tundra rangelands. Discussion of current rangeland management strategies. Offered in alternate years.—II. Plant

135. Ecology and Community Structure of Grassland and Savannah Herbivores (3)
Lecture—3 hours. Prerequisite: Biological Sciences 1A or 1B and course 2, or Biological Sciences 1C; general ecology course (Environmental Studies 100) recommended. Feeding ecology of grassland herbivores and its importance in evolution of herbivore communities and social systems. Optimal foraging, interspecific interactions, and primary productivity are considered as factors structuring natural and managed grassland and savannah systems. Offered in alternate years. (Former course Range Science 135.1—II. Denman

137. Field Course in Rangeland Monitoring and Management (2)
Lecture—1 hour; fieldwork—3 hours (week-long intensive field course given the week following spring quarter). Prerequisite: course 2 or the equivalent; Plant Biology 102 and junior standing recommended. Introduction to rangeland vegetation monitoring methods and management strategies. Field sampling of vegetation composition and structure, soil status, and wildlife and fish habitat. Grazing management strategies to achieve desired future condition of rangelands. Offered in alternate years.—III. (III.) Weinbaum

150. Cropping Systems of the World (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 2 or Biological Sciences 1C, and Soil Science 10. General concepts of the functioning of cropping systems as related to resource availability, energy flow, economic yield, sustainability and integration; means of increasing resource use efficiency; low and high input cropping systems in temperate and tropical zones.—II. (II.) van Kessel

160. Agroforestry: Global and Local Perspectives (2)
Lecture/discussion—2 hours. Prerequisite: course 2 or Biological Sciences 1C; Plant Biology 142 or a general ecology course (Environmental Science and Policy 100). Explores traditional and evolving use of trees in agricultural ecosystems, their multiple roles in environmental stabilization and the production of food, fiber and fiber, and socioeconomic barriers to adoption. Offered in alternate years. (Same course as International Agricultural Development 160.)—I. McGranahan

170A. Fruit and Nut Cropping Systems (2)
Lecture—1 hour; laboratory—3 hours. Prerequisite: course 2, Biological Sciences 1C, or consent of instructor. Overview of production and handling systems of major pomological crops, analysis of current cultural and harvesting problems and concerns associated with commercial fruit growing. Offered in alternate years.—III. Gradziel

170B. Fruit and Nut Cropping Systems (2)
Lecture—1 hour; laboratory—3 hours. Prerequisite: course 2, Biological Sciences 1C, or consent of instructor. Overview of production and handling systems of major pomological crops, including analysis of current cultural and harvesting problems and concerns associated with commercial fruit growing. Offered in alternate years.—III. Gradziel

190. Seminar on Alternatives in Agriculture (2)
Seminar—2 hours. Prerequisite: upper division standing. Seminar on topics related to alternative theories, practices and systems of agriculture and the relationship of agriculture to the environment and society. Scientific, technological, social, political and economic perspectives. (P/NP grading only.)—II. (II.) Van Horn

192. Internship (1-12)
Internship—3-36 hours. Prerequisite: consent of instructor. Supervised internship on and off campus in agricultural and environmental sciences. (P/NP grading only.)

194H. Senior Honors Thesis (2-6)
Independent study. Prerequisite: Agricultural Systems and Environment major; senior standing; overall GPA of 3.25 or higher and consent of master adviser. Two or three successive quarters of guided research on an agriculturally related subject of special interest to the student. (P/NP grading only; deferred grading only, pending completion of thesis.)

195. Field Study of Vegetable Industry (1)
Field Study. Prerequisite: consent of instructor. Field study illustrating different aspects of California agriculture, including research institutions, farm operations, field stations, Extension Service, marketing, processors, equipment, etc. Given between winter and spring quarters. Considered a spring course for preenrollment. Offered in alternate years. (P/NP grading only.)

198. Directed Group Study (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)
Atmospheric Science

(College of Agricultural and Environmental Sciences)

Faculty. See under Department of Land, Air and Water Resources.

The Major Program

Atmospheric science is the study of the layer of air that surrounds the planet. It includes all weather phenomena, such as frontal systems and clouds, as well as severe weather events such as hurricanes and tornadoes. Concerns regarding the effects of human activity on the quality of the air we breathe, and on possible global warming are also central to this field of study.

The Program. Modern meteorology is a quantitative science that is becoming increasingly computer oriented. In addition to the study of daily weather events, the program deals with fundamental physical processes that involve the general circulation of the atmosphere; mass and energy transfers at the planetary surface and within the atmosphere; solar and terrestrial radiation; atmospheric interaction with the biosphere; climate variations; air pollution meteorology; and developments in modern meteorological instrumentation. As well as providing a broad background in meteorology, the major includes an informal minor area to be chosen from mathematics, computer science, environmental studies, resource management or a physical or biological science.

Internships and Career Alternatives. Atmospheric science students have participated in internships with the California Air Resources Board, various county Air Pollution Control Districts, and the National Weather Service. Numerous career opportunities exist in the federal and state governments, research and development in the private sector, and education. Examples of career areas are weather forecasting, agricultural meteorology, air-pollution forecasting and control, weather modification, hurricane and severe weather forecasting and research, weather satellite meteorology, environmental consulting, and weather research. About half of our graduates continue their education by seeking the M.S. or Ph.D. degree in atmospheric science.

B.S. Major Requirements:

<table>
<thead>
<tr>
<th>UNITS</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-12</td>
<td>English Composition Requirement</td>
</tr>
<tr>
<td>0-8</td>
<td>English 19, 104E, or Dramatic Art 10</td>
</tr>
<tr>
<td>3-4</td>
<td>Preparatory Subject Matter</td>
</tr>
<tr>
<td>66</td>
<td>Biological Sciences 1C and course selected with adviser’s approval</td>
</tr>
<tr>
<td>10</td>
<td>Chemistry 2A, 2B</td>
</tr>
<tr>
<td>3</td>
<td>Engineering and Engineering 6 or Computer Science Engineering 30 or course selected with adviser’s approval</td>
</tr>
<tr>
<td>7</td>
<td>Mathematics 21A, 21B, 21C, 21D, 21E, 22A, 22B</td>
</tr>
<tr>
<td>4</td>
<td>Atmospheric Science 60</td>
</tr>
<tr>
<td>12</td>
<td>Physics 9A, 9B, 9C</td>
</tr>
<tr>
<td>3</td>
<td>Statistics 32</td>
</tr>
<tr>
<td>28</td>
<td>Breadth/General Education</td>
</tr>
<tr>
<td>38</td>
<td>Atmospheric Science 110, 111, 120, 121A, 121B, 124, 128</td>
</tr>
<tr>
<td>28</td>
<td>Upper division Atmospheric Science courses selected with adviser’s approval</td>
</tr>
<tr>
<td>15</td>
<td>Restricted Electives</td>
</tr>
<tr>
<td>21-30</td>
<td>Unrestricted Electives</td>
</tr>
<tr>
<td>180</td>
<td>Total Units for the Degree</td>
</tr>
</tbody>
</table>

Minor Adviser. B.C. Weare (Land, Air and Water Resources).

Advising Center for the major, as well as for graduate studies, is located in 148 Hoagland Hall in the Land, Air and Water Resources Teaching Center (530-752-1669).

Minor Program Requirements:

Minor Program. The minor in Atmospheric Science provides a broad treatment of weather and climate, with the option to focus on such topics as climate change, meteorological instrumentation, and satellite remote sensing. Students undertaking the minor should have completed minimum preparatory course work in calculus and physics (Mathematics 16A-16B, Physics 5A or 7A). Some upper division courses in Atmospheric Science have as prerequisites the Mathematics 21 and 22 series and the Physics 9 series.

<table>
<thead>
<tr>
<th>UNITS</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-24</td>
<td>Atmospheric Science courses (excluding 192 or 199)</td>
</tr>
<tr>
<td>8</td>
<td>Environmental and Resource Sciences 131 12-16</td>
</tr>
</tbody>
</table>

Minor Adviser. B.C. Weare.

Graduate Study. You can specialize in particular areas of atmospheric science through graduate study and research leading to the M.S. and Ph.D. degrees. For details, see under the Graduate Group in Atmospheric Science. See also the Graduate Studies section in this catalog.

Related Courses. See Environmental Science and Policy 150A; Physics 104A, 104B; Environmental and Resource Sciences 131, 133.

Courses in Atmospheric Science (ATM)

Questions pertaining to the following courses should be directed to the instructor or to the Land, Air and Water Resources Teaching Center, 148 Hoagland Hall (530-752-1669).

Lower Division Courses

5. Global Climate (3)

Lecture—2 hours; discussion—1 hour. Introduction to the climate system and global climate patterns. Emphasis on principles, concepts, and fundamental processes underlying seasonal and regional climate differences. Examination of natural and human factors contributing to climate change. GE credit: SciEng, Wrt.—II. (II) Paw U

10. Severe and Unusual Weather (3)

Lecture—2 hours; discussion—1 hour. Prerequisite: high school physics. Introduction to physical principles of severe and unusual weather: flood, blizzards, thunderstorms, lightning, tornadoes, and hurricanes. Emphasis on scientific perspective and human context. Not open to students who have received credit for course 100. (Former course 100.) GE credit: SciEng, Wrt.—III. (III) Soong

30. Issues in Atmospheric Science (2)

Lecture—1 hour; discussion—1 hour. Prerequisite: high school physics. Introduction to selected topics in atmospheric science, such as: meteorological aspects of air pollution, use of computer models in weather forecasting, theories of global climate change, impact of satellites on meteorology, and modern meteorological instrumentation. (P/NP grading only.)—II. (II) Anastasio

60. Atmospheric Physics and Dynamics (4)

Lecture—3 hours; discussion—1 hour. Prerequisite: Mathematics 16A and Physics 5A or 7A. Composition and thermal structure of the atmosphere. Radiation and the heat budget of the earth and its atmosphere. Cloud formation and precipitation processes. The atmosphere in motion, thunderstorms and other severe weather phenomena.—II. (II) Shaw

92. Atmospheric Science Internship (1-12)

Internship—3-36 hours. Prerequisite: lower division standing and consent of instructor. Internship off and on campus in atmospheric science. Internship supervised by a member of the faculty. (P/NP grading only.)

98. Directed Group Study (1-5)

Prerequisite: consent of instructor. (P/NP grading only.)

99. Special Study for Undergraduates (1-5) I, II. III. The Staff (Chairperson in charge)

(P/NP grading only.)
Upper Division Courses

110. Weather Observation and Analysis (4)
Lecture—3 hours; laboratory—3 hours. Prerequisite: course 60. Acquisition, distribu-
tion and analysis of meteorological data. Vertical sounding analysis, stability indi
ces, probabilistic outlook, severe weather, weather map analysis. Use of National
Weather Service analyses and forecast products. Laboratory makes use of com-
puter-generated analyses.—II. (II.) Soong

111. Weather Analysis and Prediction (5)
Lecture—3 hours; laboratory—6 hours. Prerequisite: courses 110, 112B; knowledge of
a programming language. Tools for analyzing observed properties and predicting
mid-latitude weather systems. The analysis-forecast system, including various
weather forecast models. Laboratory exercises use weather analysis software, illus-
trate concepts in lecture, and include weather map discussions.—I. (I.) Grotjahn

112. Weather Forecasting Practice (2)
Discussion—2 hours; laboratory—1 hour. Prerequisite: course 110. Formal practice
in preparing local weather forecasts. Analysis of current weather conditions and
recent model performance. Verification and discussion of prior forecast. Interpreta-
tion of current forecast model guidance. Posting of forecast. May be repeated for
credit up to three times. (P/NP grading only)—I. (I.) Grotjahn

115. Hydroclimatology (3)
Lecture—3 hours. Prerequisite: course 60. Examination of climate as the forcing
function for the hydrologic system. Emphasis on seasonal variations in the relation-
ship between precipitation and evapotranspiration for meso-scale areas. Watershed
modeling of floods and drought for evaluating the effects of climate fluctuations.—
III. (III.) Shelton

116. Climate Change (3)
Lecture—3 hours. Prerequisite: course 60. Climate trends and patterns spanning
the recent past and the future. Emphasis on natural processes that produce clima-
tic variations and human influence on these processes. Evidence of climate change
and the role of global climate models in understanding climate variabil-
ity.—II. (II.) Weare

120. Atmospheric Thermodynamics and Cloud Physics (4)
Lecture—3 hours, extensive problem solving. Prerequisite: Mathematics 21C,
Physics 9B, course 60 (may be taken concurrently). Atmospheric composition and
structure, thermodynamics of atmospheric gases, thermal properties of dry and
moist atmospheres; condensation, cloud nucleation, cloud growth by condensation
and collision, cloud models.—I. (I.) Weare

121A. Atmospheric Dynamics (4)
Lecture—3 hours; extensive problem solving. Prerequisite: course 120, Mathemat-
ics 21D, Physics 9B. Fundamentals of atmospheric flow; nonlinear reference
frames; development of the equations of motion for rotating stratiﬁed atmospheres;
special coordinates: geostrophic, hydrostatic; boundary layer.—II. (II.) Nathan

121B. Atmospheric Dynamics (4)
Lecture—3 hours, extensive problem solving. Prerequisite: course 121A. Dynamics
of fluid motion in geophysical systems; quasi-geostrophic theory: fundamentals of
wave propagation in ﬂuids; Rossby waves; gravity waves; fundamentals of hydro-
dynamic instability; two-level model; baroclinic instability and cyclogenesis.—III.
(III.) Nathan

124. Meteorological Instruments and Observations (3)
Lecture—2 hours; laboratory—3 hours. Prerequisite: course 60; Physics 5C. Modern
meteorological instruments and their use in meteorological observations and mea-
surements. Both standard and micrometeorological instruments are included.—I. (I.)
Paw U

128. Radiation and Satellite Meteorology (4)
Lecture/discussion—3 hours; discussion/laboratory—2 hours. Prerequisite: course
60, Physics 9B, Mathematics 22B, 21D. Concepts of atmospheric radiation and the
use of satellites in remote sensing. Emphasis on the modiﬁcation of solar and
infrared radiation by the atmosphere. Estimation from satellite data of atmospheric
variables such as temperature and cloudiness.—II. (II.) Weare

133. Biometeorology (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: two courses in a biological dis-
cipline. Mathematics 16B and consent of instructor. Atmospheric and biological
interactions. Physical and biological basis for water vapor, carbon dioxide and energy
exchanges with the atmosphere associated with plants and animals, including humans. Microclimate of plant canopies and microclimatic mod-
if Scl use 1 frost protection and windbreaks.—II. (II.) Paw U, Snyder

149. Air Pollution (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: Mathematics 22B, 21D, Chem-
istry 2B, course 121A or Engineering 103. Physical and technical aspects of air
pollution. Emphasis on geophysical processes and air pollution meteorology as well
as chemical and physical properties of pollutants. (Same course as Civil and Environ-
mental Engineering 149)—I. (I.) Carroll

150. Introduction to Computer Methods in Physical Sciences (4)
Lecture—3 hours; laboratory/discussion—2 hours. Prerequisite: Engineering 5 or
the equivalent, Mathematics 22B and a course in ﬂuid dynamics (course 121A, Physics
104A, or Engineering 103A) or consent of instructor. Computational tech-
niques used in physical sciences. Integral and differential equation numerical solu-
tion: mainly finite differencing and spectral (Fourier) transform methods. Includes
introduction to C. Specific applications drawn from meteorology. Students write
one C and several FORTRAN programs. Offered in alternate years.—II. Grotjahn

158. Boundary-Layer Meteorology (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 121A. Growth, develop-
ment and structure of the boundary layer directly or indirectly by the underlying
surface extending to a maximum of about two kilometers under convective
conditions. Turbulent diffusion in the boundary layer. The microclimate at near
the ground surface.—III. (III.) Shaw

160. Introduction to Atmospheric Chemistry (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: Chemistry 2B. Quantitative
examination of current local, regional and global problems in atmospheric chemistry
(including photochemical smog, acid deposition, climate change, and stratospheric
ozone depletion) using fundamental concepts from chemistry. Basic chemical mod-
eling of atmospheric reactions.—II. (II.) Anastasio

192. Atmospheric Science Internship (1-12)
Internship—3-36 hours. Prerequisite: completion of 84 units and consent of instruc-
tor. Internship off and on in atmospheric science. Internship supervised by a member of the faculty. (P/NP grading only.)

198. Directed Group Study (1-5)
Prerequisite: three upper division units in Atmospheric Science. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5)
Prerequisite: three upper division units in Atmospheric Science and at least an over-
all B average. (P/NP grading only.)

Graduate Courses

215. Advanced Hydroclimatology (3)
Lecture—3 hours. Prerequisite: course 115. Theoretical and applied aspects of
energy and mass ﬂuxes linking the earth’s surface, atmosphere, and hydrosys-
tem. Emphasis on regional scale analysis and modeling, spatial data representation,
and climate change inferences on precipitation and its hydroclimatic expression.
Offered in alternate years.—III. (III.) Shelton

221. Advanced Atmospheric Dynamics (3)
Lecture—3 hours. Prerequisite: course 121B. Conditions for instability in stratiﬁed
atmospheres; baroclinic instability; forcing by topographic Rossby Waves; wave-mean
flow interaction theory; tropical dynamics; stratospheric dynamics.—II. (II.) Nathan

223. Advanced Boundary-Layer Meteorology (3)
Lecture—3 hours. Prerequisite: course 230. Characteristics of the atmospheric
boundary layer under convective and nocturnal conditions. Heavy budget on sur-
fase and boundary layer forcing. Similarity theory and scaling of the boundary layer.
Measurement and simulation techniques. Offered in alternate years.—III. (III.) Shaw

230. Atmospheric Turbulence (3)
Lecture—3 hours. Prerequisite: course 121B or 158. Dynamics and energetics of
the atmosphere, including vorticity dynamics. Statistical description of turbulence;
Eulerian and Lagrangian scales, spectral analysis, conditional sampling techniques.
Turbulent diffusion: the closure problem, gradient-diﬀusion and second-
order methods. Offered in alternate years.—II. (II.) Carroll

231. Advanced Air Pollution Meteorology (3)
Lecture—3 hours. Prerequisites: Course 149A, 160 and one course in ﬂuid dynam-
ics. Processes determining transport and diﬀusion of primary and secondary pol-
ant models of chemical transformation, of the atmospheric boundary layer and of
mesoscale wind ﬁelds, as well as pollutant dispersion problems. Offered in alternate
years.—I. (I.) Carroll

233. Advanced Biometeorology (3)
Lecture/discussion—3 hours. Prerequisite: course 133 or consent of instructor. Cur-
rent topics in biometeorology. Physical and biological basis for water vapor, other gases,
and energy exchange with the atmosphere. Topics include modeling and
measuring turbulent transport from plant canopies, surface temperatures and energy
budgets, bio-acoustic and aerobiology. Offered in alternate years.—II. (II.) Paw U

240. General Circulation of the Atmosphere (4)
Lecture/discussion—4 hours. Prerequisite: course 121B. Large-scale, observed
atmospheric properties. Radiation, momentum, and energy balances derived and
compared with observations. Lectures and homework synthesize observations and
theories, then apply them to understand the large-scale circulations. Offered in
alternate years.—II. (II.) Grotjahn

241. Climate Dynamics (3)
Lecture/discussion—3 hours. Prerequisite: course 121B. Dynamics of large-scale
climatic variations over time periods from weeks to centuries. Description of the
appropriate methods of analysis and modeling of large-scale atmospheric vari-
bations; mass, energy and momentum. Introduction to the range of climate simula-
tions.—I. (I.) Weare

250. Meso-Scale Meteorology (3)
Lecture—3 hours. Prerequisite: graduate standing, course 150, a course in partial
differential equations; or consent of instructor. The study of weather phenomena
with horizontal spatial dimensions between 2.5 and 2500 kilometers. Methods of obser-
vational study and numerical modeling of the structure and temporal behavior of
these weather systems. Offered in alternate years.—I. (I.) Soong

255. Nonhydrostatic Numerical Modeling (4)
Lecture—2 hours; laboratory—6 hours. Prerequisite: course 121B and Engineering
5; course 150 recommended. Principles of numerical modeling of the dynamic, ther-
omodynamic and physical processes of the atmosphere. Hands-on experiments on
model development using the shallow water equations and the primitive equations.
Operational forecast models. Offered in alternate years.—I. (I.) Soong
260. Atmospheric Chemistry (3)
Lecture—3 hours. Prerequisite: course 160. Chemistry and photochemistry in tro-
opospheric condensed phases (fog, cloud, and rain drops and aerosol particles).
Gas-drop and gas-particle partitioning of compounds and effects of reactions in
condensed phases on the fates and transformations of tropospheric chemical
species. Offered in alternate years.—(III.) Anastasio

270A-G. Topics in Atmospheric Science (1-3)
Discussion—1-3 hours. Applications and concepts in (A) Meteorological Statistics;
(B) Computer Modeling of the Atmosphere, (C) Design of Experiments and Field
Studies in Meteorology; (D) Solar and Infrared Radiation in the Atmosphere; (E)
Aerosol and Cloud Physics; (F) Atmospheric Chemistry; (G) General Meteorology.—
I, II, III. (I, II, III.)

290. Seminar (1)
Seminar—1 hour. Prerequisite: graduate standing in Atmospheric Science or related
field. Current developments in selected areas of atmospheric research. Topics will
vary according to student and faculty interests. (S/U grading only.)—I, II, III. (I, II, III.)

291A-F. Research Conference in Atmospheric Science (1-3)
Lecture/discussion—1-3 hours. Prerequisite: consent of instructor. Review and dis-
cussion of current literature and research in: (A) Air Quality Meteorology; (B) Bio-
meteorology; (C) Boundary Layer Meteorology; (D) Climate Dynamics; (E) General
Meteorology; (F) Atmospheric Chemistry. May be repeated up to a total of 6 units
per segment. (S/U grading only.)—I, II, III. (I, II, III.)

296. Teaching Assistant Training Practicum (1-4)
Prerequisite: graduate standing. May be repeated for credit. (S/U grading only.)—I,
II, III. (I, II, III.)
Atmospheric Science (A Graduate Group)

Terry R. Nathan, Ph.D., Chairperson of the Group (530-752-1609)
Group Office, 151 Hoagland Hall (530-752-1406)
World Wide Web: http://lawr.ucdavis.edu/gradprg.htm

Faculty
Cort Anastasio, Ph.D., Assistant Professor
Lowell Ashbaugh, Ph.D., Associate Researcher
John Carroll, Ph.D., Professor
Daniel P.Y. Chang, Ph.D., Professor
Judith Charles, Ph.D., Assistant Professor
Robert Flocchini, Ph.D., Professor
Richard Grotjahn, Ph.D., Professor
Britt Holmen, Ph.D., Assistant Adjunct Professor
Theodore Hsiao, Ph.D., Professor
Levent Kavvas, Ph.D., Professor
Michael J. Kleeman, Ph.D., Assistant Professor
Terry Nathan, Ph.D., Professor
Debbie Niemeier, Ph.D., Associate Professor
Kyaw Tha Paw U, Ph.D., Professor
Roger Shaw, Ph.D., Professor
Marlyn Shelton, Ph.D., Professor
Richard Snyder, Ph.D., Specialist in Cooperative Extension
Susan Ustin, Ph.D., Associate Professor
Bryan Weare, Ph.D., Professor
Bruce White, Ph.D., Professor

Emeriti Faculty
Thomas A. Cahill, Ph.D., Professor Emeritus

Graduate Study. The Graduate Group in Atmospheric Science offers both the M.S. and Ph.D. degree programs. A student may place emphasis on graduate work in one or more of the following fields: air quality meteorology, atmospheric chemistry, biometeorology, micrometeorology, numerical weather prediction, remote sensing, climate dynamics, large scale dynamics, and mesoscale meteorology. The diverse and extensive backgrounds of the faculty allow opportunities for interdisciplinary training and research.

Preparation. The Group encourages applications from all interested students with backgrounds in the physical or natural sciences. Basic qualifications for students entering the Atmospheric Science graduate program include mathematics to the level of vector calculus and differential equations, and one year of college-level physics. Flexibility may be allowed for students with high academic potential, but it is expected that deficiencies in preparatory material and in key undergraduate atmospheric science courses be completed within the first year of graduate study.

Graduate Adviser: K.T. Paw U (Land, Air and Water Resources, 752-1510).
Graduate Admissions Officer: C. Anastasio (Land, Air and Water Resources, 754-6095).

Quarter Offered: I = Fall; II = Winter; III = Spring; IV = Summer; 2001-2002 offering in parentheses.

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
Avian Sciences (A Graduate Group)

Faculty

K.C. Klasing, Ph.D., Chairperson of the Group
Group Office, 1202B Meyer Hall (530-752-2382)

Faculty

Thomas P. Adamson, Ph.D., Lecturer, Academic Federation Excellence in Teaching Award (Neurobiology, Physiology, and Behavior)
Dan Anderson, Ph.D., Professor (Wildlife, Fish, and Conservation Biology)
Everett Bandman, Ph.D., Professor (Food Science and Technology)
Arthur A. Bickford, V.M.D., Ph.D., Professor of Clinical Diagnostic Pathology (California Veterinary Diagnostic Laboratory)
Francine A. Bradley, Ph.D., Lecturer (Animal Science)
C. Christopher Calvert, Ph.D., Professor (Animal Science)
Mary E. Delany, Ph.D., Assistant Professor (Animal Science)
John M. Eadie, Ph.D., Associate Professor (Wildlife, Fish, and Conservation Biology, Animal Science)
C. Christopher Calvert, Ph.D., Professor (Animal Science)
Ralph A. Ernst, Ph.D., Lecturer (Animal Science)
D. Michael Fry, Assistant Research Physiologist (Animal Science)
Robert J. Hansen, Ph.D., Professor (Molecular Biosciences)
Annie J. King, Ph.D., Professor (Animal Science)
Kirk C. Klasing, Ph.D., Professor (Animal Science)
Joy A. Mench, Ph.D., Professor (Animal Science)
James R. Miliam, Ph.D., Professor (Animal Science)
Kathryn Radke, Ph.D., Associate Professor (Animal Science)
Lisa A. Tell, D.V.M., Associate Professor (Medicine and Epidemiology)
Patricia Wakenell, D.V.M., Ph.D., Professor (Population, Health and Reproduction)
Barry W. Wilson, Ph.D., Professor (Animal Science, Environmental Toxicology)

Emeriti Faculty

Ursula K. Abbott, Ph.D., Professor Emerita
Hans Abplanalp, Ph.D., Professor Emeritus
F. Howard Kratzer, Ph.D., Professor Emeritus
Peter Marler, Ph.D., Professor Emeritus
Frank X. Ogasawara, Ph.D., Professor Emeritus
Pran Vohra, Ph.D., Professor Emeritus

Graduate Study. The Graduate Group in Avian Sciences offers the M.S. degree program to students who wish to pursue specialized advanced work on avian species. Specializations students may choose at present include nutrition, physiology, reproduction, pathology, immunology, toxicology, food chemistry, management, ecology, genetics, comparative incubation, environmental physiology, and cellular and developmental studies using wild and domestic birds as experimental animals. Both master's degree plans, thesis or comprehensive examination, are available.

Preparation. Applicants should have undergraduate preparation in a field appropriate to the course of study selected, including courses in most of the following subjects: general biology, general and organic chemistry, biochemistry, avian biology, genetics, nutrition, physiology, and statistics.

Graduate Adviser. C.C. Calvert (Animal Sciences).

Quarter Offered: I=Fall; II=Winter; III=Spring; IV=Summer; 2001-2002 offering in parentheses.

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
Avian Sciences

(College of Agricultural and Environmental Sciences)

Faculty. See under Department of Animal Science.

The Major Program

Avian sciences is the study of birds and the ways in which they relate to and are useful to humans. The major combines the study of avian wildlife and their environments, production and marketing of domestic birds and eggs, caged exotic bird management, and basic and applied laboratory research on birds with a broad introduction to biological science.

The Program. The flexibility of the program and the close personal interaction between students, faculty, and specialists in the field give students a large role in selecting and designing their own course work. Students may specialize in a bachelor's program that qualifies them for a particular career or they may choose a program to meet other broader intellectual and cultural interests.

Internships and Career Alternatives. Independent study, undergraduate research, and internships are emphasized in the avian sciences program. Birds for laboratory or special study are housed within the main building as well as at the research farm and the experimental avairy. An avian sciences major has a variety of career options: health-oriented research, teaching biology, gamebird production, domestic and foreign agricultural extension and advisory services, governmental agencies, or the domestic or exotic bird industries. A recent survey has shown that the majority of avian sciences graduates enter graduate schools or are employed by the domestic bird industry. The remainder of the graduates were evenly distributed in the categories of professional schools, avian biology agencies, educational fields, and individual jobs indirectly associated with birds.

B.S. Major Requirements:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>English Composition Requirement</td>
<td>See College requirement</td>
<td>0-8</td>
</tr>
<tr>
<td>Preparatory Subject Matter</td>
<td>Avian Sciences 11 or 13</td>
<td>3-4</td>
</tr>
<tr>
<td>Biological Sciences 1A, 1B, 1C</td>
<td>1D</td>
<td>15</td>
</tr>
<tr>
<td>Chemistry 2A, 2B, 2C, 8A, 8B</td>
<td>9A</td>
<td>21</td>
</tr>
<tr>
<td>Agricultural Systems and Environment 21</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Mathematics 16A, 16B, 16C</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>Physics 1A and 1B</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>Statistics 13</td>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td>Breadth Subject Matter</td>
<td>Satisfaction of General Education requirement</td>
<td>24</td>
</tr>
<tr>
<td>Depth Subject Matter</td>
<td>Animal Biology 102 and 103</td>
<td>8</td>
</tr>
<tr>
<td>Biological Sciences 101</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>Avian Sciences 150</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>Neurobiology, Physiology, and Behavior 101</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Laboratory units in above listed subjects</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>(Recommended courses include Animal Genetics 101; Avian Sciences 103, 160; Molecular and Cellular Biology 120L, 160L, or Neurobiology, Physiology, and Behavior 101L.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Restricted Electives</td>
<td>Specialized courses related to avian species to supplement or expand depth subject matter courses.</td>
<td>31</td>
</tr>
<tr>
<td>Unrestricted Electives</td>
<td>34-42</td>
<td>180</td>
</tr>
</tbody>
</table>

Total Units for the Degree: 180

Minor Adviser. F. Bradley.

Advising Center for the major is located in 1202 Meyer Hall (530-754-7915).

Minor Program Requirements:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avian Sciences</td>
<td>12</td>
<td>18</td>
</tr>
<tr>
<td>Choose one from Avian Sciences 11, 13, 14L, 15L, 16L</td>
<td>2-3</td>
<td></td>
</tr>
<tr>
<td>Choose one remaining from Avian Sciences 100, 103, 115, 121, 123, 149, 150, Animal Science 143, Evolution and Ecology 137, Neurobiology, Physiology and Behavior 117, Wildlife, Fish and Conservation Biology 111</td>
<td>15-16</td>
<td></td>
</tr>
</tbody>
</table>

Graduate Study. Further training is available through graduate or professional programs in animal physiology, genetics, nutrition, or veterinary medicine. The M.S. degree is offered in Avian Sciences. For details see under the Graduate Group in Avian Sciences. See also the Graduate Studies section in this catalog.

Related Courses. See Agricultural and Resource Economics 130; Animal Science 136B, 137, 143; Food Science and Technology 120, 120L, 121; Molecular and Cellular Biology 120, 150L, Nutrition 123.

Advising for the major, minor, or the following courses is located in the Animal Science Advising Center, 1202 Meyer Hall (530-754-7915).

Courses in Avian Sciences (AVS)

Lower Division Courses

11. Introduction to Poultry Science (3)
Lecture—3 hours; one field trip required. The mosaic of events that have fed poultry science to other scientific disciplines and poultry to humans. Poultry science techniques and production methods from the time of domestication to the present. GE credit: SciEng, Wrt.—II. (I.) Bradley

13. Birds, Humans and the Environment (3)
Lecture—2 hours; discussion—1 hour; half-day field trip. Interrelationships of the worlds of birds and humans. Lectures, discussions, field trips and projects focus on ecology, avian evolution, physiology, reproduction, flight, behavior, folklore, identification, ecotourism and conservation. Current environmental issues are emphasized. GE credit: SciEng, Wrt.—I. (I.) Morzenti

14L. Management of Captive Birds (2)
Field trip—3 hours; discussion—1 hour; one Saturday field trip. Prerequisite: consent of instructor. One weekly discussion and field trip to study practical captive management (housing, feeding, equipment, marketing, diseases). Visit facilities rearing birds such as commercial parrots, hobbyist exotics, ostrich, raptors, waterfowl, game birds, poultry and pigeons.—Morzenti

15L. Captive Raptor Management (2)
Laboratory—3 hours; independent study—3 hours; one field trip. Hands-on experience handling birds of prey. Students are taught all of the skills required to handle and care for raptors, including their husbandry, biology, habitat requirements, cage design, veterinary care, rehabilitation methods, research potential and long-term care requirements.—I, III, (I, III) Morzenti

16LA-16LB-16LC. Raptor Migration and Population Fluctuations (2-2-2)
Fieldwork—3 hours; discussion—1 hour; one Saturday field trip. Prerequisite: consent of instructor. Identify raptors; study effects of weather, crops, agricultural practices on fluctuations in raptor species and numbers. Familiarize with literature; design a project; survey study sites; collect, computerize, analyze data; compare with previous years. Species, observations, emphasis are different each quarter.—III, (III) Morzenti

92. Internship in the Avian Sciences (1-12)
Internship—3-36 hours. Prerequisite: sophomore standing preferred; consent of instructor. Internship on and off campus in poultry, gamebirds or exotic bird production, management and research; or in a business, industry, or agency concerned with these entities. Compliance with Internship Approval Request form essential. (P/NP grading only.)

98. Directed Group Study (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)

99. Special Study for Undergraduates (1-5)
Prerequisite: consent of instructor. Problems in avian biology, nutrition, breeding, and physiology of poultry/wild birds and their products. (P/NP grading only.)

Upper Division Courses

100. Avian Biology (3)
Lecture—2 hours; laboratory—2 hours. Prerequisite: Biological Sciences 1A, 1B. Survey of avian natural history and study of the diversity, functional morphology, behavior, ecology and evolution of birds.—II. (I.) Weathers

103. Avian Development and Genetics (3)
Lecture—2 hours; laboratory—2 hours. Prerequisite: Biological Sciences 1A and 1B. Unique features of avian development and genetics. Development topics: gametogenesis, fertilization, pre- and post-ovipositional development, morphogenesis, sex differentiation, specialized organ systems, incubations, hatching. Genetic topics: genome organization, inheritance, sex determination, avian models. Laboratory exercises: embryology, genetics, model systems.—I. (I) Delany

115. Raptor Biology (3)
Lecture—3 hours; two Saturday field trips. Prerequisite: Biological Sciences 1A or 1B and equivalent. Study of birds of prey: classification, distribution, habits and habitats, migration, unique anatomical and physiological adaptations, natural and captive breeding, health and diseases, environmental concerns, conservation, legal considerations, rehabilitation, and falconry.—II. (III) Morzenti

Quarter Offered: I=Fall; II=Winter; III=Spring; IV=Summer. 2001-2002 offering in parentheses.

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
121. Avian Reproduction (2)
Lecture—2 hours. Prerequisite: Biological Sciences 1A, 1B. Breeding cycles and reproductive strategies, egg and sperm formation, incubation, sexual development, imprinting, hormonal control of reproductive behavior and song. Species coverage includes wild and companion birds. Course has a physiological orientation. Offered in alternate years.—II.

123. Management of Birds (3)
Lecture—3 hours. Prerequisite: Biological Sciences 1A, 1B. Captive propagation of birds, including reproduction, genetic management, health, feeding, artificial incubation, artificial insemination, and related legal aspects, including trade and smuggling. Emphasis on exotic species and the role of captive propagation in conservation. Offered in alternate years.—II. Millam

149. Egg Production Management (2)
Lecture—2 hours; one Saturday field trip required. Prerequisite: course 11 or the equivalent, or consent of instructor. Management of commercial table egg flocks as related to environment, nutrition, disease control, economics, housing, equipment, egg processing and raising replacement pullets. Offered in alternate years.—III. Ernst

150. Nutrition of Birds (1)
Lecture—1 hour. Prerequisite: Animal Biology 103 (may be taken concurrently). Principles of nutrition specific to avian species, including feedstuffs, feed additives, nutrient metabolism, energy systems, and nutritional support of egg production and growth. Use of computers for feed formulation to support production. Offered in alternate years.—III. Klasing

160. Designing and Performing Experiments in Avian Sciences (2)
Laboratory—6 hours. Prerequisite: course 100 or Wildlife, Fish and Conservation Biology 111 or Evolution and Ecology 137 or consent of instructor. Experiments in current problems in avian biology. Introduction to experimental design. Students choose a project, design a protocol, perform an experiment and report their findings. May be repeated for credit with consent of instructor.—I, II, III. (I, II, III.)

170. Advanced Avian Biology (4)
Lecture/discussion—3 hours; project—1 hour. Prerequisite: course 100 or Evolution and Ecology 137 or Wildlife, Fish and Conservation Biology 111. Ecology, behavior, functional morphology and life-history evolution of birds. Emphasis on the importance of body size as a principle determinant of most aspects of avian performance from lifespan to reproduction and species abundance. Analytical synthesis and critical thought emphasized. Offered in alternate years.—II. Weathers

190. Seminar in Avian Sciences (1)
Seminar—1 hour. Prerequisite: upper division standing in Avian Sciences and consent of instructor. May be repeated three times for credit. (P/NP grading only.)—I, II, III. (I, II, III.)

192. Internship in Avian Sciences (1-12)
Internship—3-36 hours. Prerequisite: completion of a minimum of 84 units; consent of instructor. Internship on and off campus in poultry, gamebirds or exotic bird production, management and research; or in a business, industry, or agency concerned with these entities. Compliance with Internship Approval Request form essential. (P/NP grading only.)

195. Topics in Current Research (1-3)
Lecture/discussion—variable. Hours will depend on instructor with the number of units being commensurate with time in class. Prerequisite: consent of instructor. Discussion of topics of current interest in avian sciences. May be repeated three times for credit.—I, II, III. (I, II, III.)

197T. Supervised Teaching in Avian Sciences (1-4)
Supervision—1-4 hours. Prerequisite: graduate standing and consent of instructor. Tutoring of students in lower, upper division, and graduate courses in Avian Sciences. Weekly conference with instructor in charge of course; written critiques of teaching methods in lectures and laboratories. (S/U grading only.)

290. Seminar (1)
Seminar—1 hour. Reports and discussions of current advances and selected topics of current interest in avian genetics, physiology, nutrition, and poultry technology.—I, II, III. (I, II, III.)

290C. Research Conference (1)
Discussion—1 hour. Prerequisite: graduate standing and consent of instructor. Major professors lead research discussions with their graduate students. Research papers are reviewed and project proposals presented and evaluated. Format will combine seminar and discussion. (S/U grading only.)—I, II, III. (I, II, III.)

297T. Supervised Teaching in Avian Sciences (1-4)
Tutoring—1-4 hours. Prerequisite: graduate standing and consent of instructor. Tutoring of students in lower, upper division, and graduate courses in Avian Sciences. Weekly conference with instructor in charge of course; written critiques of teaching methods in lectures and laboratories. (S/U grading only.)

298. Group Study (1-5)
Prerequisite: consent of instructor.

299. Research (1-12)
Prerequisite: consent of instructor. (S/U grading only.)

Graduate Courses

Quarter Offered: I=Fall; II=Winter; III=Spring; IV=Summer; 2001-2002 offering in parentheses.

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
Biological and Agricultural Engineering

(Chairperson of the Department)
Department Office, 2080 Bainer Hall (530-752-0102)
World Wide Web: http://www.ener.ucdavis.edu/~bae

Faculty

Pictiaw (Paul) Chen, Ph.D., Professor
Michael J. Delwiche, Ph.D., Professor
Fadi A. Fathallah, Ph.D., Assistant Professor
D. Ken Giles, Ph.D., Professor
Mark E. Grismer, Ph.D., Professor (Land, Air and Water Resources)
Bruce R. Hartsough, Ph.D., Professor
David J. Hills, Ph.D., Professor
Bryan M. Jenkins, Ph.D., Professor
John M. Krochta, Ph.D., Professor (Food Science and Technology)
Miguel A. Manirno, Ph.D., Professor (Land, Air and Water Resources)
Kathryn McCarthy, Ph.D., Associate Professor (Food Science and Technology)
Michael J. McCarthy, Ph.D., Professor (Food Science and Technology)
John A. Miles, Ph.D., Professor
Ning Pan, Ph.D., Associate Professor (Textiles and Clothing)
Richard E. Plant, Ph.D., Professor (Agronomy and Range Science)
James W. Rumsey, M.S., Lecturer
Thomas R. Rumsey, Ph.D., Professor
R. Paul Singh, Ph.D., Professor
David C. Slaughter, Ph.D., Associate Professor
Shrinivas K. Upadhyaya, Ph.D., Professor
Jean S. VanderGheynst, Ph.D., Assistant Professor
Ruihong Zhang, Ph.D., Associate Professor

Emeriti Faculty

Norman B. Akesson, M.S., Professor Emeritus
William J. Chancellor, Ph.D., Professor Emeritus
Robert B. Friley, Ph.D., Professor Emeritus
Roger E. Garrett, Ph.D., Professor Emeritus
John R. Goss, M.S., Professor Emeritus
George F. Hanna, M.Ed., Lecturer Emeritus
S. Milton Henderson, M.S., Sc.D., Professor Emeritus
Robert A. Kepner, B.S., Professor Emeritus
Coby Lorenzen, Jr., M.S., Professor Emeritus
R. Larry Merson, Ph.D., Professor Emeritus
Stanton R. Morrison, Ph.D., Professor Emeritus
Henry E. Studer, M.S., Professor Emeritus
Wesley E. Yates, M.S., Professor Emeritus

Affiliated Faculty

Frank C. Beall, Ph.D., Professor
James M. Myers, Ph.D., Extension Specialist
William E. Steinke, Ph.D., Extension Specialist
James F. Thompson, M.S., Extension Specialist

Major Programs and Graduate Study. For the Bachelor of Science program, see the major in Engineering; for graduate study, see the Graduate Studies chapter in this catalog.

Minor Programs. The Department of Biological and Agricultural Engineering offers three minors through the College of Agricultural and Environmental Sciences: Applied Biological Systems Technology, Geographic Information Systems and Precision Agriculture.

The Applied Biological Systems program is for non-engineering students interested in engineering terminology and procedures. Course work provides knowledge of material properties, design procedures, fabrication principles, and hardware practices.

The minor in Geographic Information Systems is open to all majors, including those in engineering. This minor is for students interested in information processing of spatial data related to remote sensing for geographical and environmental planning and related areas.

The minor in Precision Agriculture is open to all majors, including those in engineering, and acquaints students with recent developments and their applications to agriculture, in geographic information systems, global positioning systems, and variable rate technologies.

Courses. Courses are listed under Applied Biological Systems Technology, and Engineering: Biological and Agricultural (Biological Systems Engineering).

Quarter Offered: I = Fall; II = Winter; III = Spring; IV = Summer; 2001-2002 offering in parentheses.

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
Biomedical Engineering (A Graduate Group)

Maury L. Hull, Ph.D., Chairperson of the Group
(530-752-6220)
Group Office, 5462 Chemistry Annex (530-752-2611)
World Wide Web: http://www.bmc.ucdavis.edu

Faculty
Ralph C. Aldredge, III, Ph.D., Associate Professor (Mechanical and Aeronautical Engineering)
V. Ralph Algazi, Ph.D., Professor (Electrical and Computer Engineering)
Zhaojun Bai, Ph.D., Professor (Computer Science)
Abdul I. Barakat, Ph.D., Assistant Professor (Mechanical and Aeronautical Engineering)
Stephen W. Barthold, D.V.M., Ph.D., Professor (Pathology, Microbiology, and Immunology)
Ronald J. Baskin, Ph.D., Professor (Molecular and Cellular Biology)
Brian K. Bay, Ph.D., Assistant Professor (Orthopaedics)
John M. Boone, Ph.D., Professor (Medical Radiology)
Michael H. Buonocore, Ph.D., M.D., Associate Professor (Medical Radiology)
Angela Y. Cheer, Ph.D., Professor (Mathematics)
Anthony Y. Cheung, Ph.D., Professor (Pathology)
FitzRoy E. Curry, Ph.D., Professor (Human Physiology)
Fadi A. Fathallah, Ph.D., Assistant Professor (Biological and Agricultural Engineering)
Katherine W. Ferraro, Ph.D., Professor (Biomedical Engineering)
Gary E. Ford, Ph.D., Professor (Electrical and Computer Engineering)
Jeffery C. Gibling, Ph.D., Professor (Chemical Engineering and Materials Science)
Daniel Gusfield, Ph.D., Professor (Computer Science)
David A. Hawkins, Ph.D., Associate Professor (Exercise Science)
Ronald A. Hess, Ph.D., Professor (Mechanical and Aeronautical Engineering)
Mont Hubbard, Ph.D., Professor (Mechanical and Aeronautical Engineering)
Maury L. Hull, Ph.D., Professor (Medical Radiology)
Michael F. Insana, Ph.D., Professor (Biomedical Engineering)
Thomas Jue, Ph.D., Professor (Biological Chemistry)
Gerald Joseph Kost, Ph.D., M.D., Professor (Medical Pathology)
H. Dale Kubo, Ph.D., Professor (Radiation Oncology)
Kit S. Lam, M.D., Ph.D., Professor (Internal Medicine)
Marjorie L. Longo, Ph.D., Assistant Professor (Chemical Engineering and Materials Science)
R. Bruce Martin, Ph.D., Professor (Orthopaedics)
Dennis L. Matthews, Ph.D., Adjunct Professor (Applied Science)
Claude F. Meares, Ph.D., Professor (Chemistry)
Amiya K. Mukherjee, Ph.D., Professor (Chemical Engineering and Materials Science)
Robert L. Powell, Ph.D., Professor (Chemical Engineering and Materials Science)
Melvin R. Ramey, Ph.D., Professor (Civil and Environmental Engineering)
Bahram Ravani, Ph.D., Professor (Mechanical and Aeronautical Engineering)
A. Hari Reddi, Ph.D., Professor (Orthopaedics)
Tod R. Reed, Ph.D., Associate Professor (Electrical and Computer Engineering)
Deewy D. Y. Ryu, Ph.D., Professor (Chemical Engineering and Materials Science)
Nesrin Sarigul-Klijn, Ph.D., Professor (Mechanical and Aeronautical Engineering)
J. Anthony Seibert, Ph.D., Associate Professor (Medical Radiology)
James F. Shackelford, Ph.D., Professor (Chemical Engineering and Materials Science)
Scott I. Simon, Ph.D., Associate Professor (Biomedical Engineering)
Rosemary L. Smith, Ph.D., Professor (Electrical and Computer Engineering)
Susan M. Stover, D.V.M., Ph.D., Professor (Anatomy, Physiology, and Cell Biology)
Peter Stroeve, Sc.D., Professor (Chemical Engineering and Materials Science)
Amy Wang, Ph.D., Adjunct Assistant Professor (Applied Science)
David A. Weber, Ph.D., Professor (Radiology)
Keith R. Williams, Ph.D., Associate Professor (Exercise Science)
Graduate Study. The Graduate Group in Biomedical Engineering offers programs of study and research leading to the M.S. and Ph.D. degrees. The programs of study prepare students for professional work in the effective integration of engineering with biology and medical sciences. Research strengths lie in the areas of medical imaging, biosensors and microfabricated electrical and mechanical systems, cellular and molecular mechanics, orthopedic biomechanics, biofluids and transport, and motor control and human movement. This broad interdisciplinary program is best suited for students who are capable and comfortable with considerable independence. Each student, together with an advisor, defines a specific course of study suited to individual goals.
Preparation. The Group regards strong competence in mathematics and engineering as necessary for successful completion of study. Prior course work in these areas is emphasized in the evaluation of applications. Some such training can be acquired after admission to the Group, but it may necessitate one or more additional years of study.

Courses in Biomedical Engineering (BIM)

Upper Division Course

126. Tissue Mechanics (3)
Lecture—2 hours; laboratory/discussion—3 hours. Prerequisite: Exercise Science 103 and/or Engineering 45 and/or consent of instructor. Structural and mechanical properties of biological tissues, including bone, cartilage, ligaments, tendons, nerves, and skeletal muscle. (Same course as Exercise Science 126.)—II. (II) Hawkins

199. Special Study for Advanced Undergraduates (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)

Graduate Courses

210. Introduction to Biomaterials (4)
Lecture—4 hours. Prerequisite: Engineering 45 or consent of instructor. Mechanical and atomic properties of metallic, ceramic, and polymeric implant materials of metallic, ceramic, and polymeric implant materials; corrosion, degradation, and failure of implants; inflammation, wound and fracture healing, blood coagulation; properties of bones, joints, and blood vessels; biocompatibility of orthopaedic and cardiovascular materials. Offered in alternate years.—(II.) Shackelford

211. Biomedical Heat and Mass Transport Processes (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: Mechanical Engineering 165, Biological Systems Engineering 125, Chemical Engineering 153 or the equivalent. Application of principles of heat and mass transport to biomedical systems related to heat exchange between the biomedical system and its environment, mass transfer across cell membranes and the design and analysis of artificial human organs. (Same course as Mechanical and Aeronautical Engineering 212.) Offered in alternate years.—(II.)

214. Blood Cell Biomechanics (4)

215. Biomedical Fluid Mechanics and Transport Phenomena (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: Engineering 103 or Chemical Engineering 150B or Civil and Environmental Engineering 141. Application of fluid mechanics and transport to biomedical systems. Flow in normal physiological function and pathological conditions. Topics include circulatory and respiratory flows, effect of flow on cellular processes, transport in the arterial wall and in tumors, and tissue engineering. (Same course as Mechanical and Aeronautical Engineering 215.)—III. (III.) Barakat

216. Advanced Topics in Cellular Engineering (4)
Lecture—4 hours. Prerequisite: course 214 or consent of instructor. Advanced research strategies and technologies used in the study of immune function and inflammation. Static and dynamic measurements of stress, strain, and molecular scale forces in blood and vascular cells, as well as genetic approaches to the study of disease.—III. (III.) Simon

220. Research Topics in Biomechanics (3)
Lecture—2 hours; seminar—1 hour. Prerequisite: graduate standing and consent of instructor; Exercise Science 115 recommended. Survey of current research into diverse areas of the biomechanics of human movement. Topics will include locomotion, sport biomechanics, electromyography, musculoskeletal and tissue mechanics, advances in measurement technology, clinical biomechanics. (Same course as Exercise Science 220.) Offered in alternate years.—III. Williams

223. Multibody Dynamics (4)
Lecture—4 hours. Prerequisite: Engineering 102. Coupled rigid-body kinematics/dynamics; reference frames; vector differentiation; configuration and motion constraints; holonomicity; generalized speeds; partial velocities; mass, inertia tensor/theorem; angular momentum; generalized forces; comparing Newton-Euler, Lagrange's, Kane's methods; computer-aided equation derivation; orientation; Euler; Rodrigues parameters. (Same course as Mechanical and Aeronautical Engineering 223.)—II. (II) Eke, Hubbard

225. Spatial Kinematics and Robotics (4)
Lecture—3 hours; laboratory—3 hours. Prerequisite: C Language and course 222. Spatial kinematics, screw theory, spatial mechanisms analysis and synthesis, robot kinematics and dynamics, robot workspace, path planning, robot programming, real-time architecture and software implementation. (Same course as Mechanical and Aeronautical Engineering 225.) Offered in alternate years.—II. Cheng

Quarter Offered: I=Fall; II=Winter; III=Spring; IV=Summer; 2001-2002 offering in parentheses.
General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.

227. Research Techniques in Biomechanics (4)
Lecture—4 hours; laboratory—4 hours; term paper/discussion—1 hour. Prerequisite: consent of instructor, Mathematics 22B, Exercise Science 115 recommended. Experimental techniques for biomechanical analysis of human movement are examined. Techniques evaluated include data acquisition and analysis by computer, force platform analysis, strength assessment, planar and three-dimensional videography, data reduction and smoothing, body segment parameter determination, electromyography, and biomechanical modeling. (Same course as Mechanical and Aeronautical Engineering 227/Exercise Science 227.)—II. (II.) Williams, Hawkins

228. Skeletal Muscle Mechanics: Form, Function, Adaptability (4)
Lecture—4 hours. Prerequisite: basic background in biology, physiology, and engineering; Engineering 35 and 45, Mathematics 210D, Neurobiology, Physiology and Behavior 101 recommended. Basic structure and function of skeletal muscle examined at the microscopic and macroscopic level. Muscle adaptation in response to aging, disease, injury, exercise, and disuse. Analytic models of muscle function are discussed. (Same course as Exercise Science 228.)—I. (I.) Hawkins

231. Musculo-Skeletal System Biomechanics (4)
Lecture—4 hours. Prerequisite: Engineering 102. Mechanics of skeletal muscle and mechanical models of muscle, solution of the inverse dynamics problem, theoretical and experimental methods of kinematic and kinetic analysis, computation of intersegmental load and muscle forces, applications to gait analysis and sports biomechanics. (Same course as Mechanical and Aeronautical Engineering 231.)—III. (III.) Hull

232. Skeletal Tissue Mechanics (3)
Lecture—3 hours; laboratory—1 hour. Prerequisite: Engineering 104. Overview of the mechanical properties of the various tissues in the musculoskeletal system, the relationship of these properties to anatomic and histologic structure, and the changes in these properties caused by aging and disuse. The tissues covered include bone, cartilage and synovial fluid, ligament and tendon. (Same course as Mechanical and Aeronautical Engineering 232.)—II, III. (II, III.) Martin

240. Computational Methods in Nonlinear Mechanics (4)
Lecture—4 hours. Prerequisite: Applied Science Engineering 115 or Mathematics 128B or Engineering 180. Deformation of solids and the motion of fluids treated with state-of-the-art computational methods. Numerical treatment of nonlinear dynamics; classification of coupled problems; applications of finite element methods to mechanical, aeronautical, and biological systems. Offered in alternate years. (Same course as Mechanical and Aeronautical Engineering 240.)—II. Sarigul-Klapan

241. Introduction to Magnetic Resonance Imaging (3)
Lecture—3 hours. Prerequisite: Physics 9D, Mathematics 22B. Equipment, methods, medical applications of MRI. Lectures review basic, advanced pulse sequences, image reconstruction, display and technology and how these are applied clinically. Lecture complements a more technical course. (Course 246 can be taken concurrently.)—I. (I.) Buonocore

242. Survey of Medical Imaging Technology (2)
Lecture—2 hours; term paper. Prerequisite: graduate student in scientific field or consent of instructor. The various imaging technologies used in medical diagnosis will be studied. These include x-ray radiography, fluoroscopy, computed tomography, mammography, ultrasound imaging, nuclear magnetic resonance imaging, and nuclear medicine imaging. Offered in alternate years.—II, III. Boone, Seibert

246. Magnetic Resonance Technology (3)
Lecture—3 hours. Prerequisite: Physics 9D, Mathematics 22B. Course covers MRI technology at an advanced level with emphasis on mathematical descriptions and problem solving. Topics include spin dynamics, signal generation, image reconstruction, pulse sequences, biophysical basis of T1, T2, RF, gradient coil design, signal to noise, image artifacts.—I. (I.) Buonocore

247. Current Concepts in Magnetic Resonance Imaging I (3)
Lecture—3 hours. Prerequisite: course 241 or 246 or consent of instructor. Modern pulse sequences, pulse sequence options, and biomedical/industrial applications; velocity encoded phase imaging and angiography, echo planar imaging, spiral imaging, computer simulation of MRI, fast spin echo, other topics.—II. (II.) Buonocore

248. Current Concepts in Magnetic Resonance Imaging II (3)
Lecture—3 hours. Prerequisite: course 247 or consent of instructor. Continuation of lecture coverage of modern pulse sequences, pulse sequence options, and biomedical/industrial applications: Control of tissue contrast by magnetization refocusing and spoiling, RF pulse design, diffusion and perfusion imaging, image artifact reduction methods, others.—III. (III.) Buonocore

249. Microsensor Design and Fabrication (3)
Lecture—3 hours. Prerequisite: graduate standing. Design and fabrication of sensors. Topics include transduction principles, fabrication technologies specific to microsensors, and design of microsensor systems, including packaging. (Same course as Electrical and Computer Engineering 248.) Not open for credit to students who have completed EEC 248. Offered in alternate years.—III. Smith

250. Mathematical Methods of Biomedical Imaging (4)
Lecture—4 hours. Prerequisite: graduate standing or consent of instructor. Advanced mathematical techniques with emphasis on imaging systems. Matrices and vector spaces, Fourier analysis, integral transforms, signal representations, probability and random processes.—I. (I.) Insana

251. Medical Image Analysis (4)
Lecture—4 hours. Prerequisite: Electrical and Computer Engineering 106. Techniques for assessing the performance of medical imaging systems. Principles of digital image formation and processing. Measurements that summarize diagnostic image quality and the performance of human observers viewing those images. Definition of ideal observer and other mathematical observers that may be used to predict performance from system design features.—III. (III.) Insana

289A-E. Selected Topics in Biomedical Engineering (1-5)
Variable. Prerequisite: consent of instructor. Selected topics in (A) Bioinstrumentation and Signal Processing; (B) Biomedical Imaging; (C) Biofluids and Transport; (D) Orthopedic Biomechanics; (E) Analysis of Human Movement. May be repeated for credit.—I, II, III. (I, II, III)

290. Seminar (1)
Seminar—1 hour. Seminar in biomedical engineering. (S/U grading only.)

290C. Graduate Research Conference (1)
Discussion—1 hour. Prerequisite: consent of instructor. Individual and/or group conference on problems, progress, and techniques in biomedical engineering research. May be repeated for credit. (S/U grading only.)—I, II, III. (I, II, III)

296. Research (1-12)
(S/U grading only.)

Professional Course

396. Teaching Assistant Training Practicum (1-4)
Prerequisite: graduate standing. May be repeated for credit. (S/U grading only.)—I, II, III. (I, II, III)
Biological Sciences

(Sections of Evolution and Ecology; Microbiology; Molecular and Cellular Biology; Neurobiology; Physiology; and Behavior; and Plant Biology)

The Program. The Biological Sciences major is broad in concept, spanning the numerous core disciplines of biology. The Bachelor of Science program includes mathematics, general and organic chemistry, physics, and biology. While emphasizing breadth, the B.S. degree program also features an area of emphasis requirement that provides concentrated attention on one facet of biology at the upper division level. Each area of emphasis coincides with one of the sections of the division. The Bachelor of Arts program emphasizes biological diversity, evolution, and ecology, all built on a foundation of general and organic chemistry, physics and biology. Research and internships are encouraged in both programs.

Career Alternatives. Both degree programs prepare students for admission to graduate schools or professional schools, leading to either a variety of professional health careers or further study in basic and applied areas of biology. They provide suitable preparation for careers in teaching, biological and biotechnological research with various governmental agencies or private companies, government regulatory agencies, environmental consulting, biological illustration and writing, pharmaceutical sales, biological/environmental law, and biomedical engineering.

The B.A. degree program is also appropriate for students interested in teaching biology at the secondary school level and for careers that bear on the ecological problems that require the development of public policy.

A.B. Major Requirements:

<table>
<thead>
<tr>
<th>Requirement</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparatory Subject Matter</td>
<td>40-53</td>
</tr>
<tr>
<td>Biological Sciences 1A-1B-1C</td>
<td>15</td>
</tr>
<tr>
<td>Chemistry 2A-2B</td>
<td>10</td>
</tr>
<tr>
<td>Chemistry 8A-8B or 118A-118B-118C</td>
<td>6-12</td>
</tr>
<tr>
<td>Physics 1A-1B or 7A-7B-7C</td>
<td>6-12</td>
</tr>
<tr>
<td>Statistics 13, 32, 100, or 102</td>
<td>3-4</td>
</tr>
<tr>
<td>Recommended: Chemistry 2C and Mathematics 16A-16B</td>
<td></td>
</tr>
<tr>
<td>Depth Subject Matter</td>
<td>38-42</td>
</tr>
<tr>
<td>Biological Sciences 101 and 102</td>
<td>7</td>
</tr>
<tr>
<td>Evolution: One from Evolution and Ecology 100, 140; Geology 107; Plant Biology 116</td>
<td></td>
</tr>
<tr>
<td>Ecology: One from Environmental Science and Policy 100; Evolution and Ecology 101, 117; 121; or Plant Biology 117</td>
<td>4</td>
</tr>
<tr>
<td>Philosophy of Biological Science: One from History and Philosophy of Science 130A, 130B, or Philosophy of Science 130A, 130B</td>
<td>4</td>
</tr>
<tr>
<td>Physiology: One from Environmental Horticulture 102; Entomology 101, 102; Neurobiology, Physiology, and Behavior 101; or Plant Biology 111, 112</td>
<td>3-5</td>
</tr>
<tr>
<td>One course each in animal, microbial and plant diversity</td>
<td>9-17</td>
</tr>
</tbody>
</table>

Note: Although courses may be listed in more than one category, each course may be offered in satisfaction of only one requirement.

Total units for the major .. 78-95

B.S. Major Requirements:

<table>
<thead>
<tr>
<th>Requirement</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparatory Subject Matter</td>
<td>60-67</td>
</tr>
<tr>
<td>Mathematics 16A-16B-16C</td>
<td>9</td>
</tr>
<tr>
<td>Chemistry 2A-2B-2C</td>
<td>15</td>
</tr>
<tr>
<td>Chemistry 8A-8B or 118A-118B-118C</td>
<td>6-12</td>
</tr>
<tr>
<td>Biological Sciences 1A-1B-1C</td>
<td>15</td>
</tr>
<tr>
<td>Statistics 13, 32, 100, or 102</td>
<td>3-4</td>
</tr>
<tr>
<td>Physics 7A-7B-7C</td>
<td>12</td>
</tr>
<tr>
<td>Depth Subject Matter</td>
<td>45</td>
</tr>
<tr>
<td>Biological Sciences 101, 102, 103, 104</td>
<td>13</td>
</tr>
<tr>
<td>Restricted Electives</td>
<td>32</td>
</tr>
</tbody>
</table>

Breadth in the major is achieved by completing at least one course from each of the five field requirement lists, (a) through (e) below. See your area of emphasis for any specific course requirements.

Depth in the major is achieved by completing one area of emphasis listed below and additional upper division biology courses (see “Approved Biology Electives” list), as needed, to total 32 units. See your faculty adviser regarding the choice of those courses.

Note: Although courses may be listed in more than one category, each course may be offered in satisfaction of only one requirement.

Field Requirement Course List (Breadth):

(a) Evolution: Anthropology 151, 152, 154A; Evolution and Ecology 100; Geology 107; Plant Biology 143 .. 3-5

Quarter Offered: I=Fall; II=Winter; III=Spring; IV=Summer. 2001-2002 offering in parentheses.
Laboratory experience: One or more laboratory courses from Biological Sciences 120P; Molecular and Cellular Biology 120L, 140L, 160L; or other laboratory courses to total 3 units (or 9 hours per week) that emphasizes cellular or molecular biology with approval of your adviser.

Restricted electives

Select two or more courses from Biological Sciences 120, Molecular and Cellular Biology 122, 123, 126, 141, 142, 150, 162, 163; Neurobiology, Physiology, and Behavior 103; Pathology, Microbiology and Immunology 126; Plant Biology 113, 126; or other courses with adviser's approval.

Areas of Emphasis (Depth):

Evolution and Ecology emphasis ...13-18

Field requirement: Students must take Evolution and Ecology 101 to satisfy Field requirement (b).

Evolution and Ecology 102 or 103..4

Biodiversity: Six or more units, to include at least two units (or 6 hours per week) of laboratory, from the following: Evolution 100, 100L, 107, 109; Evolution and Ecology 108, 112, 121, 134, 134L, Geology 107, 107L; Microbiology 105; Entomology 101, 111, 111C, 111L, 113, 116, 117, 118, 143, 143L, 144, 144L, 176; Plant Pathology 120, 130 ..3-5

(d) Neurobiology, physiology, and behavior: Anthropology 154A, 154B; Entomology 102, 104; Neurobiology, Physiology, and Behavior 100, 101, 102, 141 ..3-5

Microbiology emphasis ...13-16

Field requirement: Students must take Microbiology 102 to satisfy Field requirement (c).

Laboratory requirement: Students must take Microbiology 102L to satisfy the restricted elective lab requirement.

Clusters: Complete one of the four clusters (a–d) below, or complete an individual cluster with approval from your faculty adviser.

(a) Microbial Physiology and Molecular Genetics

Microbiology 102L...2

Select two courses from Microbiology 140, 150, 1606

Select six or more units from: Microbiology 150L, Molecular and Cellular Biology 121, 123, 141, 161 ..6

(b) Microbial Diversity and Ecology

Microbiology 102L, 105, 162..11

Select three or more units from: Microbiology 120, 120L, Plant Biology 118; Soil Science 111 ...3

(c) Biotechnology and Applied Microbiology

Microbiology 102L..2

Microbiology 140 or 150..3

Select one course from: Food Science and Technology 102A, 104, or Viticulture and Enology 1866

Select six or more units from: Chemical Engineering 161A; Microbiology 110, 155L; Molecular and Cellular Biology 121, 122, 1236

(d) Medical Microbiology

Microbiology 102L..2

Pathology, Microbiology and Immunology 127 or Medical Microbiology 115-116 ..5-6

Microbiology 162 or Pathology, Microbiology and Immunology 128 ...3-4

Medical Microbiology 107 or Pathology, Microbiology and Immunology 126 ...3-4

Molecular and Cellular Biology emphasis ...12-18

One course from Molecular and Cellular Biology 121, 141, or 1613-4

Laboratory experience: One or more laboratory courses from Biological Sciences 120P; Molecular and Cellular Biology 120L, 140L, 160L, or other laboratory course to total 3 units of hours per week that emphasizes cellular or molecular biology with approval of your adviser.

Restricted electives

Select two or more courses from Biological Sciences 120, Medical Microbiology 107; Molecular and Cellular Biology 122, 123, 126, 141, 142, 150, 162, 163; Neurobiology, Physiology, and Behavior 103; Pathology, Microbiology and Immunology 126; Plant Biology 113, 126; or other courses with adviser's approval.

Neurobiology, Physiology, and Behavior emphasis ..15

Select courses from at least two of the following three areas and include one laboratory from Neurobiology, Physiology, and Behavior 101L, 104L, 141P, or 160L..15

(1) Neurobiology:

Neurobiology, Physiology, and Behavior 100, 106, 112, 124, 125, 126, 160, 160L, 161, 163; Psychology 121, 124, 128.

(2) Physiology:

Entomology 102; Exercise Science 101, 101L, 102, 110, 111; Medical Microbiology 107; Neurobiology, Physiology, and Behavior 101, 101L, 103, 104L, 105, 106, 111C, 111L, 113, 114, 117, 121, 121L, 127, 128, 130, 131, 140, 141, 141P, Pathology, Microbiology, and Immunology 126; Wildlife, Fish, and Conservation Biology 121.

(3) Behavior:

Anthropology 154A, 154B; Entomology 104; Neurobiology, Physiology, and Behavior 102, 150, 152; Psychology 122, 123.

Note: Neurobiology, Physiology, and Behavior 106 may be used only once to satisfy Area of Emphasis requirements.

Plant Biology emphasis ...13-16

Select one course from each of the following four areas and include one laboratory from Evolution and Ecology 108; Plant Biology 105, 108, 108L, 111, 116, 118, 148, 161A, 161B, or two laboratory courses from Evolution and Ecology 140; Plant Biology 153, 158, 171, 172L.

(1) Anatomy and morphology:

Evolution and Ecology 140; Plant Biology 105, 116, 1184-5

(2) Physiology and development:

Plant Biology 111, 112, 113; Plant Pathology 1303

(3) Evolution and ecology:

Evolution and Ecology 100, 117; Plant Biology 117, 1433-4

(4) Applied plant biology:

Agricultural Systems and Environment 110A; Plant Biology 154, 160, 171, 172, 175 ...3-4

Total Units for the Major ..105-112

Approved Biology Electives

These are courses which are accepted without petition for upper division units in the Biological Science major. Many other biologically related courses may be substituted with consent of your adviser.

Agricultural Systems and Environment 110A, 135

Anatomy, Physiology, and Cell Biology 100

Anthropology 151, 152, 153, 154A, 154B, 155, 156, 157

Avian Sciences 100, 150

Biological Sciences—All upper division courses

Cell Biology and Human Anatomy 101, 101L

Chemical Engineering 161A

Entomology—All upper division courses

Environmental Horticulture 102, 105

Environmental Science and Policy 100, 110, 121, 123, 124, 150A, 150B, 150C, 151, 15L

Evolution and Ecology—All upper division courses

Exercise Science 101, 101L, 102, 110, 111, 113

Food Science and Technology 102A, 104

Geology 107, 107L, 150A, 150B, 150C

History and Philosophy of Science 130A, 130B

Medical Microbiology 107, 115, 116

Microbiology—All upper division courses

Molecular and Cellular Biology—All upper division courses

Nematology 100, 110

Neurobiology, Physiology, and Behavior—All upper division courses

Nutrition 101, 111

Pathology, Microbiology, and Immunology 101, 102, 126, 126L, 127, 128

Philosophy 108

Plant Biology—All upper division courses, except 188

Plant Pathology 120, 130

Psychology 121, 122, 123, 124, 128

Soil Science 111

Viticulture and Enology 186

Wildlife, Fish, and Conservation Biology 110, 110L, 111, 111L, 120, 120L, 121, 122, 130, 136, 140, 151

Other Upper Division Courses

There is a limitation on variable-unit courses that may be counted toward the major. Of these courses, up to 4 units of 199 courses may be counted, and no units of 192 or 197 courses may be counted.
Minor Program Requirements:

The minor in Biological Sciences acquaints students with the range and variety of modern biology, including work in two or three areas: animal biology, plant biology, and microbiology; and in four of the following five subdisciplines: organismal biology; ecology, evolution, and behavior; molecular and cellular biology; genetics, and cell biology. The list of required courses is restricted to those that are acceptable for the major program in Biological Sciences but which do not require extensive upper division preparatory work.

UNITS
Biological Sciences ... 24
Biological Sciences 1C ... 5
Biological Sciences 101 .. 4

Additional upper division units (as specified in the area requirements and group requirements below) ... 15

Area Requirement: one course in two of the area requirements below: animal biology, microbiology, and plant biology.

(a) Animal biology:
Anatomy 100, Anthropology 151, 152, 153, 154A, 155, 156; Avian Sciences 100; Biological Sciences 120, 122; Cell Biology and Human Anatomy 101; Entomology 101, 102, 103, 104, 109, 116, 119, 153; Environmental Science and Policy 129; Evolution and Ecology 100, 101, 105, 112, 133, 134, 136, 137, 138, 147, 170; Geology 111A, Molecular and Cellular Biology 150; nematology 110; Neurobiology, Physiology, and Behavior 102; Wildlife, Fish, and Conservation Biology 110, 111, 120, 140, 151.

(b) Microbiology:
Entomology 156; Geology 111B; Medical Microbiology 107; all upper division Microbiology courses (excluding 190–199); Plant Biology 118, 119; Plant Pathology 120, 130, 130; Veterinary Microbiology and Immunology 126, 127, 128, 132.

(c) Plant biology:
Environmental Horticulture 105, 107; Evolution and Ecology 121, 140, 144; all upper division Plant Biology courses, excluding 190–199 and Botany/Zoology 130; Plant Science 101, 103, Range Science 109; Vegetable Crops 105.

Note: Plant Biology 118 or 119 may be used for either microbiology or plant biology (not both).

Group Requirement: at least one course or course sequence from four of the five group requirements below:

(a) Organismal biology:
Evolution and Ecology 112, 136, 137; Microbiology 105; Molecular and Cellular Biology 150; Plant Biology 102, 105.

(b) Population biology and ecology:
Anthropology 154A; Environmental Science and Policy 100; Evolution and Ecology 101, 121; Wildlife, Fish and Conservation Biology 151.

(c) Evolutionary biology:
Anthropology 151; Evolution and Ecology 100, 140, 149; Geology 107; Plant Biology 116.

(d) Physiology:
Neurobiology, Physiology, and Behavior 101; Plant Biology 111, 112.

(e) Biochemistry and cell biology:
Biological Sciences 102 and 103, 104; Molecular and Cellular Biology 141.

Note: A course that appears on both the area and group requirement lists may be used toward satisfying both requirements. Both halves of sequential courses connected by a hyphen must be taken.

Advisers and Advising: Information on the Biological Sciences major or minor can be obtained from the Undergraduate Academic Programs Office, 202 Life Sciences Addition.

Honors and Honors Programs: Students who have met the minimum grade point average and have completed certain criteria, and who have obtained a sponsoring faculty supervisor may elect to participate in the Division of Biological Sciences Honors Program. The program entails completion of a research project and honors thesis through enrollment in course 194H.

Citation for Outstanding Performance: The Division of Biological Sciences furnishes Certificates for Outstanding Performance on undergraduates majoring in Biological Sciences who have demonstrated superior academic performance and individual achievement in research. Students who wish to be considered for a citation must first meet or exceed a specified grade point average and participate in an appropriate research project.

Teaching Credential Subject Representative: Associate Director of Teacher Education (Division of Education). See also the Teacher Education Program.

The Biochemistry Major Program

The Biochemistry major introduces students to the chemistry of living organisms and the experimental techniques that are used to probe the structures and functions of biologically important molecules. Students who enjoy both chemistry and biology and who are comfortable with quantitative approaches to problem solving will find biochemistry a rewarding field of study.

The Program. The biochemistry program begins with the four-course, upper division common curriculum that provides an introduction to the principles of biochemistry, genetics, and cell biology. Biochemistry majors then take a comprehensive and rigorous science course to familiarize them with the most important aspects of biochemical research. Additional upper division courses in biochemistry examine detailed aspects of modern biochemistry. Students are also required to take courses in other biological sciences and a full year of physical chemistry.

Career Alternatives. The biochemistry program provides a solid scientific background for students seeking a research, teaching, or service career in the life sciences. Positions are open to biochemists in biomedical, biotechnological, pharmaceutical, agricultural research and chemical industries. Also, university-affiliated research laboratories, hospital laboratories, and government-sponsored research facilities provide employment opportunities. The major provides excellent preparation for advanced study in graduate or professional schools.

B.S. Major Requirements:

Preparatory Subject Matter .. 54-58
Biological Sciences 1A-1B-1C .. 15
Chemistry 2A-2B-2C ... 15
Mathematics 16A-16B-16C or 21A-21B-21C 9-12
Physics 7A-7B-7C ... 12
Statistics 13, 32, 100 or 103 ... 3

Depth Subject Matter ... 53-54
Biological Sciences 101, 102, 103, 104 13
Chemistry 107A-107B-108 .. 9
Molecular and Cellular Biology 120L, 121, 122, 123 13
Restricted Electives .. 4

Upper division courses in biological sciences or chemistry. Students are encouraged to obtain additional laboratory experience; however, no more than 3 units of 192, 193 or 199 may be counted toward Restricted Elective units.

Total Units for the Major .. 107-112

Master Adviser. L.R. Sprechman (Section of Molecular and Cellular Biology), 126 Briggs Hall.

Advising Center for the major is located in 156 Briggs (530-752-9032).

Graduate Study. See Biochemistry and Molecular Biology (A Graduate Group); and the Graduate Studies chapter of this catalog.

The Cell Biology Major Program

The Cell Biology major program provides students with a comprehensive understanding of the cell, the basic structural and functional unit of all living organisms.

The Program. To understand living organisms, the biologist must understand the cell: hence, cell biology lies at the core of the biological sciences. Students taking this major gain a solid foundation in biological principles. The major emphasizes how cellular organization and function contribute to the development, maintenance and reproduction of adult organisms. The major illustrates the ways in which principles derived from the physical sciences, genetics, biochemistry, molecular biology and physiology are integrated in the study of living cells and emphasizes the experimental nature of the study of cell biology.

Career Alternatives. The major provides an excellent background for students wishing to enter graduate and professional programs in biological, health sciences or veterinary sciences; for students pursuing careers involving teaching or research in the biological sciences; for students interested in careers in the biotechnological or pharmaceutical industries; or for students interested in careers related to the administrative, legal or commercial aspects of biomedical science.

B.S. Major Requirements:

Preparatory Subject Matter .. 55
Biological Sciences 1A-1B-1C .. 15
Chemistry 2A-2B-2C ... 15
Mathematics 16A-16B-16C ... 9
Physics 7A-7B-7C ... 12
Statistics 13 or 100 (recommended) 4

Depth Subject Matter ... 53-58
Biological Sciences 101, 102, 103, 104 13
Chemistry 118A-118B-118C .. 12
Chemistry 107A-107B-108 .. 9
Molecular and Cellular Biology 140L, 150, 150L 9
Molecular and Cellular Biology 141 (recommended) or 121 or 161...3-4
Additional upper division course work from: Molecular and Cellular Biology 120L, 160L; Neurobiology, Physiology, and Behavior 160L..4

Two additional courses from: Chemistry 108; Molecular and Cellular Biology 142, 163; Neurobiology, Physiology, and Behavior 160; Pathology, Microbiology, and Immunology 126; Plant Biology 125; or other courses in cell biology with the approval of the master adviser...6-8

Total Units for the Major..108-113

Master Adviser, D.G. Myles (Molecular and Cellular Biology), 3167 Life Sciences Addition.

Advising Center for the major is located in 156 Briggs (530-752-0202).

The Evolution and Ecology Major Program

The major in Evolution and Ecology offers the student a broad background in the theoretical and empirical basis of our understanding of the diversity and distribution of living organisms.

The Program. The program of study for the evolution and ecology major begins with a core of introductory courses in mathematics, physics, health sciences, and biology. These are followed by survey courses in evolution and ecology and various more specialized courses that allow the student to focus his or her studies. Evolution and Ecology majors may earn either a Bachelor of Science or a Bachelor of Arts degree. The requirements for the B.S. degree program include more science courses, such as biochemistry, whereas those for the A.B. degree program allow room for more electives within the humanities and social sciences. The A.B. degree is especially appropriate for those students who wish to combine arts or languages with evolution and ecology for career preparation in such areas as scientific writing, translating or illustration.

Career Alternatives. A degree in evolution and ecology prepares the student for career opportunities in research, teaching, health professions, veterinary medicine, agriculture, environmental management, and industry. Many students gain some research experience while at UC Davis and choose to continue their training at the graduate level. This track offers careers in academics, government, or business.

A.B. Major Requirements:

Preparatory Subject Matter

Biological Sciences 1A-1B-1C	15
Chemistry 2A-2B, 8A-8B	16
Mathematics 16A-16B or Statistics 100 or 102	4-6
Physics 1A-1B	6

Depth Subject Matter

| Biological Sciences 101 | 4 |
| One course from Evolution and Ecology 100; Geology 107; Anthropology 151 | 3-4 |

One course from Evolution and Ecology 101; Environmental Science and Policy 100; Wildlife, Fish, and Conservation Biology 151..............4

Additional upper division course work in biological science to achieve a total of 36 or more units. 24-25 Include at least one course from each of the areas of study below.

(a) Biodiversity:

- Entomology 100, 100L, 107, 109; Environmental Science and Policy 124; Evolution and Ecology 112, 112L, 121, 134, 134L, 140; Plant Biology 102, 105, 111, 114, 148; Wildlife, Fish, and Conservation Biology 110, 110L, 111, 111L, 120, 120L.

(b) Physiology and functional morphology:

- Anatomy, Physiology, and Cell Biology 100, Avian Sciences 100; Entomology 101, 102; Evolution and Ecology 105; Neurobiology, Physiology, and Behavior 101, 141, 141P; Plant Biology 111, 111L, 112, 116; Wildlife, Fish, and Conservation Biology 121.

Note: A maximum of 4 units of variable-unit courses (numbered 192, 198, 199) may be applied to upper division elective requirements.

Courses numbered 197T are not applicable to the upper division elective unit requirement.

Total Units for the Major ...77-79

B.S. Major Requirements:

Preparatory Subject Matter

Biological Sciences 1A-1B-1C	15
Chemistry 2A-2B, 8A-8B	15
Mathematics 16A-16B or Statistics 110-118, 118C	6-12
Physics 1A-1B	6

Depth Subject Matter

| Additional upper division course work in biological science to achieve a total of 49 or more units | 16-20 |

Include at least 2 units (6 hours per week) of laboratory and one course from each of the areas of study below (a-b):

(a) Biodiversity:

- Entomology 100, 100L, 107, 109; Environmental Science and Policy 124; Evolution and Ecology 112, 112L, 121, 134, 134L, 140; Plant Biology 102, 108, 118, 148; Wildlife, Fish, and Conservation Biology 110, 110L, 111, 111L, 120, 120L.

(b) Physiology and morphogenesis:

- Anatomy, Physiology, and Cell Biology 100; Avian Sciences 100; Entomology 101, 102; Evolution and Ecology 105; Neurobiology, Physiology, and Behavior 101, 141, 141P; Plant Biology 111, 111L, 120, 120L, 121

Note: A maximum of 4 units of variable-unit courses (numbered 192, 198, 199) may be applied to upper division elective requirements.

Evolution and ecology majors may not substitute course 192 for the upper division laboratory requirement. Courses numbered 197T are not applicable to the upper division elective unit requirement.

Total Units for the Major ...106-115

Biological Sciences Electives

The following courses are acceptable toward the fulfillment of the upper division biological sciences requirement in the A.B. and B.S. major programs and may be selected without advisor approval. Other elective courses are approved on an individual basis by petition through an advisor.

Anatomy, Physiology, and Cell Biology 100

Anthropology 151, 152, 153, 154A, 154B, 155, 156

Biological Sciences, all upper division courses

Chemistry 107A, 107B

Entomology, all upper division courses except 110

Environmental Science and Policy 110, 116, 121, 123, 150C, 151, 151L

Geology 107, 107L, 150C

Microbiology, all upper division courses

Molecular and Cellular Biology, all upper division courses

Nematology 110

Neurobiology, Physiology, and Behavior, all upper division courses

Nutrition 101, 111

Pathology, Microbiology, and Immunology 101, 126, 126L, 128

Philosophy 108

Plant Biology, all upper division courses

Psychology 121, 122, 127, 129

Wildlife, Fish, and Conservation Biology 120, 120L, 121

Major Advisers. Students transferring to Davis from another institution and majoring in evolution and ecology must consult an advisor immediately upon matriculation so that their transfer credits can be applied to the major requirements. All new students in the major should contact the Section of Evolution and Ecology Office for advisement assignment. Substitutions of courses not on the above list for major requirements are arranged through the advisor.

Advising Center for the major is located in 2320 Storer Hall (530-752-8523). Pre-professional students should establish contact with the Health Sciences Advising Office, 111 South Hall, to learn what specific courses are required on their transcripts.

Teaching Credential Subject Representative. Students planning for a teaching career should consult the Department of Education in regard to preparation for certification. See also the section on the Teacher Education Program.

The Exercise Science Major Program

The major in Exercise Science is an integrative program of study, encompassing the physiological, biomechanical and behavioral aspects of exercise and physical activity.

The Program. The undergraduate major may select either the Bachelor of Arts or the Bachelor of Science degree program. The Bachelor of Arts is primarily for those students who desire a liberal arts program with a broadly based lower division curriculum. This program permits specialization in either the biological or psychological aspects of exercise science, and is most appropriate for those who intend to pursue careers in coaching, teaching, or in community/corporate exercise programs, and for those intending graduate study in the behavioral aspects of sport and exercise. The Bachelor of Science program is for students who desire a more intense curriculum in the natural sciences. It involves more extensive lower division preparation in physical and life sciences and requires additional upper division course work more specific to either biomechanics or exercise physiology.

Preparatory Requirements. Before declaring a major in Exercise Science, students must complete the following courses with a combined grade point average of at least 2.5 at the University of California (at least 3.0 for similar courses taken at community college). All courses must be taken for a letter grade.

Chemistry 2A, 2B..................10 units

Biological Sciences 1A5 units

Physics 1A or 7A3-4 units

Career Alternatives. This degree program provides preparation for graduate study in exercise and sport science, for careers in the allied health sciences, and for professional schools in medicine, physical therapy, and podiatry.

Quarter Offered: I–Fall; II–Winter; III–Spring; IV–Summer, 2001-2002 offering in parentheses.

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wr = Writing Experience.

A.B. Major Requirements:

<table>
<thead>
<tr>
<th>Subject Matter</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparatory Subject Matter</td>
<td>34-35</td>
</tr>
<tr>
<td>Biological Sciences 1A-1B</td>
<td>10</td>
</tr>
<tr>
<td>Chemistry 2A, 2B</td>
<td>10</td>
</tr>
<tr>
<td>Exercise Science 45</td>
<td>3-4</td>
</tr>
<tr>
<td>Physics 1A or 7A</td>
<td>3-4</td>
</tr>
<tr>
<td>Psychology 1</td>
<td>4</td>
</tr>
<tr>
<td>Additional requirements</td>
<td>4</td>
</tr>
<tr>
<td>Biological emphasis—Statistics</td>
<td>13</td>
</tr>
<tr>
<td>Psychological emphasis—Psychology 41</td>
<td></td>
</tr>
<tr>
<td>Depth Subject Matter</td>
<td>44</td>
</tr>
<tr>
<td>Cell Biology and Human Anatomy 101, 101L</td>
<td>7</td>
</tr>
<tr>
<td>Executive Science 101, 101L, 102, 104, 105</td>
<td>16</td>
</tr>
<tr>
<td>Neurobiology, Physiology, and Behavior 101</td>
<td>5</td>
</tr>
<tr>
<td>Minimum of 12 upper division units in exercise science chosen with approval by a major adviser</td>
<td>12</td>
</tr>
<tr>
<td>Psychological emphasis:</td>
<td></td>
</tr>
<tr>
<td>Students electing this emphasis must select a minimum of 9 units from Exercise Science 110, 111, 112, 113, 115, 116, 117, or 118.</td>
<td></td>
</tr>
<tr>
<td>Minimum of 4 upper division non-exercise science units in either the biological or the psychological area selected from the following lists. Substitutes may be made only with the prior written approval of a major adviser.</td>
<td></td>
</tr>
<tr>
<td>Biological emphasis: Anthropology 101, 102 or 153, Biological Sciences 101, Neurobiology, Physiology, and Behavior 113, or Nutrition 101</td>
<td></td>
</tr>
<tr>
<td>Psychological emphasis: Psychology 114, 136, 143, 145, or 160</td>
<td>4</td>
</tr>
<tr>
<td>None of the variable-unit courses or Physical Education 100, 128A, 128B, 143, or 144 or Exercise Science 146, 146L, 147L, 148L or 149L may be used to fulfill these requirements. Consult your adviser regularly.</td>
<td></td>
</tr>
<tr>
<td>Total Units for the Major</td>
<td>78-79</td>
</tr>
</tbody>
</table>

B.S. Major Requirements:

<table>
<thead>
<tr>
<th>Subject Matter</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparatory Subject Matter</td>
<td>55-59</td>
</tr>
<tr>
<td>Anthropology</td>
<td>4</td>
</tr>
<tr>
<td>Biological Sciences 1A-1B</td>
<td>10</td>
</tr>
<tr>
<td>Chemistry 2A-2B or 24H-28H</td>
<td>6-8</td>
</tr>
<tr>
<td>Exercise Science 45</td>
<td>3</td>
</tr>
<tr>
<td>Physics 7A-7B or 9A-9B</td>
<td>8</td>
</tr>
<tr>
<td>Psychology 1</td>
<td>4</td>
</tr>
<tr>
<td>Statistics 13 or 102</td>
<td>2</td>
</tr>
<tr>
<td>Additional Requirements</td>
<td>3</td>
</tr>
<tr>
<td>Biomechanics emphasis:</td>
<td></td>
</tr>
<tr>
<td>Computer Science Engineering 10 or 30 or Engineering 5, and Physics 7C or 9C</td>
<td>7-8</td>
</tr>
<tr>
<td>Exercise Physiology: Chemistry 8A-8B-8C</td>
<td>6-8</td>
</tr>
<tr>
<td>Depth Subject Matter</td>
<td>52</td>
</tr>
<tr>
<td>Cell Biology and Human Anatomy 101, 101L</td>
<td>7</td>
</tr>
<tr>
<td>Executive Science 101, 101L, 102, 103, 104, 105</td>
<td>16</td>
</tr>
<tr>
<td>Neurobiology, Physiology, and Behavior 101, 101L</td>
<td>8</td>
</tr>
<tr>
<td>Restricted electives</td>
<td>22</td>
</tr>
<tr>
<td>(1) Minimum of 10 upper division units from outside the major selected with adviser’s approval and as restricted below. Biomechanics emphasis: at least 3 of the 10 units must be selected from the following: Engineering 102, Neurobiology, Physiology, and Behavior 112, Evolution and Ecology 170, 170L.</td>
<td></td>
</tr>
<tr>
<td>Exercise Physiology emphasis: at least 6 of the 10 units must be selected from the following: Biological Sciences 102 or Nutrition 101; Neurobiology, Physiology, and Behavior 112, 113, 140.</td>
<td></td>
</tr>
<tr>
<td>(2) Minimum of 12 upper division units of Exercise Science courses, including Biomechanics emphasis: Exercise Science 113, 115, 126. Exercise Physiology emphasis: at least 9 of the 12 units must be selected from Exercise Science 110, 111, 112, 113, 116, 117, 118. None of the variable-unit courses or Physical Education 100, 128A, 128B, 143, or 144 or Exercise Science 146, 146L, 147L, 148L or 149L may be used to fulfill these requirements. Consult your adviser regularly. Total Units for the Major</td>
<td>108-112</td>
</tr>
<tr>
<td>Major Advisers: W.C. Adams, E.M. Bernauer, D. Hawkins, R.G. Holly, P.A. Molé, P.B. Salitsky, K.R. Williams. Teaching Major. The teacher-training curriculum requires courses in addition to the departmental major requirements. See the section on the Teacher Education Program.</td>
<td></td>
</tr>
</tbody>
</table>

Minor Program Requirements:

<table>
<thead>
<tr>
<th>Subject Matter</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exercise Science 101, 101L, and one course from 102, 103, 104, 105.</td>
<td>18</td>
</tr>
<tr>
<td>Minimum of two courses from Exercise Science 113, 115, 126.</td>
<td></td>
</tr>
<tr>
<td>Additional courses to complete a total of 18 upper division units. None of the variable-unit courses or Physical Education 100, 128A, 128B, 143, 144, or Exercise Science 146, 146L, 147L, 148L or 149L may be used to fulfill these requirements. Consult your adviser regularly.</td>
<td></td>
</tr>
<tr>
<td>Psychological emphasis:</td>
<td></td>
</tr>
<tr>
<td>Exercise Science 105, and one course from 101, 102, 103, 104.</td>
<td></td>
</tr>
<tr>
<td>Minimum of two courses from Exercise Science 120, 121, 122.</td>
<td></td>
</tr>
<tr>
<td>Additional courses to complete a total of 18 upper division units. None of the variable-unit courses or Physical Education 100, 128A, 128B, 143, 144, or Exercise Science 146, 146L, 147L, 148L or 149L may be used to fulfill these requirements. Consult your adviser regularly.</td>
<td></td>
</tr>
</tbody>
</table>

Minor Advisers. Same as major advisers.

Honors Program. Those students with outstanding records in the major requirements may elect to enter the Honors Program with the consent of an adviser. A senior project must be completed, for which up to 10 units (minimum of 6 units) of Exercise Science 199 (split over two quarters) may be earned. These units are taken in addition to the major requirements, and it should be realized that only a maximum of ten 199 units may be counted toward the B.S. degree total unit requirement.

Graduate Study. A program of study and research leading to the M.S. degree is available through the Graduate Group in Exercise Science. For detailed information regarding graduate study, write to the Graduate Adviser, Graduate Group in Exercise Science. See also the Graduate Studies chapter of this catalog.

Graduate Adviser. P.A. Molé.

The Genetics Major Program

The Genetics major provides a broad background in the biological, mathematical, and physical sciences basic to the study of heredity and evolution. The major is sufficiently flexible to accommodate students interested in the subject either as a basic discipline in the biological sciences or in terms of its applied aspects such as biotechnology, medicine, and agriculture.

The Program. The genetics program begins with the four-course, upper division common curriculum that provides an introduction to the principles of genetics, biochemistry, and cell biology. Students then take additional upper division courses in specialized areas of modern genetics including gene expression, evolution, development, and human genetics, as well as a laboratory course in the principles of genetics. Additional upper division courses in biological sciences are required, including a second laboratory course.

Career Alternatives. The genetics degree provides suitable preparation for a wide variety of careers, including teaching, research, work with biotechnology companies, medicine, and all the health sciences. It is also an excellent background for students wishing to enter a graduate program, a teacher-training program, medical school, veterinary school, or other professional schools.

B.S. Major Requirements:

<table>
<thead>
<tr>
<th>Subject Matter</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparatory Subject Matter</td>
<td>60-70</td>
</tr>
<tr>
<td>Biological Sciences 1A-1B</td>
<td>15</td>
</tr>
<tr>
<td>Chemistry 2A-2B-2C</td>
<td>15</td>
</tr>
<tr>
<td>Chemistry 8A-8B or 11A-11B-11C</td>
<td>6-12</td>
</tr>
<tr>
<td>Mathematics 16A-16B or 21A-21B-21C</td>
<td>9-12</td>
</tr>
<tr>
<td>Physics 7A-7B-7C</td>
<td>12</td>
</tr>
<tr>
<td>Statistics 13, 32, 100, or 105</td>
<td>3-4</td>
</tr>
<tr>
<td>Depth Subject Matter</td>
<td>50-51</td>
</tr>
<tr>
<td>Biological Sciences 101, 102, 103, 104</td>
<td>13</td>
</tr>
<tr>
<td>Molecular and Cellular Biology 160L, 162, 163, 164</td>
<td>13</td>
</tr>
<tr>
<td>Evolution and Ecology 100</td>
<td>4</td>
</tr>
<tr>
<td>One course from Molecular and Cellular Biology 121, 141, or 161</td>
<td>3-4</td>
</tr>
<tr>
<td>One course from Microbiology 102-102L; Molecular and Cellular Biology 120L</td>
<td>6</td>
</tr>
<tr>
<td>Restricted Electives</td>
<td>11</td>
</tr>
</tbody>
</table>
Upper division courses in genetics or other fields relevant to the student's interest chosen in consultation with the adviser. No more than 4 units of 192, 193, 198, or 199 can be used for credit in this category.

Total Units for the Major..110-121

Master Adviser. Contact R.S. Hawley (Molecular and Cellular Biology), 345 Briggs Hall.

The Microbiology Major Program

Microbiology is the branch of biology that deals with bacteria, yeasts and other fungi, algae, protozoa, and viruses. These microorganisms are ubiquitous in nature and play a crucial role in areas such as agriculture, biotechnology, ecology, medicine, and veterinary science. The field of microbiology contributes to areas of fundamental inquiry such as biochemistry, cell biology, evolution, genetics, molecular biology, pathogenesis, and physiology. The ease and power of simultaneous genetic and biochemical analysis of microbes led to the emergence of the new disciplines of molecular biology and molecular genetics, and spawned the new industry of biotechnology.

The Program. Both undergraduate major programs provide a balance of studies in microbiology, with appropriate courses in mathematics and physical sciences. The A.B. degree program emphasizes the biology of bacteria, while the B.S. degree program includes more biochemistry and related course work. Either program, with judicious course selection, is appropriate for students contemplating a career in medicine or various allied health professions including medical technology training. The B.S. program is especially well suited for students who want a professional career in microbiology, or who wish to pursue graduate education in a biological science discipline. The choice of a major program and its suitability for particular career options should be discussed with a major adviser.

Career Alternatives. A bachelor's degree in microbiology is excellent preparation for a career in biotechnology, pharmacology, agriculture, and the food industry. It also provides a strong background for students wishing to continue on to professional studies in medicine and the other health sciences.

A.B. Major Requirements:

<table>
<thead>
<tr>
<th>Preparatory Subject Matter</th>
<th>47-61</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological Sciences 1A-1B-1C</td>
<td>15</td>
</tr>
<tr>
<td>Chemistry 2A-2B</td>
<td>10</td>
</tr>
<tr>
<td>Chemistry 8A-8B or 118A-118B-118C</td>
<td>6-12</td>
</tr>
<tr>
<td>Mathematics 16A-16B or 21A-21B</td>
<td>6-8</td>
</tr>
<tr>
<td>Physics 1A-1B or 7A-7B-7C</td>
<td>6-12</td>
</tr>
<tr>
<td>Statistics 13</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Depth Subject Matter</th>
<th>38-40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microbiology 102, 102L, 105, 105A</td>
<td>14</td>
</tr>
<tr>
<td>Microbiology 162 or Pathology, Microbiology and Immunology 128</td>
<td>3-4</td>
</tr>
<tr>
<td>Select two groups from Microbiology 129-129L, 130B-130L, or 177-177L</td>
<td>3-9</td>
</tr>
<tr>
<td>Additional units from Microbiology 110, 120, 120L, 130B, 130L, 177L, 177L</td>
<td>10-11</td>
</tr>
<tr>
<td>Molecular and Cellular Biology 120L</td>
<td>5</td>
</tr>
<tr>
<td>Plant Biology 114, 118, 119, 119D</td>
<td>5</td>
</tr>
</tbody>
</table>

Total Units for the Major ...85-101

B.S. Major Requirements:

<table>
<thead>
<tr>
<th>Preparatory Subject Matter</th>
<th>60-67</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological Sciences 1A-1B-1C</td>
<td>15</td>
</tr>
<tr>
<td>Chemistry 2A-2B-2C</td>
<td>15</td>
</tr>
<tr>
<td>Chemistry 8A-8B or 118A-118B-118C</td>
<td>6-12</td>
</tr>
<tr>
<td>Mathematics 16A-16B-16C</td>
<td>9</td>
</tr>
<tr>
<td>Physics 7A-7B-7C</td>
<td>12</td>
</tr>
<tr>
<td>Statistics 13, 32, 100 or 102</td>
<td>3-4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Depth Subject Matter</th>
<th>45-52</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular and Cellular Biology 120L</td>
<td>6</td>
</tr>
<tr>
<td>Microbiology 102, 102L, 105</td>
<td>11</td>
</tr>
<tr>
<td>Two courses from Microbiology 140, 150 or 160</td>
<td>6</td>
</tr>
<tr>
<td>Microbiology 162 or Pathology, Microbiology, and Immunology 128</td>
<td>3-4</td>
</tr>
<tr>
<td>Select one of Food Science and Technology 104-104L; Microbiology 120-120L, 155L, 177-177L</td>
<td>12</td>
</tr>
<tr>
<td>Molecular and Cellular Biology 161-170L; Pathology, Microbiology, and Immunology 127; Soil Science 111</td>
<td>3-9</td>
</tr>
<tr>
<td>Three additional units from Food Science and Technology 104, 104L; Medical Microbiology 107; Microbiology 110, 120, 120L, 155L, 199; Molecular and Cellular Biology 161; Pathology, Microbiology, and Immunology 127; Plant Biology 118, 118; Soil Science 111</td>
<td>10-11</td>
</tr>
</tbody>
</table>

Total Units for the Major ...110-119

Quarter Offered: I=Fall; II=Winter; III=Spring; IV=Summer. 2000-2001/2001-2002 UC Davis General Catalog

Master Adviser. M.L. Wheelis (Section of Microbiology), 2202 Storer Hall.

Teaching Credential Subject Representative. M.L. Wheelis. See also the Teacher Education Program.

Graduate Study. The Graduate Group in Microbiology offers programs of study and research leading to the M.S. and Ph.D. degrees in microbiology. For detailed information regarding graduate study in microbiology, address the Graduate Group Chairperson, Section of Microbiology.

Related Courses. The offerings of the Section of Microbiology are augmented by courses and faculty of Evolution and Ecology; Food Science and Technology; Land, Air, and Water Resources; Medical Microbiology; Medicine and Epidemiology; Molecular and Cellular Biology; Pathology, Microbiology, and Immunology; Plant Biology; Plant Pathology; Viticulture and Enology.

The Neurobiology, Physiology, and Behavior Major Program

Neurobiology, Physiology, and Behavior is a major that emphasizes the understanding of vital functions common to all animals. All animals perform certain basic functions—they grow, reproduce, move, respond to stimuli, and maintain homeostasis. The physiological mechanisms upon which these functions depend are precisely regulated and highly integrated. Actions of the nervous and endocrine systems determine behavior and the interaction between organisms and their physical and social environments. Students in this major study functional mechanisms; the control, regulation, and integration of these mechanisms; and the behavior that relates to those mechanisms. They do so at the level of the cell, the organ system, and the organism.

The Program. In the freshman and sophomore years, students majoring in neurobiology, physiology, and behavior build a broad scientific background, taking courses in chemistry, biology, physics, and mathematics. As juniors or seniors, students can enroll in a variety of Neurobiology, Physiology and Behavior courses and related upper division courses. Students can participate in a number of advanced laboratory courses or may design an individual, independent project guided by a member of the faculty.

Career Alternatives. Completion of the neurobiology, physiology, and behavior major provides the foundations for a challenging career in physiology and/or neurobiology and also serves as a basis for further training in schools of human and veterinary medicine, medical technology, physical therapy, pharmacy, dentistry, optometry, other health sciences, biotechnology, and other biologically related industries. Students interested in high school teaching, research, and advanced teaching may use the program as preparation for continued study.

B.S. Major Requirements:

<table>
<thead>
<tr>
<th>Preparatory Subject Matter</th>
<th>60-70</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological Sciences 1A-1B-1C</td>
<td>15</td>
</tr>
<tr>
<td>Chemistry 2A-2B-2C</td>
<td>15</td>
</tr>
<tr>
<td>Chemistry 8A-8B or 118A-118B-118C</td>
<td>6-12</td>
</tr>
<tr>
<td>Mathematics 16A-16B-16C</td>
<td>9</td>
</tr>
<tr>
<td>Physics 7A-7B-7C</td>
<td>12</td>
</tr>
<tr>
<td>Statistics 13, 32, 100 or 102</td>
<td>3-4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Depth Subject Matter</th>
<th>50-51</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neurobiology, Physiology, and Behavior 100, 101, 101L, 102, 104L</td>
<td>19</td>
</tr>
<tr>
<td>Select three or more units of laboratory course work from the following list</td>
<td>3</td>
</tr>
</tbody>
</table>

Neurobiology, Physiology, and Behavior 100, 101, 101L, 111, 111L, 140L, 149L; other courses with the approval of the master adviser.

Additional physiological depth unit requirement ... 12

All other Neurobiology, Physiology, and Behavior courses not used in satisfaction of any other requirement: Anthropology 154A, 154B, 160, Entomology 104, Exercise Science 101, 102, 111L, 111L, 149L; one course from Anthropology 151, Evolution and Ecology 100, Geology 107; 13

Total Units for Major ..110-121

Master Adviser. J. Goldberg (Section of Neurobiology, Physiology, and Behavior), 191 Briggs Hall.

Advising Center. 188 Briggs Hall (530-752-9696)

Graduate Study. The Graduate Group in Physiology offers programs of study and research leading to the M.S. and Ph.D. degrees. Information on graduate study may be obtained by writing the Graduate Adviser, Graduate Group Complex. See also the graduate course offerings in Animal Behavior Graduate Group, Neuroscience Graduate Group, and Physiology Graduate Group. See also the Graduate Studies chapter of this catalog.
The Plant Biology Major Program

Plant Biology is the scientific study of plants as organisms. It includes the disciplines of cellular and molecular plant biology and the traditional areas of botany, such as anatomy, morphology, systematics, physiology, mycology, ecology, and evolution.

The Program. The plant biology major consists of core courses in applied plant biology, plant anatomy, plant physiology, and plant ecology, as well as biochemistry, cell biology, and genetics. In addition, students complete a set of courses in one of the following areas: (1) general botany; (2) applied plant biology; (3) plant evolution and ecology; (4) plant genetics and breeding; and (5) plant physiology, development, and molecular biology. The major provides breadth in diverse areas of plant biology and depth in one of several areas of specialization. Independent research opportunities in plant biology are available. Consult with an adviser.

Career Alternatives. A plant biology degree is an excellent credential for a wide range of career options, including domestic and international opportunities in business, research and teaching in both governmental and private sectors. Plant biologists can work in the field, in the forest, in the laboratory, in botanical gardens or nurseries, in food or seed companies, or in pharmaceutical, energy or chemical industries, and pursue rewarding careers in the areas of biotechnology, environmental protection, farming, or agribusiness. The program is also an excellent background for students wishing to enter other professional schools, including medicine, law or journalism.

A.B. Major Requirements:

Preparatory Subject Matter

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological Sciences 1A-1B-1C</td>
<td>35</td>
</tr>
<tr>
<td>Chemistry 2A-2B, 8A-8B</td>
<td>15</td>
</tr>
<tr>
<td>Agricultural Systems and Environment 120 or Statistics 13 or 100 or 102</td>
<td>4</td>
</tr>
</tbody>
</table>

Depth Subject Matter

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological Sciences 101</td>
<td>4</td>
</tr>
<tr>
<td>Evolution and Ecology 108 or Plant Biology 102 or 108</td>
<td>5</td>
</tr>
<tr>
<td>Evolution and Ecology 140 or Plant Biology 116</td>
<td>4-5</td>
</tr>
<tr>
<td>Plant Biology 105, 111, 112, and Plant Biology 117/Evolution and Ecology 117</td>
<td>15</td>
</tr>
</tbody>
</table>

Additional upper division units in Plant Biology or related natural science courses | 13-14 |

Total Units for the Major | 76-78 |

Recommended

Chemistry 2C; Evolution and Ecology 100; Plant Biology 118, and Plant Biology 148/Plant Pathology 148.

For students with interests in specialized areas of plant biology (e.g., agricultural botany, ecology, systematics and evolution, morphology, plant physiology, etc.), certain substitutions, including courses in other sections or departments, may be allowed upon prior consultation with a Plant Biology major adviser.

B.S. Major Requirements:

Preparatory Subject Matter

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological Sciences 1A-1B-1C</td>
<td>60-67</td>
</tr>
<tr>
<td>Chemistry 2A-2B-2C</td>
<td>15</td>
</tr>
<tr>
<td>Chemistry 8A-8B or 118A-118B-118C</td>
<td>6-12</td>
</tr>
<tr>
<td>Mathematics 16A-16B-16C</td>
<td>9</td>
</tr>
<tr>
<td>Physics 7A-7B-7C</td>
<td>12</td>
</tr>
<tr>
<td>Agricultural Systems and Environment 120 or Statistics 13, 32, 100, or 102</td>
<td>3-4</td>
</tr>
</tbody>
</table>

Depth Subject Matter

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological Sciences 101 or Plant Biology 152 (Students completing the Applied Plant Biology option or the Plant Genetics and Breeding option should take Plant Biology 152)</td>
<td>4</td>
</tr>
<tr>
<td>Biological Sciences 102, 103, 104</td>
<td>9</td>
</tr>
<tr>
<td>Plant Biology 105, 111</td>
<td>8</td>
</tr>
<tr>
<td>Completion of one Option listed below</td>
<td>24</td>
</tr>
</tbody>
</table>

Research experience through internships or special studies is recommended.

General Botany option

Evolution and Ecology 100, Plant Biology 112 | 7 |

One course from the Applied Plant Biology course list (Plant Biology 175 recommended) | 3-5 |

One course from the Evolution and Diversity course list | 3-5 |

Additional upper division course work chosen from any of the five course lists, chosen in consultation with an adviser, to achieve a total of 24 or more units. At least one course chosen from the option course lists must include a formal laboratory or fieldwork section | 3-7 |

Applied Plant Biology option

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant Biology 112</td>
<td>3</td>
</tr>
<tr>
<td>Plant Biology 142 or 143</td>
<td>3-4</td>
</tr>
</tbody>
</table>
Minor Program Requirements:

UNITS

- Biological Sciences 1C (or equivalent introductory plant biology course)........ 5

 - Upper division units, including at least one course from each of the following four groups... 18
 - (b) Physiology and development: Plant Biology 111, 112, 125, Plant Pathology 130.
 - (c) Evolution and ecology: Evolution and Ecology 100, Plant Biology 102, 117, 143.

Minors Adviser. Same as for major above.

Honors and Honors Programs. Students on the honors list may elect to substitute a minimum of 5 units of 194H for 5 upper division units of the regular major; however, recommendations for high honors and highest honors at graduation are not dependent on the completion of 194H. Refer to the Academic Information chapter and the appropriate College section for Dean's Honors List Information.

Teaching Credential Subject Representative. R.M. Thornton (Section of Plant Biology), 218 Robbins Hall. See also the Teacher Education Program.

Graduate Study. Consult the Plant Biology Graduate Group listing.

Divisionwide Programs and Courses

Bodega Marine Laboratory Program

A full quarter of undergraduate course work in marine biology is available each spring quarter at the Bodega Marine Laboratory, located in Bodega Bay, California. Course offerings include lecture and laboratory instruction in the developmental biology and physiologic adaptation of marine organisms, population biology and ecology, and marine vertebrate biology; a weekly colloquium; and an intensive individual research experience under the direction of a faculty member (Biological Sciences courses 120, 120P, 122, 122P, 123, Neurobiology, Physiology, and Behavior 141, 141P, Wildlife, Fish, and Conservation Biology 190A, 190B). This is a 15 unit program and course offerings and instructors may vary from year to year.

The program is residential, with students housed on the laboratory grounds. Participants are assessed a room and board fee in addition to standard campus registration fees. An application is required. Obtain forms from the Division of Biological Sciences. Applications are due before RSPV Pass 1 registration begins for spring quarter. Additional information on the Bodega Marine Laboratory Program is available from the Undergraduate Programs Office, 202 Life Sciences Addition, or directly from Bodega Marine Laboratory, 707-675-2211, P.O. Box 247, Bodega Bay, CA 94923.

Courses in Biological Sciences (BIS)

Lower Division Courses

1A. Introductory Biology (5)

- Lecture—4 hours; discussion—1 hour. Prerequisite: Chemistry 2B (may be taken concurrently). Introduction to biological evolution, cellular structure and function, and basic principles of biology. GE credit: SciEng. Wrt—II, III, (I, II, III), Keen

1B. Introductory Biology (5)

- Lecture—3 hours; laboratory—3 hours; discussion—1 hour. Introduction to evolution and animal diversity, including transmission and population genetics, micro and macroevolution, selection, population genetics, classification, and a survey of major animal groups. GE credit: SciEng. Wrt—II, III, (I, II, III), Keen

1C. Introductory Biology (5)

- Lecture—4 hours; laboratory—3 hours. Survey of diversity within the plant, protist, and fungal kingdoms, emphasizing flowering plant structure, function, evolution, and ecology. Ecological principles, including population dynamics, life history patterns, community interactions and competition, ecosystems, and world biomes. GE credit: SciEng. Wrt—II, III, (I, II, III), Keen

10. General Biology (4)

- Lecture—3 hours; discussion—1 hour. Composition and structure of organisms; regulation and signaling; heredity, evolution and the interaction and interdependence among life forms and their environments. Not intended for students planning further study in the biological sciences. GE credit: SciEng. Wrt—II, III, (I, II, III), Goldberg, Mart, Falk

10V. General Biology (4)

11A–11B. Issues in the Life Sciences (2-2)

- Lecture—1 hour; discussion—1 hour. Prerequisite: enrollment limited to BUSP students; consent of instructor required. Designed to broaden the students’ understanding of the biology of demonstrating the range of subjects and approaches included in the field of biology. Both basic biological research topics and applied biology will be studied.—II, (II, I, II), Holland, Goldberg

15. Biology of Aging (3)

- Lecture—3 hours. Biological basis of the aging process. Topics include the normal aging process, developmental influence on the rate of aging, diseases of the aged, theories of aging, and mechanisms for modifying aging. Designed for students with limited biology backgrounds.—I. (I) McDonald

92. Internship in Biological Sciences (1-12)

- Internship—3-36 hours. Prerequisite: lower division standing and consent of instructor. (P/NP grading only.)

98. Directed Group Study (1-5)

- Prerequisite: consent of instructor. Primarily for lower division students. (P/NP grading only.)

99. Special Study for Undergraduates (1-5)

- lower division standing and consent of instructor. (P/NP grading only.)

Upper Division Courses

101. Genes and Gene Expression (4)

- Lecture—4 hours. Prerequisite: course 1B. Chemistry 8B or 118B may be taken concurrently. Nucleic acid structure and function; gene expression and its regulation; replication; transcription and translation; transmission genetics; molecular evolution.—I, III, (I, III, III) Bowman, Dvorak, Gottlieb, Heyer, O'Neill, Quiros, Rodriguez, L. Rose, Sanders

102. Structure and Function of Biomolecules (3)

- Lecture—3 hours. Prerequisite: Chemistry 8B or 118B. Structure and function of macromolecules with emphasis on proteins; enzyme kinetics; supramolecular assemblies; membranes; cytokinesis; cell motility, and cell division.—I, II, III, (I, II, III) Gasser, Hilt, Hjelmeland, Scholey, Sprechman, Teg

103. Bioenergetics and Metabolism (3)

104. Regulation of Cell Function (3)

- Lecture—3 hours. Prerequisite: course 101 and 102. course 103 recommended. Membrane receptors and signal transduction; cell trafficking, cell cycle, cell growth and division; extracellular matrix and cell-cell junctions; cell development; immune system.—I, II, III, (I, II, III) Baskin, Crowe, Ettleler, McNally, Myles, Nuccitelli, Privalsky, Scholey, Shiozaki

120. Developmental Biology of Marine Invertebrates (4)

- Lecture—30 hours total; laboratory—30 hours total. Prerequisite: Molecular and Cellular Biology 150-150L, Biological Sciences 102 and 103, course 123 concurrently. Phylogenetic patterns of reproduction and development among the marine invertebrates. Emphasis on both modern and classical approaches to understanding gametogenesis, gamete interaction and fertilization, larval development, and metamorphogenesis. Laboratory—10 hours total; discussion—10 hours total. Prerequisite: course 120 concurrently. Students pick a research topic for intense study. Research will be related to a topic covered in course 120 and will be conducted at the Bodega Marine Laboratory with close supervision of resident faculty. (See above description for Bodega Marine Laboratory Program.)—III, (III)

120P. Developmental Biology of Marine Invertebrates/Advanced Laboratory Topics (6)

- Laboratory—150 hours total: discussion—10 hours total. Prerequisite: course 120 concurrently. Students pick a research topic for intense study. Research will be related to a topic covered in course 120 and will be conducted at the Bodega Marine Laboratory with close supervision of resident faculty. (See above description for Bodega Marine Laboratory Program.)—III, (III)

122. Population Biology and Ecology (3)

- Lecture—2 hours; laboratory—3 hours. Prerequisites: courses 1A, 1B, and 1C. Residence at Bodega Marine Laboratory required. Biological and physical processes affecting plant and animal populations in the rich array of habitats at the Bodega Marine Laboratory ecological preserve. Emphasis on field experience, with complementing lectures to address population and community processes. (See Bodega Marine Laboratory Program.)—III, (III) Strong, Morgan

122P. Population Biology and Ecology/Advanced Laboratory Topics (5)

- Laboratory—12 hours; discussion—1 hour. Prerequisite: course 122 concurrently. Residence at Bodega Marine Laboratory required. Training in scientific research, from hypothesis testing to publication, including methods of library research. Research related to topic covered in course 122. Final presentation both oral and written. (See Bodega Marine Laboratory Program.)—III, (III) Strong, Morgan

123. Undergraduate Colloquium in Marine Science (1)

- Seminar—1 hour. Prerequisite: enrolled student at the Bodega Marine Laboratory. Series of weekly seminars by recognized authorities in various disciplines of marine science from within and outside the UC system. Includes informal discussion with speaker. Course will be held at Bodega Marine Laboratory. (P/NP grading only.) (See above description for Bodega Marine Laboratory Program.)—III, (III)

192. Internship in Biological Sciences (1-12)

- Internship—3-36 hours. Prerequisite: upper division standing and consent of instructor. (P/NP grading only)

Quarter Offered: I—Fall; II—Winter; III—Spring; IV—Summer; 2001-2002 offering in parentheses.
194H. Research Honors (2)
Independent study—6 hours. Prerequisite: senior standing. Students majoring in Biological Sciences who have completed two quarters (3-5 units per quarter) of 199 and who qualify for the honors program as defined by the current catalog. Opportunity for Biological Sciences majors to pursue intensive research culminating in the writing of a senior thesis with the guidance of faculty advisers. (P/NP grading only.)

197T. Tutoring in Biological Sciences (1-3)
Prerequisite: upper division standing; appropriate background in biological sciences. Assisting in courses in Biological Sciences under the direction of the faculty. (P/NP grading only.)

198. Directed Group Study (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)

199. Special Study in Biological Sciences (1-5)
Prerequisite: upper division standing and consent of instructor. (P/NP grading only.)

Graduate Courses

298. Group Study (1-5)
Prerequisite: consent of instructor. Division of Biological Sciences staff members may offer group study courses under this number.

Professional Course

310. Effective Teaching of College Biology (2)
Informal lecture/discussion—2 hours. Teaching function of an academic career; objectives, nature, and methods of effective teaching; design of curricula and courses; lecturing and leading discussions; examinations and grading; evaluation; counseling; innovation. (S/U grading only.)—II. (II.)
Biotechnology

(College of Agricultural and Environmental Sciences)

Faculty: Faculty includes members of the Departments of Agronomy and Range Science; Animal Science; Environmental Horticulture; Food Science and Technology; Land, Air and Water Resources; Plant Pathology; Pomology; Vegetable Crops; Viticulture and Enology; and the Division of Biological Sciences.

The Major Program

Every living organism, from the smallest and most primitive bacteria to every plant, insect, animal or human being, contains DNA as the primary genetic material. DNA directs all cellular processes, creating the incredible variety and diversity of living organisms in the biosphere. Biotechnology focuses on the mechanics of life processes and their application. Biotechnology means "life technology" and represents an integrated, multidisciplinary field, with a profound impact today on almost every aspect of human endeavor.

The Program. In the first two years, students develop a strong and general background in biological science with an emphasis on fundamental concepts and basic principles of genetics, molecular biology and cell biology. Three options, Animal Biotechnology, Plant Biotechnology, and Fermentation/Microbial Biotechnology, provide in-depth training and specialized knowledge in an aspect of biotechnology. Each option has a strong laboratory component to reinforce the theoretical concepts. Students also do an internship in biotechnology company or university or government laboratory.

Internships and Career Opportunities. In the last decade, more industries are turning to biotechnology to solve problems and improve products, creating a growing job market for individuals trained in biotechnology in the agricultural, food and beverage, health care, chemical, pharmaceutical and biochemical, and environmental and bioremediation industries. Graduates trained in the technologies designed for biotechnology will find their training applicable to advanced research in molecular biology, genetics, biochemistry, and the plant and animal sciences.

B.S. Major Requirements

English Composition Requirement .. 8

See College requirement

Preparatory Subject Matter .. 57-64

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological Sciences 1A-1B-1C</td>
<td>15</td>
</tr>
<tr>
<td>Chemistry 2A-2B-2C</td>
<td>15</td>
</tr>
<tr>
<td>Chemistry 8A-8B or 118A-118B-118C or 128A-128B-128C-129A</td>
<td>6-12</td>
</tr>
<tr>
<td>Mathematics 16A-16B</td>
<td>6</td>
</tr>
<tr>
<td>Physics 7A-7B</td>
<td>8</td>
</tr>
<tr>
<td>Statistics 13, 100, or Agricultural Systems and Environment 120</td>
<td>4</td>
</tr>
<tr>
<td>Agricultural Systems and Environment 21, Computer Science Engineering 10 or 15</td>
<td>4</td>
</tr>
</tbody>
</table>

Breadth/General Education .. 24

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological Sciences 101 and 104; Biological Sciences 102 or Animal Biology 102; Biological Sciences 103 or Animal Biology 103</td>
<td>13-15</td>
</tr>
<tr>
<td>Microbiology 102</td>
<td>4</td>
</tr>
<tr>
<td>Molecular and Cellular Biology 161</td>
<td>3</td>
</tr>
<tr>
<td>Biotechnology 171 or Plant Pathology 140</td>
<td>2-4</td>
</tr>
<tr>
<td>Internship or independent research, Biotechnology 189L, 192 or 199</td>
<td>3-4</td>
</tr>
<tr>
<td>Honors Undergraduate Thesis (optional)</td>
<td>1</td>
</tr>
</tbody>
</table>

Areas of Specialization (choose one)

Fermentation/Microbial Biotechnology Option 30-33

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microbiology 140, 150; Microbiology 102L or Food Science and Technology 104L; Molecular and Cellular Biology 160L or Plant Biology 161A; Viticulture and Enology 124 or 186</td>
<td>15-18</td>
</tr>
</tbody>
</table>

Restricted Electives .. 15

Select from Biotechnology 188, Chemical Engineering 161B, 161C, 161L, Food Science and Technology 104L, 110A, 110B, Microbiology 105, 155L, Viticulture and Enology 124, 126, 128, 135, 140.

Plant Biotechnology Option ... 28

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular and Cellular Biology 126, Plant Biology 152, 160, 161A, 161B</td>
<td>18</td>
</tr>
</tbody>
</table>

Restricted Electives .. 10

Select at least one course from each of the areas. Biotechnology 188 may be used in a or b.

(b) *Pests, Pathogens and Production*

- Agricultural Systems and Environment 118, Entomology 110, Nematology 100 or 110, Plant Pathology 120, Plant Biology 143, 146, 153, 154, 172

(College of Agricultural and Environmental Sciences)

Animal Biotechnology Option ... 25

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal Genetics 111, Neurobiology, Physiology, and Behavior 101, Molecular and Cellular Biology 150, 150L</td>
<td>14</td>
</tr>
</tbody>
</table>

Restricted Electives .. 11

Select at least one course from each of the areas. Biotechnology 188 may be used in a or b.

(a) *Animal cell biology/microbiology/immunology*

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal Genetics 101, Environmental Toxicology 100L, Medical Microbiology 107, Microbiology 102L, Molecular and Cellular Biology 160L, Pathology, Microbiology, and Immunology 126, 126L, 129, Plant Biology 161A</td>
<td>18</td>
</tr>
</tbody>
</table>

(b) *Animal reproduction and breeding*

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal Genetics 107, Animal Science 131, 140, Avian Sciences 103, 121, Evolution and Ecology 102, Neurobiology, Physiology, and Behavior 121, 121L</td>
<td>18</td>
</tr>
</tbody>
</table>

Unrestricted Electives** .. 21-40

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internship or independent research, Biotechnology 189L, 192 or 199</td>
<td>3-15</td>
</tr>
<tr>
<td>Honors Thesis in Biotechnology (1-5)</td>
<td>3-15</td>
</tr>
</tbody>
</table>
| Major Adviser: A.M. Dandekar (Pomology), 1059 Wickson Hall. Advising Center for the major is located at 152 Hunt Hall. Courses in Biotechnology (BIT) Lower Division Courses 92. Internship in Biotechnology (1-12) Internship—3-36 hours. Prerequisite: consent of instructor. Work experience on or off campus in subject area pertaining to biotechnology or in a business, industry or agency associated with biotechnology. Internship supervised by faculty member in the animal or plant sciences. (P/NP grading only.)

Upper Division Courses

171. Professionalism and Ethics in Genomics and Biotechnology (3)

Lecture—1 hour; discussion—2 hours. Prerequisite: upper division standing in a natural science major. Real and imaginary case studies to illustrate ethical issues in science. Training and practice in difficult ethical situations and evaluating personal and social consequences. Not open for credit to students who have completed Plant Pathology 140.—I, II, III. (Yoder)

188L. Laboratory Research in Genomics and Biotechnology (2-5)

Laboratory—3-12 hours; discussion—1 hour. Prerequisite: course 188 and consent of instructor. Formulating experimental approaches to current questions in biotechnology; performance of proposed experiments. May be repeated for credit up to 12 units. (P/NP grading only)—I, II, III, (I, II, III.) (Yoder)

192. Internship in Biotechnology (1-12)

Internship—3-36 hours. Prerequisite: consent of instructor. Work experience on or off campus in a subject area pertaining to biotechnology or in a business, industry or agency associated with biotechnology. Internship supervised by faculty member in the animal or plant sciences. (P/NP grading only.)

194H. Honors Thesis in Biotechnology (1-5)

Independent Study—3-15 hours. Prerequisite: senior standing in Biotechnology with 3.25 GPA or higher and completion of sequence. P/NP grading only.)—I, II, III, (I, II, III.) (Yoder)

199. Special Study for Advanced Undergraduates (1-5)

Prerequisite: consent of instructor. (P/NP grading only.)
Biochemistry and Molecular Biology (A Graduate Group)

J. Clark Lagarias, Ph.D., Chairperson of the Group
Group Office, 145B Briggs Hall (530-752-9091)
World Wide Web: http://www-ggc.ucdavis.edu/ggc/bmb

Faculty

Steffen Abel, Ph.D., Assistant Professor (Vegetable Crops)
Enoch Baldwin, Ph.D., Assistant Professor (Molecular and Cellular Biology)
Everett Bandman, Ph.D., Professor (Food Science and Technology)
Kenneth A Beck, Ph.D., Assistant Professor (Cell Biology and Human Anatomy)
Alan B. Bennett, Ph.D., Professor (Vegetable Crops)
Linda F. Bisson, Ph.D., Professor (Viticulture and Enology)
Richard M. Bostock, Ph.D., Professor (Plant Pathology)
E. Morton Bradbury, Ph.D., Professor
Richard M. Bostock, Ph.D., Professor
Linda F. Bisson, Ph.D., Professor
Alan B. Bennett, Ph.D., Professor
Kenneth A Beck, Ph.D., Assistant Professor
Enoch Baldwin, Ph.D., Assistant Professor

World Wide Web: http://www-ggc.ucdavis.edu/ggc/bmb
Group Office, 145B Briggs Hall (530-752-9091)
J. Clark Lagarias, Ph.D., Chairperson of the Group

Gino A. Cortopassi, Ph.D., Associate Professor
Ronald Y. Chuang, Ph.D., Professor (Molecular and Cellular Biology)
Don M. Carlson, Ph.D., Professor (Molecular and Cellular Biology)
J. David Furlow, Ph.D., Assistant Professor
Paul G. FitzGerald, Ph.D., Professor (Cell Biology and Human Anatomy)
Thorsten Dieckmann, Ph.D., Assistant Professor (Chemistry)
Ken Kaplan, Ph.D., Assistant Professor (Molecular and Cellular Biology)
Leonard M. Hjelmeland, Ph.D., Professor
Wolf-Dietrich Heyer, Ph.D., Associate Professor
Jerry L. Hedrick, Ph.D., Professor (Molecular and Cellular Biology)
John H. Harada, Ph.D., Professor (Plant Biology)
John W.B. Hershey, Ph.D., Professor (Biological Chemistry)
John H. Harada, Ph.D., Professor (Plant Biology)
Jerry L. Hedrick, Ph.D., Professor (Molecular and Cellular Biology)
John W.B. Hershey, Ph.D., Professor (Biological Chemistry)

Wolf-Dietrich Heyer, Ph.D., Associate Professor (Microbiology)

Leonard M. Hjelmeland, Ph.D., Professor
Michele M. Igo, Ph.D., Associate Professor (Microbiology)
Thomas Jue, Ph.D., Professor (Biological Chemistry)
Clarence I. Kado, Ph.D., Professor (Plant Pathology)
Ken Kaplan, Ph.D., Assistant Professor (Molecular and Cellular Biology)
Daniel Kilonsky, Ph.D., Professor (Microbiology)
Stephen C. Kowalczykowski, Ph.D., Professor (Microbiology)
Hsing-Jien Kung, Ph.D., Professor (Biological Chemistry)
J. Clark Lagarias, Ph.D., Professor (Molecular and Cellular Biology)
Kim S. Lam, Ph.D., Professor (Hematology—Oncology)
Gerri N. LaMar, Ph.D., Professor (Chemistry)
Janine LaSalle, Ph.D., Assistant Professor (Medical Microbiology and Immunology)
Jerold A. Last, Ph.D., Professor (Internal Medicine)
Paul Luciw, Ph.D., Associate Professor (Pathology)
Sudesh P. Makker, M.D., Professor (Pediatrics)
Harry R. Matthews, Ph.D., Professor (Biological Chemistry)
Francis J. McNally, Ph.D., Assistant Professor (Molecular and Cellular Biology)
Mark G. McNamee, Ph.D., Professor
Claude F. Meares, Ph.D., Professor (Chemistry)
Tadeusz F. Molinski, Ph.D., Professor (Chemistry)
Maria Mudryj, Ph.D., Assistant Professor (Microbiology and Immunology)
Diane Myles, Ph.D., Professor (Molecular and Cellular Biology)
Jodi M. Nunnii, Ph.D., Assistant Professor (Molecular and Cellular Biology)
Sharman D. O'Neill, Ph.D., Associate Professor (Plant Biology)
John A. Payne, Ph.D., Assistant Professor (Human Physiology)

Isaac N. Pessah, Ph.D., Associate Professor (Molecular Biosciences)
Donald A. Phillips, Ph.D., Professor (Agronomy and Range Science)
Jersey S. Powell, M.D., Professor (Hematology—Oncology)
Ted Powers, Ph.D., Assistant Professor (Molecular and Cellular Biology)
Paul Primakoff, Ph.D., Professor (Cell Biology and Human Anatomy)
Martin L. Privalsky, Ph.D., Professor (Microbiology)
Kathryn L. Radke, Ph.D., Professor (Animal Sciences)
A. Hari Reddi, Ph.D., Professor (Orthopaedic Surgery)
Robert H. Rice, Ph.D., Professor (Environmental Toxicology)
Pamela C. Ronald, Ph.D., Associate Professor (Plant Pathology)
Robert B. Rucker, Ph.D., Professor (Nutrition)
Dewey D. Ryu, Ph.D., Professor (Biochemical Engineering)
Earl Sawai, Ph.D., Assistant Adjunct Professor (Pathology)
Carl W. Schmid, Ph.D., Professor (Molecular and Cellular Biology)
Jonathan M. Schreley, Ph.D., Professor (Molecular and Cellular Biology)
Irwin H. Segel, Ph.D., Professor (Molecular and Cellular Biology)
Leigh D. Segel, Ph.D., Professor
Michael F. Selkin, Ph.D., Professor (Biological Chemistry)
Ben Shen, Ph.D., Assistant Professor (Chemistry)
Che-Kun James Shen, Ph.D., Professor (Molecular and Cellular Biology)
Kazuhiro Shizaki, Ph.D., Assistant Professor (Microbiology)
Mitchell Singer, Ph.D., Assistant Professor (Microbiology)
Gary M. Smith, Ph.D., Professor (Food Science and Technology)
Linda T. Smith, Ph.D., Associate Research Biochemist (Agronomy and Range Science)
Andrew P. Spicer, Ph.D., Assistant Professor (Biological Chemistry)
Alan J. Stemler, Ph.D., Professor (Plant Biology)
Valley J. Stewart, Ph.D., Professor (Microbiology)
Fern Tablin, Ph.D., Professor (Anatomy, Physiology and Cell Biology)
Steven M. Theg, Ph.D., Professor (Plant Biology)
Michael D. Toney, Ph.D., Assistant Professor (Chemistry)
Frederic A. Troy, Ph.D., Professor (Biological Chemistry)
Brett M. Tyler, Ph.D., Professor (Plant Pathology)
John V. Voss, Ph.D., Assistant Professor (Biological Chemistry)
P. Richard Vulliet, Ph.D., DVM, Professor
Donald A. Walsh, Ph.D., Professor (Biological Chemistry)
Thea A. Wilkins, Ph.D., Associate Professor (Agronomy and Range Science)
Valerie M. Williamson, Ph.D., Professor (Nematology)
David Wilson, Ph.D., Assistant Professor (Molecular and Cellular Biology)
John I. Yoder, Ph.D., Professor (Vegetable Crops)
Vincent A. Ziboh, Ph.D., Professor (Dermatology)

Graduate Study. The Graduate Group in Biochemistry and Molecular Biology offers programs of study and research leading to the M.S. and Ph.D. degrees. Strong preference is given to Ph.D. applicants. Graduate work involves a broad overview of biochemistry and molecular biology in addition to specialization in one or more areas. Examples of areas of emphasis include gene expression, molecular basis of development, protein structure, molecular virology, protein synthesis, enzymology, signal transduction, membrane transport and structural biology. For more information contact the chairperson of the group.

Graduate Advisers. R. Bostock (Plant Pathology); K. Burris (Molecular and Cellular Biology); R. Fairclough (Neurology); S. Theg (Plant Biology).

Courses in Biochemistry and Molecular Biology (BMB)

Graduate Courses

290. Seminar (1)
Seminar—1 hour. Prerequisite: consent of instructor. (S/U grading only.)—I, II, III. (I, II, III.)

299. Research (1-12)
(S/U grading only)
Biophysics (A Graduate Group)

Thomas Jue, Ph.D., Chairperson of the Group
Group Office, 145B Briggs Hall (530-752-9092)
World Wide Web: http://www-ggc.ucdavis.edu/ggc/bph

Faculty
Enoch Baldwin, Ph.D., Assistant Professor (Molecular and Cellular Biology)
Ron Baskin, Ph.D., Professor, (Molecular and Cellular Biology)
Morton E. Bradbury, Ph.D., Professor (Biological Chemistry)
David R. Britt, Ph.D., Professor (Chemistry)
Stephen P. Cramer, Ph.D., Professor (Applied Science)
John H. Crowe, Ph.D., Professor (Molecular and Cellular Biology)
Thorsten Dieckmann, Ph.D., Assistant Professor (Chemistry)
Robert H. Fairclough, Ph.D., Associate Professor (Neurology)
Andrew Fisher, Ph.D., Assistant Professor (Chemistry)
Michael Insana, Ph.D., Professor (Biomedical Engineering)
Thomas Jue, Ph.D., Professor (Biological Chemistry)
Frederic A. Troy, Ph.D., Professor (Biological Chemistry)
Michael D. Toney, Ph.D., Assistant Professor (Chemistry)
Steven M. Theg, Ph.D., Professor (Plant Biology)
Carl W. Schmid, Ph.D., Professor (Biomedical Engineering)
Pamela Pappone, Ph.D., Professor (Neurobiology, Physiology, and Behavior)
Janine LaSalle, Ph.D., Assistant Professor (Microbiology and Immunology)
Margie Longo, Ph.D., Assistant Professor (Chemical Engineering and Materials Science)
Mark G. McNamee, Ph.D., Professor (Molecular and Cellular Biology)
Jensen G. Nielsen, Ph.D., Professor (Applied Science)
Richard Nuccitelli, Ph.D., Professor (Molecular and Cellular Biology)
Pamela Pappone, Ph.D., Professor (Neurobiology, Physiology, and Behavior)
Carl W. Schmid, Ph.D., Professor (Molecular and Cellular Biology)
Scott I. Simon, Ph.D., Associate Professor (Biomedical Engineering)
Steven M. Theg, Ph.D., Professor (Plant Biology)
Michael D. Toney, Ph.D., Assistant Professor (Chemistry)
Frederic A. Troy, Ph.D., Professor (Biological Chemistry)
John V. Voss, Ph.D., Assistant Professor (Biological Chemistry)
David Wilson, Ph.D., Assistant Professor (Molecular and Cellular Biology)
Yin Yeh, Ph.D., Professor (Applied Science)

Graduate Study. The Graduate Group in Biophysics offers programs of study leading to the Ph.D. degree. Biophysics is a broad interdepartmental program that is ideal for students who are comfortable with considerable independence. The emphasis is on molecular biophysics. The curriculum consists of certain core courses in biology, chemistry, and physics, followed by specialty courses related to research interests. Specific program requirements are decided upon by a curriculum committee consisting of a research supervisor, the graduate adviser, and a group member. The Committee meets to consider individual educational needs with the student.

Graduate Adviser. R.J. Baskin (Molecular and Cellular Biology).

Courses in Biophysics (BPH)

Graduate Courses
200. Current Techniques in Biophysics (2)
Lecture—2 hours. Prerequisite: graduate standing; Biological Sciences 102 or 104 or the equivalent. Current techniques in biophysics research including X-ray diffraction, magnetic resonance spectroscopy, calorimetry, optical spectroscopy, and electrophysiology. (Same course as Molecular and Cellular Biology 200C.) (S/U grading only.)—I, II, III.

200LA. Biophysics Laboratory (3)
Laboratory—18 hours. Prerequisite: course 200 (may be taken concurrently). One five-week laboratory assignment in the research laboratory of a Biophysics Graduate Group faculty member. Individual research problems with emphasis on methodological/procedural experience and experimental design. May be repeated for credit four times.—I, II, III, (I, II, III).

200LB. Biophysics Laboratory (6)
Laboratory—two 19-hour rotations. Prerequisite: course 200 (may be taken concurrently). Two five-week laboratory assignments in the research laboratories of Biophysics Graduate Group faculty members. Individual research problems with emphasis on methodological/procedural experience and experimental design. May be repeated for credit two times.—I, II, III, (I, II, III).

231. Biological Nuclear Magnetic Resonance (3)
Lecture—3 hours. Prerequisite: Molecular and Cellular Biology 221A or the equivalent or consent of instructor. Principles and applications of magnetic resonance in biomedicine. Fundamental concepts and the biophysical basis for magnetic resonance applications in areas of tissue characterization/imaging, metabolic regulation, and cellular bioenergetics. (Same course as Biological Chemistry 231.) Offered in alternate years.—I (I.)

290C. Research Conference in Biophysics (1)
Discussion—1 hour. Prerequisite: graduate standing in Biophysics and/or consent of instructor; course 299 concurrently. Presentation and discussion of faculty and graduate-student research in biophysics. May be repeated for credit. (S/U grading only.)—I, II, III, (I, II, III).

299. Research (1-12)
(S/U grading only.)
Cell and Developmental Biology (A Graduate Group)

Courses in Cell and Developmental Biology (CDB)

Graduate Courses

200. Current Techniques in Cell Biology (2)
Lecture—2 hours. Prerequisite: graduate standing. Biological Sciences 104 and Molecular and Cellular Biology 141 or the equivalent courses. Current techniques used in cell biology research including microscopy, spectросcopy, electrophysiology, immunocytochemistry, histology, organelle isolation, calorimetry, tissue culture and gel electrophoresis. Lectures are presented by experts on each technique, with an emphasis on pitfalls to avoid when using the technique. (Same course as Molecular and Cellular Biology 200A.) (SU grading only)—I. (I, II, III.)

200LA. Cell and Developmental Biology Laboratory (3)
Laboratory—18 hours. Prerequisite: course 200 (may be taken concurrently). One five-week assignment in the research laboratory of a Cell and Developmental Biology Graduate Group member. Individual research problems with emphasis on methodological/procedural experience and experimental design. May be repeated for credit four times.—I, II, III. (I, II, III.)

200LB. Cell and Developmental Biology Laboratory (6)
Laboratory—18 hours. Prerequisite: course 200 (may be taken concurrently). Two five-week assignments in research laboratories of Cell and Developmental Biology Graduate Group members. Individual research problems with emphasis on methodological/procedural experience and experimental design. May be repeated for credit.—I, II, III. (I, II, III.)

205. Topics in Cell Biology of the Cytoskeleton (2)
Seminar—1 hour. Prerequisite: graduate standing. Emphasis in regulating the organization and function of the actin, microtubule and intermediate filament cytoskeletal systems. Emphasis on primary literature. Topics may vary. May be repeated for credit when topic differs.—I. (I.)

290. Current Topics in Cell and Developmental Biology (1)
Seminar—1 hour. Prerequisite: graduate standing and consent of instructor. Seminars presented by guest lecturers describing their research activities. May be repeated for credit. (SU grading only.)—I, II, III. (I, II, III.)

290C. Research Conference in Cell and Developmental Biology (1)
Discussion—1 hour. Prerequisite: graduate standing in Cell and Developmental Biology and/or consent of instructor; course 299 concurrently. Presentation and discussion of faculty and graduate-student research in cell and developmental biology. May be repeated for credit. (SU grading only.)—I, II, III. (I, II, III.)

295. Group Study (1-5)
(SU grading only.)

299. Research (1-12)
(SU grading only.)

Graduate Study. The Graduate Group in Cell and Developmental Biology offers programs of study leading to the Ph.D. degree. Cell and Developmental Biology is a broad interdepartmental program. The curriculum consists of core courses in cell biology or developmental biology as well as courses jointly staffed with other graduate programs. Specific programs of study are decided upon by an advisory committee chaired by the student's research adviser, and the choice of major core courses will reflect the student's primary research interest.

Preparation. Appropriate preparation is an undergraduate degree in a biological or physical science. Preparation should include a year of calculus, physics, general chemistry and organic chemistry, and introductory courses in statistics, biochemistry, genetics and cell biology.

Graduate Advisers. E. Bandman (Food Science and Technology), R. Tucker (Cell Biology and Human Anatomy).
Chemistry

The Major Programs

Chemistry studies the composition of matter, its structure, and the means by which it is converted from one form to another. The Program. Two programs in chemistry are available, one leading to the Bachelors of Arts and the other to the Bachelor of Science. Students who are interested in chemistry as a profession normally elect the program leading to the B.S. degree, which is accredited by the American Chemical Society. The curriculum leading to an A.B. degree offers a less intensive program in chemistry and is appropriate for a student with a strong interest in chemistry, but who also has another goal such as professional school preparation or secondary school teaching.

Career Alternatives. Chemistry graduates with bachelors degrees are employed extensively throughout the industry in production supervision, quality control, technical marketing, and other areas of applied chemistry. Some of the firms employing these graduates are in the chemical industry, biotechnology, genetic engineering, food and beverage industry, petroleum and petrochemical industry, paper and textile production and processing, pharmaceuticals, graphic industry, and the electronics, semiconductors and computer industries. The bachelor programs also provide chemistry graduates with the rigorous preparation needed for the advanced degrees required for careers in research and higher education.

A.B. Major Requirements:

Preparatory Subject Matter

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry 2A-2B-2C or 2AH-2BH-2CH</td>
<td>15</td>
</tr>
<tr>
<td>Physics 9A, 9B, 9C, 9D</td>
<td>16</td>
</tr>
<tr>
<td>Mathematics 21A, 21B, 21C</td>
<td>12</td>
</tr>
</tbody>
</table>

Total Units for the Major: 38-39

Preparatory Subject Matter

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry 2A or 2AH</td>
<td>15</td>
</tr>
<tr>
<td>Mathematics 21A, 21B, 21C</td>
<td>12</td>
</tr>
<tr>
<td>Physics 9A, 9B, 9C, 9D</td>
<td>16</td>
</tr>
</tbody>
</table>

Total Units for the Major: 53

Depth Subject Matter

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry 2A-2B-2C or 2AH-2BH-2CH</td>
<td>15</td>
</tr>
<tr>
<td>Physics 9A, 9B, 9C, 9D</td>
<td>16</td>
</tr>
<tr>
<td>Mathematics 21A, 21B, 21C</td>
<td>12</td>
</tr>
<tr>
<td>Chemistry 2A or 2AH</td>
<td>15</td>
</tr>
</tbody>
</table>

Total Units for the Major: 67

Preparatory Subject Matter

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics 107A or 107B</td>
<td>12</td>
</tr>
<tr>
<td>Mathematics 107A or 107B</td>
<td>16</td>
</tr>
</tbody>
</table>

Total Units for the Major: 79-82

Preparatory Subject Matter

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics 107A or 107B</td>
<td>12</td>
</tr>
</tbody>
</table>

Total Units for the Major: 107

Graduate Study. The Department of Chemistry offers programs of study and research leading to the M.S. and Ph.D. degrees in Chemistry. Detailed information regarding graduate study may be obtained by writing to the Graduate Adviser, Department of Chemistry. See also the Graduate Studies chapter of this catalog.

Courses in Chemistry (CHE)

Diagnostic Examinations. To enroll in Chemistry 2A or 2AH, all students (including those with Advanced Placement examination credit or transfer units for any courses in chemistry or mathematics) must pass both the Chemistry Diagnostic Test and the PreCalculus Qualifying Exam with satisfactory scores. Both exams are administered during Summer Advising and Orientation and during the orientation week of any quarter in which Chemistry 2A or 2AH is offered. Students who have not passed both exams will be administratively dropped from Chemistry 2A and 2AH.

If you do not achieve a satisfactory score on the Chemistry Diagnostic Test, you have two options. First, you may retake the test. The Learning Skills Center will provide you with the results of your test and details regarding self-directed study materials you may use to prepare to retake the test. The second option is to enroll in Sacramento City College's Chemistry 41C (listed in the Class Schedule and Registration Guide as WLD 041C before the Chemistry courses). This course is given at UC Davis during fall quarter specifically for UC Davis students who require extra preparation for Chemistry 2A. WLD 41C provides 3 units of credit toward minimum progress and verification of full-time status, but provides no units toward graduation or grade point average. You may not enroll in WLD 41C if you have passed the Chemistry Diagnostic Test or if you have not yet taken the Chemistry Diagnostic Test.
Lower Division Courses

2A. General Chemistry (5)
Lecture—3 hours; laboratory/discussion—4 hours. Prerequisite: High school chemistry and physics strongly recommended; satisfactory score on diagnostic examinations. Periodic table, stoichiometry, chemical equations, physical properties and kinetic theory of gases, atomic and molecular structure and chemical bonding. Laboratory experiments in stoichiometric relations, properties and collection of gases, atomic spectroscopy, and introductory quantitative analysis. Only 3 units of credit allowed to students who have completed course 9. GE credit: SciEng.—I, II, (I, II).

2AH. Honors General Chemistry (5)
Lecture—3 hours; laboratory/discussion—4 hours. Prerequisite: High school chemistry and physics; satisfactory score on diagnostic examinations; Mathematics 21A (may be taken concurrently) or consent of instructor. Limited enrollment course with a more rigorous treatment of material covered in course 2A. Students completing course 2AH can continue with course 2BH or 2B.—I, (I, II).

2B. General Chemistry (5)
Lecture—3 hours; laboratory/discussion—4 hours. Prerequisite: course 2A or 2AH. Continuation of course 2A. Condensed phases and intermolecular forces, chemical thermodynamics, chemical equilibria, acids and bases, solubility. Laboratory experiments in thermochemistry, equilibria, and quantitative analysis using volumetric methods. GE credit: SciEng.—II, III, (I, III).

2BH. Honors General Chemistry (5)
Lecture—3 hours; laboratory/discussion—4 hours. Prerequisite: course 2A with consent of instructor or course 2AH with a grade of C or better; and Mathematics 21B (may be taken concurrently) or consent of instructor. Limited enrollment course with a more rigorous treatment of material covered in course 2B. Students completing course 2BH can continue with course 2CH or 2C.—I, (I, II).

2C. General Chemistry (5)
Lecture—3 hours; laboratory/discussion—4 hours. Prerequisite: course 2B or 2BH. Continuation of course 2B. Kinetics, electrochemistry, spectroscopy, structure and bonding in transition metal compounds, application of principles to chemical reactions. Laboratory experiments in selected analytical methods and syntheses. GE credit: SciEng.—I, II, III, (I, III).

2CH. Honors General Chemistry (5)
Lecture—3 hours; laboratory—6 hours. Prerequisite: course 2B with consent of instructor or course 2BH with a grade of C or better; and Mathematics 21C (may be taken concurrently) or consent of instructor. Limited enrollment course with a more rigorous treatment of material covered in course 2C.—II, III, (II, III).

8A. Organic Chemistry: Brief Course (2)
Lecture—2 hours. Prerequisite: course 2B with a grade of C– or higher. With course 8B, an introduction to the nomenclature, structure, chemistry, and reaction mechanisms of organic compounds. Intended for students majoring in areas other than organic chemistry.—I, II, III, (I, III).

8B. Organic Chemistry: Brief Course (4)
Lecture—3 hours; laboratory—3 hours. Prerequisite: course 8A or 118A. Continuation of course 8A. Laboratory concerned primarily with organic laboratory techniques and the chemistry of the common classes of organic compounds.—I, II, III, (I, II, III).

10. Concepts of Chemistry (4)
Lecture—4 hours. A survey of basic concepts and contemporary applications of chemistry. Designed for non-science majors and not as preparation for Chemistry 2A. Course Not open for credit to students who have had Chemistry 2A; but students with credit for course 10 may take Chemistry 2A for full credit. GE credit: SciEng.—I, II, III, (I, II). Wood

98. Directed Group Study (1-5)
Prerequisite: consent of instructor. Primarily for lower division students. (P/NP grading only.)

99. Special Study for Undergraduates (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)

Upper Division Courses

105. Analytical and Physical Chemical Methods (4)

107A. Physical Chemistry for the Life Sciences (3)
Lecture—3 hours. Prerequisite: course 2C or consent of instructor. Mathematics 16C or 21C; one year of college level physics. A basic course in physical chemistry intended for majors in the life science areas. Introductory development of classical and statistical thermodynamics including equilibrium processes and solutions of nonelectrolytes. Kinetic theory of gases and liquids. Transport processes in liquids and solutions.—I, II, III.

107B. Physical Chemistry for the Life Sciences (3)
Lecture—3 hours. Prerequisite: course 107A or 110A. Continuation of course 107A. Electrochemistry and the thermodynamics of simple electrolyte solutions. Chemical reaction rates. Introduction to spectroscopy, atomic and molecular structure, x-ray crystallography, radiation and nuclear chemistry, and to surface chemistry and colloidal systems. Considerations on bioinreversible processes.—II, (I, II).

108. Physical Chemistry of Macromolecules (3)
Lecture—3 hours. Prerequisite: course 107B or 110C. Physical properties and character- ization of macromolecules with emphasis upon those of biological interest. Statistical thermodynamic and transport properties of polymers in bulk and in solution. Physical characterization methods. Special topics on the properties of polyelectrolyte systems.—III, (III).

110A. Physical Chemistry: Introduction to Quantum Mechanics (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 110A. Group theory. Application of quantum mechanics to polyatomic molecules and molecular spectroscopy. Introduction to the postulates and general principles of quantum mechanics. Approximations based on variational method and time independent perturbation theory. Application to harmonic oscillator, rigid rotor, one-electron and many-electron atoms, and homo- and hetero-nuclear diatomic molecules.—I, II, III, (I, II).

110B. Physical Chemistry: Properties of Atoms and Molecules (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 110A. Group theory. Application of quantum mechanics to polyatomic molecules and molecular spectroscopy. Introduction to the postulates and general principles of quantum mechanics. Approximations based on variational method and time independent perturbation theory. Application to harmonic oscillator, rigid rotor, one-electron and many-electron atoms, and homo- and hetero-nuclear diatomic molecules.—I, II, III, (I, II).

110C. Physical Chemistry: Thermodynamics, Equilibria and Kinetics (4)

118A. Organic Chemistry for Health and Life Sciences (4)
Lecture—3 hours; laboratory/discussion—1.5 hours. Prerequisite: course 2C with a grade of C– or higher. The 118A, 118B, and 118C series is for students planning professional school studies in health and life sciences. A rigorous, in-depth presentation of basic principles with emphasis on stereochemistry and spectroscopy and preparations and reactions of nonaromatic hydrocarbons, haloalkanes, alcohols and ethers.—I, II, III, (I, II).

118B. Organic Chemistry for Health and Life Sciences (4)
Lecture—3 hours; laboratory—3 hours. Prerequisite: course 118A. Continuation of course 118A, with emphasis on spectroscopy and the preparation and reactions of aromatic hydrocarbons, organometallic compounds, aldehydes and ketones.—II, III, (II, III).

118C. Organic Chemistry for Health and Life Sciences (4)
Lecture—3 hours; laboratory—3 hours. Prerequisite: course 118B. Continuation of course 118B, with emphasis on the preparation, reactions and identification of carboxylic acids and their derivatives, alkyl and acyl amines, 8-dicarbonyl compounds, and various classes of naturally occurring, biologically important compounds.—I, III, (I, III).

120. Physical Chemistry Laboratory: Advanced Methods (3)
Lecture—3 hours; laboratory—6 hours. Prerequisite: course 118C and 111. Design of experiments; experimental control and data acquisition using microcomputers. Laboratory emphasizes the use of microcomputers in advanced physical-chemical experiments. Offered in alternate years.—II, (II).

121. Introduction to Molecular Structure and Spectra (4)
Lecture—4 hours. Prerequisite: course 110B. Modern theoretical and experimental methods used to study problems of molecular structure and bonding; emphasis on spectroscopic techniques.—I, III, (I, III).

124A. Inorganic Chemistry: Fundamentals (3)
Lecture—3 hours. Prerequisite: course 2C: Symmetry, molecular geometry and structure, molecular orbital theory of bonding (polyatomic molecules and transition metals), solid state chemistry, energetics and spectroscopy of inorganic compounds.—I, (I).

124B. Inorganic Chemistry: Main Group Elements (3)
Lecture—3 hours. Prerequisite: course 124A. Synthesis, structure and reactivity of inorganic and heteroatomic molecules containing the main group elements.—II, (II).

124C. Inorganic Chemistry: d and f Block Elements (3)
Lecture—3 hours. Prerequisite: course 124A. Synthesis, structure and reactivity of transition metal complexes, chemical and bioinorganic chemistry, the lanthanes and actinides.—III, (III).

124L. Laboratory Methods in Inorganic Chemistry (2)
Lecture—6 hours. Prerequisite: course 124B or 124C (may be taken concurrently). The preparation, purification and characterization of main group and transition metal inorganic and organometallic compounds.—I, II, III, (I, II).

125. Advanced Methods in Physical Chemistry (4)
Lecture—2 hours; laboratory—6 hours. Prerequisite: course 110C (may be taken concurrently) and 115. Advanced theory and laboratory techniques in analytical and physical chemistry. Advanced spectroscopic methods. Thermodynamics. Kinetics. Chemical literature. Digital electronics and computer interfacing. Laboratory measurements and vacuum techniques. GE credit: Wrt.—II, III, (II, III).
128A. Organic Chemistry (3)
Lecture—3 hours. Prerequisite: course 128B or consent of instructor. Emphasis on the preparation, purification, and characterization of multifunctional organic, organometallic, and transition metal compounds. Designed primarily for majors in chemistry.—I. (I. II.)

128B. Organic Chemistry (3)
Lecture—3 hours. Prerequisite: course 128A or consent of instructor, course 129A strongly recommended. Chemistry majors should enroll in course 129A concurrently. Continuation of course 128A with emphasis on aromatic and aliphatic substitution reactions, elimination reactions, and the chemistry of carbonyl compounds. Introduction to the application of spectroscopic methods to organic chemistry.—II. III. (II. III.)

128C. Organic Chemistry (3)
Lecture—3 hours. Prerequisite: course 128B, chemistry majors should enroll in course 129C concurrently. Continuation of course 128B with emphasis on enolate condensations and the chemistry of amine, phenols, and sugars; selected biologically important compounds. (P/NP grading only.)—I. II. III. (I. II. III.)

129A. Organic Chemistry Laboratory (2)
Lecture—1 hour; laboratory—3 hours. Prerequisite: course 2C with a grade of C or higher; course 128A (may be taken concurrently). Introduction to laboratory techniques of organic chemistry. Emphasis is on methods used for separation and purification of organic compounds.—I. II. III. (I. II. III.)

129B. Organic Chemistry Laboratory (2)
Laboratory—6 hours. Prerequisite: courses 128B (may be taken concurrently) and 129A. Continuation of course 129A. Emphasis is on methods used for synthesis and isolation of organic compounds.—II. III. (II. III.)

129C. Organic Chemistry Laboratory (2)
Laboratory—6 hours. Prerequisite: courses 128C (may be taken concurrently) and 129B. Continuation of course 129B.—I. III. (III.)

130. Qualitative Organic Chemistry (4)
Lecture—1 hour; laboratory—9 hours. Prerequisite: courses 128C, 129C. Application of physical and chemical techniques to the qualitative identification of organic compounds.—III. (III.)

131. Modern Methods of Organic Synthesis (3)
Lecture—3 hours. Prerequisite: course 128C. Introduction to modern synthetic methodology in organic chemistry with emphasis on stereoselective reactions and application to multistep syntheses of organic molecules containing multifunctionality.—II. (II.)

140. Synthetic Methods (4)
Lecture—1 hour; laboratory—9 hours. Prerequisite: courses 124A, 128C, 129C. Emphasis on the application of inorganic and organic course in the preparation, purification and characterization of multifunctional organic, organometallic, and transition metal compounds using a wide range of methods. Offered in alternate years.—III.

150. Chemistry of Natural Products (3)
Lecture—3 hours. Prerequisite: course 128C. Chemistry of terpenes, steroids, ace- togenins, and alkaloids: isolation, structure determination, biosynthesis, chemical transformations, and total synthesis. GE credit: SciEng, Wrt. —I. (I.)

192. Internship in Chemistry (1-6)
Internship—3–18 hours. Prerequisite: upper division standing; project approval by faculty sponsor prior to enrollment. Supervised internship in chemistry; requires a final written report. May be repeated for credit for a total of 6 units. (P/NP grading only.)

194HA-194HB-194HC. Undergraduate Honors Research (2-2-2)
Independent study—2 hours. Prerequisite: open only to chemistry majors who have completed 135 or who qualify for the honors program. Original research under the guidance of a faculty adviser, culminating in the writing of an extensive report. (Deferred grading only, pending completion of sequence.)

195. Industrial Chemistry (1)
Seminar—2 hours. Prerequisite: junior or senior standing in Chemistry. Designed to give Chemistry undergraduate students an in-depth perception of careers in the chemical industry. Professional chemists will give seminars describing both research and career insights. The research seminar will be technical while the career-oriented seminar will be more general. (P/NP grading only.)—I. (I.)

197. Projects in Chemical Education (1-4)
Discussion and/or laboratory. Prerequisite: consent of instructor. Participation may include development of laboratory experiments, lecture demonstrations, autotutorial modules or assistance with laboratory sessions. May be repeated for credit for a total of 12 units. (P/NP grading only.)—I. II. III. (I. II. III.)

199. Directed Reading (1-5)
Prerequisite: consent of instructor based upon adequate preparation in chemistry, mathematics and physics. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5)
Prerequisite: consent of instructor based upon adequate preparation in chemistry, mathematics, and physics. (P/NP grading only.)

Graduate Courses
201. Chemical Uses of Symmetry and Group Theory (3)
Lecture—3 hours. Prerequisite: courses 124A and 110B, or consent of instructor. Symmetry elements and operations, point groups, representations of groups. Application to molecular orbital theory, ligand field theory, molecular vibrations, and angular momentum. Crystallographic symmetry.—I. (I.)

205. Symmetry, Spectroscopy, and Structure (3)
Lecture—3 hours. Prerequisite: course 201 or the equivalent. Vibrational and rotational spectra; electronic spectra and photoelectron spectroscopy; magnetism; electron spin and nuclear quadrupole resonance spectroscopy; nuclear magnetic resonance spectroscopy; other spectroscopic methods.—II. (II.)

210A. Quantum Chemistry: Introduction and Stationary-State Properties (3)
Lecture—3 hours. Prerequisite: course 110B and 110C or consent of instructor. Stationary-state quantum chemistry: postulates of quantum mechanics, simple solutions, central field problems and angular momenta, hydrogen atom, perturbation theory, variational theory, atoms and molecules.—II. (II.)

210B. Quantum Chemistry: Time-Dependent Systems (3)
Lecture—3 hours. Prerequisite: course 210A. Matrix mechanics and time-dependent quantum chemistry: matrix formulation of quantum mechanics, Heisenberg representation, time-dependent perturbation theory, selection rules, density matrices, and miscellaneous molecular properties.—III. (III.)

210C. Quantum Chemistry: Molecular Spectroscopy (3)
Lecture—3 hours. Prerequisite: course 210B. Molecular spectroscopy: Born-Oppenheimer approximation, rotational, vibrational and electronic spectroscopy, spin systems, and molecular photophysics.—I. (I.)

211A. Advanced Physical Chemistry: Statistical Thermodynamics (3)
Lecture—3 hours. Prerequisite: consent of instructor. Principles and applications of statistical mechanics; ensemble theory; statistical thermodynamics of gases, solids, liquids, electrolyte solutions and polymers; chemical equilibrium.—II. (II.)

211B. Statistical Mechanics (3)
Lecture—3 hours. Prerequisite: course 211A. Statistical mechanics of nonequilibrium including the rigorous kinetic theory of gases, continuum mechanics transport in dense fluids, stochastic processes, brownian motion and linear response theory. Offered in alternate years.—II.

212. Chemical Dynamics (3)
Lecture—3 hours. Prerequisite: consent of instructor. Introduction to modern concepts in chemical reaction dynamics for graduate students in chemistry. Emphasis will be placed on experimental techniques as well as emerging physical models for characterizing chemical reactivity at a microscopic level. Offered in alternate years.—II.

215. Theoretical and Computational Chemistry (3)
Lecture—3 hours. Prerequisite: courses 211A and 210B or consent of instructor. Mathematics of wide utility in chemistry, computational methods for guidance or alternative to experiment, and modern formulations of chemical theory. Emphasis will vary in successive years. May be repeated for credit when topic differs. Offered in alternate years.—III.

216. Magnetic Resonance Spectroscopy (3)
Lecture—3 hours. Prerequisite: courses 210A, 210B (may be taken concurrently). Quantum mechanics of spin and orbital angular momentum, nuclear magnetic resonance, theory of chemical shift and multiplet structures, electron spin resonance, theory of g-tensor in organic and transition ions, spin Hamiltonians, nuclear quadrupole resonance, spin relaxation processes. Offered in alternate years.—III.

225. X-Ray Structure Determination (3)
Lecture—3 hours. Prerequisite: consent of instructor. Introduction to x-ray structure determination; crystals, symmetry, deformation geometry, sample preparation and handling, diffraction apparatus and data collection, methods of structure solution and refinement, presentation of results, text, tables and graphics, crystallographic literature.—III. (III.)

226. Chemical Principles of Macromolecular Structure (3)
Lecture—3 hours. Prerequisite: course 211A or the equivalent. Relationship of higher order macromolecular structure to subunit composition, equilibrium properties and macromolecular dynamics; physical-chemical determination of macromolecular structure. Offered in alternate years.—III.

229. Spectroscopy of Organic Compounds (3)
Lecture—3 hours. Prerequisite: course 128C or the equivalent. Identification of organic compounds and investigation of stereoelectronic and reaction mechanism phenomena using spectroscopic methods—principally NMR, IR, and MS.—I. (I.)

221A-H. Special Topics in Organic Chemistry (3)
Lecture—3 hours. Selected topics of current interest in organic chemistry. Topics will vary each time the course is offered, and in general will emphasize the research interests of the staff member giving the course.—I. (I.)

226. Principles of Transition Metal Chemistry (3)
Lecture—3 hours. Prerequisite: course 124A or the equivalent. Electronic structures, bonding, and reactivity of transition metal compounds.—I. (I.)

228A. Bio-inorganic Chemistry (3)
Lecture—3 hours. Prerequisite: course 226 or consent of instructor. Defines role of inorganic chemistry in the functioning of biological systems by identifying the functions of metal ions and main group compounds. Discussions of concepts of electron deficiency, hypervalency, and non-classical bonding. Chemistry of the main group elements will be treated systematically. Offered every third year.—III.
228C, Solid-State Chemistry (3)
Lecture—3 hours. Prerequisite: courses 124A, 110B, 226, or the equivalent. Design and synthesis, structure and bonding of solid-state compounds; physical properties and characterization of solids; topics of current interest such as low-dimensional materials, inorganic polymers, materials for catalysis. Offered every third year.—III.

231, Organic Synthesis: Methods and Strategies (3)
Lecture—3 hours. Prerequisite: course 131 or the equivalent. Provides a broadly based discussion of current strategies in synthetic organic chemistry. Focus on methods for constructing carbon frameworks, controlling relative stereochemistry, and controlling absolute stereochemistry. Retrosynthetic strategies will be discussed throughout the lectures.—III.

233, Physical-Organic Chemistry (3)
Lecture—3 hours. Prerequisite: courses 128A-128B-128C and 110A-110B-110C or the equivalent. Introduction to elementary concepts in physical-organic chemistry including the application of simple numerical techniques in characterizing and modeling organic reactions.—II, (II.)

235, Organometallic Chemistry in Organic Synthesis (3)
Lecture—3 hours. Prerequisite: course 128C. Current trends in use of organometallics for organic synthesis; preparations, properties, applications, and limitations of organometallic reagents derived from transition and/or main group metals. Offered in alternate years.—(III.)

236, Chemistry of Natural Products (3)
Lecture—3 hours. Prerequisite: course 128C or the equivalent. Advanced treatment of chemistry of naturally occurring compounds isolated from a variety of sources. Topics will include isolation, structure determination, chemical transformations, total synthesis, biological activity, and biosynthesis. Biosynthetic origin will be used as a unifying theme.—I, (II.)

237, Bio-organic Chemistry (3)
Lecture—3 hours. Prerequisite: course 128C or the equivalent. Structure and function of biomolecules; molecular recognition; enzyme reaction mechanisms; design of suicide substrates for enzymes; enzyme engineering; design of artificial enzymes and application of enzymes in organic synthesis. Offered in alternate years.—(I.)

240, Advanced Analytical Chemistry (3)
Lecture—3 hours. Prerequisite: courses 110A and 115 or the equivalent. Numerical treatment of experimental data; thermodynamics of electrolyte and non-electrolyte solutions; complex equilibria in aqueous and non-aqueous solutions; potentiometry and specific ion electrodes; mass transfer in liquid solutions; fundamentals of separation science, including column, gas and liquid chromatography.—I, (I.)

241A–D, Special Topics in Analytical Chemistry (3)
Lecture—3 hours. Prerequisite: consent of instructor. Series of advanced, research-oriented, special-topics courses in analytical chemistry. Topics will vary each time course is offered.—III. (III.)

261, Current Topics in Chemical Research (2)
Lecture—2 hours. Prerequisite: graduate standing in Chemistry or consent of instructor. Designed to help chemistry graduate students develop and maintain familiarity with the current and past literature in their immediate field of research and related areas. May be repeated for credit when topics differ.—I, II, III, (I, II, III.)

263, Introduction to Chemical Research Methodology (3)
Laboratory/discussion—9 hours. Prerequisite: course 283 and graduate student standing in Chemistry; consent of instructor. Introduction to identification, formulation, and solution of meaningful scientific problems including experimental design and/or theoretical analyses of new and prevailing techniques, theories and hypotheses. May be repeated for credit when topics differ. (S/U grading only.)—I, II, III, (I, II, III.)

264, Advanced Chemical Research Methodology (6)
Laboratory/discussion—18 hours. Prerequisite: course 263 or consent of instructor. Applications of the methodology developed in Chemistry 263 to experimental and theoretical studies. Advanced methods of interpretation of results are developed. Includes the preparation of manuscripts for publication. May be repeated for credit when topic differs. (S/U grading only.)—I, II, III, (I, II, III.)

290, Seminar (2)
Seminar—2 hours. Prerequisite: consent of instructor. (S/U grading only.)—I, II, III, (I, II, III.)

293, Introduction to Chemistry Research (1)
Discussion—2 hours. Designed for incoming graduate students preparing for higher degrees in chemistry. Group and individual discussion of research activities in the Department and research topic selection. (S/U grading only.)—I, (I.)

295, Industrial Chemistry (1)
Seminar—2 hours. Prerequisite: graduate standing in Chemistry. Designed to give Chemistry graduate students an in-depth perception of careers in the chemical industry. Professional chemists will give seminars describing both research and career insights. The research seminar will be technical while the career-oriented seminar will be more general. May be repeated for credit. (S/U grading only.)—I, (I.) Kurth

298, Group Study (1-5)

299, Research (1-12)
The laboratory is open to qualified graduate students who wish to pursue original investigation. Students wishing to enroll should communicate with the department well in advance of the quarter in which the work is to be undertaken. (S/U grading only.)

Professional Courses

390, Methods of Teaching Chemistry (2)
Lecture—1 hour; discussion—1 hour. Prerequisite: graduate student standing in Chemistry and consent of instructor. Practical experience in methods and problems of teaching chemistry. Includes analyses of texts and supporting material, discussion of teaching techniques, preparing for and conducting of discussion sessions and student laboratories. Participation in the teaching program required for Ph.D. in chemistry. May be repeated for credit. (S/U grading only.)—I, II, III, (I, II, III.)

392, Advanced Methods of Teaching Chemistry (2)
Lecture—2 hours. Prerequisite: course 390. Advanced topics in teaching chemistry. Analysis and discussion of curricular design, curricula materials, teaching methods and evaluation. For students who are planning a career in teaching chemistry. (P/NP grading only.)—III, (III.)
Chicana/Chicano Studies

(College of Letters and Science)
Program Director
Program Office, 2102 Hart Hall (530-752-2421)
World Wide Web: http://cougar.ucdavis.edu/chi

Committee in Charge
Richard Berteaux, M.S., (Environmental Design)
Angie C. Chabram-Dennersesian, Ph.D. (Chicana/o Studies)
Sergio de la Mora, Ph.D. (Chicana/o Studies)
Yvette Flores-Oritz, Ph.D. (Chicana/o Studies)
Kevin R. Johnson, J.D. (School of Law)
Maliaquias Montoya, B.F.A. (Chicana/o Studies)
Kent Ono, Ph.D. (American Studies, Asian American Studies)
Beatriz Pesquera, Ph.D. (Chicana/o Studies)
Adaliz Sosa-Riddell, Ph.D. (Chicana/o Studies)

Faculty
Angie C. Chabram-Dennersesian, Ph.D., Associate Professor
Sergio de la Mora, Ph.D., Assistant Professor
Yvette Flores-Oritz, Ph.D., Associate Professor
Maliaquias Montoya, B.F.A., Professor
Beatriz Pesquera, Ph.D., Associate Professor

Emeriti Faculty
Refugio Rochin, Ph.D., Professor Emeritus
Adaliz Sosa-Raydell, Ph.D., Senior Lecturer Emerita

The Major Program
The Chicana/Chicano Studies Program offers an interdisciplinary curriculum focusing on the Chicana/Chicano experience through an analysis of class, race, ethnicity, gender and sexuality, and cultural expression. The program offers a major leading to the Bachelor of Arts degree and a minor that can satisfy breadth requirements for the College of Letters and Science. Both the major and minor frame an analysis within the historical and contemporary experiences of Chicanas/os in the Americas. The major gives students an opportunity to specialize in one of two emphases: Cultural Studies or Social/Policy Studies. Students in the major are expected to read, write, and speak Spanish at a level suitable for future study and work in Chicana/o and Latino/a settings. There are no language requirements for the minor, and all Chicana/Chicano Studies courses are open to students in any major.

The Program. At the lower division level, the major curriculum provides an interdisciplinary overview of various topics. Students are advised to take courses that serve as prerequisites for certain upper division courses. At the upper division level, majors pursue advanced interdisciplinary course work in both the humanities/arts and the social sciences. At this level, students will find courses in Chicana/Chicano history, theory, and several courses taught from a variety of disciplinary perspectives. Majors may specialize in one of two emphases for the A.B. degree. The Cultural Studies emphasis integrates literature, culture, and artistic expression. Social/Policy Studies emphasizes social theory, research methods, area studies in community/political economy, family, societal and health issues.

Career Alternatives. The Cultural Studies emphasis prepares students for professional work in cross-cultural education, cultural/art centers, artistic expression and communications. The Social/Policy Studies emphasis orients students towards professional work in human service delivery, community development, legal services assistance, health services, social welfare and education. Both emphases in the major prepare students for advanced graduate and/or professional studies in related fields.

Chicana/Chicano (Mexican-American) Studies

A.B. Major Requirements:

<table>
<thead>
<tr>
<th>Requirements</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cultural Studies Emphasis:</td>
<td></td>
</tr>
<tr>
<td>Preparatory Subject Matter</td>
<td>16-31</td>
</tr>
<tr>
<td>Chicana/o Studies 10, 50</td>
<td>8</td>
</tr>
<tr>
<td>Chicana/o Studies 21 or 30</td>
<td>4</td>
</tr>
<tr>
<td>One of Chicana/o Studies 60, 70, or 73</td>
<td>4</td>
</tr>
<tr>
<td>Spanish 1, 2, 3, or 28, 31, 32 or the equivalent</td>
<td>0-15</td>
</tr>
<tr>
<td>Depth Subject Matter</td>
<td>40</td>
</tr>
<tr>
<td>Chicana/o Studies 100</td>
<td>4</td>
</tr>
<tr>
<td>History 169A or 169B</td>
<td>4</td>
</tr>
<tr>
<td>Two courses from Chicana/o Studies 110, 111, 120, 122, 131, or 132</td>
<td>8</td>
</tr>
</tbody>
</table>

Comparative ethnicity/gender: two upper division courses selected from two of the following areas: African American Studies, Asian American Studies, Native American Studies, or Women’s Studies.
A minimum of 16 units from the following areas: ... 16
Three courses from Chicana/o Studies 154, 155, 156, 171, 172 .. 12
One course from Anthropology 113, 130, 146, Linguistics 166, 167, Native American Studies 190, Women’s Studies 160, 180 4

Total Units for the Major ... 56-71

Social/Policy Studies Emphasis:

<table>
<thead>
<tr>
<th>Requirements</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparatory Subject Matter</td>
<td>20-35</td>
</tr>
<tr>
<td>Chicana/o Studies 10, 50</td>
<td>8</td>
</tr>
<tr>
<td>Chicana/o Studies 21 or 30</td>
<td>4</td>
</tr>
<tr>
<td>One of Chicana/o Studies 60, 70, or 73</td>
<td>4</td>
</tr>
<tr>
<td>Sociology 46A or Psychology 41</td>
<td>4</td>
</tr>
<tr>
<td>Spanish 1, 2, 3, or 28, 31, 32 or the equivalent</td>
<td>0-15</td>
</tr>
<tr>
<td>Depth Subject Matter</td>
<td>40</td>
</tr>
<tr>
<td>Chicana/o Studies 100</td>
<td>4</td>
</tr>
<tr>
<td>History 169A or 169B</td>
<td>4</td>
</tr>
<tr>
<td>Two courses from Chicana/o Studies 154, 155, 171, or 172</td>
<td>8</td>
</tr>
</tbody>
</table>
| Comparative ethnicity/gender: two upper division courses selected from two of the following areas: African American and African Studies, Asian American Studies, Native American Studies, or Women’s Studies. ... 16
A minimum of 16 units from the following areas: ... 16
Three courses from Chicana/o Studies 110, 111, 120, 121, 122, 130, 131, or 132 | 12 |
One course from Anthropology 130, 144, 146, Education 151, Native American Studies 120, 133, Sociology 134 4

Total Units for the Major ... 60-75

Master Adviser. M. Montoya, B. Pesquera.

Minor Program Requirements:
This minor provides a broad overview of the historical, social, political, economic, ideological and cultural forces that shape the Chicana/o and Latino/a experience. The minor is open to all students with or without course work in Spanish. Students should contact the master adviser for a plan approval and verification of the minor.

<table>
<thead>
<tr>
<th>Requirements</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chicana/o (Mexican-American) Studies</td>
<td>24</td>
</tr>
<tr>
<td>Chicana/o Studies 10 or 50</td>
<td>4</td>
</tr>
<tr>
<td>History 169A or 169B</td>
<td>4</td>
</tr>
<tr>
<td>Four courses from Chicana/o Studies 110, 111, 120, 121, 122, 130, 131, 132, 154, 155, 156, 171, 172</td>
<td>16</td>
</tr>
</tbody>
</table>

Minor Adviser. S. de la Mora

Courses in Chicana/o Studies (CHI)

Lower Division Courses

10. Introduction to Chicana/o Studies (4)
Lecture—3 hours; discussion—1 hour. Analysis of the situation of the Chicana/o (Mexican-American) people, emphasizing their history, literature, political movements, education and related areas. GE credit: Div.—Wrt.—I, III. (I, III.) Pesquera

21. Chicana/o and Latina/o Health Care Issues (4)
Lecture—discussion—3 hours; term paper. Overview of the major political institutions and ideologies of the United States and the Chicana/o people’s historical and contemporary role in, effects from, and responses to them. Theory, method and critical analysis. GE credit: Div.—II, III.

30. United States Political Institutions and Chicana/os (4)
Lecture/discussion—3 hours; term paper. Primary overview of the major political institutions and ideologies of the United States and the Chicana/o people’s historical and contemporary role in, effects from, and responses to them. Theory, method and critical analysis. GE credit: Div.—II, III.

50. Chicana and Chicano Culture (4)
Lecture—discussion—1 hour. Interdisciplinary survey of Chicana/o cultural representation in the 20th century. Examines Chicana/o culture within a national and transnational context. Explores how Chicana cultural forms and practices intersect with social/material forces, intellectual formations and cultural discourses. (Former course 20.) GE credit: Div.—II, III. (II, III.) Chabram-Dennersesian

Quarter Offered: I—Fall; II—Winter; III—Spring; IV—Summer. 2001-2002 offering in parentheses.
General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
60. Chicana and Chicoano Representation in Cinema (4)
Lecture—8 hours. Introductory-level study of Chicana and Chicoano representation.
The depiction of Chicana and Chicoano experience by Chicoano filmmakers, as well as
non-Chicoano including independent filmmakers and the commercial indus-
try. Offered in alternate years.—I. (I.) de la Mora

70. Survey of Chicoano/o Art (4)
Lecture—4 hours. Survey of contemporary Chicoano/o art in context of the social
turnover from which it springs. Includes political use of the poster and the mural,
the influence of the Mexican mural and graphic movement, and social responsibility of
the artist. GE credit: Div.—I. (I.) Montoya

73. Chicoano/o Art Expression Through Silk Screen (4)
Studio—8 hours; laboratory—4 hours. Introductory level studio course using silk
screen and basic printing techniques to explore and develop images of Chicoan/o
cultural themes and expressions. Students will experiment with images and symbols
from their immediate environment/culture. Integrated approach to Chicoano/o philos-
ophy of art.—I. (I.) Montoya

98. Directed Group Study (1-5)
(P/NP grading only.)

99. Special Study for Undergraduates (1-5)
(P/NP grading only.)

Upper Division Courses

100. Chicana/Chicoano Theoretical Perspective (4)
Lecture/discussion—3 hours; term paper. Prerequisite: courses 10 and 50. Critical
examination of emerging Chicoano/o Studies theoretical perspectives in light of con-
temporary intellectual frameworks in the social sciences, arts, and humanities.
Includes analysis of practices of self-representation, and socio-cultural develop-
ments in the Chicoano/o community.—II. (II.) Chabram-Dernersesian

110. Sociology of the Chicoano/o Experience (4)
Lecture/discussion—4 hours. Prerequisite: course 10 or Sociology 1. The Chicoano/o
experience in the American society and economy viewed from theoretical perspec-
tives. Immigration, history of integration of Chicoano labor into American class
structure, education inequality, ethnicity, the family and Chicoano/o politics. (Former

111. Chicanas/Mexicanas in Contemporary Society (4)
Lecture/discussion—4 hours; course 10 or 50. Women's Studies 50 or History
169B. Analysis of the role and status of Chicanas/Mexicanas in contempo-
rany society. Special emphasis on their historical role, the political, economic and
social institutions that have affected their status, and their contributions to society
and their community. (Former course 102.) GE credit: ArtHum.—II. (II.) Pesquera

120. Chicoano/o Psychology (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 21; introductory psy-
chology course recommended. Introduction to the field of Chicoano/o psychology. Analysis of socio-cultural context of Chicanas/os and Latinas/os. Special
attention to issues of ethnic identity development, bilingualism, and develop-
ment of self esteem. Impact of minority experience, migration, acculturation are
examined. GE credit: SocSci, Div.—III. (III.) Flores-Ortiz

121. Chicoano/o Community Mental Health (4)
Lecture—3 hours; term paper: Prerequisite: course 10 or 20. Mental health needs,
problems, and service utilization patterns of Chicanas/os and Latinas/os will be ana-
lyzed. An analysis of social service policy, and the economic context of mental
health programs. GE credit: SocSci, Div.—Wrt.—II. (II.) Flores-Ortiz

122. Psychology Perspectives Chicoano/a and Latina/o Family (4)
Lecture—4 hours. Prerequisite: course 10; introductory psychology course highly
recommended, and/or consent of instructor. Role of migration and acculturation on
family structure and functioning. A psychological and Chicoano/o Studies per-
spective, contemporary gender roles and variations in family structures are exam-
ned. Special topics include family violence, addiction, family resilience and coping
strategies.—II. (II.) Flores-Ortiz

130. United States-Mexican Border Relations (4)
Lecture—3 hours; term paper. Prerequisite: upper division standing. Theories of U.S.
Mexican border relations, with an overview of the political, economic, and
social relationships and an in-depth analysis of immigration issues, border industri-
alization, women's organizations, economic crises, and legal issues. GE credit:
Div.—I. (I.)

131. Chicanas in Politics and Public Policy (4)
Lecture/discussion—4 hours. Prerequisite: course 30 or Political Science 1. Histori-
cal and political analysis of Chicanas/Latina political involvement and activities in
the general political system, women's movement, Chichano movement, and Chi-
cano movement. Course also examines the public policy process and the relation-
ship of Chicanas/Latinas to public policy formation. Offered in alternate years. GE
credit: SocSci, Div.—II. (II.)

132. Political Economy of Chicoano/o Communities (4)
Lecture—3 hours; term paper. Prerequisite: upper division standing; lower division
Chicoano/o Studies course recommended. Historical and contemporary study of poli-
tical economy and political processes which define and influence the development of Chi-
cano/o communities. Includes critiques of traditional and Marxian theories and
concepts applicable to Chicoano/o communities, case studies of Chicoano/o com-
munities, especially in California and Texas.—II. (III.)

154. The Chicoano/o Novel (4)
Lecture—4 hours. Prerequisite: intermediate Spanish or consent of instructor. Intro-
duction to the forms and themes of the Chicoano/o novel with special attention to
the construction of gender, nationality, sexuality, social class, and the family by
contemporary Chicoano/o novelists. Bilingual readings, lectures, discussions, and
writing in Spanish. (Former course Spanish 126A.) GE credit: ArtHum, Div.—III. (I.)
Chabram-Dernersesian

155. Chicoano/o Theater (4)
Lecture—4 hours. Prerequisite: intermediate Spanish or consent of instructor. Exam-
ination of the formal and thematic dimensions of Chicoano/o theater in the contem-
porary period with special emphasis on El Teatro Campesino and Chicoano Feminist
Theater. Bilingual readings, lectures, discussions, and writing in Spanish. (Former
course Spanish 126B.)—II. (II.) Chabram-Dernersesian

156. Chicoano/o Poetry (4)
Lecture—4 hours. Prerequisite: intermediate Spanish or consent of instructor. Survey
of Chicoano/o poetry with special emphasis on its thematic and formal dimensions.
Bilingual readings, lectures, discussions, and writing in Spanish. (Former course
Spanish 126C.)—III. (III.) Chabram-Dernersesian

165. Chicanas, Latinas and Mexicanas in Commercial Media (4)
Lecture/discussion—4 hours; laboratory—2 hours. Prerequisite: course 60 or other
film or feminist theory course; conversational fluency in Spanish. The portrayal of
Chicanas, Latinas and Mexicanas in commercial media. The relation between the
representation of Chicanas, Latinas, and Mexicanas women in commercial television
and cinema and the role of women in Mexican and U.S. societies. Offered in alter-
native years.—I. (I.) de la Mora

171. Mexican and Chicoano Mural Workshop (4)
Studio—8 hours; independent study—1 hour. Prerequisite: course 70 and/or writ-
ten consent of instructor. The Mural: a collective art process that empowers students
and people through design and execution of mural paintings in the tradition of the
Mexican Mural Movement; introduces materials and techniques. May be repeated
once for credit. (Same course as Art Studio 171.)—III. (III.) Montoya

172. Chicoano/o Voice/Poster Screen Workshop (4)
Studio—8 hours; independent study—1 hour. Prerequisite: course 70 and/or 73
and/or written consent of instructor. The poster as a voice art form used by Chi-
cano/as and other people of color to point to the defects of social and political exist-
ence and the possibility for change, from the Chicoano/o artists' perspective. May be
repeated once for credit.—II. (II.) Montoya

192. Internship in Chicoano/o and Latina/o Community (4)
Discussion—1 hour; internship—11 hours. Prerequisite: one course from 10, 21,
50, Spanish 3, or the equivalent. Combines academic guidance with internship in
community agencies serving Mexican/Latina/o clients. Utilization of biling-
ual skills, knowledge of history, culture, economics, politics, social issues and work
experience. Internship project required. May be repeated twice to a maximum of
12 units. (P/NP grading only.)

194HA-194HB-194HC. Senior Honors Research Project (2-5)
Independent study—6-15 hours. Prerequisite: senior standing in Chicoano/o Studies
major. Student is required to read, research, and write Honors Thesis on Chicoano/o
Studies topics. (Deferred grading only; pending completion of sequence.)

196. Directed Group Study (1-5)
Prerequisite: upper division standing and consent of Program Chairperson. (P/NP
grading only.)

199. Special Study for Advanced Undergraduates (1-5)
Prerequisite: upper division standing and consent of Program Chairperson. (P/NP
grading only.)

Graduate Courses

230. Chicoano/Latino Hispanic Politics (4)
Seminar—3 hours; term paper. Prerequisite: two undergraduate courses in Chi-
cano/o Studies or consent of instructor. Examination of Chicoano/Latino political
experiences. Evaluate theories, ideology, and practice of Chicoano politics. Brief
history of Chicoano/Latino Hispanic political activity, comparisons among political
modes, gendered politics, and understanding relationships among Chicoano, Mexi-
can, American and world politics.—III. (III.) Pesquera

286. Group Study for Graduate Students (1-5)
Prerequisite: graduate standing, consent of instructor. May be repeated for credit
when topic differs. (S/U grading only.)

298. Group Study for Graduate Students (1-5)
Prerequisite: graduate standing and consent of instructor. May be repeated for credit.
(Same course as Art Studio 171.)—III. (III.) Montoya

299. Special Study for Graduate Students (1-5)
Prerequisite: graduate standing and consent of instructor. (S/U grading only.)

Quarter Offered: I=Fall; II=Winter; III=Spring; IV=Summer. 2001-2002 offering in parentheses.

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
Child Development (A Graduate Group)

Keith Barton, Ph.D., Chairperson of the Group
Group Office, 1303 Hart Hall (530-752-1926)
World Wide Web: http://hcd.ucdavis.edu

Faculty
Curt R. Acredolo, Ph.D., Adjunct Associate Professor (Human and Community Development)
Linda P. Acredolo, Ph.D., Professor (Psychology)
Carolyn A. Aldwin, Ph.D., Professor (Human and Community Development)
Thomas F. Anders, M.D., Professor (Psychiatry)
Keith Barton, Ph.D., Professor (Human and Community Development)
Marc Braverman, Ph.D., 4-H Cooperative Extension Specialist (Human and Community Development)
Carol S. Bruch, J.D., Professor (School of Law)
Brenda K. Bryant, Ph.D., Professor (Human and Community Development)
Zhe Chen, Ph.D., Assistant Professor (Human and Community Development)
Kay Jeanne Gaedeke, M.S., Lecturer (Human and Community Development)
Patricia C. Gandara, Ph.D., Associate Professor (Education)
Xiaoja Ge, Ph.D., Associate Professor (Human and Community Development)
Beth Goodlin-Jones, Ph.D., Assistant Adjunct Professor (Psychiatry)
Robin L. Hansen, M.D., Associate Professor (Pediatrics)
Lawrence V. Harper, Ph.D., Professor (Human and Community Development)
Rosemarie H. Kraft, Ph.D., Associate Professor (Human and Community Development)
Penelope Knapp, M.D., Professor (Psychiatry)
Thomas L. Morrison, Ph.D., Professor (Psychiatry)
Beth A. Ober, Ph.D., Associate Professor (Human and Community Development)
Emesto Politi, Ph.D., Professor (Pediatrics)
Richard Ponzo, Ph.D., 4-H Cooperative Extension Specialist (Human and Community Development)
Carol J. Rodning, Ph.D., Associate Professor (Human and Community Development)
Stephen Russell, Ph.D., Assistant Cooperative Extension Specialist (Human and Community Development)
Jonathan H. Sandoval, Ph.D., Professor (Education)
Emmy E. Werner, Ph.D., Professor Emeritus

Graduate Study. The Graduate Group in Child Development offers a multidisciplinary program leading to an M.S. degree. The program provides students with an opportunity to pursue a coordinated course of postgraduate study in the field of child development which cuts across departmental boundaries. Students may work with children and families in the community, as well as the University’s Center for Child and Family Studies. Recipients of the degree gain sufficient background to engage in professions that directly (e.g., preschool, 4-H) or indirectly (e.g., social policy) involve children and families, obtain positions in teaching or research settings, or pursue further study leading to a doctorate in child development, human development, clinical psychology, or related fields. Admission applications must be in by January 15.

Graduate Adviser. Contact Group Office.
Classics

(Classical and Mediterranean Civilizations track)

Preparatory Subject Matter

Two courses from Classics 1, 2, 3, Latin 1-2-3, or Greek 1-2-3, Hebrew 1-2-3.

Depth Subject Matter

Upper division courses in Latin or Greek.

Total Units for the Major

66-67

(Classical Languages and Literatures track)

Preparatory Subject Matter

Two of the following sequences: Latin 1-2-3, Greek 1-2-3, Hebrew 1-2-3.

Depth Subject Matter

Six upper division courses in each of two chosen languages.

Total Units for the Major

70

A.B. Major Requirements:

Preparatory Subject Matter

Greeks 1, 2, 3 (or the equivalent).

Depth Subject Matter

Upper division units in Greek (two courses may be chosen from department-approved courses in related fields).

Total Units for the Major

36-51

Recommended

Latin 1, 2, 3.

Latin

A.B. Major Requirements:

Preparatory Subject Matter

Latin 121.

Depth Subject Matter

At least 31 additional upper division units in Latin.

Total Units for the Major

36-61

Major Adviser

E. Albu
Minor Program Requirements:
The Department offers minors in Classical Civilization, Greek and Latin for those wishing to follow a shorter but formally recognized program of study in classics.

Classical Civilization ..20
Classics 1, 2, or 3 ...4
One upper division course in Latin, Greek, Hebrew, or Aramaic.
Three additional upper division courses selected from any of the groups (a) through (c) below.

(a) in the Classical Civilization major12
(b) in the Classical Civilization major, and
 Greek or Latin elements but other languages not neglected.—(I.) Albu
(c) in the Classical Civilization major and
 improved ability to understand and retain unfamiliar words. Emphasis on Greek
 and Latin elements but other languages not neglected.—(II.) Albu

Latin ..21
Latin 3 ...5
Four upper division courses in Latin16

Graduate Study. The Department offers a master's degree in Classics with emphasis on either Greek or Latin; however, admission into the graduate program has been suspended.

Prerequisite credit. Credit will not normally be given for a lower division course in Latin or Greek if it is the prerequisite of a course already successfully completed. Exceptions can be made by the Program Director only.

Courses in Classics (CLA)

Lower Division Courses

 Lecture—3 hours; term paper. Introduction to the literature, art, and social and political institutions of ancient Mesopotamia, Egypt, Palestine, and early Greece from 3000 to 500 B.C.E. GE credit: ArtHum, Wrt.—I. Rosenstock

2. Ancient Greece and the Near East: 500 to 146 B.C.E. (4)
 Lecture—3 hours; term paper. Introduction to the literature, art and thought and the political and social institutions and values of Greece and its eastern Mediterranean neighbors—the Persians, Egyptians, and Judeans. GE credit: ArtHum, Wrt.—II. (II.) Trail

3. Rome and the Mediterranean: 1000 B.C.E. to 500 C.E. (4)
 Lecture—3 hours; term paper. Introduction to the history, literature and the political and social institutions and values of Roman civilization, with emphasis on Rome's interactions with its Mediterranean neighbors—Etruscans, Carthaginians, Greeks, Egyptians, and Persians—and on the rise of Christianity. GE credit: ArtHum, Wrt.—III. (III.)

10. Greek, Roman, and Near Eastern Mythology (3)
 Lecture—3 hours. Examination of major myths of Greece, Rome, and the Ancient Near East; their place in the religion, literature and art of the societies that produced them; their subsequent development, influence and interpretation. GE credit: ArtHum, Wrt.—II. (II.) Trail

15. Women in Classical Antiquity (4)
 Lecture—3 hours; term paper. Lives and roles of women in ancient Greece and Rome. Readings from history, philosophy, medical and legal documents, literature and myth. GE credit: ArtHum, Div, Wrt.—III. (III.)

20. Pompeii AD 79 (4)
 Lecture—3 hours; term paper. Roman life in an urban community at the time of the eruption of Vesuvius. Slide presentations of the archeological evidence will be supplemented by selected readings from Petronius' Satyricon and other ancient authors. Offered in alternate years. GE credit: ArtHum, Wrt.—II. (II.)

30. Greek and Latin Elements in English Vocabulary (3)
 Lecture—3 hours. Knowledge of Latin and Greek not required. Elements of Greek and Latin vocabulary for increased understanding of English word formation and improved ability to understand and retain unfamiliar words. Emphasis on Greek and Latin elements but other languages not neglected. (—I.) Albu

31. Greek and Latin Elements in Technical Vocabulary (3)
 Lecture—3 hours. Knowledge of Greek and Latin not required. Elements of Greek and Latin vocabulary to increase understanding of English word formation in medical, scientific and technical terminology and improve ability to understand and retain unfamiliar terms. (—I, II, III.)

50. The Rise of Science in Ancient Greece (4)
 Lecture/discussion—3 hours; term paper. Prerequisite: Mathematics 16A or the equivalent. Study of the emergence of scientific rationality in ancient Greece and its political and social context; concentration on four areas: mathematics, medicine, cosmology, and psychology. Reading from the Presocratics, Hippocrates, Plato, Aristotle, and Hellenistic philosophers. GE credit: ArtHum, Wrt.—I. Rosenstock

Upper Division Courses

102. Film and the Classical World (4)
 Lecture—3 hours; film viewing—2.5 hours. Prerequisite: any Classics course except 30 or 31. The Classical World as portrayed in films. Viewings and discussions of modern versions of ancient dramas, modern dramas set in the Ancient Mediterranean world, and films imbued with classical themes and allusions. Supplementary readings in ancient literature and mythology. GE credit: ArtHum, Wrt.—II. (II.)

110. Origins of Rhetoric (4)
 Lecture—3 hours; term paper. Prerequisite: one course in ancient history or consent of instructor. Issues in the development of rhetoric from its origins in ancient Greece to A.D. 400. Special attention to works of Plato, Aristotle, Cicero, and Quintilian. Role of grammar and rhetoric in schools of Roman Empire. The Christian rhetoric of Saint Augustine. Not open for credit to students who have completed Rhetoric and Communication 110 or Communication 110. (Former course Rhetoric and Communication 110.) GE credit: ArtHum, Wrt.—III.

140. Homer and Ancient Epic (4)
 Lecture—3 hours; term paper. Prerequisite: course 4A or 10 or Comparative Literature 1. Reading of Iliad, Odyssey, and Aeneid in English. Discussion of Homer's and Vergil's techniques of composition, the beliefs and values of their respective societies and the influence of Homer on Vergil. Offered in alternate years. GE credit: ArtHum, Wrt.—II. Trail

141. Greek and Roman Comedy (4)
 Lecture—3 hours; term paper. Examination of the ancient Greek romances and their development into the grotesque realism of Petronius' Satyricon, and the religious mysticism of Apuleius' The Golden Ass. GE credit: ArtHum, Wrt.—Schein

143. Greek Tragedy (4)
 Lecture—3 hours; term paper. Prerequisite: course 4A or 10. Reading in English of selected plays of Aeschylus, Sophocles and Euripides. Lectures on the development and influence of Athenian tragedy. Offered in alternate years. GE credit: ArtHum, Wrt.—II. Trail

150. Socrates and Classical Athens (4)
 Lecture/discussion—3 hours; term paper. Prerequisite: course 4A. Study of the major sources of our knowledge of Socrates to assess his role in the politics and culture of ancient Athens; his method of teaching and its place in Western thought. GE credit: ArtHum, Wrt.—Trail

171. Mediterranean Bronze Age Archaeology (4)
 Lecture—3 hours; extensive writing. Prerequisite: one of course 1, 2, 10, 15, Art History 1A, or Anthropology 3 recommended. Archaeological monuments of the ancient Near East, including Egypt and Mesopotamia, and of Greece and Crete during the Bronze Age. Special emphasis on the problems of state formation and on the co-existence and collapse of Bronze Age societies. Offered in alternate years. GE credit: ArtHum, Div, Wrt.—Roller

174. Greek Religion and Society (4)
 Lecture—3 hours; term paper. Prerequisite: a lower division Classics course, except Classics 3, 20, 30, or 31. Cults, festivals, and rituals of Greek religious practice and their relationship to Greek social and political institutions, and to Greek private life. Includes discussion of major sanctuaries at Olympia, Delphi, Athens, and others. Offered in alternate years. GE credit: ArtHum, Wrt.—Roller

175. Architecture and Urbanism in Mediterranean Antiquity (4)
 Lecture—3 hours; extensive writing. Prerequisite: a lower division course (except 30, 31); Art History 1A recommended. Architecture and urban development in the ancient Near East, Greece, and Rome. Special emphasis on the social structure of the ancient city as expressed in its architecture, and on the interaction between local traditions and the impact of Greek-Roman urbanism. (Same course as Art History 175.) Offered in alternate years. GE credit: ArtHum, Div, Wrt.—(III.)

190. Senior Seminar (4)
 Seminar—3 hours; GE credit. Prerequisite: completion of one upper division course in Latin, Greek or Hebrew or consent of instructor. Advanced interdisciplinary study of a problem in the ancient Mediterranean world using the techniques of history, archaeology, art history and philology. May be repeated for credit up to 5 units. (P/NP grading only.)

197TC. Community Tutoring in Classical Languages (1-5)
 Tutoring—1-5 hours. Prerequisite: consent of instructor. Supervised instruction of Greek or Latin in nearby schools by qualified students in department. May be repeated for credit up to 5 units. (P/NP grading only.)

198. Directed Group Study (1-5)
 Prerequisite: upper division standing. (P/NP grading only)

199. Special Study for Advanced Undergraduates (1-5)
 Prerequisite: upper division standing and consent of instructor. (P/NP grading only)

Graduate Courses

201. Introduction to Classical Philology (4)
 Seminar—3 hours; term paper. Survey of major contemporary areas of classical scholarship with special attention devoted to current problems in literary and textual criticism.—Trail

202. Homer (4)
 Seminar—3 hours; term paper. Readings in the Iliad and Odyssey: the origins and transmission of the poems.—Roller

203. Vergil (4)
 Seminar—3 hours; term paper. Reading of selected books of the Bucolics, Georgics, and Aeneid. Emphasis will be placed on the study of Vergilian poetic language.—Trail

Quarter Offered: I=Fall; II=Winter; III=Spring; IV=Summer. 2001-2002 offering in parentheses.
Courses in Greek (GRK)

Lower Division Courses

1. Elementary Greek (5)
 Lecture—5 hours. Introduction to the basic grammar and vocabulary of Classical and New Testament Greek. Development of translation skills with emphasis on Greek-English. (Students who have successfully completed Greek 2 or 3 in the 10th or higher grade in high school may receive unit credit for this course on a P/NP grading basis only. Although a passing grade will be charged to the student's P/NP option, no petition is required. All other students will receive a letter grade unless a P/NP petition is filed.)—I. (II.) Bulman

2. Elementary Greek (5)
 Lecture—5 hours. Prerequisite: course 1. Continuation of course 1.—II. (II.) Bulman

3. Intermediate Greek (5)
 Lecture—5 hours. Prerequisite: course 2. Continuation of course 2. Selected readings from Greek authors.—III. (III.) Traill

4. Intermediate Greek (5)
 Lecture—5 hours. Prerequisite: course 3. Continuation of course 2. Supplementary study of New Testament Greek.—III. (III.) Traill

96. Directed Group Study (1-5)
 Prerequisite: consent of instructor. (P/NP grading only.)

Upper Division Courses

100N. Readings in Greek Prose (4)
 Lecture—3 hours, recitation—1 hour. Prerequisite: course 3. Selected readings from pagan and Christian sources. May be repeated for credit with consent of instructor. GE credit: ArtHum, Wrt.—I. (I.) Albu

101. Plato (4)
 Lecture—3 hours; term paper. Prerequisite: course 3. GE credit: ArtHum, Wrt.—II. Schein

102. Euripides (4)
 Lecture—3 hours; term paper. Prerequisite: course 101. GE credit: ArtHum, Wrt.—(II.) Rolier

103A. Homer: Iliad (4)
 Recitation—3 hours; term paper. Prerequisite: course 3. GE credit: ArtHum, Wrt.—Schein

103B. Homer: Odyssey (4)
 Recitation—3 hours; term paper. Prerequisite: course 3. GE credit: ArtHum, Wrt.—(II.) Rolier

104. Menander (4)
 Lecture—3 hours; term paper. Prerequisite: course 3. GE credit: ArtHum, Wrt.

105N. Attic Orators (4)
 Lecture—3 hours; term paper. Prerequisite: course 3. Selected readings from the orators of 4th and 5th century Athens. May be repeated for credit with consent of instructor. Offered in alternate years. GE credit: ArtHum, Wrt.

111. Sophocles (4)
 Lecture—3 hours; term paper. Prerequisite: course 103. GE credit: ArtHum, Wrt.—(II.) Schein

112. Aristophanes (4)
 Lecture—3 hours; term paper. Prerequisite: course 103. GE credit: ArtHum, Wrt.

113. Thucydides (4)
 Lecture—3 hours; term paper. Prerequisite: course 103. Offered in alternate years. GE credit: ArtHum, Wrt.—(III.) Rolier

114. Lyric Poetry (4)
 Lecture—3 hours; term paper. Prerequisite: course 103. Offered in alternate years.

115. Aeschylus (4)
 Lecture—3 hours; term paper. Prerequisite: course 103. Offered in alternate years. GE credit: ArtHum, Wrt.—Schein

116. Herodotus (4)
 Lecture—3 hours; term paper. Prerequisite: course 103. Offered in alternate years.

198. Directed Group Study (1-5)
 (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5)
 (P/NP grading only.)

Courses in Latin (LAT)

Lower Division Courses

1. Elementary Latin (5)
 Lecture—5 hours. Introduction to basic grammar and vocabulary and development of translation skills with emphasis on Latin to English. (Students who have successfully completed Latin 2 or 3 in the 10th or higher grade in high school may receive unit credit for this course on a P/NP grading basis only. Although a passing grade will be charged to the student's P/NP option, no petition is required. All other students will receive a letter grade unless a P/NP petition is filed.)—I. (II.) Bulman

2. Elementary Latin (5)
 Lecture—5 hours. Prerequisite: course 1. Continuation of course 1.—II. (II.) Albu

3. Intermediate Latin (5)
 Lecture—5 hours. Prerequisite: course 2. Continuation of course 2. Selected readings from Latin authors.—III. (III.) Albu

98. Directed Group Study (1-5)
 Prerequisite: consent of instructor. (P/NP grading only.)

Upper Division Courses

100. Ovid (4)
 Lecture—3 hours; paper. Prerequisite: course 3. Translation and discussion of selected readings from the works of Ovid. GE credit: ArtHum, Wrt.—III. Traill

101. Livy (4)
 Lecture—3 hours; term paper. Prerequisite: course 3. Offered in alternate years.

102. Roman Comedy (5)
 Lecture—3 hours; term paper. Prerequisite: course 3. Offered in alternate years.

103. Vergil: Aeneid (4)
 Lecture—3 hours; term paper. Prerequisite: course 3. Offered in alternate years.

104. Sallust (4)
 Lecture—3 hours; term paper. Prerequisite: course 3. Offered in alternate years.

105. Catullus (4)
 Lecture—3 hours; term paper. Prerequisite: course 3. Offered in alternate years.

106. Horace: Odes and Epodes (4)
 Lecture—3 hours; term paper. Prerequisite: course 3. Offered in alternate years.

108. Horace: Satires and Epistles (4)
 Lecture—3 hours; term paper. Prerequisite: course 3. Offered in alternate years.

109. Roman Elegy (4)
 Lecture—3 hours; term paper. Prerequisite: course 3. Offered in alternate years.

110. Caesar (4)
 Lecture—3 hours; substantial paper. Prerequisite: course 3. Translation and discussion of selected readings from Caesar. Grammar review and introduction to Latin prose composition. Offered in alternate years. GE credit: ArtHum, Wrt.—I. (I.) Albu

111. Silver Age Latin (4)
 Lecture—3 hours; term paper. Prerequisite: course 3. Selections from Tacitus, Pliny, Petronius, Juvenal, Martial, and other writers of the Silver Age. Offered in alternate years. GE credit: ArtHum, Wrt.—(I.) Albu

112. Cicero: Political Writings (4)
 Recitation—3 hours; term paper. Prerequisite: course 3. Offered in alternate years. GE credit: ArtHum, Wrt.—(III.) Scheafer

114. Cicero: Philosophical Works (4)
 Lecture—3 hours; term paper. Prerequisite: course 3. Offered in alternate years.

115. Lucretius (4)
 Lecture—3 hours; term paper. Prerequisite: course 3. Offered in alternate years.

116. Vergil: Eclogues and Georgics (4)
 Lecture—3 hours; term paper. Prerequisite: course 3. Offered in alternate years.

121. Prose Composition (5)
 Lecture—4 hours; term paper.—(I.) Scheafer
125. Medieval Latin (4)
Lecture—3 hours; term paper. Prerequisite: course 3 and two upper division courses in Latin. Selected readings from the Vulgate and various medieval authors provide an introduction to the developments in the Latin Language and literature from the fourth to the fifteenth centuries. Offered in alternate years. GE credit: ArHum, Wrt.—(III.) Traill

198. Directed Group Study (1-5)
(P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5)
(P/NP grading only.)
Clinical Nutrition

(College of Agricultural and Environmental Sciences)

Faculty
See the Department of Nutrition

The Major Program

The Clinical Nutrition major provides students with training in normal and therapeutic nutrition, biological and social sciences, food science, communication, business management and food service management. This major fulfills the academic requirements for admission into a dietetics internship or the equivalent, which must be completed before qualifying for registration as a dietitian.

The Program. The Clinical Nutrition major (formerly Dietetics) includes the same basic core of nutrition classes as the Nutrition Science major, but includes additional courses such as food service management, education, sociology, and communication skills to prepare for work with the public. Clinical Nutrition students spend the first two years completing preparatory course work in the basic biological sciences, along with several of the social sciences. In the final two years, students take courses in normal and clinical nutrition, food science, biochemistry, and management techniques.

Entering freshman or transfer students are assumed to have basic computer skills and to demonstrate mathematics competency adequate to pass the Precalculus Qualifying Examination with a minimum score of 27, or have taken calculus at a community college or other four-year institution.

Career Alternatives. The Clinical Nutrition major qualifies students to apply for the American Dietetics Association “accredited internship,” enabling them to become a Registered Dietitian, the professional credential necessary to work in a clinical setting. Once dietitians are registered, they generally seek employment in administrative, therapeutic, teaching, research, or public health/public service positions in clinics, hospitals, schools, or other similar institutions. There is a growing role for dietitians working in settings outside of the traditional hospital (for example, in state and federal nutrition programs, nutrition education, Peace Corps and Cooperative Extension work). Students who complete the undergraduate preparation in clinical nutrition are also qualified to enter graduate programs in dietetics, nutrition science, public health nutrition, and food service management.

B.S. Major Requirements:

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written/Oral Expression</td>
<td>8</td>
</tr>
<tr>
<td>English 1 or 3</td>
<td>4</td>
</tr>
<tr>
<td>Communication 1</td>
<td>4</td>
</tr>
<tr>
<td>Preparatory Subject Matter</td>
<td>48-49</td>
</tr>
<tr>
<td>Biological Sciences 1A, 1B</td>
<td>10</td>
</tr>
<tr>
<td>Chemistry 2A, 2B, 2C, 8A, 8B</td>
<td>21</td>
</tr>
<tr>
<td>Economics 1A or 1B</td>
<td>5</td>
</tr>
<tr>
<td>Psychology 1</td>
<td>4</td>
</tr>
<tr>
<td>Sociology 1 or 3 or Anthropology 2</td>
<td>4-5</td>
</tr>
<tr>
<td>Statistics 13</td>
<td>4</td>
</tr>
<tr>
<td>Breadth/General Education</td>
<td>6-24</td>
</tr>
<tr>
<td>Satisfaction of General Education requirement</td>
<td></td>
</tr>
<tr>
<td>Depth Subject Matter</td>
<td>85-86</td>
</tr>
<tr>
<td>Agricultural and Resource Economics 112</td>
<td>4</td>
</tr>
<tr>
<td>Community and Regional Development 173 or Education 110</td>
<td>4</td>
</tr>
<tr>
<td>Animal Biology 102 and 103</td>
<td>8</td>
</tr>
<tr>
<td>Biological Sciences 101</td>
<td>4</td>
</tr>
<tr>
<td>Food Science and Technology 100A, 100B, 101A, 101B, 108</td>
<td>13</td>
</tr>
<tr>
<td>Food Service Management Management</td>
<td>120, 120L, 122</td>
</tr>
<tr>
<td>Food Science and Technology 104-104L or Microbiology 102-102L</td>
<td>8</td>
</tr>
<tr>
<td>Neurobiology, Physiology, and Behavior 101, 101L</td>
<td>8</td>
</tr>
<tr>
<td>Additional upper division Nutrition electives</td>
<td>6</td>
</tr>
<tr>
<td>Unrestricted Electives</td>
<td>13-33</td>
</tr>
<tr>
<td>Total Units for the Major</td>
<td>180</td>
</tr>
</tbody>
</table>

Advising Center for the major is located in 1202E Meyer Hall (530-752-2512).

Graduate Study. See the Graduate Studies chapter of this catalog.
Communication

(College of Letters and Science)
Michael T. Motley, Chairperson of the Department
Department Office, 108 Sproul Hall (530-752-1222)
World Wide Web: http://hume.ucdavis.edu/rcm

Faculty
Rina Alcalay, Ph.D., Associate Professor
Robert A. Bell, Ph.D., Professor
Charles R. Berger, Ph.D., Professor
Michael T. Motley, Ph.D., Professor
John L. Vohs, M.A., Senior Lecturer

Emeriti Faculty
James J. Murphy, Ph.D., Professor Emeritus, Academic Senate Distinguished Teaching Award
Ralph S. Pomeroy, Ph.D., Professor Emeritus

Affiliated Faculty
John Theobald, M.A., Lecturer

The Major Program

The major in communication focuses on the ways human beings produce and respond to verbal and nonverbal messages.

The Program. The program of study in communication examines communication processes at several different levels of analysis. Courses dealing with communication at the individual, interpersonal, organizational, and societal levels of analysis are offered. Classes addressing such topics as communication and cognition, message systems, interpersonal communication, nonverbal communication, communication and persuasion, organizational communication, mass media effects and public communication campaigns explore communication at these levels of analysis. Related social science courses are also part of the major.

Career Alternatives. Communication graduates have found careers in such fields as broadcast and print journalism, administration, sales, management, politics and government, education, social work, and public relations. A communication degree is also excellent preparation for law school or other graduate programs.

A.B. Major Requirements:

<table>
<thead>
<tr>
<th>Subject Matter</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparatory Subject Matter</td>
<td></td>
</tr>
<tr>
<td>Anthropology 4 or Linguistics 1</td>
<td>4</td>
</tr>
<tr>
<td>Communication 1 or 3</td>
<td>4</td>
</tr>
<tr>
<td>Psychology 1</td>
<td>4</td>
</tr>
<tr>
<td>Sociology 1</td>
<td>5</td>
</tr>
<tr>
<td>Statistics 1</td>
<td>4</td>
</tr>
<tr>
<td>Depth Subject Matter</td>
<td>44</td>
</tr>
<tr>
<td>Communication 114</td>
<td>4</td>
</tr>
<tr>
<td>Communication 115, 134, 141</td>
<td>12</td>
</tr>
<tr>
<td>Select one of Communication 103 or 105 or 135</td>
<td>4</td>
</tr>
<tr>
<td>Communication 130 or 136</td>
<td>4</td>
</tr>
<tr>
<td>Select one of Communication 143 or 145 or 152</td>
<td>4</td>
</tr>
<tr>
<td>Select four of the following additional courses (the four courses must be other than those chosen to fulfill the above requirements)</td>
<td>16</td>
</tr>
<tr>
<td>Total Units for the Major</td>
<td>65</td>
</tr>
</tbody>
</table>

Grading recommendation. Although not required, it is recommended that all courses offered in satisfaction of the major, except variable-unit courses, be taken for a letter grade.

Major Advisers. Faculty (contact department).

Advising Office. Staff adviser, Susie Johnson, 107 Sproul Hall.

Minor Program Requirements:

<table>
<thead>
<tr>
<th>Subject Matter</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication 1, 3</td>
<td>4</td>
</tr>
<tr>
<td>At least five upper division courses in communication</td>
<td>20</td>
</tr>
</tbody>
</table>

Graduate Study. The Department of Communication offers programs of study and research leading to the M.A. degree in Communication. Detailed information may be obtained from the Graduate Adviser, Department of Communication.

Graduate Adviser. R. Bell.

Subject A. Students must have satisfied the Subject A requirement before taking any course in Communication.

Courses in Communication (CMN)

(Formerly courses in Rhetoric and Communication.)

Lower Division Courses

1. Introduction to Public Speaking (4)
 Lecture—1 hour; discussion—3 hours. Practice in the preparation and delivery of speeches based on contemporary principles and strategies of informing and persuading audiences. GE credit: Wrt (cannot be used to satisfy a college or university composition requirement and GE writing experience simultaneously).—I, II, III, (I, II, III.) Motley

3. Interpersonal Communication Competence (4)
 Lecture—2 hours; discussion—2 hours. Communication in interpersonal contexts. Sender, receiver, and message variables, and their interaction with communication competence. Participation in simulations and experiential exercises.—I, II, III, (I, II, III.) Motley

99. Special Study for Undergraduates (1-5)
 Prerequisite: consent of instructor. (P/NP grading only.)

Upper Division Courses

103. Analysis of Message Systems (4)
 Lecture—4 hours. Examination of elements of the communication process, including sources, messages, media, and receivers. Study of the role of these elements as they are influenced by various communicative situations. GE credit: SocSci.—I, II, (I, II.)

105. Semantic and Pragmatic Functions of Language (4)
 Lecture—4 hours. Prerequisite: course 115. The role of language in shaping attitudes and perceptions of self and others. The use and abuse of verbal symbols in communicative situations. Concepts of meaning in discourse. GE credit: SocSci.—I, II, (I, II.)

114. Contemporary Theories of Human Communication (4)
 Lecture/discussion—4 hours. Rhetoric as a social science, characteristics of social theories, components of theories, development and testing of hypothesis, general models, theories, and research. GE credit: SocSci.—I, II, III, (I, II, III.)

115. Empirical Methods in Communication (4)
 Lecture—4 hours. Prerequisite: course 114 and Statistics 13 or the equivalent. Survey of social scientific research methods commonly employed in the communication discipline. Topics include research design, measurement, sampling, questionnaire construction, survey research, experimental research, content analysis, and interaction analysis. GE credit: SocSci.—I, II, III, (I, II, III.)

130. Group Communication Processes (4)
 Lecture—4 hours. Examination of current theories of group formation, goals, structure, and leadership, as they relate to communication processes. GE credit: SocSci.—I (I, II, III.)

134. Interpersonal Communication (4)
 Lecture—4 hours. Prerequisite: course 1 or 3, or 10 or the equivalent. Communication between two individuals in social and task settings. One-to-one communication, verbal and nonverbal, in developing relationships. Consideration of theory and research on relevant variables such as shyness, self-disclosure, reciprocity, games, and conflict. GE credit: SocSci.—I, II, III, (I, II, III.) Motley

135. Nonverbal Communication (4)
 Lecture—4 hours. Examination of the interaction between nonverbal communication and verbal communication channels in influencing outcomes in interpersonal and mass mediated communication contexts. Underlying functions served by nonverbal communication will also be considered. GE credit: SocSci, Div. —I, II, III, (I, II, III.)

Quarter Offered: I—Fall; II—Winter; III—Spring; IV—Summer. 2001-2002 offering in parentheses.
Graduate Courses

213. Theory Development in Communication Inquiry (4) Seminar—4 hours. This course explores meta-theoretical approaches to developing social-scientific theories of human communication. Perspectives include covering-law, systems, rules, axiomatic theory construction, causal modeling, scientific realism and grounded theory. Research design and measurement implications of these perspectives are examined. Berger

214. Mass Communication Theory and Research (4) Seminar—4 hours. Prerequisite: course 220 or the equivalent. Examines the basic theories, models, and assumptions of mass communication. Reviews the current state of this discipline and major research developments. Special emphasis on research regarding media and violence, women and minorities, political communication, and new technologies. Alcalay

215. Mass Communication and Social Change (4) Seminar—4 hours. Prerequisite: courses 220 and 214, or the equivalent. To gain an understanding of current theories and concepts in persuasion and mass communication. To explore how principles of persuasion are used in communication campaigns. To acquire skills in the planning, implementation, and evaluation of campaigns. —Alcalay

220. Empirical Methods in Communication (4) Lecture—4 hours. Prerequisite: course 115 or consent of instructor. Introduction to the use of experimental and descriptive research methods in communication research. Topics include survey research, interviewing, experimental and quasi-experimental design, and statistics. Motley

240. Advocacy in Contemporary Society (4) Seminar—4 hours. Prerequisite: course 151 or the equivalent. Rhetorical and communication theories of argumentation and advocacy stance. Analysis of the persuasive impact of argumentative positioning in current public controversies. —Bell

241. Organizational Communication (4) Seminar—4 hours. Prerequisite: upper division standing. Emphasis is placed on identifying and amending ineffective communication within organizations. GE credit: SocSci—III (1)

136. Organizational Communication (4) Lecture—4 hours. Examines communication in various organizational situations. Focuses on the use of effective communication strategies for achieving organization and individual goals. Emphasis is placed on identifying and amending ineffective communication within organizations. GE credit: SocSci—II, III (1, II, III) Vohns

138. Communication and Cognition (4) Lecture/discussion—4 hours. Prerequisite: upper division standing. Relationships between communication and cognition. Models of discourse comprehension and production, the influence of language attitudes on social judgments, and the effects of information processing on decision making are explored. Offered in alternate years. GE credit: SocSci—II, III (1, II) Berger

140. The Media Industry (4) Lecture/discussion—4 hours. Pass 1 open only to majors. Examines the economic, social, and political forces that shape media content. Topics include the historical evolution of the print and broadcast media; emerging technologies, including the Internet and interactive media; the globalization of the industry; patterns of media ownership. GE credit: SocSci—II (1)

141. Media Effects: Theory and Research (4) Lecture/discussion—4 hours. Prerequisite: course 115 or equivalent. Recommended. Pass 1 open only to majors. Social scientific studies of the effects of mass media messages on audience members’ actions, attitudes, beliefs, and emotions. Topics include the cognitive processing of media messages, television violence, political socialization, cultivation of beliefs, agenda-setting, and the impact of new technologies. GE credit: SocSci—II, III (II, III) Vohns

143. Analysis of Media Messages (4) Lecture—1 hour; discussion—4 hours; term paper. Prerequisite: courses 140 and 141 recommended. Pass 1 open only to majors. Examination of alternative approaches to the analysis, interpretation, and evaluation of media messages, including those disseminated through broadcasting, print, and new technologies. Both content analytic and interpretive approaches covered. GE credit: SocSci, Wrt. — I (1) Bell

152. Theories of Persuasion (4) Lecture—4 hours. Prerequisite: course 115. Survey of communication and social psychological theories of persuasion. Examination of influence tactics and message design. Contexts of application include political, persuasive, propaganda campaigns, and health promotion. GE credit: SocSci—II, III, (II, III) Theobald, Bell

160. Health Communication Campaigns (4) Lecture/discussion—3 hours; term paper. Prerequisite: course 115 or the equivalent. Strategic uses of media and interpersonal channels to promote health through communication campaigns. Topics include attitude and behavior change theories, social marketing, diffusion of innovations and campaign planning (formative research, message design and testing, audience segmentation, campaign evaluation, media advocacy). GE credit: SocSci—II, III (II) Alcalay

161. Cultural Perspectives on Health Communication (4) Lecture—4 hours. Prerequisite: upper division standing. Study of various cultures through health communication campaigns and representative media and cultural products (e.g., literary artifacts, films). Exploration of health promotion campaigns as manifestations of cultural values and beliefs about sexuality, human relations, religious, moral, society, and health. GE credit: SocSci—II (II) Alcalay

165. Media and Health (4) Lecture/discussion—3 hours; term paper. Prerequisite: course 115 or the equivalent. Pass 1 open only to majors. Content and effects of messages in news, entertainment, and popular culture. Topics include health news reporting; portrayals of disease, disability, death and health-related behaviors; representations of health professionals; promotion of drugs and other health products; tobacco and alcohol advertising. GE credit: SocSci—II, III (II) Bell

180. Current Topics in Communication (4) Seminar—4 hours. Prerequisite: upper division standing with a major in Communication or consent of instructor. Groups study of a special topic in communication. May be repeated once for credit. Enrollment limited. —III, (II, III) Vohns

192. Internship in Communication (1-6) Internship—3-18 hours. Prerequisite: declared major in Communication and 20 units of upper division Communication courses. Work-research projects, usually off-campus sites, under departmental supervision. May be repeated for credit up to 12 units. Units do not count toward major requirements. (P/NP grading only.)

194H. Senior Honors Thesis (4) Seminar—1 hour; individual tutoring on research project—3-9 hours. Prerequisite: senior standing and approval by Honors Committee. Directed reading, research, and writing culminating in the preparation of honors thesis under direction of faculty adviser.

197. Tutoring in Communication (2-4) Seminar—1-2 hours, laboratory—1-2 hours. Prerequisite: upper division standing with major in Communication and consent of Department Chairperson. Tutoring in undergraduate Communication courses, including leadership of discussion groups affiliated with departmental courses. May be repeated for credit up to a total of six units. (P/NP grading only.)

198. Directed Group Study (1-5) Prerequisite: consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) (P/NP grading only.)

200. Current Topics in Communication (4) Seminar—4 hours. Topics include health news reporting; portrayals of disease, disability, death and health-related behaviors; representations of health professionals; promotion of drugs and other health products; tobacco and alcohol advertising. GE credit: SocSci—II (II) Alcalay

214. Mass Communication Theory and Research (4) Seminar—4 hours. Prerequisite: course 220 or the equivalent. Examines the basic theories, models, and assumptions of mass communication. Reviews the current state of this discipline and major research developments. Special emphasis on research regarding media and violence, women and minorities, political communication, and new technologies. Alcalay

215. Mass Communication and Social Change (4) Seminar—4 hours. Prerequisite: courses 220 and 214, or the equivalent. To gain an understanding of current theories and concepts in persuasion and mass communication. To explore how principles of persuasion are used in communication campaigns. To acquire skills in the planning, implementation, and evaluation of campaigns. —Alcalay

220. Empirical Methods in Communication (4) Lecture—4 hours. Prerequisite: course 115 or consent of instructor. Introduction to the use of experimental and descriptive research methods in communication research. Topics include survey research, interviewing, experimental and quasi-experimental design, and statistics. Motley

240. Advocacy in Contemporary Society (4) Seminar—4 hours. Prerequisite: course 151 or the equivalent. Rhetorical and communication theories of argumentation and advocacy stance. Analysis of the persuasive impact of argumentative positioning in current public controversies. —Bell

241. Organizational Communication (4) Seminar—4 hours. Prerequisite: upper division standing. Emphasis is placed on identifying and amending ineffective communication within organizations. GE credit: SocSci—III (1)

251. Special Topics in Interpersonal Communication (4) Seminar—4 hours. Prerequisite: upper division standing. Selected topics in interpersonal communication. May be repeated for credit when topic differs. —Alcalay

252. Special Topics in Mass Communication (4) Seminar—4 hours. Prerequisite: upper division standing. Selected topics in mass communication theory and research. May be repeated for credit when topic differs. —Alcalay

253. Negotiation (4) Seminar—4 hours. Prerequisite: graduate standing and consent of instructor. Theory and research on negotiation. —Vohns

260. Communication Applications (2-4) Discussion—1 hour; supervised field work—3-9 hours. Prerequisite: course 220. Fieldwork in communication. Organization and implementation of a research project for a specific application of a communication program. May be repeated once for credit. (SU grading only.)

298. Group Study (1-5) Lecture—3 hours. (SU grading only.)

299. Individual Study (1-12) (SU grading only.)

299R. Thesis Research (1-12) Independent study—3-36 hours. Prerequisite: graduate standing in Communication. (SU grading only.)
Consumer Science

(College of Agricultural and Environmental Sciences)

Faculty. See under the Division of Textiles and Clothing.

Major Programs. The Consumer Food Science option under the Food Science major is a related program. See also Food Science and Technology, Nutrition, and Textiles and Clothing.

Graduate Study. For graduate study, see the Graduate Studies chapter of this catalog.

Courses in Consumer Science (CNS)

Questions pertaining to the following courses should be directed to the Division of Textiles and Clothing Advising Office, 231 Everson Hall.

Lower Division Courses

92. Internship in Consumer Science (1-12)
Internship—3-36 hours. Prerequisite: consent of instructor. Internship on and off campus in a consumer science related area. (P/NP grading only)

Upper Division Courses

100. Consumer Behavior (3)
Lecture—3 hours. Prerequisite: preparation in areas of psychology or sociology and economics recommended. Provides a set of behavioral concepts and theories useful in understanding consumer behavior on the part of the individual, business, and social organizations. Conceptual models to help guide and understand consumer research will be presented. GE credit: SocSci, Div, Wrt.—(II.)

192. Internship in Consumer Science (1-12)
Internship—3-36 hours. Prerequisite: completion of a minimum of 84 units; consent of instructor. Internship on and off campus in a consumer science related area. (P/NP grading only)

198. Directed Group Study (1-5)
(P/NP grading only)

199. Special Study for Advanced Undergraduates (1-5)
(P/NP grading only)

Graduate Course

299. Research (1-12)
(S/U grading only)

Professional Course

396. Teaching Assistant Training Practicum (1-4)
Prerequisite: graduate standing. May be repeated for credit. (S/U grading only)—I, II, III, IV.
Comparative Literature

(College of Letters and Science)
Kari Lokke, Ph.D., Program Director
Program Office, 522 Sproul Hall (530-752-1219)
World Wide Web: http://complit.ucdavis.edu

Committee in Charge
Marc E. Blanchard, Agrégé de Lettres (Comparative Literature, French)
Patricia Buiman, Ph.D. (Comparative Literature)
Gail Finney, Ph.D. (Comparative Literature, German)
Manfred Kusch, Ph.D. (Comparative Literature, French)
Kari Lokke, Ph.D. (Comparative Literature, English)
Harriet Murav, Ph.D. (Comparative Literature, Russian)
Seth L. Schein, Ph.D. (Comparative Literature)
Juliana Schiesari, Ph.D. (Comparative Literature, Italian)
Robert M. Torrance, Ph.D. (Comparative Literature)

Faculty
Salvatore Alocco, Ph.D., Lecturer
Marc Eli Blanchard, Agrégé de Lettres, Professor (Comparative Literature, French)
Patricia Buiman, Ph.D., Lecturer
Gail Finney, Ph.D., Professor (Comparative Literature, German)
Manfred Kusch, Ph.D., Senior Lecturer (Comparative Literature, French)
Kari Lokke, Ph.D., Associate Professor (Comparative Literature, English)
Scott McLean, Ph.D., Lecturer
Harriet Murav, Ph.D., Professor (Comparative Literature, Russian)
Donna Reed, Ph.D., Lecturer
Seth L. Schein, Ph.D., Professor
Juliana Schiesari, Ph.D., Professor (Italian, Comparative Literature)
Brenda Schleider, Ph.D., Lecturer
Robert M. Torrance, Ph.D., Professor

Emeriti Faculty
Ruby Cohn, Ph.D., Professor Emerita

The Major Program

Comparative literature encourages students to read, think about, and compare books from different national languages and from different parts of the world. Comparative literature enlarges students’ horizons by bridging the divisions between national cultures instead of concentrating on a single culture. The Program. Both the major and minor programs in comparative literature allow students to combine courses in one or more national literature departments with courses in comparative literature. The introductory course sequence, “Great Books of Western Culture” and “Major Books of the Contemporary World,” provides both an overview of European literary culture from ancient times to the present and intensive practice in analytical thought and English composition. All readings in undergraduate comparative literature courses are in English, but majors take upper division courses in at least one foreign literature in the original language. Career Alternatives. Careers directly related to comparative literature include teaching, journalism, publishing, and translating. Because many professional schools consider a literature major an excellent background for their graduate disciplines, comparative literature provides valuable preparation (supplemented with courses outside the major) for careers in business, government, medicine, or law.

A.B. Major Requirements:

Preparatory Subject Matter ... 15-46
Comparative Literature 1, 2, 3 .. 12
One lower division course other than Comparative Literature 1, 2, 3, and 10A-N .. 3-4
Foreign language: sufficient preparation to ensure satisfactory performance at the upper division level .. 0-30

Total Units for the Major .. 55-82

Recommended
Anthropology 2, Classics 10, English 171A, 171B; French 114; History 4A-4B-4C, 101; Linguistics 1, 4, 163; Philosophy 24, 123; Religious Studies 2.

Minor Program Requirements:

The minor in Comparative Literature allows students to combine courses in Comparative Literature with courses in one or two national literatures, including English and foreign literatures in translation. There is no foreign language requirement for the minor.

UNITS
Comparative Literature ... 24
Comparative Literature 1, 2, 3, or 4 .. 8
At least two upper division Comparative Literature courses (Comparative Literature 141 recommended) .. 8
Three additional upper division courses in one or two national literatures (including English) or in Comparative Literature 12

Three additional upper division courses in one or two national literatures (including English) or in Comparative Literature ... 12
Courses should form a coherent program and should be chosen in consultation with, and with the approval of, the adviser.

Minor Adviser. Same as Major Adviser.

Advising. All Comparative Literature majors and minors must consult with their adviser, individually, at least once at the beginning and once at the end of each academic year.

Honors Program. Candidates for high or highest honors in Comparative Literature must write a senior thesis under the direction of a faculty member approved by the Program Director. For this purpose, in addition to fulfilling all other major requirements, honors candidates must enroll in 6 units of Comparative Literature 194d during the first two quarters of the senior year. Only students who have attained a cumulative GPA of 3.5 in all courses satisfying the major (except elementary foreign language courses) at the end of the junior year will be eligible for the honors program.

Teacher Credential Subject Representative. The Staff. See also the Teacher Education Program.

Graduate Study. Refer to Comparative Literature (A Graduate Program). See also the Graduate Studies chapter of this catalog.

Courses in Comparative Literature (COM)

Lower Division Courses

1. Great Books of Western Culture: The Ancient World (4)
Lecture/discussion—4 hours. Prerequisite: completion of Subject A requirement. An introduction, through class discussion and frequent written assignments, to some of the great books of western civilization from The Epic of Gilgamesh to St. Augustine’s Confessions. GE credit: ArtHum, Wrt (cannot be used to satisfy a college or university composition requirement and GE writing experience simultaneously).—I, II, III. (I, II, III.)

2. Great Books of Western Culture: From the Middle Ages to the Enlightenment (4)
Lecture/discussion—4 hours. Prerequisite: completion of Subject A requirement. An introduction, through class discussion and frequent written assignments, to some of the great books of western civilization from Dante’s Inferno to Swift’s Gulliver’s Travels. GE credit: ArtHum, Wrt (cannot be used to satisfy a college or university composition requirement and GE writing experience simultaneously).—I, II, III. (I, II, III.)

3. Great Books of Western Culture: The Modern Crisis (4)
Lecture/discussion—4 hours. Prerequisite: completion of Subject A requirement. An introduction, through class discussion and frequent written assignments, to some of the great books of western civilization from Goethe’s Faust to Beckett’s Waiting for Godot. GE credit: ArtHum, Wrt (cannot be used to satisfy a college or university composition requirement and GE writing experience simultaneously).—I, II, III. (I, II, III.)

4. Great Books of the Contemporary World (4)
Lecture/discussion—4 hours. Prerequisite: completion of Subject A requirement. Comparative study of selected major Western and non-Western texts composed in the period from 1945 to the present. Intensive focus on writing about these texts, with frequent papers written about these works. GE credit: ArtHum, Wrt (cannot be used to satisfy a college or university composition requirement and GE writing experience simultaneously).—I, II, III. (I, II, III.)
Upper Division Courses

120. Writing Nature: 1750 to the Present (4)
Lecture/discussion—3 hours; term paper. Prerequisite: completion of Subject A requirement and at least one course in literature. Study of representations, descriptions, and discussions of the human and the non-human world in texts written in a variety of European and American traditions between 1750 and the present. Offered in alternate years. GE credit: ArtHum, Div.—(III) McLean

135. Women Writers (4)
Lecture/discussion—3 hours; term paper. An exploration of women's differing views of self and society as revealed in major works by female authors of various times and cultures. Readings, principally of fiction, will include such writers as Lady Murasaki, Mme de Lafayette, and Charlotte Bronte. GE credit: ArtHum, Div.—I, III, (II, I) Lokke, Reed

138. Gender and Interpretation (4)
Lecture/discussion—3 hours; term paper. Prerequisite: completion of Subject A requirement and at least one course in literature. Study of the representation of gender roles and gender hierarchy in literary texts from various periods, societies, and cultures in light of research and theory on gender, with attention to gender as a topic for literary interpretation. GE credit: ArtHum, Div.—II, Schiesari

139. Shakespeare and the Classical World (4)
Lecture/discussion—3 hours; term paper. Prerequisite: at least one course in literature. Shakespeare's representations of the classical world in the light of selected ancients and Renaissance conceptions of Antiquity, with special attention to the depiction of politics and history. Offered in alternate years.—(II) Schen

140. Thematic and Structural Study of Literature (4)
Lecture/discussion—3 hours; term paper. Interpretation of selected works illustrating the historical evolution of themes, as well as of formal and structural elements. May be repeated for credit when subject of course varies. GE credit: ArtHum, Div.—II, III

141. Literary Theory and Criticism (4)
Lecture/discussion—3 hours; term paper. Exploration of literary theories with emphasis on specific objectives and possibilities of comparative literature. GE credit: ArtHum, Div.—III

142. Critical Reading and Analysis (4)
Lecture/discussion—3 hours; term paper. Prerequisite: consent of instructor. Close reading of selected texts, scrutiny of very limited amount of material, with attention to the problems of texts in translation.

144. The Grotesque (4)
Lecture/discussion—3 hours; term paper. Prerequisite: completion of Subject A requirement and at least one course in literature. Study of the “grotesque” in selected texts from the Renaissance to the 20th century, with attention to the “grotesque” as a means of social, cultural, and political commentary, as well as of aesthetic innovation. Offered in alternate years. GE credit: ArtHum, Div.—(I)

145. Representations of the City (4)
Lecture/discussion—3 hours; term paper. Examination of the portrayal of the modern city in 19th and 20th century western literature. Readings include works by Balzac, Dickens, Poe, Baubleraeus, Dostoevsky, Whitman, Zola, T.S. Eliot, and William Carlos Williams. GE credit: ArtHum, Div.—(II)

146. Myth in Literature (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 6 recommended. Comparative study of different versions of one or more central myths, with attention to their cultural settings, artistic and literary forms of representation, as well as to their psychological dimensions. GE credit: ArtHum, Div.—(II)

147. Modern Jewish Writers (4)
Lecture/discussion—3 hours; term paper. Prerequisite: completion of Subject A requirement and one lower division literature course. Problems of the modern Jewish experience from the perspective of the writer's construction of the self in relation to the future and to the non-Jew. Draws upon Russian, German, Yiddish, and American traditions. GE credit: ArtHum, Div.—II, III, (II) Murav

151. Colonial and Postcolonial Experience in Literature (4)
Lecture/discussion—3 hours; term paper. Prerequisite: completion of Subject A requirement and at least one course in literature. A literary introduction to the cultural issues of colonialism and postcolonialism through reading, discussing and writing on narratives which articulate diverse points of view. GE credit: ArtHum, Div.—(II, III) Blanchard, Larsen

152. Literature of the Americas (4)
Lecture/discussion—3 hours; term paper. Prerequisite: completion of Subject A requirement and at least one course in literature. Study of the various stylistic, historical, social and cultural factors that contribute to a hemispheric vision of American literature, encompassing works by Canadian, United States, Caribbean, Brazilian, and Spanish-American writers. Offered in alternate years. GE credit: ArtHum, Div.—I, (I, I) Blanchard

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
153. The Forms of Asian Literature (4)
Lecture/discussion—3 hours; term paper. Prerequisite: upper division standing. Introduction to distinctive Asian literary forms, such as haiku, noh, the Chinese novel and tale, through readings of major works. Comparison with Western genres and study of native and Western critical traditions. GE credit: ArtHum, Div. Wrt.

154. African Literature (4)
Lecture—3 hours; term paper. Prerequisite: completion of Subject A requirement and at least one course in literature Pre- and post-colonial sub-Saharan African literature and the African oral traditions from which it emerged. Genres and themes of African literature in the 19th and 20th centuries. GE credit: ArtHum, Div, Wrt.—III. (I.) Scholten

157. War and Peace in Literature (4)
Lecture/discussion—3 hours; term papers. Prerequisite: course 1, 2, or 3, or consent of instructor. Through study of a few major works from Western and non-Western literature the course seeks to illuminate the way in which literature from antiquity to the present has dealt with the antinomy peace/war through the ages. GE credit: ArtHum, Wrt.

158. The Detective Story as Literature (4)
Lecture—3 hours; term paper. Study of the origins, literary and social background, development and implications of the literature of detection in a comparative context. GE credit: ArtHum, Wrt.—I. Cannon

159. The Modern (4)
Lecture—3 hours; term paper. Prerequisite: course 1, 2, 3, or 4 or the equivalent recommended. Portrayals of women in literature, comparing selected heroines who represent a particular theme, period, or genre. Texts range around the globe and from ancient to modern works, such as Lyssistrata, Emma, Hedda Gabler, The Makokia Sisters, and Top Girls. GE credit: ArtHum, Div, Wrt.

160A. The Modern Novel (4)
Lecture/discussion—3 hours; term paper. The changing image of man and his world as seen in novels by such writers as Joyce, Proust, and Mann. GE credit: ArtHum, Wrt.—III. (III.) Torrance

160B. The Modern Drama (4)
Lecture/discussion—3 hours; term paper. Readings in representative authors such as Ibsen, Strindberg, Chekhov, Pirandello and Brecht. GE credit: ArtHum, Wrt.—I. (II.) Finney

161A. Tragedy (4)
Lecture/discussion—3 hours; term paper. Persistent and changing aspects of the tragic vision in literature from ancient times to the present. GE credit: ArtHum, Wrt.

161B. Comedy (4)
Lecture/discussion—3 hours; term paper. Comic attitudes towards life in literary works of different ages. GE credit: ArtHum, Wrt.

163. Biography and Autobiography (4)
Lecture/discussion—3 hours; term paper. Portrayals of a human life in biographies and/or autobiographies of different countries and ages. Offered in alternate years. GE credit: ArtHum, Wrt.—II. (I.) Kuhn, Murav

164A. The Middle Ages (4)
Lecture/discussion—3 hours; term paper. Readings in heroic epics, chivalric romances, and such major authors as Dante and Chaucer, with emphasis on shared assumptions concerning man’s place in the world. GE credit: ArtHum, Wrt.—I.

164B. The Renaissance (4)
Lecture/discussion—3 hours; term paper. Readings in major authors such as Petrarch, Machiavelli, Erasmus, Montaigne, Rabelais, Cervantes, and Shakespeare, with particular emphasis on changing conceptions of the possibilities and limitations of man. GE credit: ArtHum, Wrt.—II. (I.) Schiesari

164C. Baroque and Neoclassicism (4)
Lecture/discussion—3 hours; term paper. Readings in major authors such as Calderón, Corneille, Pascal, Racine, Milton, and Grimmelsmaenhoven, with consideration of the tension between the expansive energies of the “baroque” and the restraints of dogma and reason. GE credit: ArtHum, Wrt.

164D. The Enlightenment (4)
Lecture/discussion—3 hours; term paper. Readings in major authors such as Swift, Voltaire, Rousseau, Sterne, and Kant, with emphasis on philosophical ideas and literary forms. GE credit: ArtHum, Wrt.—III. (III.) Kusch

166A. The Epic (4)
Lecture/discussion—3 hours; term paper. Study of various forms of epic poetry in both the oral and literary traditions. May be repeated for credit in different subject area. GE credit: ArtHum, Wrt.—(II.) Schein

166B. The Novel (4)
Lecture/discussion—3 hours; term paper. Readings in various forms of the novel such as the picaresque, the developmental, and the confessional, with emphasis on the evolution of the genre. May be repeated for credit in different subject area. GE credit: ArtHum, Wrt.—III. (III.)

167. Comparative Study of Major Authors (4)
Lecture/discussion—3 hours; term paper. Prerequisite: consent of instructor. Pivotal works of artists in the Western mainstream, such as Dante, Shakespeare, Cervantes, Goethe, Tolstoi, Proust, and Joyce. GE credit: ArtHum, Wrt.

168A. Romanticism (4)
Discussion—3 hours; term paper. Prerequisite: any introductory course in literature. Introduction to the Romantic movement with emphasis upon Romantic concepts of the self, irony, love, the imagination and artistic creativity, and the relationship of the individual to nature and society. GE credit: ArtHum, Wrt.—II. McLean

168B. Realism and Naturalism (4)
Discussion—3 hours; term paper. Prerequisite: consent of instructor. Novels and plays by Dickens, Zola, Flaubert, Dreiser, Ibsen, and Strindberg investigate marriage and adultery, the city and its perils, the hardships of industrialization, the war between the sexes, the New Woman, and other 19th-century themes. Offered in alternate years. GE credit: ArtHum, Wrt.

169. The Avant-Garde (4)
Lecture/discussion—3 hours; term paper. Studies in movements such as surrealism, expressionism and the absurd. GE credit: ArtHum, Wrt.

170. The Contemporary Novel (4)
Lecture—3 hours; term paper. Study of important novels from different parts of the world, including Asia, Africa, Latin America, Europe, and the United States, in the period from the Second World War to the present. GE credit: ArtHum, Wrt.

180. Selected Topics in Comparative Literature (4)
Lecture/discussion—3 hours; term paper. Prerequisite: completion of Subject A requirement and at least one course in literature. Study of a selected topic or topics appropriate to student and faculty interests and areas of specialization of the instructor. May be repeated once for credit when the topic differs. GE credit: ArtHum, Wrt.

194H. Special Study for Honors Students (1-5)
Independent study—1-5 hours. Prerequisite: open only to majors of senior standing who qualify for honors program. Guided research, under the direction of a faculty member approved by the Program Director, leading to a senior honors thesis on a comparative topic. May be repeated for credit. (P/NP grading only.)

195. Seminar in Comparative Literature (4)
Seminar—3 hours; term paper. Prerequisite: junior standing and major in Comparative Literature, or consent of instructor. Advanced comparative study of selected topics in major texts, with explicit emphasis on the theoretical and interpretive approaches that define Comparative Literature as a discipline and distinguish it from other literary disciplines. May be repeated once for credit when topic differs. Offered in alternate years.—(III.)

197T. Tutoring in Comparative Literature (1-5)
Discussion—2-4 hours. Prerequisite: upper division standing with declared major in Comparative Literature. Tutoring in undergraduate courses including leadership in small voluntary discussion groups affiliated with current courses offered by Comparative Literature. May be repeated for credit for a total of 6 units. (P/NP grading only.)

198. Directed Group Study for Advanced Undergraduates (1-5)
(P/NP grading only.)

Graduate Courses

210. Topics and Themes in Comparative Literature (4)
Discussion—3 hours; term paper. Prerequisite: graduate standing in Comparative Literature, English, or a foreign-language literature, or consent of instructor. Comparative, interpretive study of the treatment of specific topics and themes in literary works from various periods, societies, and cultures, in light of these works' historical and sociocultural contexts. May be repeated for credit when topic differs.—I, II, Finney

214. Approaches to Lyric Poetry (4)
Seminar—3 hours; term paper. Prerequisite: graduate standing or consent of instructor. Analysis and interpretation of poetic texts in different historical periods and national literatures, with consideration of major theoretical developments in the understanding of poetic discourse. Offered in alternate years.—(III.) Schiesari

215. Forms of the Spiritual Quest (4)
Seminar—3 hours; term paper. Prerequisite: graduate standing or consent of instructor. Knowledge of at least one foreign language. An exploration, cultivating in a research paper, of changing forms of the quest for transcendence in different cultures, mainly in major works of Western literature, but also in other traditions and from the perspectives of other disciplines.

220. Literary Genres (4)
Discussion—3 hours; term paper. Prerequisite: graduate standing in Comparative Literature, English, or a foreign-language literature, or consent of instructor. Comparative literature of major works in a particular genre from various linguistic, national, and cultural traditions, with particular attention to historical developments within the genre and to genre theory. May be repeated for credit when topic differs.—I, Schein

238. Gender and Interpretation (4)
Seminar—3 hours; term paper. Prerequisite: graduate standing or consent of instructor. Study of how literary texts from different periods, societies, and cultures represent gender roles and gender hierarchy; building on recent work on gender in anthropology, literature, psychology, and women's studies.

250A. Research in Comparative Literature (4)

250B. Research in Comparative Study of Author, Period, or Genre (4)
Individual instruction—1 hour. Individually guided research, under the supervision of a faculty member, in the specialized study of an individual author, historical period, or literary genre culminating in a term paper. Required of Ph.D. candidates.—I, II, III, (I, II, III.)
250C. Basic Research for the Dissertation (4)
Individual instruction—1 hour. Individually guided research, under the supervision of a faculty member, in preparation for the dissertation in Comparative Literature. Required of Ph.D. candidates.—I, II, III. (I, II, III.)

255. Colloquium (2)
Lecture/discussion—2 hours. Prerequisite: graduate standing. Oral presentation and critique of research papers; discussion of current problems in teaching and research in Comparative Literature. May be repeated for credit. (S/U grading only.)—(II.)

260. Contexts of the 19th-Century Novel (4)
Seminar—3 hours; term paper. Prerequisite: graduate standing or consent of instructor. Development in 19th-century history, culture, and society in relation to major trends in the 19th-century novel. Offered in alternate years.—(III.) Murav

298. Directed Group Study (1-5)
Prerequisite: graduate standing. (S/U grading only.)

299. Individual Study (1-12)
(S/U grading only.)

299D. Special Study for the Doctoral Dissertation (1-12)
(S/U grading only.)

Professional Courses

390. Teaching Comparative Literature in College (3)
Lecture—1 hour; discussion—2 hours. Methods of teaching Comparative Literature with specific application to the introductory courses 1, 2, and 3, in relation to major cultural and social developments. Discussion also of ways to teach analytical writing. (S/U grading only.)—I. (I.)

392. Teaching Internship in Comparative Literature (1)
Discussion—1 hour. Regular consultations between the student instructor teaching Comparative Literature courses and a supervisor. In-class evaluation of teaching. May be repeated for credit after consultation with supervisor. (S/U grading only.)—I, II, III. (I, II, III.)

396. Teaching Assistant Training Practicum (1-4)
Prerequisite: graduate standing. May be repeated for credit. (S/U grading only.)—I, II, III. (I, II, III.)
Comparative Literature (A Graduate Group)

Kari Lokke, Ph.D., Chairperson of the Group
Group Office, 522 Sproul Hall (530-752-2239)

Faculty
Marc Blanchard, Ph.D, Professor (Comparative Literature, French)
Margaret Ferguson, Ph.D., Professor (English)
Gail Finney, Ph.D., Professor (Comparative Literature, German)
Manfred Kusch, Ph.D., Senior Lecturer (Comparative Literature, French)
Neil Larsen, Ph.D., Professor (Spanish)
Kari Lokke, Ph.D., Associate Professor (Comparative Literature, French)
Harriet Murav, Ph.D., Professor (Comparative Literature, Russian)
Seth Schein, Ph.D., Professor (Comparative Literature)
Juliana Schiesari, Ph.D., Professor (Comparative Literature, Italian)
Robert Torrance, Ph.D., Professor (Comparative Literature)
Michelle Yeh, Ph.D., Professor (East Asian Languages and Cultures)

Graduate Study. The Comparative Literature Program offers the M.A. and Ph.D. degrees with a strong emphasis on individual research under the supervision of a faculty member. Candidates for the M.A. combine study of Comparative Literature with study of two literatures (one of which may be English or American) in the original languages. Ph.D. candidates, in addition to further research of a comparative nature, study three literatures (one of which may be English and/or American) in the original languages, acquiring an extensive knowledge of the overall development of one. Within this framework, each student's program will be tailored to individual interests, and may center on a major historical period, such as the Renaissance or the modern age; a genre, such as lyric poetry, epic, drama, or the novel; or any other special emphasis approved by the Graduate Adviser.

Preparation. For admission to the Program, M.A. candidates should have an undergraduate major in literature and reading ability in one foreign language. Ph.D. candidates should have an undergraduate major in literature and reading ability in two foreign languages. The Group requires three letters of recommendation and a sample of recent written work, and it is recommended that students submit their GRE scores.

Graduate Adviser. S. Schein (Comparative Literature).
Community Development (A Graduate Group)

Michael P. Smith, Ph.D., Chairperson of the Group
Group Office, 1303 Hart Hall (Human and Community Development; 530-752-1926)
World Wide Web: http://hcd.ucdavis.edu/graduate/cdms/cdmain.html

Faculty

Rina Alcalay, Ph.D., Associate Professor (Communication)
Ted K. Bradshaw, Ph.D., Assistant Professor (Human and Community Development)
Stephen B. Brush, Ph.D., Professor (Human and Community Development)
David Campbell, Ph.D., Director, California Communities Program (Human and Community Development)
Dennis Dingemans, Ph.D., Professor (Geography)
Deborah Elliott-Fisk, Ph.D., Professor (Wildlife, Fish, and Conservation Biology)
Patsy Eubanks-Owens, M.L.A., Assistant Professor (Landscape Architecture)
Gail Feenstra, Ed.D., Food System Analyst (Sustainable Agriculture Research and Education Program)
Yvette Flores-Ortiz, Ph.D., Associate Professor (Chicana/o Studies)
Mark Francis, M.L.A., Professor (Landscape Architecture)
Isao Fujimoto, M.A., Senior Lecturer Emeritus
Seymour M. Gold, Ph.D., Professor (Environmental Horticulture)
Barbara G. Goldman, Ph.D., Lecturer (Education, Human and Community Development)
James I. Grieshop, Ph.D., Lecturer (Human and Community Development)
Luis Guarnizo, Ph.D., Assistant Professor (Human and Community Development)
Pat Harrison, M.Arch., Associate Professor (Design)
Frank W. Hirtz, Ph.D., Assistant Professor (Human and Community Development)
Desmond A. Jolly, Ph.D., Lecturer (Agricultural and Resource Economics)
Robert A. Johnston, Ph.D., Professor (Environmental Science and Policy)
Carl C. Jorgensen, Ph.D., Associate Professor (Sociology)
Susan B. Kaiser, Ph.D., Professor (Textiles and Clothing)
E. Dean MacCannell, Ph.D., Professor (Environmental Design)
Philip E. Martin, Ph.D., Professor (Agricultural and Resource Economics)
E. Stephen McNiel, M.L.A., Lecturer (Landscape Architecture)
Jay Mechling, Ph.D., Professor (American Studies)
Janet D. Momsen, Ph.D., Professor (Human and Community Development)
Helge Olsen, Senior Lecturer (Design)
Donald A. Palmer, Ph.D., Professor (Graduate School of Management)
Beatriz M. Pesquera, Ph.D., Associate Professor (Chicana/o Studies)
Heath Schenker, M.A., Associate Professor (Landscape Architecture)
Seymour I. Schwartz, Ph.D., Professor (Environmental Science and Policy)
Michael P. Smith, Ph.D., Professor (Human and Community Development)
Alvin D. Sokolow, Ph.D., Lecturer (Human and Community Development)
Geoffrey A. Wandesforde-Smith, Ph.D., Associate Professor (Political Science, Environmental Science and Policy)
Robert Sommer, Ph.D., Professor (Psychology)
Bernadette Taralo, Ph.D., Lecturer (Human and Community Development)
Robert L. Thayer, Jr., M.A., Associate Professor (Landscape Architecture)
O. E. Thompson, Ph.D., Professor Emeritus
Jessica M. Utts, Ph.D., Professor (Statistics)
Sefiano Varese, Ph.D., Professor (Native American Studies)
Ronald E. Voss, Ph.D., Lecturer (Vegetable Crops Extension)
Miriam J. Wells, Ph.D., Professor (Human and Community Development)
Joan Wright, Ph.D., Lecturer (Human and Community Development)

Graduate Study. The Graduate Group in Community Development offers a multi-disciplinary program of study which leads to the M.S. degree. The program prepares students for professional roles as administrators, designers, planners, or researchers, with emphasis upon urban and rural communities and human service organizations. Graduate study in community development also prepares individuals to work within government or non-profit organizations in the realm of social and economic change. Students have the opportunity to specialize in (1) urban and rural development, (2) community economic and political development, (3) community design and planning, (4) racial and ethnic relations, (5) international migration and development, (6) gender and community development, and (7) social policy analysis.

Preparation. Applicants to this program can prepare themselves by enrolling for upper division courses in the social or behavioral sciences, e.g., anthropology, economics, sociology, psychology, cultural geography, or political science, and courses in community studies.

Graduate Advisers. Contact the Group Office.

Quarter Offered: I=Fall; II=Winter; III=Spring; IV=Summer; 2001-2002 offering in parentheses.

General Education (GE) credit:
ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
Comparative Pathology (A Graduate Group)

Dennis W. Wilson, D.V.M., Ph.D., Chairperson of the Group
Group Office, 1042 Harring Hall (530-752-2657)

Faculty
Alex A. Ardans, D.V.M., M.S., Professor (Medicine and Epidemiology)
Naomi Balaban, Ph.D., Assistant Adjunct Professor (Pathology)
Barry A. Ball, D.V.M., Ph.D., Professor (Population Health and Reproduction)
Peter A. Barry, Ph.D., Assistant Adjunct Professor (Pathology and Oncology)
Stephen W. Barthold, D.V.M., Ph.D., Professor (Pathology, Microbiology, and Immunology)
Richard J. Bold, M.D., Assistant Professor (Surgery)
Robert H. BonDurant, D.V.M., Professor (Population Health and Reproduction)
Christopher Bowius, M.D., Professor (Internal Medicine)
Walter M. Boyce, D.V.M., Ph.D., Professor (Pathology, Microbiology, and Immunology)
Hilary A. Brodie, M.D., Ph.D., Associate Professor (Otolaryngology)
Michael L. Bruss, D.V.M., Ph.D., Professor (Anatomy, Physiology, and Cell Biology)
Robert D. Cardif, M.D., Ph.D., Professor (Pathology)
Anthony T.W. Cheung, Ph.D., Adjunct Professor (Pathology)
Bruno B. Chomel, D.V.M., Ph.D., Associate Professor (Population Health and Reproduction)
Mary M. Christopher, D.V.M., Ph.D., Associate Professor (Pathology, Microbiology, and Immunology)
Alan J. Conley, D.V.M., Ph.D., Assistant Professor (Population Health and Reproduction)
Patricia A. Conrad, D.V.M., Ph.D., Professor (Pathology, Microbiology, and Immunology)
James S. Cullor, D.V.M., Ph.D., Professor (Population Health and Reproduction)
Satyia Dandeker, Ph.D., Associate Professor (Internal Medicine)
William G. Ellis, M.D., Professor (Pathology and Oncology)
Kent L. Erickson, Ph.D., Professor (Human Anatomy)
Thomas B. Farver, Ph.D., Professor (Population Health and Reproduction)
Lisie W. George, D.V.M., Ph.D., Professor (Medicine and Epidemiology)
Laure J. Gershwio, D.V.M., Ph.D., Professor (Pathology, Microbiology, and Immunology)
Gershwin, M. Eric, M.D., Professor (Rheumatology)
Shi N. Giri, B.V.Sc., Ph.D., Professor (Molecular Biosciences)
Sergi A. Grando, M.D., Ph.D., Professor (Dermatology)
Ralph Green, M.D., Professor (Pathology)
Claire R. Gregory, D.V.M., Professor (Surgical and Radiological Sciences)
Ronald P. Hedrick, Ph.D., Professor (Medicine and Epidemiology)
Andrew G. Hendrickx, Ph.D., Professor (Human Anatomy)
Robert J. Higgins, B.V.Sc., M.Sc., Ph.D., Professor (Pathology, Microbiology, and Immunology)
Susan V. Hildebrand, D.V.M., Professor (Surgical and Radiological Sciences)
David E. Hinton, Ph.D., Professor (Anatomy, Physiology, and Cell Biology)
Dwight C. Hirsh, D.V.M., Ph.D., Professor (Pathology, Microbiology, and Immunology)
Charles A. Holmberg, D.V.M., Ph.D., Professor (Population Health and Reproduction)
William J. Hornof, D.V.M., M.S., Professor (Population Health and Reproduction)
Dallas M. Hyde, Ph.D., Professor (Anatomy, Physiology, and Cell Biology)
Rosalyn-Rivkah Isseroff, M.D., Professor (Dermatology)
James J. Jones, D.V.M., Ph.D., Professor (Surgical and Radiological Sciences)
Richard W. Katzeberg, M.D., Professor (Radiology)
Mark D. Kittleson, D.V.M., M.S., Ph.D., Professor (Medicine and Epidemiology)
Gerald J. Kost, M.D., Professor (Pathology and Oncology)
Vijaya Kumari, M.D., Ph.D., Professor (Pathology, Microbiology, and Immunology)
Kenneth M. Lam, Ph.D., Professor (Population Health and Reproduction)
Bill Lasley, Ph.D., Professor (Population Health and Reproduction)
Richard A. LeCouteur, BVSc., Ph.D., Professor (Surgical and Radiological Sciences)
Rance B. LeFebvre, Ph.D., Professor (Pathology, Microbiology and Immunology)
Irwin K. Liu, D.V.M., Ph.D., Professor (Population Health and Reproduction)
Linda J. Lowenstein, D.V.M., Ph.D., Professor (Pathology, Microbiology, and Immunology)
Paul A. Lucie, Ph.D., Associate Professor (Pathology and Oncology)
Melinda H. MacDonald, D.V.M., Ph.D., Assistant Professor (Surgical and Radiological Sciences)
N. James MacLachlan, BVSc., Ph.D., Professor (Pathology, Microbiology, and Immunology)
Bruce R. Madewell, V.M.D., M.S., Professor (Surgical and Radiological Sciences)
John E. Madigan, M.S., D.V.M., Professor (Medicine and Epidemiology)
Sudesh P. Makker, M.D., Professor (Pediatrics)
Jaree S. Manning, Ph.D., Professor (Microbiology)
Michael B. McChesney, Ph.D., Associate Adjunct Professor (Pathology and Oncology)
Frederick J. Meyers, M.D., Professor (Internal Medicine)
Chris J. Miller, D.V.M., Ph.D., Acting Associate Professor (Pathology, Microbiology, and Immunology)
Joshue W. Miller, D.V.M., Ph.D., Assistant Adjunct Professor (Pathology)
F. Charles Mohr, D.V.M., Ph.D., Associate Professor (Pathology, Microbiology, and Immunology)
Peter F. Moore, BVSc., Ph.D., Professor (Pathology, Microbiology, and Immunology)
Michael E. Mount, D.V.M., Ph.D., Associate Professor (Molecular Biosciences)
Linda Munson, D.V.M., Ph.D., Associate Professor (Pathology, Microbiology, and Immunology)
Richard W. Nelson, D.V.M., Professor, (Medicine and Epidemiology)
Bennie I. Osburn, D.V.M., Ph.D., Professor and Dean (Pathology, Microbiology, and Immunology)
James W. Overstreet, M.D., Ph.D., Professor (Reproductive Biology)
Demosthenes Pappagianis, M.D., Ph.D., Professor (Microbiology)
Niels P. Pedersen, D.V.M., Ph.D., Professor (Medicine and Epidemiology)
Neville Pinstone, M.D., Professor (Internal Medicine)
Kent E. Pinkerton, Ph.D., Professor in Residence (Anatomy, Physiology, and Cell Biology)
Charles G. Popper, Ph.D., Professor (Anatomy, Physiology, and Cell Biology)
Jerry S. Powell, M.D., Professor (Anatomy, Physiology, and Cell Biology)
Thomas P. Prindiville, M.D., Associate Professor (Internal Medicine)
Dick L. Robbins, M.D., Professor (Internal Medicine)
Janet F. Roser, Ph.D., Professor (Animal Science)
Earl T. Sawai, Ph.D., Assistant Adjunct Professor (Pathology)
Kurt S. Schultz, D.V.M., M.S., Professor, Assistant Professor (Surgical and Radiological Sciences)
William M. Sisho, D.V.M., Ph.D., Assistant Professor (Population Health and Reproduction)
Bradford P. Smith, D.V.M., Professor (Medicine and Epidemiology)
Jack R. Snyder, D.V.M., Ph.D., Associate Professor (Surgical and Radiological Sciences)
Eugene P. Staffey, V.M.D., Ph.D., Professor (Surgical and Radiological Sciences)
Jeffrey L. Stott, Ph.D., Professor (Pathology, Microbiology, and Immunology)
Susan M. Stover, D.V.M., Ph.D. (Anatomy, Physiology, and Cell Biology)
Fern Tablin, V.M.D., Ph.D., Associate Professor (Anatomy, Physiology, and Cell Biology)
Alice F. Tarantal, Ph.D., Professor (Medicine and Epidemiology)
Alan P. Theon, D.M.V., Ph.D., Associate Professor (Surgical and Radiological Sciences)
Jose V. Torres, Ph.D., Associate Professor (Microbiology)
P. Richard Vulliet, D.V.M., Ph.D., Professor (Molecular Biosciences)
Patricia S. Wakenell, D.V.M., Ph.D., Associate Professor (Population Health and Reproduction)
Richard L. Walker, D.V.M., M.P.V.M., Ph.D., Professor of Clinical Diagnostic Bacteriology (Pathology, Microbiology, and Immunology)
Jean A. Wiedeman, M.D., Ph.D., Assistant Professor (Pediatrics)
Dennis W. Wilson, D.V.M., Ph.D., Professor (Pathology, Microbiology, and Immunology)
Reen W. Wu, Ph.D., Professor (Internal Medicine)
Tilahun Yilma, D.V.M., Ph.D., Professor (Pathology, Microbiology, and Immunology)
Joseph G. Zink, D.V.M., Ph.D., Professor (Pathology, Microbiology, and Immunology)

Emeriti Faculty
Dennis M. Meagher, D.V.M., Ph.D., Professor Emeritus
Harvey J. Olander, D.V.M., Ph.D., Professor Emeritus
Hans P. Riemann, D.V.M., Ph.D., Professor Emeritus
Boris Ruebner, M.D., Professor Emeritus
Richard Yamamoto, Ph.D., Professor Emeritus

Quarter Offered: I–Fall; II–Winter; III–Spring; IV–Summer. 2001–2002 offering in parentheses.
General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
Affiliated Faculty
Dale L. Brooks, D.V.M., Ph.D., Lecturer (Medicine and Epidemiology)
Gary N. Cherr, Ph.D., Lecturer (Environmental Toxicology)
Carolyn S. Friedman, Ph.D., Assistant Adjunct Professor (Medicine and Epidemiology)
Nicholas W. Lerche, D.V.M., M.P.V.M., Associate Adjunct Professor (Medicine and Epidemiology)
Marta L. Marthas, Ph.D., Assistant Adjunct Professor (Pathology, Microbiology, and Immunology)
Edward S. Schelegle, Ph.D., Assistant Research Physiologist (Anatomy, Physiology, and Cell Biology)
Ellen E. Sparger, D.V.M., Ph.D., Assistant Adjunct Professor (Medicine and Epidemiology)
Johanna L. Watson, D.V.M., Ph.D., Assistant Clinical Professor (Medicine and Epidemiology)

Graduate Study. The Graduate Group in Comparative Pathology offers the M.S. and Ph.D. degrees for graduate study in disciplines concerned with disease processes. The group’s focus is the study of the causes and nature of disease processes in animals and humans, with major emphasis on the mechanisms responsible for the development of diseases at the level of organ systems, the cell, or subcellular mechanisms. The group brings a wide array of scientific knowledge to this study, so that students with divergent interests can be accommodated in programs designed for individual needs. Beyond core courses selected from disciplines such as anatomy, bacteriology, genetics, immunology, parasitology, pathology, physiology, and virology, course programs are intentionally flexible.

Preparation. This program is primarily for students who have a professional medical degree, i.e., D.V.M., M.D., D.D.S. Students without a professional degree will not be considered unless they have an especially strong background in basic biomedical sciences.

Graduate Adviser. R.B. Le Febvre (Pathology, Microbiology, and Immunology), S.M. Stover (Anatomy, Physiology, and Cell Biology), J.G. Zinkl (Pathology, Microbiology, and Immunology).
Computer Science

(College of Letters and Science)
Biswaath Mukherjee, Ph.D., Chairperson of the Department
Department Office, 2063 Engineering II (530-752-7004)

Faculty. For complete faculty listing, please see Engineering: Computer Science.

The Major Program

The computer science major prepares students for careers involving the design of computer systems and their application to science, industry, and management.

The Program. Students taking this major receive solid grounding in fundamentals of computer languages, operating systems, computer architecture, and the mathematical abstraction required to use the computer in solving complex tasks. For students interested in the engineering aspects of computer science, see Engineering: Computer Science.

Preparatory Requirements

All continuing UC Davis students must meet the following requirements prior to requesting a change of major to computer science or double major with computer science:

1. Be a registered student at UC Davis at least one quarter prior to petitioning for change of major or double major.

2. Have completed the following courses or their equivalents:
 - Mathematics 21A, 21B, 21C, 22A 15 units
 - Computer Science Engineering 20, 30, 40, and either 50 or Electrical and Computer Engineering 70 16 units

3. Have a UC Davis grade point average of 2.75 or better in the courses listed above. Students who have completed courses at another institution equivalent to those listed above must have a grade point average of 3.0 or better in the equivalent course work. All courses must be taken for a letter grade.

Career Alternatives

The computer science program prepares students for advanced work in computer science or in other disciplines requiring advanced knowledge of the use of computers.

B.S. Major Requirements:

UNITS

Preparatory Subject Matter .. 52-53

- Mathematics 21A-21B-21C, 22A-22B .. 18
- Statistics 32 ... 3
- Computer Science Engineering 20, 40 8
- Computer Science Engineering 30 ... 4
- Computer Science Engineering 50 or Electrical and Computer Engineering 70 ... 4
- One series from the following four: ... 15-16
 - (a) Chemistry 2A-2B-2C
 - (b) Chemistry 2A-2B and Biological Sciences 1A
 - (c) Chemistry 2AH-2BH-2CH
 - (d) Physics 9A-9B-9C and Mathematics 21D

Depth Subject Matter ... 52-54

- Computer Science Engineering 110, 120 or 122B (completion of only 120 or 122B will satisfy the core requirement, but not a computer science elective simultaneously); 122A, 140A; 150 or 151A (completion of only 150 or 151A will satisfy the core requirement, but not a computer science elective simultaneously); 154A-154B 28
- Computer science electives ... 13
- Minimum of 4 courses and a minimum of 13 units from Computer Science Engineering 120, 122B (completion of only 120 or 122B will satisfy the core requirement, but not a computer science elective simultaneously), 140B, 142, 150, 151A (completion of only 150 or 151A will satisfy the core requirement, but not a computer science elective simultaneously), 151B, 152A, 152B, 153, 158, 160, 163, 165A, 166B, 168, 170, 177, 178, 186; one course (minimum of 3 units) from approved 192 and 199 courses.

Units

- Mathematics 108; and one course from Mathematics 115A, 115B, 115C, 127A, 127B, 127C, 131 (or Statistics 131A), 141, 145, 147, 149A, 149B, 150A, 150B, 150C; and one upper division Mathematics course numbered below 188.

Total Units for the Major .. 103-106

Major Advisers

Minor Program Requirements

UNITS

- Computer Science ... 24
- Computer Science Engineering 50 ... 4
- Computer Science Engineering 110 ... 4
- Upper division Computer Science Engineering courses 16

Graduate Study

See the Graduate Studies chapter of this catalog.

Quarter Offered: I=Fall; II=Winter; III=Spring; IV=Summer; 2001-2002 offering in parentheses.

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
Comparative Science (A Graduate Group)

Biswanath Mukherjee, Ph.D., Chairperson of the Group
Group Office, 2063 Engineering II (Department of Computer Science)
(530-752-7004; gradinfo@cs.ucdavis.edu)

Faculty
Demet Aksoy, Ph.D., Assistant Professor (Computer Science)
Prem Devanbu, Ph.D., Assistant Professor (Computer Science)
Fredric Chong, Ph.D., Assistant Professor (Computer Science)
Farid Dowla, Ph.D., Adjunct Associate Professor (Applied Science)
Matthew Farrens, Ph.D., Associate Professor (Computer Science)
Gary Ford, Ph.D., Professor (Electrical and Computer Engineering)
Michael Gertz, Ph.D., Assistant Professor (Computer Science)
Meera Blattner, Ph.D., Professor (Applied Science)
T.S. Chang, Ph.D., Professor (Electrical and Computer Engineering)
Harry Cheng, Ph.D., Associate Professor (Mechanical and Aeronautical Engineering)
Zhaojun Bai, Ph.D., Professor (Computer Science)
Matthew Bishop, Ph.D., Associate Professor (Computer Science)
Mont Hubbard, Ph.D., Professor (Mechanical and Aeronautical Engineering)
Ralph Algazzi, Ph.D., Professor (Electrical and Computer Engineering)
Daniel Gusfield, Ph.D., Professor (Computer Science)
S.L. Hakimi, Ph.D., Professor (Electrical and Computer Engineering)
Bernd Hamann, Ph.D., Associate Professor (Computer Science)
Matthew Farrens, Ph.D., Professor (Electrical and Computer Engineering)
Kenneth Joy, Ph.D., Professor (Computer Science)
Alan Laub, Ph.D., Professor (Computer Science)
Kari Levit, Ph.D., Professor (Computer Science)
Kwan-Liu Ma, Ph.D., Acting Associate Professor (Computer Science)
Charles Martel, Ph.D., Professor (Computer Science)
S.L. Hakimi, Ph.D., Professor (Electrical and Computer Engineering)
Kwan Lui Ma, Ph.D., Acting Associate Professor (Computer Science)
Nelson Max, Ph.D., Professor (Applied Science)
E.O. Milton, Ph.D., Professor (Mathematics)
Biswanath Mukherjee, Ph.D., Professor (Computer Science)
Vojin Oklabdzija, Ph.D., Professor (Electrical and Computer Engineering)
Bruno Olshausen, Ph.D., Assistant Professor (Psychology)
Ronald Olsson, Ph.D., Professor (Computer Science)
Raju Pandey, Ph.D., Assistant Professor (Computer Science)
Robert Redinbo, Ph.D., Professor (Electrical and Computer Engineering)
Todd Reed, Ph.D., Associate Professor (Electrical and Computer Engineering)
Ronald Olsson, Ph.D., Professor (Graduate School of Management)
Garry Rodrigue, Ph.D., Professor (Applied Science)
Phillip Rogaway, Ph.D., Associate Professor (Computer Science)
Manfred Ruskochka, Ph.D., Professor (Computer Science)
Donald Toppis, Ph.D., Professor (Graduate School of Management)
Karl Levitt, Ph.D., Professor (Computer Science)
Rao Vemuri, Ph.D., Professor (Applied Science)
Richard Winters, Ph.D., Professor (Computer Science)
Shih-Ho Wang, Ph.D., Professor (Computer Science)
Kent Wilen, Ph.D., Associate Professor (Electrical and Computer Engineering)
David Woodruff, Ph.D., Associate Professor (Graduate School of Management)

Emeriti Faculty
Peter Linz, Ph.D., Professor Emeritus
Michael Soderstrand, Ph.D., Professor Emeritus

Graduate Study. The Graduate Group in Computer Science offers programs of study leading to the M.S. and Ph.D. degrees in Computer Science. The varied nature of the faculty brings a wide variety of research interests to the program. Research strengths lie in algorithms, computer architecture, computer graphics and visualization, computer systems design, database systems, computer security, computer networks, fault tolerance, program specifications and verification, programming languages and compilers, parallel and distributed systems, operating systems, performance evaluation, robotics, scientific computation, and software engineering. Interdisciplinary research in computer science is encouraged.

Preparation. Normal preparation for the program is a bachelor's degree in either computer science or in a closely related field (such as electrical engineering or mathematics, with substantial course work in computer science). Applications are also considered from students with outstanding records in other disciplines. M.S. students may either complete a thesis or pass a comprehensive examination. Ph.D. students must pass preliminary written examinations in three areas of specialization as defined by the Graduate Group. Ph.D. students must also pass a qualifying oral examination and complete a dissertation demonstrating original research in an area approved by the Graduate Group.

Graduate Advisers. R. Pandey, D. Ghosal, N. Max.
Community and Regional Development

(College of Agricultural and Environmental Sciences)
Faculty. See the Department of Human and Community Development.

The Major Program
The Community and Regional Development major (formerly Applied Behavioral Sciences) is concerned with the study of communities and the people in them. The program focuses on community and organizational development, the role of culture and ethnicity in shaping community life, and the ways that knowledge can be used to solve social problems and improve the quality of life.

The Program. Principal subjects of study within the major are community and organizational development, social change processes, the role of culture and ethnicity in shaping community life, community research methodologies, the impacts of innovation and technology on community development, and the effects of social, economic and political systems on communities. The major is organized to allow students to develop fields of concentration that meet their career goals.

Internships and Career Alternatives. Community and Regional Development students are required to complete an internship in their field before graduation. Internships have been arranged with local, county, and state planning units, health departments, schools, housing offices, and community education programs. Community and Regional Development graduates are prepared for occupations in community development, social research, program evaluation, organizational and educational consulting, city and regional planning, and for-profit organizations. The major also provides effective preparation for graduate or professional study in the social and behavioral sciences, or for professional degrees.

B.S. Major Requirements:

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>English Composition Requirement</td>
<td>4-12</td>
</tr>
<tr>
<td>Preparatory Subject Matter</td>
<td>22-25</td>
</tr>
<tr>
<td>Agriculture and Environmental Science Engineering 2</td>
<td></td>
</tr>
<tr>
<td>Economics 1A or 1B</td>
<td>3-4</td>
</tr>
<tr>
<td>Community and Regional Development</td>
<td></td>
</tr>
<tr>
<td>Anthropology 2 or Sociology 1</td>
<td>4-5</td>
</tr>
<tr>
<td>Statistics 13 or Sociology 46B</td>
<td>3-4</td>
</tr>
<tr>
<td>Breadth/General Education Requirement</td>
<td>24</td>
</tr>
<tr>
<td>Satisfaction of General Education requirement</td>
<td></td>
</tr>
<tr>
<td>Depth Subject Matter Community and Regional Development 151, 151L, 160, 161, 168</td>
<td>8</td>
</tr>
<tr>
<td>Community and Regional Development 142, 152, or 154</td>
<td>4</td>
</tr>
<tr>
<td>Two courses from Community and Regional Development 157, 158, 164,</td>
<td></td>
</tr>
<tr>
<td>or 172, 176</td>
<td>4</td>
</tr>
<tr>
<td>Two courses from Community and Regional Development 140, 141, 156,</td>
<td></td>
</tr>
<tr>
<td>or 162</td>
<td>8</td>
</tr>
<tr>
<td>Community and Regional Development 172 or 176</td>
<td>4</td>
</tr>
<tr>
<td>Two courses from Community and Regional Development 118, 173, or</td>
<td></td>
</tr>
<tr>
<td>International Agricultural Development 103</td>
<td></td>
</tr>
<tr>
<td>Internship: Community and Regional Development 192</td>
<td>4</td>
</tr>
</tbody>
</table>

Areas of Specialization
Take 20 units from each of two options or 40 units from one option. The Areas of Specialization must include two Community and Regional Development courses. Up to 4 units of variable-unit course work may be counted toward this requirement (e.g., Community and Regional Development). 2000–2001/2001–2002 UC Davis General Catalog

Community Groups Option.. 40

Students must consult with a faculty adviser to identify an emphasis within the option and to select suitable courses.

Youth (American Studies 152, Human Development 100A, 100B, 101, 102, 103, 130, 131, 140, 140L, 141, 142, 151, Psychology 112, Sociology 122, 152)

Aging (Community and International Health 180, Human Development 100C, 143, 160, 162, 191, Sociology 154)

Gender (American Studies 154, Anthropology 130, Political Science 166, Psychology 114, Sociology 132, 133, 145B, Women’s Studies 103, 130, 140, 187)

Specially Challenged Individuals (Education 115, Exercise Science 131, Human Development 130, 131)

Class (Sociology 140, 185)

Organization and Management Option... 40

Students must consult with a faculty adviser to identify an emphasis within the option and to select suitable courses.

Administration (Community and Regional Development 157, 158, 168, Agricultural Economics 100A, 171A, Computer Science Engineering 167, Economics 104, 105, 115A, Political Science 100, 105, 142, 155, 161, 182, 183)

Communication (Communication 114, 130, 134, 136, 140, 152, Community and Regional Development 173, 175, Education 120, 163)

Human Resources (Community and Regional Development 151, 160, 161, 172, 176, Economics 151B, Food Service Management 123, Psychology 143, 144, 145, 183, Sociology 120, 128, 129)

Management (Community and Regional Development 118, 140, 141, 154, 161, 162, 164, 168, Agricultural Economics 112, 113, History 174A, Political Science 188, Sociology 138, 139, 158, 159, 180A, 180B)

Policy and Planning Option.. 40

Students must consult with a faculty adviser to identify an emphasis within the option and to select suitable courses.

Environmental Policy (Political Science 107, 175, Environmental Science and Policy 110, 160, 161, 164, 166, 168A, 168B, 171, 172, 173, 179, Environmental and Resource Sciences 121)

Law and Policy (Sociology 120, 152, 155, Political Science 103, 105, 154, 155, 181, 182)

Urban and Regional Planning (Community and Regional Development 140, 141, 152, 157, 158, 159, 171, Economics 115A, Environmental Planning and Management 110, 134, Environmental Science and Policy 171, 173, Geography 155, Political Science 100, 101, 102)

Social Services Option.. 40

Students must consult with a faculty adviser to identify an emphasis within the option and to select suitable courses.

Community Health (Community and Regional Development 164, Community Health 101, Environmental Science and Policy 126, Psychology 160, Sociology 154)

Aging (Community Health 190, Human Development 100C, 143, 160, 162)

Counseling (Communication 134, 135, Education 160, 163, Human Development 121, 130, Psychology 143, 145, 168)

Youth (American Studies 152, Human Development 100A, 100B, 101, 102, 103, 130, 131, 140, 140L, 141, 142, 151, Psychology 112, Sociology 122, 152)

The Family (Human Development 110, Sociology 131, 134, 135)

Education (Community and Regional Development 173, 175, Agricultural Education 100, 160, 163, Education 110, 110, 114, 120, Psychology 136, Sociology 124)

Bilingual Education (Education 151, 152, 153, Psychology 132)

Unrestricted Electives.. 39-50

Total Units for the Degree.. 180

Major Adviser. M. Kenney
Advising Center for the major is located in 1303 Hart Hall (530) 752-2244.
Courses in Community and Regional Development (CRD)

(Formerly courses in Applied Behavioral Sciences.)

Lower Division Courses
1. The Community (4)
 Lecture—3 hours; discussion—1 hour. Basic concepts of community analysis and planned social change. The dynamics of community change through case studies of communities including peasant, urban ghetto, suburban mainline, and California farm workers. GE credit: SocSci, Div, Wrt.—II, III, (II, II, III) Tarallo

2. Ethnicity and American Communities (4)
 Lecture—3 hours; discussion—1 hour. Historical and cultural survey of the role of various ethnic groups in the development of American communities. Examines ethnicity as a cultural factor, ethnicity as power and issues related to selected American ethnic groups. GE credit: SocSci, Div, Wrt.—II, (I, II) Guarnizo

17. Population and Community: Issues in Human Ecology (4)
 Lecture/discussion—4 hours. Dynamics and challenges of demographic changes in California and the world community, solutions as well as problems, implications for individuals, their possible contributions towards resolving global problems through community action. GE credit: SocSci, Div, Wrt.—II, (II)

47A. Orientation to Community Resources—San Francisco (2)
 Fieldwork—4 days field trip; seminar—three 2-hour sessions. Advance registration and orientation required. Intensive fieldwork in San Francisco. Interaction with agencies and individuals who address the range of human service, educational, and social needs in the city. (P/NP grading only)—summer

47B. Orientation to Community Resources—Central Valley (2)
 Fieldwork—4 day field trip; seminar—three 2-hour sessions. Advance registration and orientation required. Intensive fieldwork in the California Central Valley. History of settlement and development of the world’s most productive and diverse agricultural region. Housing, land use, development, immigration, and population growth. (P/NP grading only)—II, (II) Wiener

92. Internship (1-12)
 Internship—3-36 hours. Prerequisite: consent of instructor. Supervised internship, off and on campus, in community and institutional settings. (P/NP grading only)

98. Directed Group Study for Undergraduates (1-5)
 Prerequisite: consent of instructor. (P/NP grading only)

99. Special Study for Undergraduates (1-5)
 (P/NP grading only)

Upper Division Courses
118. Technology and Society (4)
 Lecture—3 hours; discussion—1 hour. Prerequisite: course 18 or consent of instructor. Impact of technology on labor relations, employment, industrial development and international relations. The internal relations of technology development and deployment. GE credit: SocSci, Wrt.—I, (I) Kenney

140. Dynamics of Regional Development (4)
 Lecture—4 hours. Prerequisite: one undergraduate social science course or consent of instructor. Political economy of domestic regional development. Technology, labor relations and interfirm linkages. California and other regions as case studies. GE credit: SocSci, Wrt.—II, (II) Kenney

141. Organization of Economic Space (4)
 Lecture—3 hours; discussion—1 hour. Prerequisite: course 1. The globalization of economic activity focusing on new spatial patterns of production and circulation and their implications for particular countries and regions.—II, (II) Monsen

142. Rural Change in the Industrialized World (4)
 Lecture—3 hours; discussion—1 hour. Prerequisite: course 1. Geography of rural environment with special emphasis on rural restructuring. The regional focus is on the developed world and comparisons are drawn between Europe (Eastern and Western) and North America.—III, (III) Monsen

151. Community Field Research: Theory and Analysis (3)
 Lecture—3 hours. Prerequisite: course 151L must be taken concurrently, course 1 and any upper division Community and Regional Development course are recommended. Design and analysis of research at the community level with a focus on the relationship between practice and theory. Focus will be on conducting community research using structural analysis, elite interviewing, ethnographic research, and other qualitative research methods. GE credit: SocSci, Div, Wrt.—II, (II, III) Smith, Tarallo

151L. Laboratory in Community Research and Analysis: Field Experience (1-3)
 Fieldwork—3-9 hours. Prerequisite: course 151 concurrently. Field research focused on community or organizational issues and their resolution. Includes assignment with local agencies or community-based organizations. The focus will be conducting community research using such methods as structural analysis, elite interviewing, ethnographic research, and comparative community studies.—II, III, Smith, Tarallo

152. Community Development (4)
 Lecture—4 hours. Prerequisite: course 1 or 151. Sociology 2, Anthropology 2, Asian American Studies 100, Chicano Studies 132, Geography 5, or African American Studies 164. Introduction to principles and strategies of community organization and development. Examination of different citizen participation movements and the role of change agents in the development process. Students work in teams and conduct fieldwork in local communities. GE credit: SocSci, Wrt.—I, (I) Bradshaw

153. International Community Development (4)
 Lecture—4 hours. Prerequisite: courses 1, Anthropology 2, International Agricultural Development 10. Examination of community development efforts worldwide. Analysis of impact of global forces on community development in different settings. Alternative strategies with emphasis on self-reliance and locally controlled development.—(summer) Summer, Fujimoto

154. Social Theory and Community Change (4)
 Lecture—4 hours. Prerequisite: course 1, Sociology 1, or Anthropology 2. A comparative overview of the dominant social science paradigms for the study of community development and change. Among the paradigms discussed are functionalism, conflict theory/Maxim, structuralism, and methodological individualism. GE credit: SocSci, Div, Wrt.—II, (II) Hirtz

156. Community Economic Development (4)
 Lecture—4 hours. Prerequisite: course 1 or a lower division course in Sociology, Political Science, or Economics; course 152 recommended. How government and community organizations help firms grow and create jobs through local economic development corporations, small business centers, revolving loan funds, incubators, and many other programs. Techniques to analyze community economic potential and identification of appropriate intervention tools.—III, (III) Bradshaw

157. Politics and Community Development (4)
 Lecture—4 hours. Prerequisite: prior course work in sociology or political science recommended. Analyzes political, economic and sociocultural forces shaping the form and function of local communities in the U.S. Considers theories of the state, the community and social change and case studies of actual community development in comparative historical perspective. GE credit: SocSci, Div, Wrt.—III, (III) Smith

158. Small Community Governance (4)
 Lecture/discussion—3 hours, fieldwork—3 hours. Prerequisite: course 151 or 160 or Political Science 100. Governing institutions and political processes in rural and small urban places. Local government organization, community autonomy, leadership, political change, policy development, and select policy issues including public finance. Field research on political processes or policy issues in select communities. Offered in alternate years.—III

160. Research Design and Method in Community Studies (4)
 Lecture—4 hours. Prerequisite: course 1; Statistics 13 or the equivalent. Application of behavioral science research methodology to multidisciplinary problems confronting communities and community organizations. Focuses on design, sampling, measurement and analysis.—I, (I) Goldman

161. Ethnographic Research in America (4)
 Lecture—3 hours; discussion—1 hour. Prerequisite: completion of 8 units of course work in Anthropology, Sociology, or Community and Regional Development. Measurement of qualitative, ethics and gender research methodologies. Emphasis on analyzing and conducting ethnographic research in American communities; problem formulation, analytic modes, data correction and interpretation. Offered in alternate years.—(III)

165. People, Work, and Technology (4)
 Lecture—4 hours. Prerequisite: course work in the social sciences (e.g., Sociology 1, 3, Anthropology 137, Economics 1A, 1B) or labor history. Relationship between work, technology, and people’s lives. Such topics as industrialization, bureaucrati- zation, automation, the structure of work-linked communities, education and the labor market, work and the economic system and the future of work.—III, (III) Wells

164. Theories in Organizational Change (4)
 Lecture—4 hours. Prerequisite: course 1 or 2. Development of approaches to planned change including normative re-educative, applied systems, and development strategies.—II, (II, III) Bradshaw

168. Program Evaluation and the Management of Organizations (4)
 Lecture—4 hours. Prerequisite: courses 160, 161. Role of program evaluation in organizational and program management. Impact of internal evaluation in program planning, improvement, and accountability.—II, (II) Goldman

171. Housing and Social Policy (4)
 Lecture—4 hours. Social impacts, economics, and politics of housing in the United States. Special attention given to alternative policy strategies at the national and local levels.—II, (II) Wiener
172. Social Inequality: Issues and Innovations (4)
Lecture—4 hours. Prerequisite: upper division standing; 8 units of sociology or anthropology or combination. Study of the phenomenon of inequality in the U.S. Various approaches to inequality examined, including structural and historical explanations, prejudice and discrimination, the “culture of poverty,” and arguments concerning race, sex, and genetic potential.—I. (I.) Wells

173. The Continuing Learner (4)
Lecture—4 hours. Prerequisite: upper division standing. Theories of adult learning and teaching emphasizing the role of adult education in the community. Designing of adult education programs.—II. (II.)

174. Communication for Community Change (4)
Lecture—4 hours. Prerequisite: course 1. Communication as a mechanism and method for creating change in communities. Theories and practices; impact of message on attitudes and behavior; ethics of change induced through communication. Offered in alternate years.

176. Comparative Ethnicity (4)
Lecture—4 hours. Prerequisite: upper division standing, 8 units of sociology or anthropology or combination. Exploration of the role of ethnicity in shaping social systems and interaction. Examination of analytical approaches to and issues arising from the study of ethnicity, through utilization of data from a range of different societies. GE credit: SocSci, Div, Wrt.—I. (I.) Guarnizo

192. Internship (1-12)
Internship—3-36 hours. Prerequisite: completion of 84 units and consent of instructor. Supervised internship, off and on campus, in community and institutional settings. (P/NP grading only.)

198. Directed Group Study (1-5)
(P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5)
(P/NP grading only.)

Graduate Courses

240. Community Development Theory (4)
Lecture/discussion—4 hours. Introduction to theories of community development and different concepts of community, poverty, and development. Emphasis on building theory, linking applied development techniques to theory, evaluating development policy, and examining case studies of community development organizations and projects.—I. (I.) Bradshaw

241. The Economics of Community Development (4)
Lecture—4 hours. Prerequisite: course 240. Economic theories and methods of planning for communities. Human resources, community services and infrastructure, industrialization and technological change, and regional growth. The community’s role in the greater economy.—I. (I.) Kenney

242. Community Development: Program Management (4)
Seminar—4 hours. Prerequisite: course 241. Planning, organization, financing and administration of social change projects or programs at the community or city level.—II. (II.) Hirtz

245. The Political Economy of Urban and Regional Development (4)
Lecture—4 hours. Prerequisite: course 157, 244, or the equivalent. How global, political and economic restructuring and national and state policies are mediated by community politics; social production of urban form; role of the state in uneven development; dynamics of urban growth and decline; regional development in California.—III. (III.) Smith

246. The Political Economy of Transnational Migration (4)
Lecture—4 hours. Prerequisite: graduate standing. Theoretical perspectives and empirical research on social, cultural, political, and economic processes of transnational migration to the U.S. Discussion of conventional theories will precede contemporary comparative perspectives on class, race, ethnicity, citizenship, and the ethnic economy.—II. (II.) Guarnizo

247. Transformation of Work (4)
Lecture/discussion—4 hours. Prerequisite: graduate standing in history or social science degree program or consent of instructor. Exploration of the ways that the experience, organization, and systems of work are being reconfigured in the late twentieth century. The impacts of economic restructuring on local communities and workers.—III. (III.) Wells

290. Seminar (1)
Seminar—1 hour. Analysis of research in applied behavioral sciences. (S/U grading only.)—I, II, III. (I, II, III.) Wright

292. Graduate Internship (1-12)
Internship—3-36 hours. Individually designed supervised internship, off campus, in community or institutional setting. Developed with advice of faculty mentor. (S/U grading only.)

296. Group Study (1-5) Guarnizo

299. Research (1-12)
(S/U grading only.)

Professional Course

440. Professional Skills for Community Development (4)
Seminar—4 hours. Prerequisite: course 240. The intersection of theory and case studies to develop practical skills needed to work as a professional community developer, program administrator, and/or policy consultant.—II. (II.) Bradshaw
Critical Theory

Neil Larsen, Ph.D., Program Director
Program Office, 611 Sproul Hall (530-752-5799)
World Wide Web: http://crittheory.ucdavis.edu/

Committee in Charge
Moradewun Adejunmobi, Ph.D. (African American and African Studies)
Marc E. Blanchard, Agrégé de Lettres (Comparative Literature, French)
Sue-Ellen Case, Ph.D. (Theatre and Dance)
Gail Finney, Ph.D. (Comparative Literature and German)
Neil Larsen, Ph.D. (Spanish)
Riche Richardson, Ph.D. (English)
Juliana Schiesari, Ph.D. (Italian)
David Simpson, Ph.D. (English)
Georges Van Den Abbeele, Ph.D. (French and Italian)
Sue-Ellen Case, Ph.D. (Theatre and Dance)
Stefano Varese, Ph.D. (Native American Studies)
Aram Yengoyan, Ph.D. (Anthropology)

Graduate Study. The program in Critical Theory offers study and research leading to the Ph.D. with a designated emphasis in Critical Theory. The program provides theoretical emphasis and interdisciplinary perspective to students already preparing for the Ph.D. in one of 13 participating departments (Anthropology, Comparative Literature, Dramatic Art, Education, English, French and Italian, German and Russian, History, Music, Philosophy, Psychology, Sociology, and Spanish). Students complete all requirements for the Ph.D., including the dissertation, in one of the participating departments. The additional requirements leading to the designated emphasis consist of three core courses (200A, 200B, 200C) offered by the program in Critical Theory, two additional graduate courses (one which may be Critical Theory 201), and a special examination.

Graduate Adviser. Consult Critical Theory Program Office.

Courses in Critical Theory (CRI)

Upper Division Courses

101. Introduction to Theoretical Approaches to Literature and Culture (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: completion of one upper division literature course or consent of instructor. Basic notions of critical theory and applicability of those notions to the interpretations of literary texts, film and media forms in our present global culture. GE credit: ArtHum, Wrt.—III. (III.)

Graduate Courses

200A. Approaches to Critical Theory (4)
Seminar—3 hours; term paper. Prerequisite: graduate standing in a participating program. The problem of interpretation in 20th-century thought with a critical overview of various theoretical approaches (e.g., semiotics, hermeneutics, deconstruction, social and cultural critique, feminist theory, psychoanalysis).—I, II, III. (I, II, III.)

200B. Problems in Critical Theory (4)
Seminar—3 hours; term paper. Prerequisite: course 200A with a grade of B+ or better. Focused study of a particular critical theoretical approach, school or perspective. Topics will vary. May be repeated for credit with consent of instructor when topic differs.—I, II, III. (I, II, III.)

200C. History of Critical Theory (4)
Seminar—3 hours; term paper. Prerequisite: graduate standing in a program participating in the critical theory designated emphasis and successful completion of course 200A with a B+ or better. Critical analysis and discussion of pre-twentieth century theories of literary and cultural criticism. Topics will vary. May be repeated for credit when topic differs.—II. (II.)

201. Critical Theory Special Topics (4)
Seminar—3 hours; term paper. Prerequisite: course 200A. Application of theoretical principles to one specific research topic. May be repeated for credit with consent of instructor when topic differs.—I, II, III. (I, II, III.)

202. Visual Culture (4)
Lecture/discussion—4 hours. Prerequisite: course 200A strongly recommended. Analysis of image production in the contemporary world (photography, film, television, advertising, etc.) and their effects on individual subjectivities and collective social identities.—II. (II.)

298. Directed Group Study (1-5)
299. Individual Study (1-12)
(S/U grading only.)
Crop Science and Management

(College of Agricultural and Environmental Sciences)

Faculty. See under Departments of Agronomy and Range Science, Agricultural and Resource Economics, Environmental Horticulture, Land, Air and Water Resources, Plant Pathology, Pomology, Vegetable Crops, and Viticulture and Enology.

Related Major Programs. The major relies on courses taught in conjunction with numerous other major programs, particularly Plant Biology, Agricultural Systems and Environment, and Agricultural and Resource Economics.

The Major Program

The Crop Science and Management major trains students in biological and natural sciences and economics as they apply to the production, protection, and maintenance of crop plants, and their quality following harvest.

The Program. Students majoring in crop science and management spend the first two years of study developing the scientific and general background necessary for upper division work. The science courses include chemistry, biology, botany, physics, and mathematics. Management courses include economics and accounting. General background is provided by courses in the social sciences/humanities (English, rhetoric, and the general education program). At the upper division level, students take courses in areas supportive of crop science and farm management, such as entomology, weed science, water and soil science, plant pathology, nematology, plant physiology and agricultural economics. Students may specialize by electing courses pertinent to specific crop types (vegetables, fruits and nuts, small grains, or nursery crops).

Internships and Career Alternatives. This program prepares graduates for careers in farm management and various other technical and management positions in agricultural business and associated enterprises, such as banking and equipment and supply companies, as well as private, state and federal service in consulting and research. Graduates are also qualified to pursue graduate studies in sciences such as plant biology, horticulture, agronomy, agroecology, pest management, economics or business management. Internships are available in local companies involved in farm production and in extension work with farm advisers.

B.S. Major Requirements:

English Composition Requirement ... 8

See College Requirement

Preparatory Subject Matter ... 62-64

Biological Sciences 1A, 1B, 1C ... 15
Chemistry 2A, 2B, 6A, 6B ... 16
Mathematics 16A, 16B ... 6
Physics 1A-1B or 7A-7B ... 6-8
Agricultural Systems and Environment 21 .. 3
Economics 1A, 1B ... 10
Agricultural Systems and Environment 120, Statistics 13 or 102 4
Applied Biological Technology 49 .. 2

Breadth/General Education ... 24

See General Education Requirement and consult your adviser

Depth Subject Matter .. 61-63

Crop and Soil Science Component .. 22-24
Plant Biology 111 or Environmental Horticulture 102; Plant Biology 142; Soil Science 100; Hydrologic Science 110 or 124 14-16
In consultation with adviser select a minimum of 8 additional units from Agricultural Systems and Environment 110A, 110B, 110C, 110L, Environmental Horticulture 125, Plant Biology 173, 174, Viticulture and Enology 115, 116 .. 8

Pest Management Component .. 16
Entomology 110, Nematology 100, Plant Biology 176, Plant Pathology 120 ... 16

Economics and Business Management Component 23
Agricultural and Resource Economics 100A, 100B, 140, Management 100 ... 16
In consultation with adviser select a minimum of 7 additional units from Agricultural and Resource Economics 100B, 112, 120, 145, 147, 150 or 157 7

Restricted Electives .. 12

In consultation with adviser select a minimum of 12 units from the following:

Unrestricted Electives ... 9-13

(Internship and Spanish Recommended)

Total Units for the Major ... 180

Major Adviser. T. DeJong.

Advising Center for the major is located in 152 Hunt Hall (530-752-1715).

Related Courses. See under Departments of Agronomy and Range Science, Agricultural and Resource Economics, Plant Biology, Plant Pathology, and Viticulture and Enology.

Courses in Crop Science and Management (CSM)

Lower Division Courses

92. Internship in Crop Science and Management (1-12)
Internship—3-36 hours. Prerequisite: consent of instructor. Supervised internship in crop production, research or management. (P/NP grading only.)

99. Special Study for Undergraduates (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)

Upper Division Courses

192. Internship in Crop Science and Management (1-12)
Internship—3-36 hours. Prerequisite: consent of instructor. Supervised internship off or on campus in crop production, research or management; or in a business, industry, or agency associated with these or other crop science enterprises. (P/NP grading only.)

194H. Special Study for Honors Students (1-5)
Independent study—3-15 hours. Prerequisite: senior standing, Crop Science and Management major, overall GPA of 3.25 or higher, and consent of Master Adviser. Two or three successive quarters of guided research on crop science and management related subject of special interest to the student. (P/NP grading only; deferred grading only, pending completion of thesis.)

199. Special Study for Advanced Undergraduates (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)
Cultural Studies (A Graduate Group)

Kent Ono, Ph.D., Chairperson of the Group
Group Office, 2201 Hart Hall, (530-754-7683)

Committee in Charge
Sue-Ellen Case, Ph.D. (Theatre and Dance)
Angie Chabram-Dennersesian, Ph.D. (Chicana/o Studies)
John H. Hall, Ph.D. (Sociology)
Susan Kaiser, Ph.D. (Textiles and Clothing, Women and Gender Studies)
Dean MacCannell, Ph.D. (Environmental Design)
Linda Morris, Ph.D. (English)
Judith Newton, Ph.D. (Women and Gender Studies)
Kent Ono, Ph.D. (American Studies, Asian American Studies)
Michele Praeger, Ph.D. (French, Italian)
Roger Rouse, Ph.D. (Anthropology)
Sopie Veloff, Ph.D. (East Asian Languages and Cultures)

Faculty
Moradewun Adejunmobi, Ph.D., Assistant Professor (African American and African Studies)

Carole Blair, Ph.D., Professor (American Studies)
Cynthia Brantley, Ph.D., Associate Professor (History)
Patrick Carroll-Burke, Ph.D., Assistant Professor (Sociology, Science and Technology Studies)

Sue-Ellen Case, Ph.D., Professor (Theatre and Dance)
Angie Chabram-Dennersesian, Ph.D., Associate Professor (Chicana/o Studies)
Elizabeth Constable, Ph.D., Assistant Professor (French, Italian)
Sergio Delamora, Ph.D., Assistant Professor (Chicana/o Studies)
Gail Finney, Ph.D., Professor (Comparative Literature, German)
Kay Favel, Ph.D., Associate Professor (Critical Theory)
Yvette Flores-Ortiz, Ph.D., Associate Professor (Chicana/o Studies)
Ruth Frankenberg, Ph.D., Associate Professor (American Studies)
Rosa Linda Fregosa, Ph.D., Associate Professor (Women and Gender Studies)
Xiaojia Ge, Ph.D., Associate Professor (Human and Community Development)
Gayatri Gopinath, Ph.D., Assistant Professor (Women and Gender Studies)
Luis Guarnizo, Ph.D., Assistant Professor (Human and Community Development)
Laura Grindstaff, Ph.D., Assistant Professor (Sociology)
William Hagen, Ph.D., Professor (History)
John H. Hall, Ph.D. (Sociology)
Darrell Hamamoto, Ph.D., Associate Professor (Asian American Studies)
Lynn Hershman, M.A., Professor (Art Studio)
Wendy Ho, Ph.D., Associate Professor (Asian American Studies, Women and Gender Studies)
Carole Joffe, Ph.D., Professor (Sociology)
Alessa Johns, Ph.D., Assistant Professor (English)
Suad Joseph, Ph.D., Professor (Anthropology, Women and Gender Studies)
Susan Kaiser, Ph.D., Professor (Textiles and Clothing, Women and Gender Studies)
Catherine Kudlick, Ph.D., Associate Professor (History)
Anna Kuhn, Ph.D., Professor (Women and Gender Studies)
Neil Larsen, Ph.D., Professor (Spanish and Classics)
Dean MacCannell, Ph.D., Professor (Environmental Design)
Ross MacDonald, Ph.D., (Science and Society)
Dianne Macleod, Ph.D., Professor (Art History)
Jay Mechling, Ph.D., Professor (American Studies)
Linda Morris, Ph.D., Professor (English)
Harriet Murav, Ph.D., Professor (Comparative Literature, Russian)
Judith Newton, Ph.D. (Women and Gender Studies)
Jacob Olupona, Ph.D., Professor (African American and African Studies)
Kent Ono, Ph.D., Associate Professor (American Studies, Asian American Studies)
Beatriz Pesquera, Ph.D., Associate Professor (Chicana/o Studies)
Michele Praeger, Ph.D., Associate Professor (French, Italian)
Sarah Prostansky, Ph.D., Assistant Professor (Women and Gender Studies)
Janelle Reinelt, Ph.D., Professor (Theatre and Dance)
David Robertson, Ph.D., Professor (English)
Catherine Robson, Ph.D., Assistant Professor (English)
Ruth Rosen, Ph.D., Professor (History)
Roger Rouse, Ph.D., Assistant Professor (Anthropology)
Margaret Rucker, Ph.D., Professor (Textiles and Clothing)
Jeffrey Ruda, Ph.D., Professor (Art History)
Michael Saler, Ph.D., Associate Professor (History)
Suzanna Sawyer, Ph.D., Associate Professor (Anthropology)
Seth Schein, Ph.D., Professor (Comparative Literature)
Barbara Selzer, Ph.D., Assistant Professor (Theatre and Dance)
Karen Shimakawa, Ph.D., Assistant Professor (Theatre and Dance, Asian American Studies)
Carol A. Smith, Ph.D., Professor (Anthropology)
Michael L. Smith, Ph.D., Professor (American Studies)
Michael P. Smith, Ph.D., Professor (Human and Community Development)
Blake Stimson, Ph.D., Associate Professor (Art History)
Kathleen Stuart, Ph.D., Associate Professor (History)
Lenora Timm, Ph.D., Professor (Linguistics)
Pat Turner, Ph.D., Professor (African American and African Studies, American Studies)
David Van Leer, Ph.D., Professor (English)
Sophie Veloff, Ph.D., Assistant Professor (East Asian Languages and Cultures)
Diane Wolf, Ph.D., Associate Professor (Sociology)
Michelle Yeh, Ph.D., Professor (East Asian Languages and Cultures)

Graduate Study. The Cultural Studies Graduate Program offers both M.A. and Ph.D. degrees in Cultural Studies. The program emphasizes an interdisciplinary approach to cultural inquiry that includes analyses of intersecting categories such as class, gender, race, ethnicity, sexuality, nationality, and the like. Students entering the program will use and develop methodologies from many fields to suit their objects of study. Students may pursue research in the following emphasis areas: 1) gender (including masculinity studies), 2) sexualities, 3) comparative race studies, 4) media and popular cultural representation, 5) science and society, 6) transnational and global studies, 7) religions, communities, and politics, and 8) rhetoric and critical theory. With the close guidance and supervision of a faculty committee, students may also create unique areas of focus.

Preparation. Normal preparation for the program is a bachelor's degree in a related field. M.A. students must pass an examination and write a significant scholarly essay. Ph.D. students must pass a qualifying examination, a comprehensive examination, and complete a dissertation demonstrating original research in an area approved by the Graduate Group. In addition to the standard UC Davis graduate application (which requires a statement of purpose), we also require three letters of recommendation, transcripts, GRE scores, a 10 page (minimum) writing sample, and a 250 word statement explaining the applicant's interest in pursuing a degree in Cultural Studies.

Courses in Cultural Studies (CST)

200A. Histories of Cultural Studies (4)
Lecture/discussion—4 hours. Prerequisite: graduate standing or consent of instructor. Undergraduate coursework in the humanities or social sciences recommended. Histories and traditions of cultural studies internationally; multiple legacies of cultural studies as a field of inquiry in various geographical contexts; foregrounds important critical perspectives resulting from social and intellectual movements worldwide.—I. (I.) Ono

200B. Theories of Cultural Studies (4)
Lecture/discussion—4 hours. Prerequisite: course 200A or consent of instructor. Definitions of “critical” scholarship and examination of various contexts in which cultural studies theory has emerged worldwide. Both mainstream and alternative theoretical traditions, such as those developed by people of color and by other minoritized groups.—II. (II.) Chabram-Dennersesian

200C. Practises of Cultural Studies (4)
Lecture/discussion—4 hours. Prerequisite: courses 200A and 200B or consent of instructor. Methodological and practical applications of cultural studies research. Critical analyses of ethnography, textual analysis, social change, community development, and identity formation. Emphasis given to students’ unique versions of cultural studies practices.—III. (III.) MacCannell

204. History and Theory of Sexualities (4)
Lecture/discussion—4 hours. Prerequisite: course 200A (may be taken concurrently) or consent of instructor. Studies of sexualities in feminist, literary, historical, and cultural studies research, specifically examining the emergence of “sexuality” as a field of research and the relationship of sexuality studies to cultural forms, subjectivity, and social relations generally. Not offered every year.—I. (I.) Gopinath

206. Studies in Race Theory (4)
Lecture/discussion—4 hours. Prerequisite: course 200A (may be taken concurrently) or consent of instructor. Theoretical framework for the critical study of race, drawing on contemporary cultural studies and postcolonial scholarship in order to understand the social production of “race” as a category for organizing social groups and determining group processes. Not offered every year.—II. (II.) Ho

208. Studies in Nationalism, Transnationalism, and Late Capitalism (4)
Lecture/discussion—4 hours. Prerequisite: course 200A (may be taken concurrently) or consent of instructor. Contemporary theories of nation, nationalism, postcolonialism, and transnationalism. Specific attention to the relationship between cultural production and the formation of ideas about nation and nationalism, including examination of both “legitimating” and resistant discourses. Not offered every year.—III. (III.) Fregosa
212. Studies in the Rhetorics of Culture (4)
Lecture/discussion—4 hours. Prerequisite: course 200A (may be taken concurrently) or consent of instructor. Survey of critical and analytical approaches to the study of texts. Examination of multi-mediated objects to understand their cultural import by focusing on discursive production, dispersal, and reception processes, and related shifts in power relations. Not offered every year.—I. (I.) Blair

214. Studies in Political and Cultural Representations (4)
Lecture/discussion—4 hours. Prerequisite: course 200A (may be taken concurrently) or consent of instructor. Framework for the analysis of political and popular cultural representations. Emphasis on concepts, theories, and methodologies illuminating dominant and vernacular cultural representation, appropriation, and innovation in transnational contexts. Not offered every year.—II. (II.) Projansky

250. Research Seminar (4)
Seminar—4 hours. Prerequisite: courses 200A, 200B, 200C or consent of instructor. Designed to facilitate student interaction and promote student research by guiding students through the production of a publishable essay. Essays submitted, distributed, and discussed by seminar participants. May be repeated up to 12 units of credit.—I. (I.)

290. Colloquium (1)
Lecture—1 hour. Prerequisite: graduate standing or consent of instructor. Designed to provide cohort identity and faculty student exchange. Opportunity to present papers, hear guest lecturers, and see faculty presentations, gather for organizational and administrative news, exchange information, and make announcements. May be repeated up to 12 units of credit. (S/U grading only.)—I, II, III. (I, II, III.)

295. Special Topics (4)
Lecture/discussion—4 hours. Prerequisite: graduate standing or consent of instructor. Special topics courses offered according to faculty and student interests and demands. May be repeated for credit with consent of adviser.—I, II, III. (I, II, III.)

298. Group Research (1-5)
Prerequisite: graduate standing or consent of instructor. Group research intended to facilitate group study in cultural studies. May be repeated up to 3 times or 12 units of credit. (S/U grading only.)—I, II, III. (I, II, III.)

299. Directed Research (4)
Prerequisite: graduate standing or consent of instructor. Directed research intended to facilitate independent study in cultural studies. May be repeated up to 12 units of credit. (S/U grading only.)—I, II, III. (I, II, III.)

299D. Dissertation Research (4)
Independent Study—4 hours. Prerequisite: advancement to doctoral candidacy. Directed research intended to facilitate completion of student's doctoral dissertation. May be repeated up to 12 units of credit. (S/U grading only.)—I, II, III. (I, II, III.)
Design

(College of Agricultural and Environmental Sciences)
Patricia Harrison, M. Arch., Chairperson, Design Program
Department Office, 142 Walker Hall (530-752-6223)
World Wide Web: http://design.ucdavis.edu

Faculty
Richard Berteaux, B.Arch., M.S., Associate Professor
Dolph Getelli, M.A., Professor
Patricia Harrison, M. Arch., Associate Professor
Gyöngyi Lakó, M.A., Professor
Helge B. Olsen, Senior Lecturer
Susan Palmer, M.A., Lecturer
Kathleen L. Plummer, M.F.A., Lecturer
Victoria Z. Rivers, M.A.C.T., S.C.T., Professor
Barbara Shawcroft, M.F.A., Professor
Kathryn Sylvia, M.F.A., Assistant Professor
JoAnn C. Stabb, M.A., Senior Lecturer
D.R. Wagner, M.F.A., Lecturer
Emeriti Faculty
Frances Butler, M.A., Professor Emerita
Katherine W. Rossbach, M.A., Professor Emerita

The Major Program
The design program offers a creative, challenging, and flexible approach to the study of design. The philosophy of the program encourages self-direction and independent thinking, not only in design work but also in planning the overall undergraduate education.

The Program, Foundation courses, Design and Visual Culture; Design, Creativity and Fantasy; Design Drawing; Design Media; and Visual Use of Computers in Design, are required of all design majors. Beyond these, students take courses in their depth subject matter emphasizing their interests. Students select one of three areas of emphasis to focus undergraduate study:

- Visionary Design, which emphasizes the communication of ideas through the medium of images. GE credit: Wrt.—I. (I.)
- Comprehensive Design, which emphasizes design as an expression of cultural aspirations, with the focus on the broader context of design history. GE credit: ArtHum, Wrt.—I. (I.)
- Design and Visual Culture, which emphasizes visual literacy and perception, creative problem solving, and the role of design in society. GE credit: ArtHum, Wrt.—I. (I.)

Courses selected from the list of Restricted Electives with approval of adviser: 32

Restricted Electives
Two courses from American Studies 1A, Anthropology 2, Communication 1, 3, Geology 1, Psychology 1, Sociology 1, 25 ... 8-9

Courses selected from the list of Restricted Electives with approval of adviser: 24-25

Unrestricted Electives: 180

Additional Requirement
Development of a course of study, in consultation with an adviser, upon completion of 90 units or prior to transferring into the major.

Major Adviser: V. Rivers.

Graduate Study, The graduate program in Textile Arts and Costume Design leading to the Master of Fine Arts degree offers students opportunities for independent, creative, innovative interdisciplinary study combining design with anthropology, critical theory, consumer issues, art, engineering, the sciences and theater. Faculty work closely with students to build individual programs based upon a student’s specialized goals and interests in textile and costume design. Study in new technologies and experimental approaches are encouraged. Areas of emphasis include constructed textiles (off loom and woven), surface design, computer-integrated textile design, and functional, ethnographic, and aesthetic costumes. The Textile and Costume Study Collection, which houses over 8,500 artifacts, is a valuable resource in enriching studies emphasizing multi-cultural expression. For information about specific requirements, please contact the Advising Center at 530-752-4119.

Graduate Adviser, Please contact department at 530-752-4119.

Courses in Design (DES)

Questions pertaining to the following courses should be directed to the instructor or to the Advising Center for the major, 152 Walker Hall (530-752-1165). Scheduling of classes is subject to change; please contact the Advising Center to confirm when a course is offered. For more courses in Textiles, see Textiles and Clothing.

Lower Division Courses

1. Design and Visual Culture (4)
Lecture—4 hours. Introduction to design awareness; role of designer in contemporary culture; emphasis on visual literacy and perception, creative problem solving, and design vocabulary. GE credit: ArtHum, Wrt.—I. (I.)

13. Photographic Media Studio (2)
Studio—4 hours. Prerequisite: course 1 recommended. Priority enrollment to Design majors. Photographic processes for the documentation of creative work and as the basis of visual communication.—I, summer. (I, summer.)

14. Design Drawing (2)
Studio—4 hours. Priority enrollment to Design majors. Students with a background in painting or Advanced Placement Art Studio units are encouraged to submit a portfolio for review to waive this course. Develop freehand drawing skills to graphically communicate ideas and form. Basic skills in objective observation and representation. Range of media used.—summer. (summer.)

B.S. Major Requirements:

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>English Composition Requirement</td>
<td>4-12</td>
</tr>
<tr>
<td>See College requirement.</td>
<td></td>
</tr>
<tr>
<td>English 101, 102A, 102B, 102C, 102D, 102E, 102F, 102G, 104A, 104B, 104C, 104D, 104E, or 104F</td>
<td>0-8</td>
</tr>
<tr>
<td>Preparatory Subject Matter</td>
<td>16</td>
</tr>
<tr>
<td>Select one course from Art History 1A, 1B, 1C or 1D.</td>
<td>4</td>
</tr>
<tr>
<td>Design 1, 14, 15, 16</td>
<td>14</td>
</tr>
<tr>
<td>Breadth/General Education</td>
<td>24</td>
</tr>
<tr>
<td>See General Education requirement.</td>
<td></td>
</tr>
<tr>
<td>Depth Subject Matter</td>
<td>58-63</td>
</tr>
<tr>
<td>Select from Design 40, 142A, 142B, 143, 144, 145, Art History 25, 168, 184, 188A, 188B, 189</td>
<td>16</td>
</tr>
</tbody>
</table>

Select one area of specialization (option) below: 38-43

Interior Architecture option | 43 |
Design 21 (or equivalent) | 4 |
Design 134A-134B-134C, 138, 180A-180B | 7 |
Senior project, Design 180C, 193A-193B | 7 |
Two courses from Design 121, 123A, 125B, 136, 150 | 8 |

Textile and Costume Design option | 40 |
Lower division courses selected with adviser approval from Design 18, 23, 24, 77A, 77B | |

Visual Communication and Presentation option | 38-40 |
Three courses from Design 13, 18, 21, 22 | 10-12 |
Design 156A, 156B, 156C | 12 |
Design 152A, 152B, 153 | 12 |
One upper division course from Design | 4 |
Comprehensive Design option | 40 |
Lower division Design courses with adviser approval | 16 |
Upper division Design courses with adviser approval | 28 |

Quarter Offered: I—Fall; II—Winter; III—Spring; IV—Summer. 2001-2002 offering in parentheses.

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
15. Design Media (4)
Lecture—2 hours; studio—4 hours. Priority given to Design majors. Understand color, composition and form as ways of communicating design concepts and content. Media and photography as tools for all design students: color theory and mixing, variety of materials and media, introduction to the camera. Not open for credit to students who have taken course 12.—II, summer. (II, summer.) Palmer

Lecture—2 hours; studio—6 hours. Prerequisite: courses 14, 15. Introduction to the computer as a visual design tool. Use of the Macintosh platform and exploration of specific software used in design. Practical instruction combined with theoretical perspective to investigate the impact of visual computing on the design process.—I, summer. (I, summer.) Syvila

18. Three-Dimensional Design (4)
Studio—8 hours. Principles of three-dimensional design through creative experimentation in a variety of media. Exploration of structural, perceptual, and spatial properties of form.—Shawcroft

21. Drafting and Perspective (4)
Studio—8 hours. Prerequisite: course in drawing recommended. Creation of three-dimensional designs on two-dimensional surfaces.—I, summer. (Summer.) Olsen

22. Visual Communication: Image and Type (4)
Studio—8 hours. Prerequisite: courses 13, 14, 15, 16 or consent of instructor. Prioriy given to Design majors. Presentation of the fundamentals of design. Specific focus will be on gestalt principles of design, balance and visual hierarchy, integration of text and image on the two-dimensional page; and introduction to typographic exploration using Macintosh platform.—II, summer. (II, Summer.) Syvila

23. Personal Adornment (4)
Studio—8 hours. Exploration of the human image altered through ornament and its relation to the human structure.—I, Stabb

24. Hand Constructed Textiles (4)
Studio—8 hours; one or two field trips. Prerequisite: courses 14, 15. Contemporary approach to textile techniques of construction such as netting, plaiting, knotting and baskety.—I, (I.) Laky

40. History of Design (4)
Lecture—4 hours. Prerequisite: Art History 1A, 1B, 1C, 1D, or equivalent recommended. Priority given to Design majors. Historical survey of the changing relationship of society to its practices of making and using tools and objects; technological changes, development of design terminology, consumer goods, hand workmanship, and industrial design. Not open for credit to students who have completed course 140. (Former course 140.) GE credit: ArtHum; Wrt.—II, summer. (II, Summer.)

77A. Soft Product Development (4)
Studio—8 hours. Prerequisite: courses 14, 15 recommended. Basic theories and principles of soft product development from two-dimensional shapes to three-dimensional forms. Approaches include flat pattern, draping, as well as processes of jointing and joining. Structural development of clothing in relation to bodies is emphasized.—II. (II.)

77B. Soft Product Development (4)
Studio—8 hours. Prerequisite: course 77A. Study and practice of designing clothing for the human body through pattern development and structural joining sequences. Problems emphasize advanced theories and principles of soft product development.—III. (III.)

99. Special Study for Undergraduates (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)

Upper Division Courses

100. Design, Creativity, and Fantasy (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 1 and upper division standing or consent of instructor. To explore and develop personal creativity and imagination utilizing fantasy as a methodology for design. Examples of fantasy as found in the designed environment. Use of fantasy as problem solving tool in design. (Former course 3.) GE credit: ArtHum; Wrt.—II. (II.) Cotelli

121. Design Delineation (4)
Studio—8 hours; field trip. Prerequisite: courses 14, 15, and 21. Exploration of the process of delineation, including principles of perspective drawing, rapid visualization techniques (the quick sketch), rendering, and graphic presentation methods.—II. (II.) Olsen

124. Textile Structures (4)
Studio—8 hours; field trip. Prerequisite: courses 1, 18, 23, 24, 100, 126A, Art Studio 5, or consent of instructor. Pass 1 restricted to Design majors. Art and science of hand building structures in flexible materials. Studio projects in experimental two- and three-dimensional forms with some emphasis on relationships to architecture, furniture, and interiors.—II. (II.) Laky

125. Structures in the Landscape (4)
Studio—8 hours. Prerequisite: course 18 or consent of instructor. Pass 1 restricted to Design and Landscape Architecture majors. Concepts and methods of built construction and their relationships with the natural environment. Large-scale geometric structures, using basic principles of design, are created by students. Use of recycled materials explored in detail.—III. (III.) Shawcroft

131. Ethnographic Inspired Costume Design (4)
Studio—8 hours. Prerequisite: course 77A or consent of instructor; course 23 or 24 recommended. Priority given to Design and Textile and Clothing majors. Exploration of surface embellishments and structural techniques derived from historic and contemporary world cultures. Emphasis on unique qualities of handmade textiles/costumes and individual expression. Topics include mola and applique, piecing and quilting, beadwork, embroidery, and dimensional surfaces. Offered in alternate years.—III, Rivers

132A. Loom-Constructed Textile Design (4)
Studio—8 hours. Prerequisite: course 23 or 24. Foundation course in handwoven textile structure and design, emphasizing yarn identification, basic drafting, basic suspension techniques and their derivatives explored in context of original color effects and yarn combinations.—I. (I.)

132B. Loom-Constructed Textile Design (4)
Studio—8 hours. Prerequisite: course 132A. Intermediate level study of complex fabric structure with emphasis on pattern in relation to surface, dimension, and material.—II. (II.)

132C. Computer-Aided Textile Design (4)
Studio—8 hours. Prerequisite: course 132B. Microcomputer applications to the structure, design, and weaving of fabrics, emphasizing advanced compositions, drafting, and plotting of multi-dimensional, original weave structures.—III. (III.)

134A. Introduction to Interior Architecture (4)
Studio—8 hours; required field trips. Prerequisite: courses 14, 15, 21 and upper division standing. The design process through simple space planning problems focused on residential and small commercial spaces.—I. (I.) Olsen

134B. Introduction to Interior Architecture (4)
Studio—8 hours; required field trips. Prerequisite: course 134A. Focus on structural environments such as laboratories, medical facilities, child care facilities, school facilities, computer installations. Includes instruction in model making and presentations in the form of models or photographic presentations developed from computer modeling.—III. (III.) Harrison

135A. Furniture Design (4)
Studio—8 hours; required field trip. Prerequisite: course 21; course 134A recommended. Development of designs for contemporary furniture. Consideration of behavioral and physical requirements, cultural and historic expression, and structural and aesthetic qualities. Process includes research, drawings, and construction of scale models.—II. (II.)

135B. Furniture Design (4)
Studio—8 hours; required field trip. Prerequisite: course 135A or consent of instructor. Design and construction of full size prototype furniture based on preliminary work completed in course 135A. Material technology, construction methods, and finishes discussed. Process includes development of shop drawings and furniture construction.—III. (III.)

136. Recording Historic Structures (4)
Studio—8 hours; field trip required. Prerequisite: courses 14, 15, 21 or the equivalent. A studio course of individual and group projects that introduces students to historic preservation. A major component of the course is on-site study of a historic building and the production of measured drawings. Offered in alternate years.—II. (II.) Berteaux

138. Materials and Specifications for Interior Architecture (4)
Lecture/discussion—3 hours; fieldwork—1 hour; field trip required. Prerequisite: courses 1, 14, 15, or consent of instructor. Priority to Design majors. The range of construction and finish materials and specifications used in interior architecture, and their specific properties and limitations; provide base of supplemental information for use in studio courses. Offered in alternate years.—I. Harrison

142A. World Textiles: Far East and Pacific (4)
Lecture—4 hours; field trip. Prerequisite: courses 132A, 132B, 160A, or 170A (concurrently) highly recommended. course 1, Art History 1A, 1B, or 1C also recommended. Textile arts of Japan, China, Africa, India, Oceanica, Indonesia, and the Pacific Islands with emphasis on the aesthetic and stylistic qualities of textiles from these cultures. GE credit: ArtHum; Wrt.—II. (II.) Rivers

142B. World Textiles: Middle East, Europe and the Americas (4)
Lecture—4 hours; two field trips. Prerequisite: course 1; studio class highly recommended: course 24, 124, 131, 132A, 132B, 160A-160B-160C or 170A-170B-170C (concurrently). Study of concepts and methods significant in the historical, social, esthetic and stylistic development of the textile arts. GE credit: ArtHum; Wrt.—II. (II.)

143. History of Costume Design (4)
Lecture—4 hours; field trip. Prerequisite: Art History 1A or the equivalent; background in art or design history recommended. History of costume design from the earliest times to the present with emphasis on both aesthetic and functional aspects. GE credit: ArtHum; Wrt.—II. (II.) Stubb
144. History of Interior Design (4)
Lecture—4 hours.
One all-day field trip required.
Prerequisite: course 40; Art History 1C recommended. Priority given to Design majors.
History of interior design in Europe and America from the classical period to modern times. Focus on the
dwelling in its cultural setting and the development of the theory of modern interior design.
GE credit: ArtHum; Wrt.—III. (III.)

145. History of Visual Communication (4)
Lecture—4 hours.
Prerequisite: Art History 1A, 1B, or 1C; course 1; course 40 recommended. Priority given to Design majors.
Historical developments of visual communication, concentrating on the technological and aesthetic development of
graphic design; origins and manifestations of current issues in visual communication;
provide framework for analysis of current and future trends in visual communication.
Offered in alternate years.—(III.)

150. Computer-Assisted Drawing for Designers (4)
Studio—8 hours. Prerequisite: courses 21, 121. Computer-assisted drafting for interior
architecture and design.—I, II, III. (II.)

152A. Visual Communication: Graphic Design Production (4)
Studio—8 hours. Prerequisite: course 22 or consent of instructor. Priority given to
Design majors. Focus on the understanding of symbolism and representation as
essential components to the development of effective logos and identity systems.
Emphasis on the need to incorporate these design strategies within the context of
computer-generated press proof limitations. Not open for credit to students who have
taken course 25.—I. (I.)

152B. Visual Communication: Message Campaign Design (4)
Studio—8 hours. Prerequisite: course 152A or consent of instructor. Priority given to
Design majors. By analyzing and utilizing strategies used in advertising and design,
and exploring the use of visual media to change public opinion on issues of social
concern and human rights. Visual designs will be created on Macintosh platforms. Not open for credit to students who have
taken course 133A.—III. (III.) Syla

153. Visual Communication: Internet and Interactive Design (4)
Studio—8 hours.
Prerequisite: course 22 or consent of instructor. Course 152B highly recommended. Priority given to Design majors.
Introduction to computer-based interactive design for World Wide Web, Intranet systems, CD-ROM, or kiosks.
Emphasis in development of strategies for content creation; visual cohesive-
ness between content and interface design; and graphic production techniques
using Macintosh platform. Not open for credit to students who have taken course
133B.—II. (II.) Syla

156A. Visual Presentation: Exhibition Design (4)
Studio—8 hours; field trips required. Prerequisite: course 14, 15, or consent of instruc-
tor. Priority to Design majors. Design and placement of objects in spatial relationships that
enhance non-verbal communication. Three-dimensional design in the museum and
gallery environment. Not open for credit to students who have completed course
126B.—I. (I.) Gotelli

156B. Visual Presentation: Visual Merchandising (4)
Studio—8 hours; field trips required. Prerequisite: course 14 and 15 or consent of
instructor. Priority to Design majors. Design and placement of objects in spatial rela-
relationships that enhance non-verbal communication. Three-dimensional design as
visual merchandising. Not open for credit to students who have completed course
126A.—II. (II.) Syla

156C. Visual Presentation: Installation and Design of Ideas (4)
Studio—8 hours; field trips.
Prerequisite: course 156A and 156B or consent of instructor. Advanced principles and practice of visual communication of ideas
through non-verbal presentations. The study of three-dimensional objects in a spa-
tial context with an emphasis on self-expression and alternative exhibition spaces.
Not open for credit to students who have completed course 126C.—III. (III.) Gotelli

160A. Textile Design: Patternning and Resistss (4)
Studio—8 hours; required field trip.
Prerequisite: courses 14, 14, 15 or the equivalent. Open to senior majors in Design and Textiles and Clothing. Exploration of the
design, dyeing and patterning of hand-printed textiles; emphasis on the unique qualities of the individual producer. Techniques include tie-dye, direct dyeing (with fiber-reactive dyes and indigo) and batik resists.—II. (II.) Rivers

160B. Textile Design: Screen Printing and Advanced Technique (4)
Studio—8 hours.
Prerequisite: course 160A. Open to senior majors in Design and Textiles and Clothing. Exploration of the design, dyeing and
patterning of hand-printed textiles; emphasis on the unique quality of the individual producer. Techniques include silk screen printing, photo silkscreen, and advanced dyeing processes.—III. (III.) Rivers

170A. Costume Design (4)
Studio—8 hours; required field trip.
Prerequisite: courses 1, 14, 15, 77B (or the equivalent); course 142A taken concurrently recommended. Open to Design and Textiles and Clothing majors. Exploration of costume design as an expression of contemporary and projected individual image. Emphasis on one-of-a-kind garments in relationship to surface design and archetypal concerns.—I. (I.) Stabb

170B. Apparel Design (4)
Studio—8 hours; required field trip.
Prerequisite: courses 77B, 170A. Exploration of apparel design processes for industry within the social and physical context.
Emphasis on two-dimensional conceptualization of ideas utilizing commercial tex-
tiles for ready-to-wear.—II. (II.) Stabb

177. Apparel Design for Consumer Cultures (4)
Studio—8 hours.
Prerequisite: course 170B. Principles and processes of designing apparel for consumer groups. The relationship among clothing, the body, and the environment is addressed in meeting functional and aesthetic concerns.

180A. Advanced Interior Architecture (4)
Studio—8 hours; field trip.
Prerequisite: course 134C and senior standing. Advanced problems in interior architectural design emphasizing re-use of existing
buildings and retooling environments, code requirements, and color and lighting.—I. (I.) Bertaux

180B. Advanced Interior Architecture (4)
Studio—8 hours; field trip. Prerequisite: course 180A. Advanced problems in interior architectural design emphasizing space planning for corporate and institutional environments.—II. (II.) Harrison

180C. Senior Project in Interior Architecture (4)
Studio—8 hours. Prerequisite: course 180B, 193A; course 193B concurrently. A comprehensive design project defined and carried out individually by each stu-
dent leading to a senior project, working from a detailed program developed in winter quar-
ter of a subject in interior architecture of special interest to the student.—III. (III.) Bertaux

190. Proseminar (1)
Seminar—1 hour. Prerequisite: design major or consent of instructor. Philosophies of design explored through discussion and presentation of research results. May be repeated three times for credit. (P/NP grading only.)

191A-D. Workshops in Design (4-12)
Seminar—1 hour; studio or field experience—3 hours per unit (units determined by instructor and student); field trip. Prerequisite: course 14, 15; upper division standing and consent of instructor. Faculty initiated workshops featuring advanced studies and applications of original work in Design: (A) Costume; (B) Environment; (C) Graphics; (D) Textiles. Credit limited to 12 units in one section or a combination of sections. Letter grading by contract.

192. Internship (1-6)
Internship—3-18 hours. Prerequisite: completion of 84 units and consent of instruc-
tor. Supervised internship, off and on campus, in areas of design including environ-
mental, costume, textue, museum, display and interior design. Enrollment limited to 3 units per quarter or 6 units per quarter for summer session. (P/NP grading only.)

193A. Research for Senior Project in Interior Architecture (2)
Lecture/discussion—2 hours. Prerequisite: course 180A; course 180B concurrently. Problem-focused research for senior students in interior architecture. Selection and research of a topic for a senior project in course 180C and the development of a preliminary program for the senior project (P/NP grading only)—II. (II.) Bertaux

193B. Senior Project Documentation (1)
Lecture/discussion—1 hour. Prerequisite: course 193A, 180B; course 193C concurrently. Revision and completion of research begun in course 193A and the development of the completed senior project in course 193C. Documentation to be done on the computer and produced in tabloid-sized booklet. (P/NP grading only)—III. (III.) Bertaux

195. Tutoring in Design (1-5)
Discussion—1-5 hours. Prerequisite: upper division standing and consent of instructor. Leading of small discussion groups or studio meetings affiliated with one of the department’s regular courses. (P/NP grading only.)

196. Directed Group Study (1-5)
Prerequisite: upper division standing and consent of instructor. (P/NP grading only.)

199. Special Study of Advanced Undergraduates (1-5)
(P/NP grading only.)

Graduate Courses

221. Experimental Approaches to Textile and Costume Design Media and Methodology (4)
Lecture/discussion—2 hours; seminar—1 hour; term paper required. Prerequisite: graduate standing in Textile Arts and Costume Design or consent of instructor. Co-
evrs perspectives on theoretical and aesthetic issues such as methodology in his-
torical, contemporary and ethnographic fiber/fabric media. Students apply theories to their creative explorations for presentation and discussion.—I. (I.) Laky

222. Seminar in Costume and Textile Design Criticism (4)
Seminar—2 hours; discussion—1 hour; variable—1 hour. Prerequisite: course 221, graduate standing in Textile Arts and Costume Design or consent of instructor. An open forum which addresses criticism and communication in relation to creative work in textile arts and costume design through seminar, readings, field trips and discussions.—II. (II.) Rivers

224. Seminar in Textile and Costume Design Research (4)
Lecture—4 hours; discussion—1 hour. Prerequisite: course 222; to be taken con-
currently with course 142A (fall) or 143B (winter) with separate dis-
cussion section; graduate standing in Textile Arts and Costume Design or consent of instructor. Required of first-year students. Students utilize existing historical and ethnographic materials as a point of departure for creative work through research and examination of textile/costume specimens with oral and written presentation of findings. May be repeated for credit.—I, II, III, (II, III.)

290. Seminar in Design (4)
Seminar—4 hours. Prerequisite: graduate standing or consent of instructor. Selected topics in design methodology, research, communication, and education. May be repeated for credit.—I, II, III, (II, III.)

292. Practicum in Textile Arts/Costume Design (1-12)
Prerequisite: graduate standing in Textile Arts and Costume Design or consent of instructor. Interaction with a working professional in the student’s field of interest to apply theories and concepts to working practice. (S/U grading only.)

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.

298. Directed Group Study for Graduate Students (1-5)
Studio. Prerequisite: consent of instructor. (S/U grading only.)

299. Individual Focused Study (1-12)
Prerequisite: graduate standing in Textile Arts and Costume Design or consent of instructor. Advanced study in studio practice on independent projects with faculty consultation. May be repeated for credit.

299D. Project Concentration (1-12)
Prerequisite: graduate standing in Textile Arts and Costume Design or consent of instructor. A minimum of 22 units must be taken in Project Concentration and Individual Focused Study. Student creates a body of original work at a professional level, with written and visual documentation of process and concepts underlying the project, culminating in public presentation. May be repeated for credit. (S/U grading only.)—III. (III.)

Professional Course

396. Teaching Assistant Training Practicum (1-4)
Prerequisite: graduate standing. May be repeated for credit. (S/U grading only.)—I, II, III. (I, II, III.)
Theatre and Dance

(College of Letters and Science)
Sue-Ellen Case, Ph.D., Chairperson of the Department
Department Office, 222 Wright Hall
(530) 752-8088

Faculty
Sarah Pai Anderson, Professor
Bobbie J. Bolden, M.A., Lecturer (Theatre and Dance, African American and African Studies)
Sheldon Deckelbaum, M.F.A., Assistant Professor
Sue Ellen Case, Ph.D., Professor
Susan Foster, Ph.D., Professor
Janelle Renten, Ph.D., Professor
Barbara Sellers-Young, Ph.D., Associate Professor
Karen Shimakawa, Ph.D., Assistant Professor (Theatre and Dance, Asian American Studies)
Darrell F. Winn, M.A., Lecturer

Emeriti Faculty
Ruby Cohn, Ph.D., Professor Emerita
Harry C. Johnson, M.A., Professor Emeritus
William E. Kleb, D.F.A., Professor Emeritus
Robert K. Sarlós, Ph.D., Professor Emeritus
Daniel E. Snyder, Professor Emeritus
Alan A. Stambusky, Ph.D., Professor Emeritus

The Major Program

The A.B. degree in Dramatic Art provides students with an appreciation for and understanding of performance and its role in culture and society. The program offers a strong foundation in all aspects of drama, theater, dance performance, and production. While this is not a pre-professional program with a high degree of specialization, students can build significant skills in specific areas as well as achieving the broad goals of the degree.

Productions and Facilities. Productions each year are separated into two seasons. The University Theatre Season usually consists of five to six major productions of established plays, along with dance concerts. The Studio Season consists of smaller student productions. Occasionally, productions of experimental works and class-related projects are also included.

Career Alternatives. The program enables students to pursue a variety of opportunities after graduation, including graduate education, public sector arts employment, advanced professional training programs, and, in some cases, professional work.

Dramatic Art

A.B. Major Requirements:

Theatre Emphasis

Preparatory Subject Matter ... 26
Dramatic Art 20, 24, 25, 26 .. 14
Dramatic Art 21A or 21B ... 4

Additional units to achieve a total of 26 lower division units chosen from Dramatic Art 21B, 40A, 40B, 41A, 41B, 98, 99, African American and African Studies 51 or courses in other departments with adviser’s approval.

Depth Subject Matter ... 40
Two courses from Dramatic Art 124B, 124C, 124D 8
Two courses from Dramatic Art 150, 153, 154, 155, 159 8
A minimum of 4 elective units chosen from the following: Dramatic Art 121A, 121B, 122A, 122B, 124A, 124B, 124C, 124D, 125, 127B, 130, 140A, 140B, 143, 170, or courses in other departments with adviser’s approval ... 4

Additional Requirements ... 14
During the undergraduate career, majors are to participate in University Theatre Season and Studio productions. Participation must include work in three of the following four areas: acting/dance, design, studio (scenic, costume, lighting, painting, props, sound), directing/playwriting/stage management. In addition, majors are expected to serve on a running crew a minimum of one quarter per academic year. Majors are also expected to attend theatre performances.

Total Units for the Major ... 80

Dance Emphasis

Preparatory Subject Matter ... 23
Choose 12 units from Dramatic Art 14, 40A, 40B, 41A, 41B, 42A, 42B, African American and African Studies 51 .. 12
Dramatic Art 24, 26, 30 (crew), 30 (performance) .. 11

Depth Subject Matter ... 39
Choose 20 units from African American and African Studies 155, Dramatic Art 142, 143, 154, 159, Music 125 ... 20

Total Units for the Major ... 62

Major Adviser — Darrell F. Winn, M.A., Lecturer

Minor Program Requirements:

Dramatic Art .. 20
Dramatic Art 156A, 156B, 156C ... 12
One of Dramatic Art 124B, 124C, 124D .. 4
(Plus prerequisites)

Additional Requirements ... 4
During the undergraduate career, minors are to participate in University Theatre Season and Studio productions. Participation must include work in two of the four areas required by the major. Minors are expected to attend theatre performances.

Transfer Students. As described above, all students completing a major in Dramatic Art must participate in dramatic productions, including work in at least three of the following four areas: acting/dance, design, studio (scenic, costume, lighting, painting, props, sound), directing/playwriting/stage management. Such experience gained prior to transfer to UC Davis may count toward partial satisfaction of this requirement; transfer students should see the major adviser for an evaluation of your previous experience. While in residence at UC Davis, transfer students are required to participate in at least three of the four areas specified above.

Guest Artists. The Granada Visiting Artists Program brings distinguished professional British directors to the campus each year, teaching and directing in residence for a quarter. These working professional artists take the role of professor, interacting closely with students in the classroom and rehearsal halls and providing them excellent pre-professional experiences of theater practice.

Graduate Study. The Department of Dramatic Art offers programs of study and research leading to the M.F.A. (acting) and Ph.D. (performance and culture) degrees. Detailed information may be obtained by contacting the Graduate Adviser.

Graduate Advisers. Sue-Ellen Case (Ph.D. program), S. Deckelbaum (M.F.A. program).

Courses in Dramatic Art (DRA)

Lower Division Courses

1. Theatre, Performance and Culture (4)
Lecture/discussion—4 hours. Introductory investigation of the nature of all performance, moving from performance theory to consideration of various manifestations of performance including theatre, film and media, dance, sports, political rallies and demonstrations, religious celebrations, civic pageants and “occasions.” Investigation of the border between ritual and performance. GE credit: ArtHum, Div, Wrt—II, III, III.

10. Introduction to Acting (3)
Laboratory/discussion—4 hours. Fundamentals of movement, speech, theatre games, and improvisation. Selected reading and viewing of theatre productions. Intended for students not specializing in Dramatic Art.—II, III, III.

14. Introduction to Contemporary Dance (4)
Lecture—3 hours, laboratory—3 hours. Introduction to basic issues and methods in contemporary dance. Focus on preparation, student for dancing and dance-making through basic techniques of improvisation and composition. Consideration of dance as a cultural practice.—I, II, III.

20. Introduction to Dramatic Art (4)
Lecture—3 hours, discussion—1 hour. Understanding and appreciation of both the distinctive and collaborative contributions of playwright, actor, director, and designer to the total work of dramatic art. Study of plays from the major periods of dramatic art in their cultural contexts. GE credit: ArtHum—I, II, III, III.
21A. Fundamentals of Acting (4)
Lecture—2 hours; laboratory—4 hours. Prerequisite: course 20. Physical and psychological resources of the actor. Experience in individual and group contact and communication, theatre games, advanced improvisation, sound and movement dynamics. Viewing of theatre productions. Limited to those planning to major in Dramatic Art.—II. (I, II.)

21B. Fundamentals of Acting (4)
Lecture—2 hours; laboratory—4 hours. Prerequisite: course 21A and consent of instructor. Theory and practice of acting with emphasis on character analysis, interpretation, and development. Acting in a student-directed project. Viewing of theatre productions. Limited to those planning to major in Dramatic Art.—II, III. (II, III.)

24. Visual Aspects of Dramatic Art (4)
Lecture—3 hours. Understanding and appreciation of the visual aspects of dramatic art: theatre architecture, scenery, lighting, costume, and makeup.—I. (I.)

25. Technical Aspects of Dramatic Production (3)
Lecture—3 hours. Theoretical study of performing arts administration and back-stage operations from audition through performance. Techniques of scheduling, production management, stage management, technical direction, audience control, box office, promotion, safety, accommodations for persons with disabilities and emergency procedures.—I. (I.)

30. Theatre Laboratory (1-5)
Prerequisite: course 25 or consent of instructor. Projects in acting, production, scene design, costume, lighting, directing, and playwriting. Participation in departmental productions. May be repeated for credit up to a total of 8 units.—I, II, III. (I, II, III.)

40A. Beginning Modern Dance (2)
Laboratory/discussion—4 hours. Prerequisite: course 14 or consent of instructor. Fundamentals of modern dance focusing primarily on the development of techniques and creative problem solving. Basic anatomy, dance terminology, and a general overview of modern dance history. May be repeated once for credit with consent of instructor.—I, II, III. (I, II, III.) Bolden

40B. Intermediate Modern Dance (2)
Laboratory/discussion—4 hours. Prerequisite: course 40A. Modern dance techniques. Basic anatomy, dance terminology and a general overview of modern dance history. May be repeated once for credit with consent of instructor.—I, II, III. (I, II, III.)

41A. Beginning Jazz Dance (2)
Laboratory/discussion—4 hours. Prerequisite: course 14 or consent of instructor. Fundamentals of jazz dance; includes warm-ups, dance techniques and combinations. Basic anatomy, dance terminology and general overview of jazz dance history. May be repeated once for credit with consent of instructor.—I, II, III. (I, II, III.)

41B. Intermediate Jazz Dance (2)
Laboratory/discussion—4 hours. Prerequisite: course 41A. Warm-ups, dance techniques and combinations at the intermediate level. Basic anatomy, dance terminology and a general overview of jazz styles of historically significant jazz choreographers and leading contemporary jazz choreographers. May be repeated once for credit with consent of instructor.—I, II, III. (I, II, III.)

42A. Beginning Ballet (2)
Laboratory/discussion—4 hours. Prerequisite: course 14 or consent of instructor. Fundamentals of ballet, focusing on the development of technique through proper alignment, quality, and rhythm. Basic anatomy, ballet terminology, and dance history. May be repeated once for credit with consent of instructor.—I, II, III. (I, II, III.)

42B. Intermediate Ballet (2)
Laboratory/discussion—4 hours. Prerequisite: course 42A or consent of instructor. Barre and center work at the intermediate level. Development and refinement of technique through proper alignment, rhythmic, and qualitative understanding. Anatomy, ballet terminology, and dance history. May be repeated once for credit with consent of instructor.—I, II, III. (I, II, III.)

98. Directed Group Study (1-5)
Primarily for lower division students. (P/NP grading only.)

99. Special Study for Undergraduates (1-5)
(P/NP grading only.)

Upper Division Courses

115. Advanced Study of Major Film Makers (4)
Lecture/discussion—3 hours; film viewing—2 hours. Prerequisite: course 15. Analysis of the distribution of some outstanding film creators. Study of diverse aesthetic theories of the cinema and their application to selected films. May be repeated for credit when different film creator studied.

121A. Advanced Acting: Mask, Myth, and Tragedy (4)
Lecture/ laboratory—4 hours. Prerequisite: course 21B and consent of instructor. Theory and practice of acting focused on the performance skills necessary to enact verse plays. Specific concentration on language as vocal and physical metaphor. Offered in alternate years.—(II.)

121B. Advanced Acting: Comedy from Farce to Manners (4)
Lecture/laboratory—6 hours. Prerequisite: courses 21B, 121A and consent of instructor. Theory and practice of acting in comic plays. Specific issues addressed will be comic characterization, physical mask, and timing. Offered in alternate years.—(II.)

122A. Advanced Acting: Realism (4)
Lecture/laboratory—6 hours. Prerequisite: course 21B and consent of instructor. The issues of Stanislavski realism are explored through selected plays. Script analysis using improvisation and emotional scoring. Offered in alternate years.—II.

122B. Advanced Acting: Non-Realism (4)
Lecture/laboratory—6 hours. Prerequisite: courses 21B, 122A and consent of instructor. Exploration of the acting techniques needed to perform a non-realistic script. Different avant-garde approaches will be examined through performance of the scripts. Offered in alternate years.—III.

124A. Principles of Theatrical Design: Scenery (4)
Lecture-seminar—4 hours. Prerequisite: course 24 or consent of instructor. Scene design processes, working drawings, sketching techniques, scale models, methods and materials of scenery construction.—I. (I.)

124B. Principles of Theatrical Design: Scenery (4)
Lecture-seminar—4 hours. Prerequisite: course 24 or consent of instructor. Analysis of plays in terms of scene design, elements of design, execution of designs for modern and period plays.—II. (II.)

124C. Principles of Theatrical Design: Lighting (4)
Lecture-seminar—4 hours. Prerequisite: course 24 or consent of instructor. Theories of lighting the stage, equipment and control systems, execution of lighting plots.—III. (III.)

124D. Principles of Theatrical Design: Costume (4)
Lecture-seminar—4 hours. Prerequisite: course 24 or consent of instructor. Source materials for theatrical costuming, selection, elements of design, analysis of plays in terms of costume design, execution of designs for modern and period plays.—I. (I.)

125. Studio Painting: Studio (4)
Lecture—2 hours; studio—3 hours, laboratory—2 hours. Prerequisite: upper division standing in Dramatic Art, Art Studio, or Design; or course 24 or 25, or consent of instructor. Scene painting techniques, practices and materials. Course satisfies production requirement in studio category. May be repeated once with consent of instructor. Offered in alternate years.—I, II, III. (I, II, III.)

127A. Principles of Directing (4)
Lecture—2 hours; laboratory—4 hours. Prerequisite: courses 21A, 26, two of 156A, 156B, 156C, or consent of instructor. The director's creative approach to the play and to its staging.—I. (I.) Anderson

127B. Principles of Directing (4)
Lecture—2 hours; laboratory—4 hours; rehearsal. Prerequisite: course 127A and consent of instructor for non-majors. The director's creative approach to the actor.—II. (II.) Winn

130. Approaches to Theatrical Design: Practice and Theory (4)
Seminar—2 hours; studio—4 hours. Prerequisite: upper division standing in Dramatic Art, Art Studio or Design. Advanced scenic design study in specific areas including but not limited to: research, design styles and concepts, new materials and techniques, photography, projections, computer technology, spectacle and special effects. Two alternative advising categories. May be repeated once with consent of instructor.—I, II, III. (I, II, III.)

140A. Dance Composition (4)
Lecture—3 hours; laboratory—3 hours. Prerequisite: courses 40A, 41A, and 42A, or consent of instructor. Exploration of the craft of choreography. Students will compose phrases and present movement studies based on the elements of choreography: motivation, space, time, force/energy.—II. (II.) Bolden

140B. Dance Composition (4)
Lecture—3 hours; laboratory—3 hours. Prerequisite: course 140A. Continuation of the study of choreography, focusing on the development of group choreography: duets, trios, quartets and group work, form, and accompaniment.—III. (III.)

140C. Dance Composition (4)
Lecture—3 hours; laboratory—3 hours. Prerequisite: courses 140A, 140B. Continuation of study of choreography focusing on sequencing movements for groups. The relationship between dance and allied mediums of music, sets, costumes and lighting. Students conceptualize a choreographic issue and explore it through creation of short dance studies.—I. (I.)

141. Introduction to the Fundamentals of Movement (3)
Lecture/discussion—3 hours. Introduction to fundamentals of movement that combines intellectual and kinesthetic understanding of the body's skeletal and muscular systems. Explorations based on theories of body mind specialists Feldenkrais, Bartenieff and Siev/Siegel and as the eastern discipline of Yoga.—I. (I.) Sellers-Young

142. History of Modern Dance (5)
Lecture—3 hours; laboratory—3 hours; extensive writing. The Modern Dance tradition in the U.S., focusing on its theorizations of individual and social identity. Students will write and choreograph analyses of principle dances in this tradition. Offered in alternate years.—I. Foster
143. Dance and Movement Studio (1-4)
Laboratory/discussion—2-8 hours. Prerequisite: course 14 or consent of instructor. Special studies in dance and movement such as African, Balinese, Baroque, Chinese, European, and stage combat. Offered as needed for stage productions. May be repeated for credit for a total of 8 units.

145. Directed Choreography Projects (4)
Lecture/laboratory—6 hours. Prerequisite: courses 140A, 140B, 140C or consent of instructor. Conceptualization, creation, casting, rehearsal, and presentation of complete dances, with students integrating elements of stagecraft and directing on-stage rehearsals.—II. (II.)

150. American Theatre and Drama (4)
Lecture—4 hours. The history of the theatre from Colonial times to the present. Readings of selected plays. Offered in alternate years. GE credit: ArtHum, Div, Wrt.—III.

154. Asian Theatre and Drama: Contexts and Forms (4)
Lecture/discussion—4 hours. Prerequisite: upper division standing. Selected Asian plays and performance forms in their cultural and artistic contexts; myth, ritual and the theatre; performance training, visual presentation of the text; theatrical, intercultural performance— the fusion of Asian and Western traditions. Offered in alternate years. GE credit: ArtHum, Div, Wrt.—II. Sellers-Young

155. Representing Race in Performance (4)
Lecture—4 hours. Examination of how “race” is represented and performed in American culture. Course will feature different sub-headings such as “African American Theatre” or “Asian-Americans on Stage.” May be repeated once for credit when topic differs. Offered in alternate years. GE credit: ArtHum, Div, Wrt.—III.

155A. African American Dance and Culture in the United States, Brazil and the Caribbean (4)
Lecture/discussion—4 hours. A comparative study of the African American dance forms in the U.S., Brazil, Haiti, Cuba, Jamaica, Barbados, and Trinidad. Examination of ritual, folk, and popular dance forms and the sociohistorical factors that have influenced these traditions. (Same course as African American and African Studies 155A.) Offered in alternate years.—I. Bolden

156A. History of Theatre and Dance: Ancient to 1650 (4)
Lecture—4 hours. Overview of theatre and dance as it has come to be recognized in ancient societies through to 1650. Performance traditions studied include Greek, Indian, Roman, and Japanese (Noh) through the Renaissance. GE credit: ArtHum, Div, Wrt.—III. (III.) Worthen

156B. History of Theatre and Dance: 1650-1900 (4)
Lecture—4 hours. Overview of theatre and dance between 1650 and 1900. Dance and theatre are related to the specific social and political organizations of court society in 17th and 18th century France, England and Germany, and to Japanese society. GE credit: ArtHum, Div, Wrt.—I. (I.) Renelt

156C. History of Theatre and Dance: The Twentieth Century (4)
Lecture—4 hours. Overview of theatre and dance in the twentieth century. Although largely focused on Western theatrical practices, the relationship between East and West performance practices will be studied and contemporary Japanese theatre will be included. GE credit: ArtHum, Div, Wrt.—II. (II.) Shimakawa

159. Contemporary Experimental Theatre and Drama (4)
Lecture—4 hours. Examination and evaluation of the “New Theatre.” Course includes attending theatre events. May be repeated once with consent of instructor.—(I.) Case

160A-160B. Principles of Playwriting (4-4)
Lecture/seminar—4 hours. Prerequisite: two courses in Dramatic Art or related courses in other departments; course 160A prerequisite for 160B or consent of instructor. Analysis of dramatic structure; preparation of scenarios; the composition of plays.—II.

170. Media Theatre (3)
Lecture—1 hour; rehearsal—2 hours; performance—1 hour. Prerequisite: upper division standing in Dramatic Art, Music, Art Studio, Design, Computer Science, or Engineering; Technical design, or consent of instructor. New media and application of theatre design and performance. Emphasis on collaborative process in relation to integration of emerging technologies and formation of new theatrical works. Development of collaborative performance through lecture, demonstration, improvisation and experimentation. May be repeated once for credit.

180. Theatre Laboratory (1-5)
Prerequisite: upper division standing and course 25, or consent of instructor. Projects in acting, production, scene design, costume, lighting, directing, and playwriting. Participation in departmental productions. May be repeated for credit.—(I, II, III.) (I, II, III.)

192. Internship in Dramatic Art (1-12)
Internship—3-36 hours. Prerequisite: upper division or graduate work in dramatic art; upper division course related to the project; consent of instructor and Department Chairperson. Internship outside the academic department enabling students to practice their skills. May be repeated for credit for a total of 12 units. (P/NP grading only.)

194HA-194HB. Special Study for Honors Students (3-3)
Independent study. Prerequisite: permission of Letters and Science Honors Program and admission to Dramatic Art Senior Honors Program. Preparation and presentation of a culminating project, under the supervision of an instructor, in one of the creative or scholarly areas of Dramatic Art. (Deferral grading only, pending completion of sequence.)

197T. Tutoring in Dramatic Art (1-5)
Tutoring—1-5 hours. Prerequisite: upper division or graduate standing with major in dramatic art; consent of department chairperson. Leading of small voluntary groups affiliated with one of the department’s regular courses. May be repeated for credit. (P/NP grading only.)

198. Directed Group Study (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)

Graduate Courses

200. Methods and Materials in Theatre Research (4)
Seminar—3 hours; term paper. Essential research tools in theatre and related fields; bibliographies, primary sources; methods of evaluating and presenting evidence; delineating research areas in the field.

211. Advanced Voice and Speech (2)
Laboratory—4 hours. Open to advanced undergraduates with consent of instructor. Voice production and speech related to specific acting problems in classical plays, particularly in verse. May be repeated for credit.—I, II, III. (I, II, III.)

212. Advanced Stage Movement (3)
Laboratory—6 hours. Prerequisite: graduate standing in the MFA Program. The application of modes of exploration, breath placement, and the use of imagery as well as Laban’s effort shape system as a method of analysis in classic and modern plays. Open to advanced undergraduates by consent of instructor. May be repeated for credit.—I, II, III. (I, III.)

221. Special Problems in Advanced Acting (4)
Seminar—2 hours; laboratory—4 hours. Prerequisite: consent of instructor. Advanced acting problems arising from differences in the type and style of plays selected from Greece to the present. May be repeated for credit.—I, II, III. (I, II, III.)

228. Seminar in Directing Theory: Non-Realism (4)
Seminar—3 hours; term paper. Seminar in directing theory as it applies to non-realistic theatre; development of directorial concepts for production of selected non-realistic plays—Greek to the present; emphasis on textual analysis. Offered in alternate years.—I. (I.)

229. Special Problems in Directing (5)
Seminar—2 hours; laboratory—2 hours; rehearsal—4 hours. Prerequisite: consent of instructor. Projects in directing scenes selected from plays from ancient Greece to the present. May be repeated for credit.—I, II, III. (I, III.)

250. Modern Theatre (4)
Seminar—3 hours; term paper. The theatre of Europe and America, 1860-1940, with emphasis on the relationship of the dramas of the period to the physical circumstances under which they were produced. Offered in alternate years.—II. (II.)

251. Scoring and Scripting in Performance (4)
Lecture—3 hours; laboratory—3 hours. Prerequisite: graduate standing. The process of weaving together various performance elements into play by the artists in their respective disciplines. The “script” is the thread from which the artists’ “scores” will layer and transform the “script” into performance for specific space, time, spectators. Offered in alternate years.

252. Performance: Concept, Space, Place, and Time (4)
Lecture—3 hours; laboratory—3 hours. Prerequisite: graduate standing. Innovative theories of creating performance spaces, establishing a sense of place, and communicating the concept of time explored through collaborative interaction. Research includes narrative and historical theories of constructing space and time. Concepts for staging and space design created in collaboration with artists in their respective disciplines. The “script” is the thread from which the artists’ “scores” will layer and transform the “script” into performance for specific space, time, spectators. Offered in alternate years.

253. Approaches to Collaboration (4)
Lecture—3 hours; laboratory—3 hours. Prerequisite: graduate standing. Exploration of different approaches to collaboration among artists in different media and their influence on the creative process. Offered in alternate years.—II.

254. Performing Identities/Personae (4)
Lecture—3 hours; laboratory—3 hours. Prerequisite: graduate standing. Historical and contemporary theories of constructing stage identities. Discussion and project collaborations based on theories. Questions of identity related to ethnicity, gender or sexual orientation. Offered in alternate years.—III.

255. Composition in the Arts (4)
Lecture—3 hours; laboratory—3 hours. Prerequisite: graduate standing. Examine manner in which specific elements utilized by actors, dancers, directors, choreographers, and designers are combined or related to form a whole in space and time, as well as methods of sequencing used by each discipline to produce artistic products. May be repeated once for credit.—I. (I.)

259. Topics in Contemporary Theatre and Performance (4)
Seminar—3 hours; term paper. Special topics designed to study in depth aspects of contemporary performance including performance analysis, cultural and historical context, modes of production, theoretical and political entitlements, and issues of spectatorship (e.g., “Brecht and After,” “British Theater,” “Race and Gender in Performance.” May be repeated five times for credit.—II. (II.)

265A. Theory of Dramatic Art: Modes of Production (4)
Seminar—3 hours; term paper. Special topics designed to study in depth aspects of contemporary performance including performance analysis, cultural and aesthetic theory, as related to practical stage performance. Offered in alternate years.—II. (II.)
265B. Theory of Dramatic Art: Signification and the Body (4)
Seminar—3 hours; term paper. Introduce students to analysis of the body in performance, drawing on theoretical models from various fields. Offered in alternate years.—I. (I.) Reinelt

265C. Theory of Dramatic Art: Technologies of Difference (4)
Seminar—3 hours; term paper. Introduce students to history, theory, practice of staging social and cultural difference. Offered in alternate years.—III.

265D. Theory of Dramatic Art (4)
Seminar—3 hours; term paper. Theory and aesthetic principles of dramatic art as a fine art. Offered in alternate years. (Former course 265.)—(II.)

280. Theatre Laboratory (1-12)
Advanced practice in acting, designing, directing, playwriting, and technical theatre. May be repeated for credit.—I, II, III. (I, II, III.)

296. Group Study (1-5)
Prerequisite: consent of instructor.

299. Individual Study (1-12)
(S/U grading only.)

299D. Dissertation Research (1-12)
(S/U grading only.)

Professional Course
396. Teaching Assistant Training Practicum (1-4)
Prerequisite: graduate standing. May be repeated for credit. (S/U grading only.)—I, II, III. (I, II, III.)

Professional Course
413. Stage Make-up (1)
Lecture/laboratory—2 hours. Prerequisite: consent of instructor. Approved for graduate degree credit. Lectures, demonstrations, and practical work in aspects of theatrical make-up.—II. (II.)
Environmental Design

(College of Agricultural and Environmental Sciences)
Patricia Harrison, M.Arch., Chairperson, Design Program
Dean MacCannell, Ph.D., Chairperson, Landscape Architecture Program
Department Office, 142 Walker Hall (530-752-6223)
World Wide Web: http://envdes.ucdavis.edu

Faculty. See faculty listings under Design and Landscape Architecture.

Programs of Study. See the undergraduate majors in Design and Landscape Architecture and the graduate program in Textile Arts and Costume Design (information pertaining to the Textile Arts and Costume Design graduate degree is listed under the Design major).

Related Courses. See Design and Landscape Architecture course lists.
East Asian Languages and Cultures

(College of Letters and Science)
Susan Mann, Ph.D., Chairperson of the Department
Department Office, 522 Sproul Hall (530-752-0830)
World Wide Web: http://chinese.ucdavis.edu
http://japanese.ucdavis.edu

Faculty
Robert Borger, Ph.D., Professor (Japanese, History)
Katharine P. Burnett, Ph.D., Assistant Professor (Art History)
Chia-ning Chang, Ph.D., Associate Professor (Japanese)
Kyoo Hyun Kim, Ph.D., Assistant Professor (Japanese, History)
Whaeri Law, Ph.D., Professor (Chinese, Religious Studies)
Sophie Voog, Ph.D., Assistant Professor (Chinese)
Michelle Yeh, Ph.D., Professor (Chinese)

Emeriti Faculty
Donald A. Gibbs, Ph.D., Professor Emeritus
Key H. Kim, Ph.D., Professor Emeritus
Benjamin E. Waller, Ph.D., Professor Emeritus

Affiliated Faculty
Kazue Chavez, Lecturer (Japanese)
David Fahy, Lecturer (Japanese)
Haruko Sakakibara, Lecturer (Japanese)
Ritsuko Shigekawa, Coordinator (Japanese)
Miyo Uchida, Lecturer (Japanese)
Young Ming Wu, Coordinator (Chinese)

The Major Program

The department offers a core language program in both Chinese and Japanese and courses in literature and culture. The core language program has two tracks: one for students who have no background whatsoever in Japanese or Chinese, and one for students with prior language background.

The Program. A student elects to major in either Japanese or Chinese. Practical language skills are taught using the most modern methods so that upon entering the upper division a student will have attained substantial fluency in the spoken language (hearing and speaking) and the written language (reading and writing). Upper division courses balance the need for further language skills with the need to understand and appreciate the cultural richness of either Chinese or Japanese civilization. All students are encouraged to combine their study of Japan's or China's language and literature with courses in related fields, and to study abroad through the UC International Summer Session programs, the Education Abroad Program, or through internships.

Career Opportunities. UC Davis graduates have learned that a major in Chinese or Japanese is a genuine, earned distinction that facilitates entrance to graduate programs and professional schools. In addition, job opportunities abound in virtually all career paths, especially for those who have completed study abroad.

Chinese

A.B. Major Requirements:

Preparatory Subject Matter ..19/34

Chinese 1, 2, 3, 4, 5, 6; or 1BL, 2BL, 3BL; or 1CN, 2CN, 3CN; and one unit lower division Chinese literature course; Chinese 1A may be substituted for courses 1 and 2.

Recommended:
Chinese 10, 11, 50, Comparative Literature 14, Japanese 10, Linguistics 1, History 9A.

Depth Subject Matter ...36

Chinese 106, 107, 111, 112, 113, 114 ..24

Eight units selected from Chinese 104, 105, 106, 107, 109A-I, 110, 132; Anthropology 149A-149B; Art History 164; Comparative Literature 153; History 194A-194B; Religious Studies 127; or other advanced language and culture courses selected in consultation with the undergraduate adviser. ..8

Total Units for the Chinese Major ...55/70

Japanese

A.B. Major Requirements:

Preparatory Subject Matter ..15/30

Japanese 1, 2, 3, 4, 5, 6; or 1BL, 2BL, 3BL; or 1CN, 2CN, 3CN; and one unit lower division Chinese literature course; Chinese 1A may be substituted for courses 1 and 2; Japanese 1B may be substituted for courses 1, 2, and 3.

Recommended:
Japanese 10, 15, 25, Chinese 10, 11, 50, Linguistics 1, History 9B.

Depth Subject Matter ...40

Japanese 101, 102, 103, 111, 112, 113, 2011 ...24

Eight units selected from Japanese 104, 105, 106, 107, 109A-I, 110, 132; Anthropology 149A-149B; Art History 164; Comparative Literature 153; History 194A-194B; Religious Studies 127; or other advanced language and culture courses selected in consultation with the undergraduate adviser. ..8

Total Units for the Japanese Major ...55/70

– See College procedures governing undergraduate enrollment in a graduate course.

Minor Program Requirements:

Minors are offered in Chinese and in Japanese for students wishing to follow a formally recognized program of study in those languages and their literatures.

Chinese ...20

Japanese ...20

Units

All advanced division courses, including both language courses and literature in translation courses, may be used to meet this requirement. One approved lower division course (Chinese 10, 11, 50; Japanese 10, 15, 25, 50) may also be used. In addition, students must demonstrate their language proficiency, normally through completion of Chinese 111 or Japanese 111. Only four units from 192, 197, 198, and 199 may be applied to the minor. For details, consult the undergraduate advisers.

Education Abroad Program. The university maintains study abroad programs in China, Japan, Hong Kong, and Taiwan. They offer excellent opportunities for students to polish their language skills and experience Asian cultures firsthand. Students are encouraged to participate. Appropriate courses taken abroad can be applied toward the major or the minor. For details, see the department’s undergraduate adviser and the Education Abroad Program office.

Related Courses. See East Asian Studies course list.

Prerequisite Credit. No student may repeat a course if that course is a prerequisite for a course that has already been completed with a grade of C– or better.

Placement. Chinese 1 and Japanese 1 are intended for beginning students with no prior knowledge of those languages. Students who do have some knowledge but wish to improve their skills should meet with one of the advisers to discuss appropriate placement. Students must follow departmental guidelines for placement in all language courses and instructor approval is required for enrollment.

Courses in Chinese (CHN)

Lower Division Courses

1. Elementary Chinese (5)
Lecture/discussion—5 hours. Introduction to Chinese grammar and development of all language skills in a cultural context with special emphasis on communication. (Students who have successfully completed Chinese 2 or 3 in the 10th or higher grade in high school may receive unit credit for this course on a P/NP grading basis only. Although a passing grade will be charged to the student’s P/NP option, no petition is required. All other students will receive a letter grade unless a P/NP petition is filed.)—1 (L)
1BL. Accelerated Written Chinese I (5)
Lecture—5 hours. Prerequisite: ability to speak and understand oral Chinese (Mandarin or dialect). Designed for students who already have some degree of fluency in spoken Chinese, but who cannot read Chinese characters. Concentrates on developing reading ability and accelerates progress to upper division. Not open for credit to students who have completed course 8. (Former course 8.)—1 (L)

Quarter Offered: I–Fall; II–Winter; III–Spring; IV–Summer. 2001–2002 offering in parentheses.
1CN. Mandarin for Cantonese Speakers I (5)
Lecture—5 hours. Prerequisite: ability to read and write Chinese characters at the elementary school level. Accelerated training in spoken Mandarin, particularly in the phonetic transcription system known as pinyin, for students who already can read and write Chinese. Course assumes no knowledge of spoken Mandarin Chinese. Not open for credit to students who have completed course 7. (Former course 7.)—I. (I)

2. Elementary Chinese (5)
Lecture/discussion—5 hours. Prerequisite: course 1. Continuation of course 1 in the areas of grammar and basic language skills.—II. (II)

2BL. Accelerated Written Chinese II (5)
Lecture—5 hours. Prerequisite: course 1BL. Continuation of course 1BL. Designed to accelerate the progress of students who already know spoken Mandarin or a dialect but cannot read or write Chinese characters. Not open for credit to students who have completed course 18. (Former course 18.)—II. (II)

2CN. Mandarin for Cantonese Speakers II (5)
Lecture—5 hours. Prerequisite: course 1CN. Continuation of course 1CN. Training in spoken Mandarin for students who already can read and write Chinese. Not open for credit to students who have completed course 17. (Former course 17.)—II. (II)

3. Elementary Chinese (5)
Lecture/discussion—5 hours. Prerequisite: course 2. Continuation of course 2. Completion of grammar sequence and continuing practice of all language skills.—III. (III)

3BL. Accelerated Written Chinese III (5)
Lecture—5 hours. Prerequisite: course 2BL. Advanced written styles and syntax in Chinese. Students completing this course proceed to course 111, which starts the third-year Chinese, or to some other appropriate upper-division course. Not open for credit to students who have completed course 28. (Former course 28.)—III. (III)

3CN. Mandarin for Cantonese Speakers III (5)
Lecture—5 hours. Prerequisite: course 2CN. Continuation of course 2CN. Prepares students for entering upper division courses in Chinese. Not open for credit to students who have completed course 27. (Former course 27.)—III. (III)

4. Intermediate Chinese (5)
Lecture/discussion—5 hours. Prerequisite: course 3 or the equivalent. Intermediate-level training in spoken and written Chinese in cultural contexts, based on language skills developed in course 3.—I. (I)

5. Intermediate Chinese (5)
Lecture/discussion—5 hours. Prerequisite: course 4 or the equivalent. Intermediate-level training in spoken and written Chinese in cultural contexts, based on language skills developed in course 4.—II. (II)

6. Intermediate Chinese (5)
Lecture/discussion—5 hours. Prerequisite: course 5 or the equivalent. Intermediate-level training in spoken and written Chinese in cultural contexts, based on language skills developed in course 5.—III. (III)

10. Modern Chinese Literature (in English) (4)
Lecture—3 hours; discussion—1 hour. Introductory course requiring no knowledge of Chinese language or history. Reading and discussion of short stories and novels and viewing of two films. Designed to convey a feeling for what China has experienced in the twentieth century. GE credit: ArtHum, Div, Wrt.—II. (II)

11. Great Books of China (in English) (4)
Lecture—3 hours; discussion—1 hour. Selected readings in English translation are supplemented with background information on periods, authors and the interrelationships of culture, literature and social change. Methods of analysis are introduced and applied in class discussions. GE credit: ArtHum, Div, Wrt.—II. (II)

105. Western Influences on Twentieth-Century Chinese Literature (in English) (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 10 or History 9A recommended. Introduction of Western literary forms and techniques, and the development of Marxism in contemporary literary writing. Offered in alternate years. GE credit: ArtHum, Div, Wrt.—III. (III)
106. The Chinese Language (4)
Lecture/discussion—4 hours. Prerequisite: course 6 (may be taken concurrently); Linguistics 1 recommended. The Chinese language viewed in its linguistic context, synchronically and diachronically. Historical phonology, classical and literary language, rise of written vernacular, descriptive grammar of modern standard Chinese, dialectal variation, and sociolinguistic factors.—III. (III.)

192. Chinese Internship (1-12)
Internship—3-36 hours to be arranged. Prerequisite: upper division standing and consent of instructor. Work experience in the Chinese language, with analytical term paper on a topic approved by instructor. (P/NP grading only.)

197T. Tutoring in Chinese (1-5)
Tutoring—1-5 hours. Prerequisite: consent of Department chairperson. Leading of small voluntary discussion groups affiliated with one of the Department’s regular courses. May be repeated for credit, but only 2 units may be applied to the minor. (P/NP grading only.)

198. Directed Group Study (1-5)
(P/NP grading only)

199. Special Study for Advanced Undergraduates (1-5)
(P/NP grading only)

Graduate Course
299. Research (1-12)
(SIU grading only)

Courses in Japanese (JPN)
Lower Division Courses
1. Elementary Japanese (5)
Lecture/discussion—5 hours. Introduction to spoken and written Japanese in cultural contexts, with emphasis on communication. (Students who have successfully completed Japanese 2 or 3 in the 10th or higher grade in high school may receive unit credit for this course on a P/NP grading basis only. Although a passing grade will be charged to the student’s P/NP option, no petition is required. All other students will receive a letter grade unless a P/NP petition is filed.)—I. (I.)

2. Elementary Japanese (5)
Lecture/discussion—5 hours. Prerequisite: course 1 or the equivalent. Continuation of training in basic spoken and written skills.—II. (II.)

3. Elementary Japanese (5)
Lecture/discussion—5 hours. Prerequisite: course 2 or the equivalent. Continuation of training in basic spoken and written skills.—III. (III.)

4. Intermediate Japanese (5)
Lecture/discussion—5 hours. Prerequisite: course 3 or the equivalent. Intermediate-level training in spoken and written Japanese in cultural context, based on language skills developed in course 3.—I. (I.)

5. Intermediate Japanese (5)
Lecture/discussion—5 hours. Prerequisite: course 4 or the equivalent. Intermediate-level training in spoken and written Japanese in cultural context, based on language skills developed in course 4.—II. (II.)

6. Intermediate Japanese (5)
Lecture/discussion—5 hours. Prerequisite: successful completion (C– or better) of course 5 or the equivalent. Intermediate-level training in spoken and written Japanese in cultural context, based on language skills developed in course 5.—III. (III.)

10. Masterworks of Japanese Literature (in English) (4)
Lecture—3 hours; discussion—1 hour. An introduction to Japanese literature: readings and discussions in English of important works from earliest times to the present. GE credit: ArtHum, Div, Wrt.—II. (II.)

25. Japanese Language and Culture (in English) (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 1 or Linguistics 1 or Anthropology 4 recommended. Classification and communication of experience in Japanese culture; principles of language use in Japanese society. Speech levels and honorific language, language and gender, minority languages, literacy. Role of Japanese in artificial intelligence and computer science. Offered in alternate years.—I. (I.) Smith

50. Introduction to the Literature of China and Japan (3)
Lecture—3 hours. Methods of literary analysis and their application to major works from the various genres of Chinese and Japanese literature (in translation), including film. East Asian cultural traditions will also be introduced. (Same course as Chinese 50.) GE credit: ArtHum, Div, Wrt.—II. (II.)

98. Directed Group Study (1-5)
(P/NP grading only)

99. Special Study for Undergraduates (1-5)
(P/NP grading only)

Upper Division Courses
101. Japanese Literature in Translation: The Early Period (4)
Lecture—3 hours; discussion—1 hour. Early Japanese literature from the Nara to the end of the Heian period through a broad survey of the major literary genres such as lyric poetry, court diaries, prose narratives, poem-tales, and classical Chinese writings. GE credit: ArtHum, Div, Wrt.—I. (I.)

102. Japanese Literature in Translation: The Middle Period (4)
Lecture—3 hours; discussion—1 hour. The major literary genres from the twelfth century to the second half of the nineteenth century including poetry, renga, military chronicles, no drama, Buddhist literature, haiku, haibun, kabuki, bunraku, plays and Edo prose narratives. GE credit: ArtHum, Div, Wrt.—II. (II.)

Lecture—3 hours; discussion—1 hour. Modern Japanese literature from the 1870s to the 1970s. Surveys representative literary works and ideas against the social and intellectual background of the Meiji, Taisho, and Showa periods. GE credit: ArtHum, Div, Wrt.—III. (III.) Chang

104. Modern Japanese Literature: War and Revolution (3)
Lecture/discussion—3 hours. Perspectives and sensibilities with which major modern Japanese writers have interpreted the traumatic and often poignant experiences of war and socio-political upheavals from the late nineteenth century to the 1970s. Lectures, discussions, and readings in English. Offered in alternate years. GE credit: ArtHum, Div, Wrt.—I. Chang

105. Modern Japanese Literature: Hero and Anti-hero (3)
Lecture/discussion—3 hours. The ways in which representative heroes and anti-heroes in modern Japanese literature perceive, confront, struggle with, and resolve a wide area of social, moral, and intellectual problems in their times. Lectures, discussions, and readings in English. Offered in alternate years. GE credit: ArtHum, Div, Wrt.—I. Chang

106. Japanese Culture Through Film (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: upper division standing. Aspects of Japanese culture such as the family, position of women, growing up, death, and the supernatural as portrayed in films by Kurosawa, Akashi, Kurosawa, Mizoguchi, Ichikawa, Ozu, and Itami. Lectures, discussion, and readings in English. Films with English subtitles. GE credit: ArtHum, Div, Wrt.—II. (II.)

107. Modern Japanese Autobiographies (in English) (4)
Lecture—3 hours; term paper/discussion—1 hour. Prerequisite: upper division standing. Exploring the modern and contemporary Japanese social and cultural landscape through critical analysis of modern Japanese autobiographies by prominent and other authors in the 19th and 20th centuries. Offered in alternate years. GE credit: ArtHum, Div, Wrt.—I. Chang

108. Poetry of China and Japan (in English) (4)
Lecture—3 hours; discussion—1 hour. A comparative approach to Chinese and Japanese poetry, examining poetic practice in the two cultures; includes a general outline of the two traditions, plus study of poetic forms, techniques, and distinct treatments of universal themes: love, nature, war, etc. Offered in alternate years. (Same course as Chinese 108.) GE credit: ArtHum, Div, Wrt.—III. (III.)

110. Modern Japanese: Reading and Discussion (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 6. Readings in modern Japanese short stories, newspaper articles, and essays; conversation practice based on these readings.—I. (I.)

112. Modern Japanese: Reading and Discussion (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 111. Continuation of course 111.—II. (II.)

113. Modern Japanese: Reading and Discussion (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 112. Continuation of course 112.—III. (III.)

114A. Spoken Japanese (2)
Discussion—2 hours. Prerequisite: course 6 or the equivalent. Training in spoken Japanese for students with a basic working knowledge of the language. (P/NP grading only)—I. (I.)

114B. Spoken Japanese (2)
Discussion—2 hours. Prerequisite: course 114A or consent of instructor. Continuation of course 114A. Training in spoken Japanese for students with a basic working knowledge of the language. (P/NP grading only)—II. (II.)

114C. Spoken Japanese (2)
Discussion—2 hours. Prerequisite: course 114B or consent of instructor. Continuation of course 114B. Training in spoken Japanese for students with a basic working knowledge of the language. (P/NP grading only)—III. (III.)

115. Japanese Composition (2)
Lecture—2 hours. Prerequisite: course 6 or consent of instructor. Development of skills in the techniques of writing Japanese. Practice in short essay writing with an aim toward mastery of the vocabulary and syntax of written style Japanese.—I. (I.)

131. Readings in Modern Japanese Literature: 1920-1945 (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 113 or the equivalent. For introductory level reading of representative works of modern Japanese literature including short stories, novellas, diaries, memoirs, poetry, and excerpts from novels and plays from 1920 through the militaristic era, to the end of the war years in 1945.—II. (II.) Chang

Lecture—3 hours; discussion—1 hour. Prerequisite: course 113 or the equivalent. Continuation of course 131, but may be taken independently. Covers selected texts from the immediate post-war period beginning in 1945 down to 1970 and the post-war recovery.—III. (III.) Chang

133. Readings in Modern Japanese Literature: 1970 to Present (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 113 or the equivalent. Continuation of course 132, but may be taken independently. Covers selected texts from 1970 to the present. Offered in alternate years.—I. I
134. Readings in the Humanities: Traditional Culture (4)
Lecture—3 hours; discussion—1 hour or term paper. Prerequisite: course 113. Fourth-year level reading of modern works by major specialists on traditional Japanese culture: history, religion, thought, art, international relations, and literary history and criticism. Focus is equally on developing reading skills and learning about Japanese culture.—II. (II.) Borgen

135. Readings in the Humanities: The Modern Period (4)
Lecture—3 hours; term paper. Prerequisite: course 113. Fourth-year level reading of authentic modern writings on Japanese culture, history, philosophy, society, religion, law, politics, international relations, aesthetics, and comparative culture by prominent critics, commentators, and scholars.—III. (III.) Chang

136. Readings in Newspapers and Magazines (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 113 or the equivalent. Fourth-year level reading of newspaper and magazine reports, articles, and editorials on domestic and international affairs relating to contemporary Japan. Offered in alternate years.—(I.)

141. Introduction to Classical Japanese (4)
Lecture/discussion—4 hours. Prerequisite: one advanced Japanese reading course such as Japanese 131, 132, or the equivalent reading knowledge of Japanese. The basic features of classical Japanese grammar through careful reading of selected literary texts such as Hojoki or Tsurezuregusa. Offered in alternate years.—III. Borgen

192. Japanese Internship (1-12)
Internship—3-36 hours to be arranged. Prerequisite: upper division standing and consent of instructor. Work experience in Japanese language, with analytical term paper on a topic approved by instructor. (P/NP grading only.)

197T. Tutoring in Japanese (1-5)
Tutoring—1-5 hours. Prerequisite: consent of Department chairperson. Leading of small voluntary discussion groups affiliated with one of the Program's regular courses. May be repeated for credit, but only 2 units may be applied to the minor. (P/NP grading only.)

198. Directed Group Study (1-5)
(P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5)
(P/NP grading only.)

Graduate Courses

291. Seminar in Modern Japanese Literature: Major Writers (4)
Seminar—4 hours. Prerequisite: any one of courses 131, 132, 133, 134, 135, or the equivalent. In-depth reading and critical analyses of major works by and critical literature on one or two prominent modern or contemporary writers such as Natsume Soseki, Mori Ogai, Shimazaki Toson, Akutagawa Ryunosuke, Tanizaki Junichiro, Abe Kobo and Oe Kenzaburo. Offered in alternate years.—III. Chang

299. Research (1-12)
(S/U grading only.)
Engineering: Applied Science

(College of Engineering)
Richard R. Freeman, Ph.D., Chairperson of the Department
John S. DeGroot, Ph.D., Vice Chairperson of the Department
Department Office, Engineering III (530-752-0360)
World Wide Web: http://www.das.ucdavis.edu

Faculty
Hector A. Baldis, Ph.D., Professor
Stephen F. Cramer, Ph.D., Professor
Richard P. Freeman, Ph.D., Professor
Jonathan P. Heritage, Ph.D., Professor (Applied Science, Electrical and Computer Engineering)
David Q. Hwang, Ph.D., Professor
Niels G. Jensen, Ph.D., Professor
Brian H. Kolner, Ph.D., Professor
Denise M. Krol, Ph.D., Professor
Jeff Wadsworth, Adjunct Professor
Dennis L. Matthews, Ph.D., Adjunct Professor
Farid U. Dowla, Ph.D., Adjunct Associate Professor
Camille Bibeau, Adjunct Assistant Professor
Edward Teller, Ph.D., University Professor Emeritus
Frederick Wooten, Ph.D., Professor Emeritus

Emeriti Faculty
Berni J. Alder, Ph.D., Professor Emeritus
Meera M. Blattner, Ph.D., Professor Emeritus
Stewart D. Bloom, Ph.D., Professor Emeritus
Richard Christensen, Ph.D., Professor Emeritus
Paul P. Craig, Ph.D., Professor Emeritus
John S. De Groot, Ph.D., Professor Emeritus
William G. Hoover, Ph.D., Professor Emeritus
John Klineen, Ph.D., Professor Emeritus
Richard F. Post, Ph.D., Professor Emeritus
Wilson K. Talley, Ph.D., Professor Emeritus
Richard R. Freeman, Ph.D., Chairperson of the Department

Affiliated Faculty
Camille Bibeau, Adjunct Assistant Professor
Farid U. Dowla, Ph.D., Adjunct Associate Professor
Dennis L. Matthews, Ph.D., Adjunct Professor
C. Bruce Tarter, Adjunct Professor
Louis J. Terminello, Ph.D., Adjunct Associate Professor
Jeff Wadsworth, Adjunct Professor
Amy W. Wang, Adjunct Assistant Professor

The Major Program
The Department of Applied Science administers the Optical Science and Engineering curriculum.

Description. Optical Science and Engineering encompasses the physical phenomena and technologies associated with the generation, transmission, manipulation, detection, and applications of light. The Optical Science and Engineering curriculum prepares students to design, analyze, and fabricate effective optical systems. Much of the nation’s high-technology infrastructure is based upon optics and its applications, the most prominent being optical digital information transmission. Optical systems play a central role in nearly all aspects of modern life, including health care and the life sciences, remote optical sensing, lighting, cameras, space, and national defense.

Outcomes. Upon graduation, our students will understand the fundamentals of the application of mathematics and sciences; and to have an ability to design and conduct experiments, as well as to analyze and interpret data; a proficiency in the design of components and systems to meet desired performance specifications; an ability to function effectively on multi-disciplinary teams; proficiency in the use of techniques, skills, and modern engineering tools to identify, formulate, and solve engineering problems; an understanding of professional and ethical responsibility; a proficiency in oral and written communication; the broad education necessary to understand the impact of engineering solutions in a global and societal context; an ability to engage in graduate education and life-long learning; and a knowledge of contemporary issues impacting society and the profession.

Areas of Specialization
Areas of specialization within Optical Science and Engineering are (1) imaging, (2) lasers and spectroscopy, and (3) opto-electronics and opto-communications. You may specialize in one or more of these areas by selecting appropriate technical electives, but such specialization is not required. You are urged to consult an adviser when developing your individual program.

The Major Program
The Department of Applied Science administers the Optical Science and Engineering curriculum.

Description. Optical Science and Engineering encompasses the physical phenomena and technologies associated with the generation, transmission, manipulation, detection, and applications of light. The Optical Science and Engineering curriculum prepares students to design, analyze, and fabricate effective optical systems. Much of the nation’s high-technology infrastructure is based upon optics and its applications, the most prominent being optical digital information transmission. Optical systems play a central role in nearly all aspects of modern life, including health care and the life sciences, remote optical sensing, lighting, cameras, space, and national defense.

Outcomes. Upon graduation, our students will understand the fundamentals of the application of mathematics and sciences; and to have an ability to design and conduct experiments, as well as to analyze and interpret data; a proficiency in the design of components and systems to meet desired performance specifications; an ability to function effectively on multi-disciplinary teams; proficiency in the use of techniques, skills, and modern engineering tools to identify, formulate, and solve engineering problems; an understanding of professional and ethical responsibility; a proficiency in oral and written communication; the broad education necessary to understand the impact of engineering solutions in a global and societal context; an ability to engage in graduate education and life-long learning; and a knowledge of contemporary issues impacting society and the profession.

Areas of Specialization
Areas of specialization within Optical Science and Engineering are (1) imaging, (2) lasers and spectroscopy, and (3) opto-electronics and opto-communications. You may specialize in one or more of these areas by selecting appropriate technical electives, but such specialization is not required. You are urged to consult an adviser when developing your individual program.

Suggested technical electives:
Applied Science Engineering 169; Electrical and Computer Engineering 106, 136, 150A, 150B.

Lasers and Spectroscopy. The unique properties of laser light have been widely used in science and technology. Lasers are quickly forming the backbone of our communication system, where light signals are transmitted through optical fibers carrying extremely wide information bandwidths. Lasers are used in surveying, guided missiles, and astronomy, because laser light projects long distances in very narrow beams. Lasers are widely used as a diagnostic tool in the sciences because laser light is coherent and has a narrow bandwidth. The student will understand these properties of laser light, as well as the potential for future applications.

Suggested technical electives:
Applied Science Engineering 115, 169, 170, 172; Electrical and Computer Engineering 133.

Opto-electronics and Opto-communications. Opto-electronics and opto-communications are the enabling technologies that drive the development of the Internet, telephony, optical switching, next-generation computers, and secure data transmission. This program emphasizes the analysis and design of opto-communication and opto-electronics systems, and, in conjunction with other basic courses in relevant areas, will prepare students to contribute to many branches of industry and science.

Suggested technical electives:
Electrical and Computer Engineering 100, 133, 136, 140B, 150A, 150B.
Upper Division Program

Required Courses

- Applied Science Engineering/Physics 108A. (4)
- Applied Science Engineering/Physics 108B. (4)
- Applied Science Engineering 161. (4)
- Applied Science Engineering 165. (4)
- Applied Science Engineering 166. (4)
- Electrical and Computer Engineering 130A. (4)
- Electrical and Computer Engineering 130B. (4)
- Electrical and Computer Engineering 135. (3)
- Electrical and Computer Engineering 140A. (3)
- Physics 112. (3)
- Physics 104A, 104B. (6)
- Chemistry 110A. (4)
- Optics Electives: 28 units from the following:
- Applied Science Engineering 137. (3)
- English 104E. (4)
- General Education Electives. (8)

Total Upper Division Units: 91

Minimum Units Required for Major: 181

Courses in Engineering: Applied Science—Davis (EAD)

Lower Division Courses

1. Introduction to Optical Science and Engineering (4)
 - Lecture: 3 hours; laboratory: 3 hours. Introduction to the field of optical science and engineering. Discussion and demonstration of optical science and engineering principles and applications. Laboratory exercises emphasize basic principles. Discussion of the opportunities and professional practice in the field including ethics and responsibilities.—I. (I.) Freeman

90C. Research Group Conference for Lower Division Students (1)
 - Lecture: 1 hour. Prerequisite: lower division standing; consent of instructor. May be repeated for credit. (P/NP grading only.)—I, II, III. (I, II, III.)

98. Directed Group Study (1-5)
 - Prerequisite: consent of instructor and lower division standing. (P/NP grading only.)

99. Special Study for Lower Division Students (1-5)
 - Prerequisite: consent of instructor. (P/NP grading only.)

Upper Division Courses

108A. Optics I (4)

108B. Optics II (4)
 - Lecture: 3 hours; laboratory: 3 hours. Prerequisite: course 108A or Physics 108A. Wave theory of optics, including Maxwell's equations and boundary condition, reflection and transmission coefficients, interference, diffraction, polarization, thin film and ultra-thin film optics, and radiation from extended distributions of oscillating electric dipoles. Not open for credit to students who have completed Physics 108 and 108L.—II. (II.) Baldis, Zhu

115. Numerical Solution of Engineering and Scientific Problems (4)
 - Lecture: 3 hours; discussion: 1 hour. Prerequisite: Engineering 5, 6 or Computer Science Engineering 30 and Mathematics 22B. Computer problem solving including: error analysis, roots of equations, systems of equations, interpolation and data fitting, integration, initial value, boundary value, and eigenvalue ordinary differential equations. Emphasis on robust methods to solve realistic problems.—I, II, III. (I, II, III.) Jensen

116. Computer Solution of Physical Problems (3)
 - Lecture: 3 hours. Prerequisite: course 115 or consent of instructor. Application of computers to solution of physical problems. Numerical solution of elliptic, parabolic, and hyperbolic partial differential equations; eigenvalue problems, Monte Carlo methods, linear programming.—I, III. (I, III.) Jensen, Miller, Cramer

137. Science and Technology of Nuclear Energy and Control (3)
 - Lecture: 3 hours. Prerequisite: upper division standing; one course from Physics 1B, 5C, 9C, or 10. Scientific and technical aspects of nuclear arms effects and nuclear arms control including the nuclear physics of atomic and hydrogen bombs, blast and radiative effects, radioactive decay, electromagnetic pulse, ICBM accuracy, laser weapons, verification safeguards, biological and ecological effects. Emphasis on order of magnitude calculations. (In the College of Engineering, students may receive only one unit of credit towards the Technical Electives requirement.) (same course as Physics 137.) GE credit: SciEng or SocSci.—I. (I.) Freeman

161. Optical Design (4)
 - Lecture: 3 hours; laboratory: 3 hours. Prerequisite: course 108A or Physics 108A. Optical materials and coatings, lens design, aberrations, dichroic and interference filters, optical transfer function, kinematic mounts for lenses and mirrors, spatial filters, optical isolation, alignment and autocollimation, optical element and system testing, image evaluation.—II, III.

165. Statistical and Quantum Optics (4)
 - Lecture: 3 hours; laboratory: 3 hours. Prerequisite: Chemistry 110A and Electrical and Computer Engineering 130B. Waves and photons, photon number and fluctuations; field and number fluctuations; properties of single-mode, coherent, and statistical mixture states of the radiation field; photon bunching and anti-bunching; photodetective counting distributions for chaotic and coherent light; the squeezed state. Not open for credit to students who have completed course 165A.—I. (I.) Freeman

166. Lasers and Nonlinear Optics (4)
 - Lecture: 3 hours; laboratory: 3 hours. Prerequisite: course 165. Theory of single optical processes, population inversion, stimulated emission, laser threshold conditions, light broadening mechanisms, saturation, coherence, laser resonator optics, Q-switching, mode locking, harmonic and sum-frequency generation, parametric conversion, stimulated scattering processes, four-wave mixing, phase conjugation, frequency chirping, ultrashort pulse generation.—II. (II.) Yeh

167. Fourier Optics (4)
 - Lecture: 3 hours; discussion: 1 hour. Prerequisite: Physics 104B and Electrical and Computer Engineering 130B. Linear systems analysis of two-dimensional optical systems, 2D Fourier transforms, scalar diffraction theory, Fresnel and Fraunhofer diffraction, coherent and incoherent optical systems, spatial frequency analysis, analog optical information processing, spatial light modulators, film, holography, character recognition, and image restoration.—I, II, III. (I, II, III.) Kolner

169. Optical Properties of Materials (4)
 - Lecture: 3 hours; discussion: 1 hour. Prerequisite: Engineering 45, course 108B or Physics 108B. Introduction to Physics 110A. Properties among structure, composition and optical properties of laser materials, nonlinear optical materials, photorefractive, fiber optics, semiconductors, liquid crystals, and thin films.—Krol

170. Optical Spectroscopy: Concepts and Instrumentation (4)
 - Lecture: 3 hours; discussion: 1 hour. Prerequisite: Chemistry 110A and course 166. Fundamentals of absorption and emission, spectrometers, interferometers, light sources and detectors, UV, Visible, and IR spectroscopy, fluorescence spectroscopy, Raman and Brillouin scattering, high-resolution laser spectroscopy.

171. Scanning Probe Microscopy (4)
 - Lecture: 3 hours; laboratory: 3 hours. Prerequisite: Electrical and Computer Engineering 102, Chemistry 110B or the equivalent. Physics of scanning probe microscopy, scanning tunneling microscopy and atomic force microscope will be studied, as will their applications to surfaces and structural biology. Operational STM and AFM will further students' experience in nano-scale science and technology.—II, III, (II, III.) Yeh

172. Optical Methods for Biological Research (3)
 - Lecture: 3 hours. Prerequisite: Biological Sciences 1 and course 108B or Physics 108B. Current problems in biology using the available and emerging optical tools for quantitative data acquisition, analysis, and interpretation. Significant research areas in biology are identified; optical techniques to resolve the problems.—I, II, III. (I, II, III.) LaSalle

180. Introduction to Plasma Physics and Controlled Fusion (3)
 - Lecture: 3 hours. Prerequisite: Physics 110B and 112A, or consent of instructor. Equations plasma properties, plasma sources, plasma diagnostics, magnetohydrodynamics, kinetic theory, plasma stability, plasma confinement systems and approaches to controlled thermonuclear fusion.—I. (I.)

181. Plasma Physics Laboratory (1)
 - Laboratory: 3 hours. Prerequisite: course 180 concurrently. Langmuir probes, plasma sources, Landau stopping of ion acoustic waves, ion acoustic shocks, ion-ion two-stream instability.—I. (I.)

190C. Research Group Conference for Advanced Undergraduates (1)
 - Discussion: 1 hour. Prerequisite: advanced standing; consent of instructor. Weekly conference on research problems, progress and techniques in applied science. May be repeated for credit. (P/NP grading only.)—I, II, III. (I, II, III.)

196. Group Study (1-5)
 - Prerequisite: consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5)
 - Prerequisite: consent of instructor. (P/NP grading only.)

Graduate Courses

228A-228B-228C. Properties of Matter (3-3-3)
 - Lecture: 3 hours. Prerequisite: Mathematics 22B and Physics 112B. Microscopic and macroscopic descriptions of matter: thermodynamics and kinetics; constitutive, electrical, mechanical and thermal properties.—I, II, III. (I, II, III.) Luhmann, Yeh, Baldis, McCurdy

229. Computational Molecular Modeling (4)
 - Lecture: 3 hours; project. Prerequisite: course 210A and 228A or consent of instructor. Theory and hands-on implementation of algorithm in computational statistical mechanics. Temporal integrators, molecular dynamics, force fields, constrained dynamics, Monte Carlo techniques, fluctuation-dissipation theorem, and parallel vs. serial computing.—II. (II.) Jensen
262A. Atomic and Molecular Interactions (3)

262B. Atomic and Molecular Interactions (3)
Lecture—3 hours. Prerequisite: Physics 215A-215B-215C. Molecular structure and spectra.—III. (III.) Orel, Freeman

262C. Atomic and Molecular Interactions (3)
Lecture—3 hours. Prerequisite: course 262B. Classical and quantum mechanical collision theory of electrons and heavy particle scattering.—III. (III.) Orel, Freeman

271. Optical Methods in Biophysics (3)
Lecture—3 hours. Prerequisite: Physics 110A-110B-110C, Chemistry 110A, 110B, or the equivalent. Physics of light-matter interactions used in biophysical research. Techniques of absorption, ellipsometry, fluorescence, phosphorescence, elastic and inelastic scattering, diffraction, and nonlinear optics are applied to the study of proteins, nucleic acids, lipids, and super-molecular organizations in biological systems. Offered in alternate years.—I, II, III. (I, II, III.) Matthews

273. X-Ray Spectroscopy and Synchrotron Radiation (4)
Lecture—4 hours. Prerequisite: S, U grading only. Fundamentals of X-ray absorption, emission, and inelastic scattering; X-ray imaging and microscopy; synchrotron radiation from bend magnets, wigglers, undulators, and free electron lasers; X-ray optics and storage ring design; visits to the synchrotron radiation facilities SSRL and ALS; optional experiments. Offered in alternate years.—II, III. (II, III.) Luhmann, Hwang

280A-280B-280C. Plasma Physics and Controlled Fusion (3-3-3)
Lecture—3 hours. Prerequisite: course 234B or consent of instructor. Equilibrium plasma properties; single particle motion; fluid equations; waves and instabilities in a fluid plasma; plasma kinetic theory and transport coefficients; linear and nonlinear Vlasov theory; fluctuations, correlations and radiation; inertial and magnetic confinement systems in controlled fusion.—I, II, III. (I, II, III.) Luhmann

285B. Physics and Technology of Microwave Vacuum Electron Beam Devices I (4)
Lecture—4 hours. Prerequisite: B.S. degree in physics or electrical engineering or the equivalent background. Physics and technology of electron beam emissions, flow and transport, electron gun design, space charge waves and klystrons. Offered in alternate years.—III. (III.) Luhmann

285C. Physics and Technology of Microwave Vacuum Electron Beam Devices II (4)
Lecture—4 hours. Prerequisite: 285A. Theory and experimental design of traveling wave tubes, backward wave oscillators, and extended interaction oscillators. Offered in alternate years.—I. (I.) Luhmann

285D. Physics and Technology of Microwave Vacuum Electron Beam Devices III (4)
Lecture—4 hours. Prerequisite: 285B. Physics and technology of gyrotrons, gyro-amplifiers, free electron lasers, magnetrons, crossfield amplifiers and relativistic devices. Offered in alternate years.—II. (II.) Luhmann

289A-K. Special Topics in Applied Science (1-5)
Discussion—1 hour. Prerequisite: consent of instructor. May be repeated for credit. (SU grading only.)

290. Seminar (1-2)
Seminar—1-2 hours. (SU grading only.)

290C. Graduate Research Group Conference (1)
Discussion—1 hour. Prerequisite: consent of instructor. May be repeated for credit. (SU grading only.)

298. Group Study (1-5)
(SU grading only.)

299. Research (1-12)
(SU grading only.)

Courses in Engineering: Applied Science—Livermore (EAL)
Upper Division Course
199. Special Study for Advanced Undergraduates (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)

Graduate Courses
203. Computer Architecture (3)
Lecture—3 hours. Prerequisite: Computer Science Engineering 250A. Topics in computer communication, hardware features to enhance operating systems, advanced architectures, memory hierarchy, parallel architectures, and vector computing.—III. (III.) Venuri

205A. Mathematical Methods (3)
Lecture—3 hours. Prerequisite: calculus. Complex variables, theory of convergence, evaluation of definite integrals, factorial function (gamma function), asymptotic expansions, fourier analysis.—II, III. (II, III.) Orel, Rodrigue, Miller

205B. Mathematical Methods (3)
Lecture—3 hours. Prerequisite: course 205A. Laplace transforms, Sturm-Liouville theory, solution of second order linear ODE, approximate solutions of ODE, calculus of variations, characteristics.—I, II, III. (I, II, III.) Orel, Rodrigue, Miller

205C. Mathematical Methods (3)
Lecture—3 hours. Prerequisite: course 205B. Spherical harmonics, Bessel functions, conformal mapping, hypergeometric functions, elliptic functions.—III. (III.) Orel, Rodrigue, Miller

210A. Numerical Methods in Applied Science (3)

210C. Numerical Methods in Applied Science (3)
Lecture—3 hours. Prerequisite: course 210B. Computational methods in various fields including: fluid mechanics, kinetic theory, solid mechanics, quantum mechanics.—III. (III.) Rodrigue, Venuri

211A. Numerical Solution of Partial Differential Equations I (3)
Lecture—3 hours. Prerequisite: course 210A. Fundamentals of parallel computers, grid generation, domain decomposition, Poisson’s equation, elliptic PDEs, Galerkin methods, numerical linear algebra, iterative acceleration.—I. (I.) Rodrigue, Miller, Orel, Jensen

211B. Numerical Solution of Partial Differential Equations II (3)
Lecture—3 hours. Prerequisite: course 211A. Parabolic PDEs, stability, preconditioned time differencing, hyperbolic PDEs, modified differential equation, advection-diffusion equations, wave equation, Burger’s equation, reaction-diffusion equations.—II. (II.) Rodrigue, Miller, Orel, Jensen

211C. Numerical Solution of Partial Differential Equations III (3)
Lecture—3 hours. Prerequisite: course 211B. Conservation laws, fluid equations, turbulence, elasticity equations, electromagnetic equations, transport equations.—III. (III.) Rodrigue, Miller, Orel, Jensen

213A. Computer Graphics (3)
Lecture—3 hours. Prerequisite: consent of instructor. Development of algorithms for perspective line drawings of three-dimensional objects, as defined by polygons or bicubic patches.—II. (II.) Max

213B. Computer Graphics (3)
Lecture—3 hours. Prerequisite: course 213A or Computer Science Engineering 175. Algorithms to produce color raster renderings of three-dimensional models.—III. (III.) Max

214. Scientific Visualization (3)
Lecture—3 hours. Prerequisite: Computer Science Engineering 175 or consent of instructor. Visualization of 3D data, including scalar fields, vector fields, and molecular structures. Primary emphasis on volume visualization algorithm.—II, III. (II, III.) Max

215. Computer Animation (4)
Lecture—3 hours; laboratory—3 hours. Prerequisite: Computer Science Engineering 175 or 177 or 178. Control of camera and object motion necessary to produce computer animation, modeling of articulated objects made from jointed segments, and of deformable objects. Students will complete a final animation project. (Same course as Computer Science Engineering 279). Offered in alternate years.—(III.) Max

216A-G. Special Topics in Computer Science (1-5)
Lecture, laboratory, or combination. Prerequisite: consent of instructor. Special topics in the following areas: (A) Architecture; (B) Software Systems; (C) Language Translation; (D) Language Design; (E) Operating Systems; (F) Foundations of Computing; (G) Computational Mathematics. May be repeated for credit for a total of 5 units per segment if topic differs.—I, II, III. (I, II, III.)

217A. Applied Computational Science (3)
Lecture—3 hours. Prerequisite: course 210A, Mathematics 229A, or the equivalent (may be taken concurrently). Applied modular programming in low level language (C or Fortran). Direct implementations and integrated applications of algorithms applied to computational science problems, which are exemplified through projects.—I, II, III. (I, II, III.) Rodrigue, Miller, Orel, Jensen

217B. Applied Computational Science (3)
Lecture—3 hours. Prerequisite: course 210B or the equivalent (may be taken concurrently). Applied modular programming in low level language (C or Fortran). Direct implementations and integrated applications of algorithms applied to computational science problems, which are exemplified through projects.—II, III. (II, III.) Rodrigue, Miller, Orel, Jensen
218. Signal Processing (3)

219. Waves and Their Applications (3)
Lecture—3 hours. Prerequisite: Electrical and Computer Engineering 150A, Mathematics 167. Fourier transforms and digital filters; sampling theorem and analog-to-digital conversion, multirate signal processing; wavelet transforms and filter banks; fast algorithms: FFT, DWT, and pyramid; data compression with wavelets; spectral factorization, designing application-specific wavelets. Offered in alternate years.—(II.) Dowla

220A. Artificial Neural Nets—I (3)

220B. Artificial Neural Nets—II (3)

221. Genetic Algorithms and Optimization (3)
Lecture—3 hours. Prerequisite: Mathematics 145 or the equivalent; graduate standing; ability to program in one of the modern programming languages. Introduction to genetic algorithms. Fundamental theorem; schema processing; genetic operators; applications to function optimization, scheduling, VLSI circuit layout. Implementation on parallel computers; genetic programming; evolutionary algorithms.—II. (III.) Vemuri

225. Computational Structures for Signal and Image Processing and Graphics (3)
Lecture—3 hours. Prerequisite: Computer Science Engineering 40; course 210A. Tools for research in digital media. Relevant computer architectures, algorithms and languages for signal processing, image processing and graphics. Hardware and software issues in parallelism. Programming in SISAL. Parallel C and Parallel Fortran. Parallel algorithms using SISAL on parallel computers. Offered in alternate years.—(II.) Vemuri

226. Practical Data Communications in Digital Media (3)
Lecture—3 hours. Prerequisite: Computer Science Engineering 152. Tools for research in digital media. Communication protocols, algorithms and architectures suitable in modern networked environment. Transmission of digital data over voice grade channels, telecommunications networks for data transport, Broadband multimedia communications, ATM, and Broadband ISDN. Offered in alternate years.—(II.) Vemuri, Dowla

228A-228B-228C. Statistical Mechanics (3-3-3)
Lecture—3 hours. Prerequisite: Mathematics 22B and Physics 112B. Microscopic and macroscopic descriptions of matter; thermodynamics and kinetics: constitutive, electrical, mechanical and thermal properties.—I-II-III. (I-II-III.) L unhmann, Yeh, Baldis, McCurdy

230. Topics in Computational Fluid Dynamics (3)
Lecture—3 hours. Prerequisite: course 210A, 210B or consent of instructor. A hands-on approach to numerical methods for compressible fluid flow. Readings and discussions of solution strategies complemented with programming exercises and projects to give first hand experience with performance and accuracy of several computational methods; from upper dividing to Godunov methods.—III. (III.) Miller

233A-233B-233C. Theory and Applications of Solid-State Physics (3-3-3)
Lecture—3 hours. Prerequisite: course 230C or the equivalent. Structure and properties of crystals; theory of dielectrics, metals and alloys; magnetism, superconductivity, and semiconductors. Applications to various solid-state devices.—I-II-III. (I-II-III.) Freeman, Terminello

262A-262B-262C. Atomic and Molecular Interactions (3-3-3)
Lecture—3 hours. Prerequisite: course 233A-233B-233C or the equivalent. Atomic structure and spectra, molecular structure and spectra, classical and quantum mechanical collision theory of electron and heavy particle scattering.—I-II-III. (I-II-III.) Orel, Freeman

263A. Quantum Statistics of Light (3)

263B. Quantum Theory of Optics (3)
Lecture—3 hours. Prerequisite: course 263A. Statistics of photon fluctuations are derived, resulting in the fundamental theory of “lasing.”—II. (II.) Freeman

265A. Laser Physics I (3)

265B. Laser Physics II (3)
Lecture—3 hours. Prerequisite: course 265A. Beam propagation, resonators and laser dynamics. Threshold dynamics and cavity modes. Ray optics and matrices, wave optics and Gaussian beams. Resonator stability. Linear pulse propagation, dispersion and pulse compression. Spiking, relaxation, Q-switching, injection locking and mode-locking.—II. (II.) Kolner

267. Nonlinear Optics (3)

270A-270B. Advanced Laser Plasma Physics (3)
Lecture—3 hours. Prerequisite: course 205A, 205B, 234. Laser-produced plasmas and advanced applications of high power lasers. Plasma formation with lasers, ponderomotive force, kinetic theory, waves in unmagnetized plasmas, non-linear effects, parametric instabilities, hydrodynamic instabilities, and radiation transport. Applications include ICF, X-ray lasers.—I-II. (I-II.) Baldis

299. Research (1-12)
Discussion—1 hour. Prerequisite: consent of instructor. May be repeated for credit. (S/U grading only.)

290C. Graduate Research Group Conference (1)
Seminar—1-2 hours. (S/U grading only.)
Programs of Study

The University of California Education Abroad Center offers overseas study programs in cooperation with more than 100 host universities and colleges in over 36 countries throughout the world. More than 2,000 UC students, primarily undergraduates, will take part in this program in 2000-2002. Participating students remain registered at their home campuses while studying abroad and receive in academic credit for their work. Nearly 800 international students will attend UC campuses under the auspices of the Education Abroad Program (EAP) during 2000-2002, often with scholarships provided through UC and their home institutions. As an academic program, EAP at UC Davis is dedicated to serving students and faculty by providing information on global educational and internship opportunities.

Full-year study programs are available in Australia, Austria, Barbados, Brazil, Canada, Chile, China, Costa Rica, Denmark, Egypt, England, France, Germany, Ghana, Hong Kong, Hungary, Indonesia, Ireland, Israel, Italy, Japan, Korea, Mexico, New Zealand, Netherlands, Scotland, Singapore, Spain, Sweden, Thailand, Taiwan and Turkey.

EAP also offers short-term and special-focus programs. One-semester options are available in Australia, Brazil, Canada, Chile, Costa Rica (quarter also), Denmark, Germany, Hungary, India, Indonesia, Italy (quarter also), Spain, Sweden, Thailand, and Vietnam. One-term intensive language programs are available in China, Denmark, France, Germany, Hong Kong, Israel, Japan, Netherlands, Russia, and Spain. A field research program is offered in Australia and Mexico, two tropical biology programs in Costa Rica, a Global Security and Economic Development Center plus a spring quarter engineering program in Japan. A DIS program in Denmark and a marine biology program in Australia are also offered.

UC faculty, who serve as directors at most Study Centers, provide academic advising to students while abroad. Full credit is granted for courses satisfactorily completed and approved coursework is recorded on official UC transcripts. With careful planning, most EAP students make normal progress toward their UC degrees. With approval of their UC major and college advisors, students may earn credit abroad toward their major, minor, general education, or graduation requirements.

Participants pay the same fees as at UC Davis. Additional costs and fees include room and board, books and personal travel, round-trip transportation, on-site orientation and intensive language program (where applicable), and miscellaneous expenses. The cost of studying abroad is often comparable to that of studying on a UC campus, although costs vary from country to country.

Financial assistance is available to EAP students. Those already receiving UC financial aid maintain their eligibility for grants, loans, and scholarships while studying on EAP. Financial aid is based on the cost of studying at each EAP location. Students who might not normally be eligible for financial aid may qualify for credit toward their UC degree in time to be posted on the student's UC Davis transcript for EAP returnees to be included on the June degree list. Returning students may participate in the June commencement ceremony; however, their graduation date will be in September.

Selection

Selection of UC undergraduates is subject to the following minimum qualifications: 2.5–3.0 cumulative grade point average or good academic standing (2.5) at the time of application and maintained through departure (Most language and culture programs require one year of good academic standing and endorsement of the UC Davis selection committee. More than half of the EAP programs do not have a language requirement. Most language and culture programs do not require an interview. EAP opportunities are also open to qualified graduate students who have completed at least one full year of graduate work and have support of their graduate program and graduate dean. A detailed statement of the projected program of study is required.

Students are selected by a committee of UC Davis faculty and staff familiar with the host country. The committee strongly recommends that prospective participants familiarize themselves with the country of their interest in preparation for their time abroad through appropriate courses, books, magazine or journal articles, or newspapers. Lists of suggested courses and reading materials are available in the EAP Office.

Once the completed application materials have been filed, an applicant will be interviewed by a selection committee consisting of faculty and EAP returnees. Among other things, academic goals, some knowledge of the host country (and the United States) and proficiency in the language (when applicable), will receive considerable attention during the interview. Files of applicants receive the endorsement of the interview committee and/or the EAP director and are forwarded to the Systemwide Office of the EAP on the Santa Barbara campus, where final selection considerations are made.

Academic Program

In most situations, students from the University of California live as the students of the host country do, and in some cases students attend the same courses, taught by faculty of the host country in their own language. Thus, language skills are very important for about half of the EAP programs. To aid adjustment of UC students, tutorials are a part of the academic program at some centers. Tutorials assist in overcoming language problems and differences in educational practices and provide cultural background information expected in the courses. Tutorials are taught by graduate students or junior staff of the host university and are offered in association with courses in which a sufficient number of UC students have enrolled.

To assist in the adjustment and the academic work of the students, faculty members of the University of California serve as Directors and/or Associate Directors at most of the study centers abroad.

The academic year program of each student includes: (1) an intensive preparatory course in the language of the host country (except for programs taught in English); (2) a quarter, a semester or a full year of academic courses; (3) broad opportunity to audit courses within the host university. It is expected that students will complete a minimum of 45-49 units during the academic year or 24 semester units in addition to units earned in the intensive language program.

Graduation Requirements

All prospective applicants, particularly students who intend to study abroad during their senior year, should carefully plan their course programs for Davis abroad in order to satisfy university, college, and major/minor requirements for their degree. The provisional planning form in the application packet addresses these concerns. Although units and grade points earned in the EAP are incorporated into the University transcript and GPA, departments and majors retain the right to determine which EAP courses will be accepted in satisfaction of major and minor requirements. Several major and minor programs have identified key upper division courses which must be completed in residence at Davis. Academic advisors should be consulted early so that the pre-departure program at Davis will be planned appropriately.

All degree candidates must meet the University residence requirement. Students planning to graduate immediately upon completion of participation in the EAP may satisfy residence requirement requirements within the final 45 units preceding entrance into the EAP. In addition, subject to prior approval of the major department or program concerned, the requirement may be satisfied as follows: Within the final 90 units earned toward the degree, 35 units must be completed in residence in the student's college or university, 12 units of which must be completed after returning from EAP participation. With this option, no more than 55 units taken abroad may be applied toward the unit requirement for graduation. The applicant's college dean is the source of information on the University residence requirement.

Students may satisfy GE requirements while on EAP. GE credit is determined by the student's college. Participants who satisfy all degree requirements while abroad and expect to graduate upon completion of the year abroad should file for candidacy to receive their degree in September (university degrees) or in December (college degrees). Participants who do not receive their degree in September (candidacy filing dates are established by the Office of the Registrar). In some cases, transcripts from abroad may not be received in time to be posted on the student's Davis transcript for EAP returnees to be included on the June degree list. Such returning students may participate in the June commencement ceremony; however, their graduation date will be in September.

Courses in Education Abroad Program (EAP)

Lower Division Course

90X. International Education Seminar (1)

Seminar—1 hour. Prerequisite: open to lower division applicants for EAP or UC Davis study abroad and international internship programs. Seminar examines the academic, cultural, and personal issues of study abroad, including academic programs abroad, country-specific history and culture, cross-cultural experiences, culture shock, racial and gender issues. May be repeated for credit. (P/NP grading only).—I. (I.) Dutschke

Upper Division Course

190X. International Education Seminar (1)

Seminar—1 hour. Prerequisite: open to upper division applicants for EAP or UC Davis study abroad and international internship programs. Seminar examines the academic, cultural, and personal issues of study abroad, including academic programs abroad, country-specific history and culture, cross-cultural experiences, culture shock, racial and gender issues. May be repeated for credit. (P/NP grading only).—I. (I.) Dutschke
Study Centers

At any one center, the courses and fields of study open to UC students may be limited. Each host institution has special areas of excellence and strength. The listing below incorporates selected information concerning course work available at each study center. More detailed information is available in the flyers describing each of the centers and from the EAP advisors at the UC Davis Education Abroad Center (EAC) located at 151-155 Kerr Hall.

In addition to the programs listed below, Davis students have access to a variety of non-UC programs of study and work abroad opportunities. Information can be obtained at the EAC in 154 Kerr Hall.

Europe

Denmark. A compulsory summer intensive language program precedes the academic year and continues through the fall semester. Most students concentrate on their major or a closely related field; independent study under tutorial supervision is expected. Students may also apply to the Summer Intensive Language Program at the University of Copenhagen to bring their level of language up to participate in courses taught in Danish during spring semester. Architecture and landscape architecture students may spend fall, spring, or a full year at DIS-Copenhagen.

University of Copenhagen. Courses in European Union Studies, political science and law. Other courses: art history, English literature, anthropology, sociology, mathematics and natural sciences. Students may also take a human biology program in English.

France. A compulsory intensive language course precedes the beginning of the academic year. All courses in the universities are taught in French. Year programs require two years of university level language; fall semester requires 3-5 quarters of language instruction. UC faculty directors are in residence at the Bordeaux, Grenoble, Lyon and Paris study centers in France.

French and foreign literature, geography, and social sciences.

Ecole Normale Supérieure at Fontenay-Saint Cloud, Paris Region. Course work in social sciences and the humanities.

Joseph Fourier University and the National Polytechnic Institute of Grenoble. Courses in most sciences and engineering fields for advanced undergraduates and graduate students.

University of Bordeaux. Broad areas of the humanities and social sciences. The Institute of Political Science and the Institute of Prehistory (Anthropology) are well known.

University of Grenoble. Mainly in the social sciences through the Université des Sciences Sociales (Grenoble II); some humanities. Offerings in anthropology and psychology are limited.

Institute d’Études Politiques de Paris. Graduate and advanced undergraduate students with strong French language skills participate in multidisciplinary programs in political sciences, international relations, history, economics, and sociology.

University of Lyon. Social sciences, art history, modern languages and linguistics; classics, film studies.

Paris Center for Critical Studies. Film theory, literary criticism, philosophy, theater (literature), linguistics, and history.

Paris Critical Studies Program. Offers multidisciplinary curriculum in theoretical aspects of the arts, humanities, and social sciences. For advanced undergraduate and graduate students.

University of Toulouse. EAP students take regular university courses at Toulouse I (Social Sciences) and Toulouse II (Humanities). Of particular note are courses in business management studies, comparative literature, economics, international relations, and political science.

Germany. A compulsory intensive language and culture program precedes the beginning of the academic year. All year course work is taught in German.

Language and Society Program, University of Bayreuth. Short Term language and society.

Georg-August University, Göttingen. Year or Spring quarter, or Göttingen Fall and Berlin Spring. Broad curriculum covering most majors. Excellent science programs, with substantial strength in biology, chemistry, and physics.

Hungary, Eötvös Loránd University, Budapest. A fall semester or a year-long program are offered with an emphasis on Central European studies. Students take courses especially designated for EAP, and the courses are taught in English.

Central European University, Budapest. Spring course work in English for advanced undergraduate and graduate students following fall semester. University of Vienna spring semester-

Italy. A compulsory intensive program in language and history precedes the beginning of the academic year. Students who have completed only one year of Italian may become eligible for participation by attending a summer intensive-language program in Siena, Italy, in order to attain the second-year level, followed by the normal compulsory intensive-language program at the study center in Italy. A UC faculty director resident in Italy administers the program. All courses are taught in Italian.

Venice Intensive Language and Culture Program. Semester requires at least one year of language study prior to participation. Sophomores may apply. Good academic standing (2.5 GPA) required.

Bocconi University, Milan. Fall or spring semester, or year. This institution offers studies in business administration, with a special emphasis on Italian and European entrepreneurial systems. One to two years of university level Italian required.

University of Bologna. Humanities, social sciences, economics, history. Also, literature, art/music performance, communications, European history, film, studio art. Students may take courses at the Bologna Academy of Fine Arts.

University of Padua. History of art (including archaeology), Italian literature/linguistics, and political science, history, social science, geography, and demography. Students may also take performance classes for piano, violin, cello, and voice. EAP senior honors pre-med students may take courses at the Medical School. Students may select fall semester or full year.

The Scuola Normale Superiore di Pisa offers advanced students the opportunity to study Italian studies, art history, classics and literature for the fall semester or full year. The language of instruction is Italian.

University Institute of Architecture, Venice. Students may study the scientific aspects of architecture, design, and restoration.

University of Cá fócsan of Venice offers studies in economics, business, literature, and natural sciences for the full year. Courses taught in Italian.

Netherlands. This program offers students the opportunity to study coursework in English. Two programs available at either Utrecht University, located near Amsterdam, and a special program at Maastricht University near Brussels in business and economics.

Utrecht University offers the student the choice of fall, spring, or year option to study in the arts and humanities, sciences and social sciences at University College.

Maastricht University offers students majoring in business and economics a unique change of teaching style and rigorous academic classes. This program is aimed at the advanced undergraduate student who is interested in international business and management coursework.

New Short-Term Programs:

Cordoba, Spain. Fall or spring semester. Semester option to study second-year Spanish language and culture. Focus on communication skills and study of Spanish culture and society.

Carlos III University in Madrid. Year, fall or spring semester. Program in Hispanic Studies. During second semester of the year program students may enroll in regular University courses.

Cadiz, Spain. Summer Pre-Intensive Language Program. Four-week Spanish program designed to activate the language skills of students whose command of the language is weak. The program emphasizes the active use of language through in-class work and out-of-classroom activities. Available only to year program selects.

Year Programs:

Spain. A compulsory intensive language program precedes the beginning of the academic year. All instruction is in Spanish.

University of Alcalá de Henares. Spanish language and literature, history and economics.

University of Barcelona. Humanities (with emphasis on Spanish art, history, literature, linguistics) and some social sciences. (This is a cooperative program with the University of Illinois.)

University of Granada. EAP students take at least three courses each semester. Students will also take special program tutorials.

Complutense University of Madrid. Humanities and some social sciences. The core program, developed for the UC Study Center and other American programs, concentrates on Spanish studies in the broadest sense. Core and Study Center courses are taught by Spanish faculty. EAP students are required to take two regular year-long courses at the University of Madrid.

Autonomous University of Barcelona. Courses in most majors including Catalan studies, International Relations, and Environmental/Ecological studies.

Autonomous University of Madrid. Courses in natural sciences, physics, chemistry and biology, economics, history, geography, literature, and psychology.

Sweden. Fall term or year participation. Compulsory intensive language course during the fall for students who are not already fluent in Swedish. Language study continues during the fall semester for all students until the student has gained the equivalent of two years of Swedish. Many courses are taught in English. Previous knowledge of Swedish is not required.

Summer Intensive Language Program at Lund concentrates on Swedish conversation, grammar, and composition.

University of Lund. Courses in humanities, social sciences, sciences, engineering during the year option. Fall semester program in English offers a broad range of Lund University classes.

Quarter Offered: I=Fall II=Winter III=Spring IV=Summer. 2000-2001/2001–2002 UC Davis General Catalog

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
United Kingdom and Ireland. Year only. The program, which includes 23 institutions listed below, is administered by a director and associate director located in London. Following selection for participation by the EAP administration, a student must still be accepted by a specific department in one of the host institutions. In many host institutions, the student can pursue studies in that department only.

England: Bristol University, King's College, University of Birmingham, University of East Anglia, University of Essex, University of Exeter, University of Kent at Canterbury, University of Lancaster, University of Leeds, University of London (Queen Mary and Westfield College), University of Sheffield, University of Sussex, University of Warwick, University of York.

Ireland: University College, Cork, University College, Galway, University of Dublin.

Northern Ireland: Queen’s University of Belfast and University of Ulster.

Scotland: University of Edinburgh, University College, Glasgow, University of St. Andrews, University of Stirling.

General, the host universities offer a broad curriculum that includes most liberal arts majors. Life sciences and physical sciences are available.

Russia. One semester-long (fall only) program available at the European University of Moscow. Intensive language study at the intermediate or advanced level for at least half of the units earned, and four core courses in English: Art and History, Politics, Literature, Rise and Fall of Communism in Russia. Some course work will be available in English. Graduate student opportunities will be available for students with advanced Russian language training.

Middle East

Egypt. Fall and year. All courses are taught in English, except courses in Arabic language and literature.

The American University of Cairo. A broad curriculum offered by the Faculty of Arts and Sciences. All students are required to take at least one year-long course in Arabic. Offerings in science are limited.

Israel. Summer, fall, spring, or year program. A required, 10-week summer intensive language and cultural immersion program at the University in Haifa or Jerusalem precedes the academic year.

Hebrew University, Jerusalem. Year program. Broad curriculum, emphasis on Israeli and Middle Eastern studies. UC students enroll in a special program for foreign students, offered at the Hebrew University's Rothberg School for Overseas Students. The program offers courses in Judaic, Israeli, Middle Eastern studies, and a few courses in the general social sciences and humanities, science and business. Students with command of Hebrew have access to a broad curriculum throughout the Hebrew University.

Ben-Gurion University of the Negev, Beersheva. Fall or spring semester. Intensive study abroad experience focusing on research. Two tracks are available: social-scientific study of Israeli ethnic minorities (Bedouin, Russian, Ethiopian) or laboratory study in the health sciences and the natural sciences in areas related to Israel’s environment. Opportunities will be available for students to spend several hours per week in internship positions in various educational, social, community and health institutions in the Bedouin, Ethiopian, Russian and Israeli communities.

Summer Hebrew Language Intensive Program at Hebrew University.

Arava Institute for Environmental Studies. Its focus is water conservation, waste-water treatment, reuse in agriculture, wildlife habitat and marine environment.

Turkey. University of Istanbul, Bogazici, Bilkent University and Middle East Technical University in Ankara. Humanities and Social Science. Archaeology, art-hist, architecture, urban planning and others.

Asia

Hong Kong. A selection of courses is offered in English. Knowledge of Chinese is not required for acceptance; however, all students are required to complete at least two courses in Chinese culture, history, or language prior to departure. A compulsory intensive Cantonese program precedes the beginning of the academic year. All students are required to take half of their unit load each semester in language study.

Hong Kong University of Science and Technology. Fall or spring. Three core courses taught in Chinese for science and business, with emphasis on Chinese studies. Art studio and music performance courses are available. Research or independent study available in Asian Studies. Fall semester or year programs are available.

Hong Kong University of Science and Technology. Fall, spring or year-long options taught in English. Focus on business, engineering or science. A GPA of 3.2 required at the time of application.

India. Fall Semester. Instruction is in English. A compulsory intensive language program in conversational Hindi precedes the academic year. Students can take courses in economics, history, linguistics, philosophy, political science, psychology, social work, and sociology. Limited courses in history of art, conversation, and museology.

University of Delhi. Humanities and social sciences are well represented, with some offerings in fine arts and mathematics.

Japan. A variety of study opportunities are available to UC students. Language requirements vary depending upon the host institution and the academic focus of the program. A summer intensive language course prepares students for year-long programs. The programs are administered by a director located in Tokyo. Japan offers opportunities for engineering students at Tohoku and Tokyo Universities.

Doshisha University, Kyoto. Humanities and social sciences, emphasis on Japanese language and culture. This center serves students who have more advanced study of Japanese, at least two, preferably three, years of UC Japanese language study.

Kyoto University. English or Japanese courses. Examine current and future global issues and Japanese language.

Global Security Studies Program, Meiji Gakuin University, Yohokama. This spring quarter program provides students the opportunity to study economics, political science, world peace and security issues. Previous Japanese language study is not required.

Hitotsubashi University, Tokyo. Social science education and research in commerce, economics and law.

International Christian University, Mitaka (Tokyo). Humanities and social sciences; emphasis on Japanese language and intercultural communication. A limited number of courses taught in English are available. At least one year of university-level Japanese language study is required.

Osaka University, Osaka. Undergraduate students study Japanese language and a set program of economics courses. Instruction is in English during the fall semester and in Japanese during the spring. A minimum of two years of university-level Japanese is required.

Sophia University, Tokyo. Comparative culture studies, Japanese language and literature, history, political science, economics and business are available. Many are taught in English. The prerequisite is one year of university-level Japanese.

Tohoku University, Sendai. This program is primarily for graduate students in most fields with well-developed research projects. Participants will study Japanese language in addition to working on their research projects under the guidance of a Japanese professor. Graduate study in Engineering may also be available. Undergraduates at the advanced level in Japanese may be able to participate in a language and culture program. The prerequisite is two to three years of university-level Japanese.

Tsuru University. Short-term language and society program. Japanese studies.

Tokyo Institute of Technology. Graduate students proficient in Japanese may do research and take courses in science and engineering.

Tsukuba University. Studies in the humanities, social and natural sciences and engineering.

University of Tokyo, Komaba and Hongo campus.

Korea. Year or fall term beginning with a required Korean Studies Summer program at Yonsei University. Students who are not fluent in Korean will take courses taught in English at Yonsei’s Division of International Education. Courses in art history, business, economics, law, literature, philosophy, political science, and sociology are available.

Ewha Women’s University, Seoul, offers fall or year program focusing on Asian women’s studies, the arts, and Korean language.

Korean Studies Summer Program at Yonsei University, Seoul, offers Korean language classes at the beginning, intermediate, and advanced levels.

People’s Republic of China. EAP offers a full-year program at Peking University and a fall semester or year program at Beijing Normal University in Beijing. Intensive language study in Chinese is the primary emphasis of all programs.

Intensive Chinese Summer Program at Beijing Normal University focuses on Chinese language and includes conversation, listening, reading and writing. Requires one year of university-level Chinese instruction.

Beijing Normal University in Beijing. This fall semester program includes Chinese language study and courses taught in English on Chinese culture and civilization. Course work in history, economics also available. Students who remain for the year program continue language instruction and may enroll in regular university classes ranging from science to humanities. The prerequisite is one year of college-level Chinese. Students must take an intensive language program in July and August prior to the start of the semester.

Peking University. A year-long program focused on advanced-level instruction in Chinese language and literature. Courses are conducted by the Chinese Language Teaching to Foreigners Division of Peking University. The prerequisite for the program is two years of college-level Chinese. Course work is available in Asian Studies, Chinese literature, comparative literature, economics, history, international relations, and political science.

Singapore. Fall semester or year program at the National University of Singapore. Courses in biology (botany and zoology), business, economics, sociology, and Southeast Asian Studies. Courses taught in English.

Taiwan, Republic of China. Fall semester or year program. Students who participate in this program will receive Chinese language instruction, special course work in Chinese studies (taught in English) and the opportunity to take regular courses if language requirement is met.

National Taiwan University: (This is a cooperative program with California State University International Programs).

Vietnam. Fall semester. Vietnam National University, Hanoi. Language, social studies and humanities.

Quarter Offered: I=Fall; II=Winter; III=Spring; IV=Summer. 2001-2002 offering in parentheses.

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
Africa

Ghana. Fall or year. University of Ghana, Legon-Accra. Open to undergraduate and graduate students. Instruction is in English. As in the British system, students take a year-long program of study in a single area. End-of-year examinations are given only once and are mandatory for credit to be awarded. Offerings include humanities and social sciences, with emphasis on African studies. There is a strong program in ethnomusicology.

South Africa. Year program. University of Natal, Pietermaritzburg. African studies, biology, history, political science, and sociology. University of Cape Town. Courses offered in anthropology, biological sciences, environmental/ecological, multicultural studies, political science, religious studies, urban planning.

Latin America

Brazil. Language requirement for admission to this program is two years of college-level Portuguese or the equivalent; or one year of college Spanish and one year of college Portuguese; or two years of college Spanish and intensive language course preceding the beginning of regular course work. Pontifical Catholic University of Rio de Janeiro (PUC-Rio). A semester or year academic program which consists of Portuguese study and regular university courses in a wide range of fields.

Chile. Semester (Winter and Spring quarter equivalent) and year program. Catholic University of Chile, or University of Chile, Santiago de Chile. A semester or year program is offered. Courses in Chilean history and society; Spanish language; Latin American development, ecology and the environment; and interdisciplinary women’s studies are available.

Costa Rica. Semester (Winter and Spring quarter equivalent) and year program. University of Costa Rica, San Jose. As is appropriate in this hemisphere, the academic year extends from early March through December. UC participants leave in January. Applications for participation in this program are due in May for a January departure. Two years of university level Spanish required.

A mandatory intensive language program precedes the academic year. During the academic year, courses in Central American studies (history, literature, political science, etc.) form half of the curriculum, with the remaining courses taken from any of the faculties at the University of Costa Rica.

Costa Rica Tropical Biology Quarter at Monteverde. This spring or fall quarter program provides an unusual opportunity for undergraduates to study and do field research in a tropical cloud forest. Applicants should have completed a year of biology, including one upper division organismal biology course. Coursework taught in English.

Areas of study include tropical plants, global economics, social sciences, and African American studies, history, women’s studies, biology, environment, and humanities. Language study in Spanish included in coursework.

Central America

Barbados. Emphasis in Caribbean studies. Semester or one-year program. Study tropical plants, global economics, social sciences, African studies, women’s studies, biology, environment, and humanities.

Mexico. Universidad Nacional Autonoma de Mexico (UNAM), Mexico City. Semester or year. A required intensive language program precedes the beginning of the school year, augmented by courses in contemporary Mexico (history, art, literature, etc.). All instruction is in Spanish.

Field Research Program (FRP) in Mexico. Available for either Fall or Spring semester, the FRP program begins in Mexico City with six weeks of intensive language courses and a course on contemporary Mexico. For three months, students will do field research to complete a research project. Students must have completed a minimum of two years of university-level Spanish, or the equivalent, and have at least sophomore standing with good academic standing at the time of departure.

Intensive Language Program in TAXCO. Winter quarter available for language study at the 2nd-year level. Students with one year of Spanish (SPA 1, 2, 3) may also apply. At least sophomore standing with good academic status (2.5 GPA) at the time of departure.

Summer Intensive Language Quarter in Morelia. This program provides total immersion in Mexican society and Spanish language instruction for students who have completed one year of university-level Spanish with a 3.0 GPA before departure. It is not appropriate for advanced students in Spanish. At least sophomore standing.

Canada

Students may enroll for a Fall semester or a full year. Studies on the major or a closely allied field are expected.

University of British Columbia (UBC), Vancouver. Most academic disciplines are available. Areas of special interest include Pacific Rim and Canadian Studies, marine biology, forestry, anthropology.

Australia and New Zealand

As is appropriate in the Southern Hemisphere, the academic year extends from the beginning of instruction in late February through the examination period, which ends in early December. UC participants leave in early February, and will be unable to attend classes during the winter term preceding departure. Applications for participation in these programs are due in May for a February departure. The universities follow the British system of higher education.

Australia. Program includes the University of Queensland in Brisbane; the Australian National University in Canberra; three institutions in the Melbourne area, University of Melbourne, Monash University and La Trobe University; The University of Sydney, and the University of New South Wales in Sydney; University of Tasmania in Tasmania; University of Western Australia in Perth, University of Adelaide and Flinders University of South Australia in Adelaide, South Australia; and the University of Wollongong in Wollongong. A full range of academic programs is available. The Study Center accommodates a limited number of students. A UC faculty member in Melbourne directs all programs.

New program in Marine ecology offered for fall semester only at Centre for Marine Studies at the University of Queensland, Australia.

New Zealand. Program includes the University of Auckland, University of Canterbury, Christchurch; Lincoln University of Christchurch; the University of Otago in Dunedin, Massey University in Palmerston North; Victoria University in Wellington and the University of Waikato in Hamilton. All academic disciplines are available; programs in textiles and engineering and a variety of agricultural sciences are of special interest.

Quarter Offered: I=Fall; II=Winter; III=Spring; IV=Summer. 2001-2002 offering in parentheses.

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
East Asian Studies

(College of Letters and Science)

Lee Branstetter, Ph.D., Program Director
Program Office, 108 Sproul Hall (530-752-4001)
World Wide Web: http://eastasian.ucdavis.edu

Committee in Charge
Robert Borgen, Ph.D. (East Asian Languages and Cultures, History)
Beverly Bosster, Ph.D. (History)
Lee Branstetter, Ph.D. (Economics)
Katharine P. Burnett, Ph.D. (Art History)
Chia-niing Chang, Ph.D. (East Asian Languages and Cultures)
Kyu Hyun Kim, Ph.D. (East Asian Languages and Cultures, History)
Whalen W. Lai, Ph.D. (East Asian Languages and Cultures, Religious Studies)
Ming-cheng Lo, Ph.D. (Sociology)
Susan Mann, Ph.D. (History)
Don C. Price, Ph.D. (History)
Barbara Sellers-Young, Ph.D. (Theatre and Dance)
G. William Skinner, Ph.D. (Anthropology)
Michelle Yeh, Ph.D. (East Asian Languages and Cultures)

Faculty
Robert Borgen, Ph.D., Professor (East Asian Languages and Cultures, History)
Beverly Bosster, Ph.D., Associate Professor (History)
Lee Branstetter, Ph.D., Assistant Professor (Economics)
Katharine P. Burnett, Ph.D., Assistant Professor (Art History)
Chia-niing Chang, Ph.D., Associate Professor (East Asian Languages and Cultures)
Xiaojia Ge, Ph.D., Associate Professor (Human and Community Development)
Kyu Hyun Kim, Ph.D., Assistant Professor (East Asian Languages and Cultures, History)
Whalen W. Lai, Ph.D., Professor (East Asian Languages and Cultures, Religious Studies)
Ming-cheng Lo, Ph.D., Assistant Professor (Sociology)
Susan Mann, Ph.D., Professor (History)
Don C. Price, Ph.D., Professor (History)
Scott Rozelle, Ph.D., Associate Professor (Agricultural and Resource Economics)
Barbara Sellers-Young, Ph.D., Associate Professor (Theatre and Dance)
Xiaolong Shu, Ph.D., Assistant Professor (Sociology)
G. William Skinner, Ph.D., Professor (Anthropology)
Janet S. Smith, Ph.D., Professor (Anthropology)
Sophie Volpp, Ph.D., Assistant Professor (Chinese)
Michelle Yeh, Ph.D., Professor (East Asian Languages and Cultures)
Li Zhang, Ph.D., Assistant Professor (Anthropology)

Emeriti Faculty
Mary H. Fong, Ph.D., Professor Emerita
Donald Gibbs, Ph.D., Associate Professor Emeritus
Joyce K. Kallgren, Ph.D., Professor Emerita
Kwang-Ching Liu, Ph.D., Associate Professor Emeritus
Benjamin Wallacker, Ph.D., Professor Emeritus

The Major Program
The East Asian Studies major gives the student an understanding of East Asia (especially China and Japan) through interdisciplinary studies that combine sustained work in an East Asian language with courses on East Asian countries.

The Program. The program offers core courses in East Asian history, humanities, social sciences, and languages. After taking the core courses in conjunction with two years or more of either Chinese or Japanese language study, the student chooses additional courses focusing on a special field of interest, such as anthropology or history. Since six quarters of language work are required, students normally should apply to the East Asian studies program no later than their sophomore year.

Career Alternatives. The program provides preparation either for a career that involves working with East Asian affairs and people (e.g., journalism, business, government service, teaching, and counseling), or as preparation for graduate studies in the East Asian field.

A.B. Major Requirements:

Preparatory Subject Matter... 36

One course from Art History 1D, Chinese 10, 11, Comparative Literature 53A, Japanese 10, 25, Religious Studies 70, 75 8
Two years (or the equivalent) of Chinese or Japanese language study (Chinese 1-2-3-4-5-6; Japanese 1-2-3-4-5-6)... 30

Depth Subject Matter ...

Must include at least 8 units of core courses from each of the following three categories:

History:

Social Science:
- Anthropology 148A, 148B, 149A, 149B, Economics 171; Geography 127; Political Science 148A, 148B; Sociology 147

Humanities:
- Art History 163A, 163B, 163C, 164; Chinese 104, 106, 107, 109, 131, 132; Japanese 101, 102, 103; Religious Studies 172

At least 12 additional units must be selected from the above courses, or from the following: Anthropology 110, 112, 117, 119, 120, 122, 123, 124, 128; Chinese (any upper division course); Economics 115A, 115B, 116, 160A, 160B, 162; Geography 143; History 102G, 102H, 102N; Japanese (any upper division course); Linguistics 100; Political Science 127, 133, 138, 145, 148C; Sociology 116, 141, 170, 183; (or other appropriate courses, including individual and group study courses (198, 199), as approved by the Committee in charge).

Total Units for the Major.. 77-78

Recommended Students are strongly urged to take a substantial number of courses in Euro-American civilization as a basis for comparison for a deeper understanding of America’s relations with East Asia.

Major Adviser. Program Director.

Minor Program Requirements:

Courses taken for the minor are expected to reflect a predominant interest in either China or Japan, but also to provide some exposure to the other of the two countries. All courses counting towards the East Asian Studies major, including individual and group study courses (198, 199), may be used to fulfill the requirements for the minor program, as long as they deal predominantly with China, Japan, or both.

East Asian Studies... 22

History 98 and 18 upper division units, of which at least 12 must be in courses focusing on China; OR History 98 and 18 upper division units, of which at least 12 must be in courses focusing on Japan 22

Courses in East Asian Studies. The following courses count toward the major and are open to students throughout the campus. Refer to departmental listings for course descriptions.

Anthropology
- 148A. Traditional Chinese Society
- 148B. Family, Gender, and Population in Contemporary China
- 149A. Traditional Japanese Society
- 149B. Contemporary Japanese Society

Art History
- 1D. Asian Art
- 163A. Chinese Art
- 163B. Chinese Painting
- 163C. Painting in the People’s Republic of China
- 164. The Arts of Japan
- 168X. Seminar in Chinese Art

Chinese
- All courses.

Comparative Literature
- 53A. Literature of China and Japan
- 153. Forms of Asian Literature

Economics
- 171. Economy of East Asia

History
- 9A. History of East Asian Civilization (China)
- 9B. History of East Asian Civilization (Japan)
- 102G. Undergraduate Proseminar: China to 1800
- 102H. Undergraduate Proseminar: China since 1800
- 102N. Undergraduate Proseminar: Japan
- 191A. Classical China
- 191B. High Imperial China
Courses in East Asian Studies (EAS)

Upper Division Courses

113. Cinema and Society in China (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: one course from History 190C, 193, or consent of instructor. Knowledge of Chinese not required. Viewing and analysis of one Chinese film with English subtitles each week, followed by discussion and short essays. Cinematic technique, social values and film topics from 1930s to today. Not open for credit to students who have completed Chinese 113.
GE credit: ArtHum, Div, Wrt.—III. (III.)

192. East Asian Studies Internship (1-12)
Internship—3-36 hours; term paper. Prerequisite: upper division standing and consent of instructor. Work experience in the East Asian Studies field, with analytical term paper on a topic approved by the instructor. (P/NP grading only.)

194H. Special Study for Honors Students (1-5)
Independent study—1-5 hours. Prerequisite: open only to majors of senior standing who qualify for honors program. Guided research, under the direction of a faculty member, leading to a senior honors thesis on a topic in East Asian Studies culture, society, or language. (P/NP grading only.)

196A-196B. Honors Seminar (4-4)
Seminar—2 hours; conference—2 hours. Prerequisite: a GPA of 3.5 in the major, senior standing, and consent of instructor. A two-quarter research project culminating in an Honors thesis. A grade of B or higher must be earned to qualify the student for honors distinction at graduation. (Deferred grading only, pending completion of sequence.)—I-II. (I-II.)

198. Directed Group Study (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)
Environmental Biology and Management

(College of Agricultural and Environmental Sciences)

Faculty
See under the Department of Environmental Science and Policy.

The Major Program
The environmental biology and management major offers an education in the basic natural sciences, especially ecology, together with a set of management and public policy analysis courses. Students completing the program will understand the scientific basis for environmental decision making, and the legal, economic, and political issues involved in management of the environment in the United States and worldwide.

The Program. Courses in chemistry, physics, mathematics, biology, and earth sciences form the foundation of the curriculum; these are then tied together by courses in ecology. Computing, statistics, and other methods courses give the student basic quantitative research skills. Economics, political science, and techniques of quantitative management offerings dominate the management and public policy requirements.

A moderate degree of specialization is permitted in three upper division options. Students in the Conservation Biology and Management option take courses in conservation biology, genetics, evolution and biogeography, resource economics, environmental policy making, quantitative analysis and field experience. This option emphasizes the study of biological diversity and the natural and human processes that control it. Key areas of the option include the design of nature reserves, the management of small populations of endangered species, environmental law, policy and economics.

Students in the Environmental Biology option take course work in population ecology, physiology, and other biological specialities, as well as quantitative analysis. Students in the Environmental Management option take courses in recreation, resource economics, planning and public policy, and, especially, quantitative management techniques. This option emphasizes the management of public lands and natural resources in wildland and rural areas. Practical courses in field level planning and management are featured. Students interested in urban problems and/or legislative approaches should examine the Environmental Policy Analysis and Planning major.

Career Alternatives. The major prepares students to enter careers in management of natural resources and public lands, as well as basic ecological research. Students interested in professional schools, e.g., medicine, should consult an adviser early to plan for their special requirements, such as organic chemistry. Graduates who choose the Environmental Biology option are prepared for graduate or professional training and, eventually, careers working for public agencies and private firms specializing in environmental quality, natural resources, or ecological research. Graduates with the Environmental Management option are prepared for jobs in public agencies at the federal, state, or local levels.

B.S. Major Requirements:

UNITS

English Composition Requirement...6-15

See College requirement

English 102A, 102B, 102C, 102D, 102E, 102F, or 102G concurrently with
Environmental Science and Policy 1...4

Communication 1 or Drama Art 10..3-4

Preparatory Subject Matter..49-54

Biological Sciences 1A, 1B, 1C...15

Chemistry 2A-2B or 2AH-2BH...10

Agricultural Systems and Environment 21, or Computer Science Engi-
neering 10, 15, or 20..4-5

Environmental Science and Policy 1 or 30; choose Computer Science Envi-
ronment 10, 15, or 20..3-4

Environmental Science and Policy 1 if the Environmental Management option is selected

Political Science 1 or Economics 1A; choose Economics 1A if Environ-
mental Management option is selected..3-4

Mathematics 16A-16B or 21A-21B..6-8

Physics 7A-7B or 9A-9B..8

Breadth/General Education...12-24

Satisfaction of General Education requirement to include 12 units of
humanities and/or Civilization and Culture..12-24

Depth Subject Matter..27-32

(These units must be taken for a letter grade attaining an overall grade-point average
of 2.0 or higher.)

Select one of Plant Biology 117, Environmental Science and Policy 100,
Evolution and Ecology 101, Wildlife, Fish, and Conservation Biology
151 ..3-4

Select two courses from:

Environmental Science and Policy 110 and 172..8

Select two courses from:

Atmospheric Science 120, Environmental Science and Policy 150A, Environmental and Resource Sciences 131, Geology 134, Hydrologic Science 100, 141, Soil Science 100)..........................6-8

Select one course from

Environmental Science and Policy 161, 163, 166, 171, 179, Agricultural and Resource Economics 147, 175, 176)..........................3-4

(Choose Agricultural and Resource Economics if Environmental Management option is selected.)

Select one course from:

Mathematics 16C, 21C, 22A, 22B, Agricultural Systems and Environment 120, Statistics 102 or upper division mathematics, computing or statistics. Environmental Management students should enroll in Agricultural Systems and Environment 120, or Statistics 102...3-4

Environmental Science and Policy 123, 178, or Wildlife, Fish, and Con-
servation Biology 100. Management students should enroll in Environ-
mental Science and Policy 178..4

Areas of Specialization...25-38

Conservation Biology and Management Option

Wildlife, Fish, and Conservation Biology 154..4

Biological Sciences 101...4

Choose one from Entomology 147, Evolution and Ecology 100, 102, 138,
147, 149, Geology 107..3-4

Agricultural and Resource Economics 176 or Environmental Science and Policy 175..4

(Students must select a course which was not taken in "Depth Sub-
ject Matter").

Choose one from Agricultural and Resource Economics 147, Environmen-
tal Science and Policy 161, 166, 171, 172..3-4

(Students must select a course which was not taken in "Depth Sub-
ject Matter").

Environmental Science and Policy 121 or Wildlife, Fish and Conservation Biology 122..4

Choose from Environmental Science and Policy 123, 124, 151L, 155L,
Wildlife, Fish, and Conservation Biology 100, 102....................................3-10

(Students may select Biological Sciences 122 or a course at an approved field station or an off-campus field biology research site.)

Environmental Biology Option

Choose one of Anthropology 154A, Entomology 104, Evolution and Eco-
logy 137, Neurobiology, Physiology and Behavior 102, Psychology
150, Wildlife, Fish, and Conservation Biology 140, 147, 149, 154, Geol-
ogy 107..3-4

Mathematics 22A-22B, upper division mathematics or statistics..............3-5

Choose from Entomology 103, Evolution and Ecology 112-112L, Plant
Biology 102, 108, 116, Wildlife, Fish and Conservation Biology 110,
111, 11L, 120...4-8

Note: Most of these courses require one or two additional chemistry or basic physiology courses as prerequisites. Plan a sequence in consultation with adviser.

Choose from Entomology 102, Neurobiology, Physiology and Behavior
101, Plant Biology 111, or Wildlife, Fish and Conservation Biology 121
...3-5

Choose two courses from the following: Avian Sciences 109, Environmental Science and Policy 121, 151, 151L, 150B, 150C, 155, 155L, Evolution and Ecology 149, Hydrologic Science 122, 122L, Plant Biology 102, 117, Wildlife, Fish and Conservation Biology 100, 120, 122, 130...6-8

Environmental Management Option

Resource policy evaluation (see adviser)..4

Economics 100 or 104 or Agricultural and Resource Economics 100A-5
Environmental Science and Policy 166, or Political Science 182..............4

Environmental Science and Policy 179..3

Agricultural and Resource Economics 108 or Sociology 106, or Statistics
108..4

Management of a natural resource, choose two courses from one of the
following three groups..6-8

Animal Resources:

Agricultural Systems and Environment 135, or Wildlife, Fish, and
Conservation Biology 110, 111, 120, 122, 151, 154, or Environmental
Science and Policy 123.

Forest and Rangeland Resources:

Agricultural Systems and Environment 131, 134.
Air, Water, and Soil Resources:
Environmental and Resource Sciences 131, or Hydrologic Science 103, 122, 141, or Soil Science 118, or Environmental Science and Policy 151 and 151L, 155 and 155L.

Unrestricted Electives ... 20-62
Total Units for the Degree ... 180

Minor Program Requirements:
The faculty for Environmental Biology and Management offers a minor in Recreation for students in Physical Education, Psychology, Sociology, or Human Development; students in Landscape Architecture desiring to specialize in recreation area design; Community and Regional Development students wishing to work in educational and therapeutic recreation; Environmental Policy Analysis and Planning students seeking careers in public recreation policy analysis and management; Agricultural and Managerial Economics students wishing to go into the administration of commercial recreation enterprises; and those students in Plant Science interested in park landscape construction and maintenance.

UNITS

Recreation ... 18-20
Agricultural and Resource Economics 147, 176.................................... 3-4
Environmental Planning and Management 134.................................... 4
Recreation policy analysis (see adviser)... 4
Agricultural and Resource Economics 112, Community and Regional Development 163, Political Science 183, 189.............................. 4
Internship in Recreation Management, Environmental Science and Policy 192 ... 4

Courses in Environmental Biology and Management
Questions pertaining to courses in Environmental Biology and Management should be directed to the Environmental Biology and Management advising office, 2134 Wickson Hall. See also Environmental Planning and Management listing following Environmental Horticulture.
Engineering: Biological and Agricultural

The Biological Systems Engineering Major Program

Biological Systems Engineering is the branch of engineering that builds strongly on biology as a scientific base. In the coming age of biology and biotechnology, engineers will be needed to work side by side with life scientists to bring laboratory developments into commercial production. Industries in plant and animal production, tissue culture, bioprocessing, biotechnology, food processing, aquaculture, agriculture, and forest production will all need engineers with strong training in biology. Concern for our environment is opening new engineering opportunities as society strives to maintain a balance within the biosphere.

In the freshman and sophomore years, the Biological Systems Engineering major requires sequences of courses usual in all engineering programs, including mathematics, physics, chemistry, engineering science, and humanities. Unlike other majors, the Biological Systems Engineering major also requires fundamental courses in the biological sciences and the integration of engineering with biology.

Biological Systems Engineering Curriculum

The Biological Systems Engineering curriculum is accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology, Inc.

Lower Division Program

<table>
<thead>
<tr>
<th>COURSE</th>
<th>UNITS</th>
<th>QUARTER TAKEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math 22A-22B</td>
<td>5-6</td>
<td>4</td>
</tr>
<tr>
<td>Math 22C</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>Physics 9A-9B-9C</td>
<td>12</td>
<td>3-4-5</td>
</tr>
<tr>
<td>Chemistry 2A</td>
<td>2 or 4</td>
<td>6</td>
</tr>
<tr>
<td>Chemistry 2B</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Biology 1</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Biological Systems Engineering 75</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Engineering 17</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>General Education electives</td>
<td>12-13</td>
<td>3, 6</td>
</tr>
</tbody>
</table>

Total Lower Division Units: 90-93

Upper Division Program

In the junior and senior years, the Biological Systems Engineering major requires courses that focus on the integration of biology and physical sciences with engineering. Depending on your area of interest, you may select elective courses from seven specializations:

- Agricultural Engineering
- Aquacultural Engineering
- Biotechnical Engineering
- Ecological Systems Engineering
- Food Engineering
- Forest Engineering
- Premedical/Biomedical Engineering

You may also develop your own specialization in consultation with your adviser. The upper division requirements are listed following the areas of specialization.

Areas of Specialization

- Agricultural Engineering: Students specializing in agricultural engineering integrate engineering analysis and design with applied biology to solve problems in producing, transporting, and processing agricultural products. Agricultural engineers design machinery, processes, and systems for managing a productive plant and animal culture, including environment, nutrient, and waste. The recommended electives provide students with the fundamental principles of agricultural production and a broad background in engineering. Agricultural engineers are employed as practicing professionals and managers with large and small agricultural producers, equipment manufacturers, food processors, consulting engineering firms, and government agencies.
Recommended biological science electives:

Plant Emphasis
- Plant Biology 111
- Soil Science 100
- Select one course from Agricultural Systems and Environment 110A, Entomology 100, Plant Biology 174, Environmental Horticulture 102

Animal Emphasis
- Neurobiology, Physiology, and Behavior 101
- Soil Science 100
- Select one course from Avian Sciences 100, Animal Science 143, 144, 146

Recommended engineering electives:
- Biological Systems Engineering 114, 132, 145
- Civil and Environmental Engineering 141, 141L, Engineering 180

Aquacultural Engineering. Aquacultural engineers design, build, and manage equipment and systems for the production of aquatic plants and animals. Aquacultural engineers must have a solid understanding of biology, especially processes related to water quality, to be able to work with the wide variety of systems used for aquaculture production. Systems range from sophisticated indoor plants with water treatment and recirculation to low-input earthen ponds. Employment opportunities for aquacultural engineers include engineering consulting companies and government agencies. The aquaculture industry is expanding rapidly in various areas around the world, creating international employment opportunities for aquacultural engineers.

Recommended biological science electives:
- Applied Biological Systems Technology 161
- Animal Science 118
- Wildlife, Fish, and Conservation Biology 121

Recommended engineering electives:
- Applied Biological Systems Technology 163
- Civil and Environmental Engineering 140, 140L, 141, 141L, 148A, 148B

Suggested advisers: R. Piedrahita

Biotechnical Engineering. This specialization is for students interested in working with biotechnology industries. Core engineering courses are combined with training in genetics, biochemistry, microbiology, and molecular biology. Modern laboratory techniques in biochemistry are also included in the specialization to provide hands-on skills. Biotechnology is an emerging area of industrial growth in the U.S. and will increasingly need engineers to transfer laboratory developments to large scale production. Present industrial activities include the production of genetically altered plants, plant materials and food products, production and packaging of biocontrol agents for plant pests and diseases; microbial production of biological products; tissue culture; and bioremediation.

Recommended biological science electives:
- Biological Sciences 101, 102, 103
- Microbiology 102
- Molecular and Cellular Biology 120L

Recommended engineering electives:
- Biological Systems Engineering 132, 175
- Chemical Engineering 161B, 161L
- Engineering 180

Suggested advisers: M. Delwiche, K. Giles, M. Grismer, J. VanderGheynst, R. Zhang.

Ecological Systems Engineering. Specialists in ecological systems engineering are concerned with the design, development, and management of ecosystems. Typical applications include the rehabilitation of disturbed ecosystems, the design of mitigation areas, the incorporation of ecologically sustainable features into land developments, and the design and management of public and private landscapes. An understanding of ecology and the interaction of ecological communities, coupled with knowledge of engineering design and economics, are stressed in this specialization. Employment opportunities include environmental consulting firms, government regulatory agencies, and agencies involved in wildlife resource management.

Recommended biological science electives:
- Entomology 100
- Environmental Science and Policy 100
- Soil Science 100
- Select one course from Atmospheric Science 133, Plant Biology 121, Environmental Toxicology 101 or 112A

Recommended engineering electives:
- Applied Biological Systems Technology 180
- Biological Systems Engineering 115, 135, 145
- Civil and Environmental Engineering 148A or 149, 152
- Environmental and Resource Sciences 100

Recommended course:
- Landscape Architecture 40 (no technical elective credit will be granted for this course in any engineering major)

Food Engineering. The food industry is the largest industrial sector of the U.S. economy. Food engineers conceive, design, and operate food processes, equipment, and plants for efficient food production with minimal impact on the environment. Students specializing in food engineering learn to apply engineering principles and concepts to handling, storing, processing, packaging, and distributing food and related products. In addition to engineering principles, the food engineering specialization is intended to provide an understanding of the chemical, biochemical, microbiological, and physical characteristics of foods. In the junior and senior years, students take courses that focus on the integration of biological and food science with engineering. Concepts of food refrigeration, freezing, thermal processing, drying, and other food operations are studied.

Recommended biological sciences electives:
- Biological Sciences 101, 103; Environmental Science and Policy 110; Environmental Toxicology 101, 131; Food Science and Technology 104L, 119, 120, 121, 128; Plant Biology 152, 172.

Recommended engineering electives:
- Biological Systems Engineering 175; Chemical Engineering 157, 159.

Suggested advisers: J. Krochta, K. McCarthy, M. McCarthy, T. Rumsey, R. P. Singh, D. Slaughter.

Forest Engineering. Forest engineers apply engineering principles to solve problems in managing forest lands. Forestry has evolved from an emphasis on wood production toward multiple use, ecosystem management and consideration of noneconomic objectives such as retaining biodiversity. Forest engineers help to develop the equipment and techniques for reforestation, harvesting, forest residue management, and development of roads and recreation facilities. Following the sophomore year, students are encouraged to attend an eight-week field course, followed by a semester at UC Berkeley taking forestry courses, and forest ecology, planning, and operations. Students complete their engineering programs at UC Davis, taking courses in planning methods, equipment development, and road design. Forest engineers are employed by the U.S. Forest Service and other public agencies, the forest industry, consulting firms, and equipment manufacturers.

Recommended biological science electives:
- ESPM 129* (Forest and Range Soils, 3 units)
- or Soil Science 100
- ESPM 185* (Forest Harvest Systems, 4.5 units)
- ESPM 185* (Silviculture, 6 units)

Recommended engineering electives:
- Applied Biological Systems Technology 180
- Biological Systems Engineering 114, 115, 116
- Civil and Environmental Engineering 141, 141L, 145

Recommended Courses:
- ESPM 101* (Forestry Summer Program, 15 units)
- ESPM 172* (Forest Photogrammetry and Photo Interpretation, 4.5 units)
- or Environmental and Resource Sciences 185
- ESPM 175* (Forest Influences, 4 units)
- Plant Biology 120

*ESPM courses are offered at UC Berkeley campus.

Suggested advisers: B. Hartsough, J. Miles.

Pre-Medical/Biomedical Engineering. The pre-medical/biomedical specialization is for students planning to attend medical school after graduation or to work in the biomedical industries. Course work in biology, chemistry, organic chemistry, biochemistry, microbiology, and physiology satisfies typical entrance requirements for medical school. Early in their academic programs at UC Davis, taking courses in planning methods, equipment development, and road design. Forest engineers are employed by the U.S. Forest Service and other public agencies, the forest industry, consulting firms, and equipment manufacturers.

Recommended biological science electives:
- Biological Sciences 102
- Microbiology 102
- Neurobiology, Physiology, and Behavior 101

Recommended biological science electives—Premedical:
- Biological Sciences 101, 102
- Microbiology 150, 150L

Recommended engineering electives:
- Biological Systems Engineering 175
- Engineering 102, 102L, 103L, 103L, 180

Recommended for medical school:
- Chemistry 2C, 118C

Suggested advisers: M. Delwiche, F. Fathalla, J. Miles, J. VanderGheynst, R. Zhang.

Quarter Offered: I = Fall; II = Winter; III = Spring; IV = Summer, 2001-2002 offering in parentheses.

General Education (GE) credit: ArHumi = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.

Upper Division Requirements

<table>
<thead>
<tr>
<th>Subject Areas and Courses</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering electives†—Select a minimum of 6 units (to bring the overall total to at least 180 units) from all upper division College of Engineering courses (exclusive of Applied Science Engineering 137, Engineering 160, and courses numbered 190–197), Applied Biological Systems Technology 163, 180, and Environmental and Resource Sciences 100. A maximum of 2 units of Biological Systems Engineering 198 may be offered in addition to the requirements elective.</td>
<td>6</td>
</tr>
<tr>
<td>Biological science electives†—Select 7 or 9 units (for a combined lower and upper division total of 24 units of biological sciences) from all upper division courses in the Division of Biological Sciences (excluding courses numbered 190–199), Applied Biological Systems Technology 161, Animal Science 118, 143, 144, 146; Agricultural Systems and Environment 110A; Atmospheric Science 133; Avian Sciences 100; Cell Biology and Human Anatomy 101, 101L; Entomology 100; Environmental Horticulture 102; ESPM 129, 182, 185 (ESPM courses are offered at UC Berkeley campus); Environmental Science and Policy 100; Environmental Toxicology 101, 112A; Food Science and Technology 119, 120, 121, 128, 151; Soil Science 100; Wildlife, Fish, and Conservation Biology 121. Students may choose other upper division courses with substantial biological content offered in the College of Agricultural and Environmental Sciences; consultation with a faculty adviser and approval by petition is required.</td>
<td>3 or 4</td>
</tr>
</tbody>
</table>

Minimum Units Required for Major: 180-181

The Food Engineering Major Program

This major is not open to new students.

Food Engineering Curriculum

Upper Division Courses

<table>
<thead>
<tr>
<th>Subject</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics 21A-21B-21C-21D</td>
<td>16</td>
</tr>
<tr>
<td>Mathematics 22A-22B</td>
<td>6</td>
</tr>
<tr>
<td>Physics 9A-9B-9C</td>
<td>12</td>
</tr>
<tr>
<td>Chemistry 2A-2B</td>
<td>10</td>
</tr>
<tr>
<td>Chemistry 8A-8B</td>
<td>6</td>
</tr>
<tr>
<td>Biological Sciences 1A</td>
<td>5</td>
</tr>
<tr>
<td>Biological Systems Engineering 1</td>
<td>4</td>
</tr>
<tr>
<td>Engineering 5 or Computer Science Engineering 30</td>
<td>3 or 4</td>
</tr>
<tr>
<td>Engineering 17</td>
<td>4</td>
</tr>
<tr>
<td>Engineering 35</td>
<td>3</td>
</tr>
<tr>
<td>Biological Systems Engineering 75</td>
<td>5</td>
</tr>
<tr>
<td>English 1 or Comparative Literature 1, 2, 3, or 4</td>
<td>1</td>
</tr>
<tr>
<td>General Education electives</td>
<td>8</td>
</tr>
</tbody>
</table>

Total Upper Division Units: 89-90

Master Undergraduate Adviser: M. Delwiche.

Courses in Engineering: Biological Systems (EBS)

Lower Division Courses

1. **Foundations of Biological Systems Engineering (5)**
 - Lecture—2 hours; laboratory—6 hours; project. Open only to students in Biological Systems Engineering. Introduction to engineering and the engineering design process with examples drawn from fields of biological, agricultural, and food engineering. Relationship of engineering principles to biological systems. Small group design projects and presentation of use of engineering software, and fabrication of designs. | I, III. (I.) Hartsough, Piedrahita |

Upper Division Courses

1. **Principles of Field Machinery Design (3)**
 - Lecture—3 hours; laboratory—6 hours. Prerequisite: Engineering 102, 104. Tractor and stability of vehicles with wheels or tracks. Operating principles of field machines and basic mechanisms used in their design. | II. (II.) Chen |

1. **Forest Engineering (3)**
 - Lecture—3 hours. Prerequisite: Engineering 104, Biological Sciences 1C. Applications of engineering principles to problems in forestry including those in forest regeneration, harvesting, residue utilization, and transportation. | III. (II.) Hartsough |

1. **Power and Energy Conversion (4)**
 - Lecture—3 hours; laboratory—8 hours. Prerequisite: Engineering 17, 102, 103, and 106. Fundamentals of energy conversion and power systems. Design and performance characteristics of power devices and systems including combustion engines, electric generators and motors, fluid power systems, and others. Selection of units for power matching and optimal performance. | I. (I.) Chen, Jenkins |

1. **Heat and Mass Transfer in Biological Systems (4)**
 - Lecture—3 hours; laboratory—8 hours. Prerequisite: course 75 and Engineering 105. Heat and mass transfer and psychrometrics with principal applications to biological, food, and environmental processes. Stady and transient heat and mass transfer. Analysis of heat conduction, convection and radiation, and material diffusion and convection. Analysis of heat and mass transfer with non-Newtonian fluid flow. | II. (II.) Jenkins, VanderGheynst |

1. **Biomechanics and Engineering (4)**
 - Lecture—3 hours; laboratory—8 hours. Prerequisite: Statistics 100, Engineering 102, Analytical, physiological, and biomechanical bases of physical ergonomics. Human motor capabilities, body mechanics, kinematics and anthropometry. Use of bioinstrumentation, industrial surveillance techniques and the NIOSH lifting guide. Cumulative trauma disorders. Static and dynamic biomechanical modeling. Emphasis on low back, shoulder, and hand/wrist biomechanics. | III. (III.) Fathallah |
130. Dynamic Modeling of Processes in Biological Systems (4)
Lecture/discussion—4 hours. Prerequisite: Engineering 5 or the equivalent. Techniques for modeling processes through mass and energy balance, rate equations, and equations of state. Computer problem solution of models. Example models include package design, evaporation, respiration heating, thermal processing of foods, and plant growth.—II, III (T.) R. T. Rumsey, Upadhyaya

132. Unit Operations in Biological and Food Engineering (4)
Lecture—6 hours. Prerequisite: courses 125, 130. Mechanical unit operations which involve non-Newtonian flow, size reduction and mixing, thermal operations related to drying, sterilization, freezing, and refrigeration. Mass transfer operations applied to membrane separations, adsorption, and absorption processes.—III (E.) Argena, Singh, VanderGheyns

135. Bioenvironmental Engineering (4)
Lecture—3 hours; laboratory—3 hours. Prerequisite: courses 125, 130. Biological responses to environmental conditions. Principles and engineering design of environmental control systems. Overview of environmental pollution problems and legal restrictions for both air and water pollution. Introduction to methods of environmental quality assessment, techniques, and environmental pollution control technologies.—III (J.) Jenkins, Zhang

144. Groundwater Hydrology (3)
Lecture—3 hours. Prerequisite: Mathematics 168B or 21A; Hydrologic Science 103 or Engineering 103 recommended. Fundamentals of groundwater hydrology—occurrence, movement and distribution of groundwater; well-flow systems—well construction, operation and maintenance; groundwater contamination—exploration and quality assessment. (Same course as Hydrologic Science 144.) Not open for credit to students who have completed Hydrologic Science 145A.—I (M.) Marino

145. Irrigation and Drainage Systems (4)
Lecture—4 hours. Prerequisite: Engineering 103 or Hydrologic Science 103. Engineering and scientific principles applied to the design of surface, sprinkler and micro irrigation systems. Introduction to drainage systems with economic, biological, and environmental constraints. Interaction between irrigation and drainage. (Same course as Hydrologic Science 115B.)—II, III (L.) Wallender, Grismer, Hills

165. Bioinstrumentation and Control (4)
Lecture—3 hours; laboratory—3 hours. Prerequisite: Engineering 100. Instrumentation and control for biological production systems. Measurement system concepts, instrumentation and transducers for sensing physical and biological parameters, data acquisition and control.—I (J.) DeLifice, Ha

170A. Engineering Design and Professional Responsibilities (3)
Lecture—2 hours; laboratory—3 hours. Prerequisite: course 1, Engineering 102, 104. Engineering design including professional responsibilities. Emphasis on project selection, data sources, specifications, human factors, biological materials, safety systems, and professionalism. Detailed design proposals will be developed for courses 170B and 170BL.—III (J.) Miles

170B. Engineering Projects: Design (2)
Discussion—2 hours. Prerequisite: course 170A. This course is required concurrently. Individual or group projects involving the design of devices, structures, or systems to solve specific engineering problems in biological systems. Project for study is jointly selected by student and instructor. (Deferred grading only, pending completion of course 170C.)—I, II, III (L.) Giles, Miles

170BL. Engineering Projects: Design Laboratory (1)
Laboratory—6 hours. Prerequisite: course 170B required concurrently. Individual or group projects involving the design of devices, structures, or systems to solve specific engineering problems in biological systems. Project for study is jointly selected by student and instructor. (Deferred grading only, pending completion of course 170CL.)—I, II, III (J.) Giles, Miles

170C. Engineering Projects: Design Evaluation (1)
Discussion—1 hour. Prerequisite: course 170B; required to enroll in course 170CL concurrently. Individual or group projects involving the fabrication, assembly and testing of components, devices, structures, or systems designed to solve specific engineering problems in biological systems. Project for study previously selected by student and instructor in course 170B.—II, III (J.) Giles, Miles

170CL. Engineering Projects: Design Evaluation (2)
Laboratory—6 hours. Prerequisite: required to enroll in course 170C concurrently. Individual or group projects involving the fabrication, assembly and testing of components, devices, structures, or systems designed to solve specific engineering problems in biological systems.—II, III (J.)

175. Rheology of Biological Materials (3)
Lecture—3 hours. Prerequisite: Chemical Engineering 150A or Engineering 103; Engineering 105 or Chemical Engineering 152A. Fluid and solid rheology, viscoelastic behavior of foods and other biological materials, and application of rheological properties to food and biological systems (i.e., pipeline design, extrusion, mixing, coating).—II, II, II (M.) McCarthy

189A-G. Special Topics in Biological Systems Engineering (1-5)
Variable—3 to 15 hours. Prerequisite: upper division standing in engineering, consent of instructor. Special topics in: (A) Agricultural Engineering; (B) Aquacultural Engineering; (C) Biomedical Engineering; (D) Biotechnological Engineering; (E) Ecological System Engineering; (F) Food Engineering; (G) Forest Engineering. May be repeated for credit when topic differs.—I, II, III, II, II, III

190C. Research Group Conference in Biological Systems Engineering (1)
Discussion—1 hour. Prerequisite: upper division standing in Biological Systems Engineering or Food Engineering, consent of instructor. Research group conference. May be repeated for credit. (P/NP grading only.)—I, III, III, I, II, III

192. Internship in Biological Systems Engineering (1-5)
Internship. Prerequisite: upper division standing; approval of project prior to period of internship. Supervised work experience in biological systems engineering. May be repeated for credit. (P/NP grading only.)

197T. Tutoring in Biological Systems Engineering (1-5)
Tutorial—1-5 hours. Prerequisite: upper division standing in engineering; consent of instructor. Tutoring of students in undergraduate biological systems engineering courses. May be repeated for credit. (P/NP grading only.)

198. Directed Group Study (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5)
(P/NP grading only.)

Graduate Courses

200. Research Methods in Biological Systems Engineering (2)
Lecture—2 hours. Prerequisite: graduate standing. Planning, execution and reporting of research projects. Literature review techniques and proposal preparation. Record keeping and patents. Uncertainty analysis in experiments and computations. Graphical analysis. Oral and written presentation of research results, manuscript preparation, submission and review.—I (J.) Zhang, Giles

215. Soil-Machine Relations in Tillage and Traction (3)
Lecture—3 hours. Prerequisite: course 114. Mechanics of interactions between agricultural soils and tillage and traction devices; determination of relevant physical properties of soil; analyses of stress and strains in soil due to machine-applied loads; experimental and analytical methods for synthesizing characteristics of overall systems. Offered in alternate years.—II, III (J.) Jenkins

216. Energy Systems (3)
Lecture—3 hours. Prerequisite: Engineering 105. Theory and application of energy systems. System analysis including input-output analysis, energy balances, thermodynamic availability, economics, environmental considerations. Energy conversion systems and devices including cogeneration, heat pump, fuel cell, hydroelectric, wind, photovoltaic, and biomass conversion processes. Offered in alternate years.—II, III (J.)

218. Solar Thermal Engineering (3)

220. Pilot Plant Operation in Aquacultural Engineering (3)
Lecture—4 hours; laboratory—6 hours. Prerequisite: Civil Engineering 243A-243B or Applied Biological Systems Technology 161, 163. Topics in water treatment as they apply to aquaculture operations. Laboratory study of unit operations in aquaculture. Offered in alternate years.—II, III (T.) Rumsey

231. Mass Transfer in Food and Biological Systems (3)
Lecture/discussion—3 hours. Prerequisite: graduate standing. Application of mass transfer principles to food and biological systems. Study of mass transfer affecting food quality and shelf life. Analysis of mass transfer in polymer films used for coating and packaging foods and controlling release of biologically active compounds. Offered in alternate years.—I (K.) Krolla

233. Analysis of Processing Operations: Drying and Evaporation (3)
Lecture—3 hours. Prerequisite: course in food or process engineering, familiarity with FORTRAN. Diffusion theory in drying of solids. Analysis of fixed-bed and continuous-flow dryers. Steady-state and dynamic models to predict performance of evaporators: multiple effects, mechanical and thermal recompression, control systems. Offered in alternate years.—II, III (T.) Rumsey

235. Advanced Analysis of Unit Operations in Food and Biological Engineering (3)
Lecture—3 hours. Prerequisite: course 132. Analysis and design of food processing operations. Steady state and dynamic heat and mass transfer models for operations involving phase change such as freezing and frying. Separation processes including membrane application in food and fermentation systems.—II, III (J.) Singh

237. Thermal Process Design (3)
Lecture—2 hours; discussion—1 hour. Prerequisite: course in heat transfer. Heat transfer and biological basis for design of heat sterilization of foods and other biological materials in containers or in bulk. Offered in alternate years.—III (T.) Rumsey

239. Magnetic Resonance Imaging in Biological Systems (3)
Lecture—3 hours. Prerequisite: graduate standing. Theory and applications of magnetic resonance imaging to biological systems. Classical Bloch model of magnetic resonance. Applications to be studied are drying of fruits, flow of food suspensions, diffusion of moisture, and structure of foods. Offered in alternate years.—II, III (M.) McCarthy

240. Infiltration and Drainage (3)
Lecture—3 hours. Prerequisite: Soil Science 107, Engineering 103. Aspects of multi-phase flow in soils and their application to infiltration and immissible discharge problems. Gas phase transport and entrainment during infiltration, and oil-water-gas displacement will be considered. Offered in alternate years.—II, III (G.) Grimm

241. Sprinkle and Trickle Irrigation Systems (3)
Lecture—2 hours; laboratory—3 hours. Prerequisite: course 145/Hydrologic Science 115. Computerized design of sprinkle and trickle irrigation systems. Consideration of emitter mechanics, distribution functions and water yield functions. Offered in alternate years.—III, III (H.)
242. Hydraulics of Surface Irrigation (3)
Lecture—3 hours. Prerequisite: course 145, Hydrologic Science 115. Mathematical models of surface-irrigation systems for prediction of the ultimate disposition of water flowing onto a field. Quantity of runoff and distribution of infiltrated water over field length as a function of slope, roughness, infiltration and inflow rates. Offered in alternate years.—III. Wallender

243. Water Resource Planning and Management (3)
Lecture—3 hours. Prerequisite: Hydrologic Science 141 or the equivalent. Applications of deterministic and stochastic mathematical programming techniques to water resource planning, analysis, design, and management. Water allocation, capacity expansion, and reservoir operation. Conjunctive use of surface water and groundwater. Water quality management. Irrigation planning and operation models. (Same course as Hydrologic Science 243.) Offered in alternate years.—(I.) Marino

245. Waste Management for Biological Production Systems (3)
Lecture—3 hours. Prerequisite: graduate standing or consent of instructor. Characterization of solid and liquid wastes from animal, crop, and food production systems. Study of methods and system design for handling, treatment, and disposal/ utilization of these materials.—II. (II.) Zhang

260. Analog Instrumentation (4)
Lecture—3 hours; laboratory—3 hours. Prerequisite: Engineering 100. Instrument characteristics: generalized instrument models, calibration, and frequency response. Signal conditioning: operational amplifier circuits, filtering, and noise. Transducers: motion, force, pressure, flow, temperature, and photoelectric. Offered in alternate years.—II. Delwiche

262. Computer Interfacing and Control (4)
Lecture—3 hours; laboratory—3 hours. Prerequisite: Engineering 100, course 165. Procedural and object-oriented programming in C++, analog and digital signal conversion, data acquisition and computer control. Offered in alternate years.—(II.) Delwiche

265. Design and Analysis of Engineering Experiments (5)
Lecture—3 hours; lecture/discussion—2 hours. Prerequisite: Statistics 100. Agricultural Systems and Environment 120, or an introductory course in statistics. Simple linear, multiple, and polynomial regression, correlation, residuals, model selection, one-way ANOVA, fixed and random effect models, sample size, multiple comparisons, randomized block, repeated measures, and Latin square designs, factorial experiments, nested design and subsampling, split-plot design, statistical software packages.—III. (III.) Upadhyaya, Plant

270. Modeling and Analysis of Biological and Physical Systems (3)
Lecture—3 hours. Prerequisite: familiarity with a programming language. Mathematical modeling of biological systems: model development; analytical and numerical solutions. Case studies from various specializations within biological and agricultural engineering. Offered in alternate years.—III. Rumsey

275. Physical Properties of Biological Materials (3)
Lecture—2 hours; laboratory—3 hours. Prerequisite: consent of instructor. Selected topics on physical properties, such as mechanical, optical, rheological, and aerodynamic properties, as related to the design of harvesting, handling, sorting, and processing equipment. Techniques for measuring and recording physical properties of biological materials. Offered in alternate years.—(I.) Chen

289A-K. Selected Topics in Biological Systems Engineering (1-5)
Variable—1-5 hours. Prerequisite: consent of instructor. Special topics in: (A) Animal Systems Engineering; (B) Aquacultural Engineering; (C) Biological Engineering; (D) Energy Systems; (E) Environmental Quality; (F) Food Engineering; (G) Forest Engineering; (H) Irrigation and Drainage; (I) Plant Production and Harvest; (J) Postharvest Engineering; (K) Sensors and Actuators. May be repeated for credit when topic differs.—I, II, III. (I, II, III.)

290. Seminar (1)
Seminar—1 hour. Prerequisite: graduate standing. Weekly seminars on recent advances and selected topics in biological systems engineering. Course theme will change from quarter to quarter. May be repeated for credit. (S/U grading only.)

290C. Graduate Research Conference (1)
Discussion—1 hour. Prerequisite: consent of instructor. Research problems, progress and techniques in biological systems engineering. May be repeated for credit. (S/U grading only.)—I, II, III. (I, II, III.)

298. Group Study (1-5)
299. Research (1-12)
(S/U grading only.)

Professional Course
390. Supervised Teaching in Biological and Agricultural Engineering (1-3)
Laboratory—3 hours; tutorial—3-9 hours. Prerequisite: graduate standing; consent of instructor. Tutoring and teaching students in undergraduate courses offered in the Department of Biological and Agricultural Engineering. Weekly conferences with instructor; evaluation of teaching. Preparing for and conducting demonstrations, laboratories and discussions. Preparing and grading exams. May be repeated for a total of 6 units. (S/U grading only.)—I, II, III. (I, II, III.)
The Chemical Engineering curriculum is accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology, Inc.

Lower Division Program
Requirements for majors in Chemical Engineering and the double majors, Chemical Engineering/Materials Science and Engineering and Chemical Engineering/Biochemical Engineering.

General Education (GE) credit: Arts and Humanities; Social-Cultural Diversity; Writing Experience. Subhash H. Risbud, Ph.D., Chairperson of the Department (530-752-5132; Fax: 530-754-6350).

Quarter Offered: I=Fall; II=Winter; III=Spring; IV=Summer; 2001-2002 offering in parentheses. Numerical scores are based on UC Davis General Catalog (College of Engineering) 530-754-6350)

Emeriti Faculty
- Richard L. Bell, Ph.D., Professor Emeritus
- J. M. Smith, Sc.D., Professor Emeritus
- S. Haig Zeronian, Ph.D., D.Sc., Professor Emeritus

Mission. The mission of the Department of Chemical Engineering and Materials Science is to advance the frontiers of the discipline through teaching and research programs in the areas of chemical, biochemical, and materials engineering; to educate students with a sense of professionalism and citizenship; and to serve the general public through outreach efforts.

The Chemical Engineering Major Programs
Chemical engineers apply the principles of chemistry and engineering to produce useful commodities, ranging from antibiotics to zirconium. Chemical engineers are increasingly concerned with chemical and engineering processes related to the environment, food and pharmaceutical production, and medicine, working in areas as diverse as integrated circuits and integrated waste management. Preparation for a career in chemical engineering requires an understanding of both engineering and chemical principles to develop proficiency in conceiving, designing, and operating new processes.

The Chemical Engineering curriculum has been planned to provide a sound knowledge of engineering and chemical sciences so that you may achieve competence in treating not only current technical problems but also those that will arise in the technologies of the future.

Objectives. The objectives of the program in chemical engineering are to educate students in the fundamentals of chemical engineering, balanced with the application of these principles to practical problems; to train students with a sense of community, ethical responsibility and professionalism; to prepare students for careers in industry, government and academia; to instill in students the necessity of continuing education and self-learning; to graduate students who can think independently but who can function effectively as part of a team; and to train students who can communicate their accomplishments proficiently in written and oral form.

Chemical Engineering Curriculum
The Chemical Engineering program requires a total of 120 units: 47 lower division (22 lower division courses), 55 upper division (18 upper division courses), 2 units of English (or Comparative Literature), 3 units of foreign language, 3 units of physical education (for a total of 148 units). The lower division courses include 9 units of lower division general education, 6 units of lower division chemistry, 6 units of lower division physics, 6 units of lower division mathematics, 6 units of lower division engineering, 3 units of lower division biology, and 6 units of lower division computer science or technical electives. The upper division courses include 6 units of upper division general education, 18 units of upper division chemistry, 12 units of upper division physics, 12 units of upper division mathematics, 12 units of upper division engineering, 6 units of upper division biology, and 6 units of upper division computer science or technical electives. The 12 units of upper division general education include 2 units of upper division English, 4 units of upper division physical education, and 6 units of upper division foreign language. The 6 units of upper division physical education include 2 units of upper division physical education and 4 units of upper division physical education.

Upper Division Program
In your junior year, you focus on basic engineering courses, particularly thermodynamics, fluid mechanics, and energy transfer. In your senior year, you draw these fundamentals together and apply them in a study of mass transfer phenomena, process design, and process dynamics and control. The program is strengthened and broadened with introductory courses in the electrical and mechanical sciences. The curriculum includes 12 units of technical electives and 6 units of advanced chemistry electives that allow you to strengthen specific areas in chemical engineering, explore new areas, or pursue areas of specialization. The most popular areas of specialization, together with lists of suggested technical electives, are identified and discussed in the following paragraphs. Please talk to the instructors of the courses listed about possible prerequisites before enrolling.

The premedical and prebiomedical engineering areas of specialization have been specifically designed to prepare the student for graduate work in biomedical engineering or to meet the undergraduate requirements for entrance into medical school. Because of the emphasis on the natural sciences and the application of fluid mechanics, mass transport, heat transfer, thermodynamics, reaction kinetics, and process dynamics to problems in natural science, you are well prepared to understand problems in living systems. Many biological phenomena, such as blood flow, solute transport, and energy exchange, can be dealt with using the theoretical tools you learned as an undergraduate.

Areas of Specialization
Advanced Materials Processing. Because the manufacture of semiconductor devices, integrated circuits, magnetic memories, tapes, disks, and other devices involves the application of chemical and engineering principles, chemical engineers are finding productive careers in the electronics industry. The electronics processing specialization introduces you to the analysis and design of modern devices, circuits, and devices and provides a strong background in the layout and fabrication of such devices.

Suggested technical electives:
- Electrical and Computer Engineering 140A, 140B, 145A, 145B, 146A, 146B
- Materials Science and Engineering 138, 144, 146, 155
Applied Chemistry. Build a strong program in chemistry by choosing electives from among advanced undergraduate chemistry courses.
Suggested technical electives:
Chemistry 110C, 111, 115, 121, 128C, 129B, 129C, 130, 131, 150

Applied Mathematics. Courses in abstract algebra, advanced calculus, and the theory of differential equations provide a sound theoretical background, while courses in analytical and numerical analysis provide the techniques for solving a wide range of engineering problems.
Suggested technical electives:
Applied Science Engineering 115, 116

Biochemical Engineering. Courses in this area prepare you to do graduate work in biochemical engineering and to find employment in the biotechnology, pharmacaceutical, and food industries.
Suggested technical electives:
Strongly recommended
Microbiology 102, 102L
Biological Sciences 1A, 102
Chemical Engineering 161A, 161B, 161L
Also recommended
Biological Sciences 1B, 101, 103, 104
Chemical Engineering Systems Engineering 175
Chemical Engineering 170
Food Science and Technology 123, 123L
Microbiology 140, 150, 155L, 160
Molecular and Cellular Biology 120L, 123, 160L, 161, 170L
Neurobiology, Physiology, and Behavior 100B, 100L
Plant Science 140
Viticulture and Enology 140, 196

Computers and Automation. This specialization offers you the opportunity to master various computational techniques to formulate, solve, and analyze chemical engineering problems. In addition, you are exposed to the theory and practice of monitoring and operating chemical processes using microprocessor-based control systems. The suggested elective courses help you obtain the necessary background in these areas.
Suggested technical electives:
Artificial Intelligence and Computer Graphics:
Computer Science Engineering 170, 175
Numerical Analysis and Optimization:
Applied Science Engineering 115, 116
Mathematics 128B-128C, 168
Civil and Environmental Engineering 153

Automatic Control:
Biological Systems Engineering 165
Electrical and Computer Engineering 150B, 157B, 174
Mechanical Engineering 176
Food Science and Technology 156

Energy Conversion and Fuels Processing. These courses introduce you to energy sources, energy conversion methods, and the manufacture of fuels.
Suggested technical electives:
Biological Systems Engineering 120
Engineering 111
Environmental and Resource Sciences 103
Environmental Science and Policy 167
Mechanical Engineering 161, 162

Environmental Engineering. This option prepares you to deal with environmental issues and to seek employment with industry or government. For this specialization, select six courses from the following list:
Suggested technical electives:
Air Environment:
Strongly-recommended
Civil and Environmental Engineering 149
Recommended
Atmospheric Science 121A, 121B, 158
Civil and Polymer Science 100
Environmental Science and Policy 110
Environmental Toxicology 101, 112A, 112B, 131

Water Environment:
Strongly recommended
Chemical Engineering 161A, 161B, 161L
Civil and Environmental Engineering 140, 140L, 148A, 148B
Microbiology 102
Recommended
Biological Sciences 102, 103
Civil and Environmental Engineering 147
Environmental Science and Policy 110, 150A, 151
Environmental Toxicology 101, 112A, 112B
Hydrologic Science 124
Soil Science 100, 102, 107

Food Process Engineering. This area of specialization prepares you to do graduate work in food science and technology and to work in the food processing industry.
Suggested technical electives:
Strongly recommended
Microbiology 102
Biological Sciences 102, 103, 104
Chemical Engineering 161A, 161B, 161L
Biological Systems Engineering 132
Food Science and Technology 100A, 104, 104L
Recommended
Food Science and Technology 100B

Marketing. Manufacturers need chemical engineers who have training in market management, which involves the application of economics, psychology, and statistics in market planning and forecasting and in strategically developing and promoting new products.
Suggested technical electives:
Management 250, 251
Agricultural and Resource Economics 113, 130, 136

Statistics 103

Polymer Science. These courses prepare you for employment in polymer manufacturing and processing, and also prepare you for graduate work in the interdisciplinary field of polymer science and engineering.
Suggested technical electives:
Chemistry 108, 128C, 129B, 129C
Fiber and Polymer Science 100, 150
Chemical Engineering 150C
Materials Science and Engineering 147

Prebiomedical Engineering. This area of specialization prepares you for graduate work in biomedical engineering. Early planning of a complete course schedule in consultation with a Chemical Engineering adviser is important to schedule necessary Biological Sciences courses into your program.
Suggested technical electives:
Four to six courses from
Anatomy, Physiology, and Cell Biology 100
Biological Sciences 1A, 1B, 1C, 101, 102, 103, 104, Molecular and Cellular Biology 140L, 141, 142
Neurobiology, Physiology, and Behavior 101, 111A, 111B, 112, 113, 114

Premedical. Inclusion of both organic and physical chemistry in the curriculum allows you to complete the premedical requirements while satisfying the requirements of the Chemical Engineering major. If you elect the premedical (including pre-veterinary) area of specialization, you should verify the specific preparation requirements with the Health Sciences Advising Office before making a final decision on your electives. To ensure that you have provided room in your program for the necessary biology courses, prepare a course schedule with a Chemical Engineering adviser early in your freshman year.
Suggested technical electives:
Anatomy, Physiology, and Cell Biology 100
Chemistry 128C, 129B, 129C
Six biology or biochemistry courses, such as Biological Sciences 1A, 1B, 1C, 101, 102, 103, 104, Microbiology 102, Molecular and Cellular Biology 140L, 141, 142, 150, Neurobiology, Physiology, and Behavior 101, 112, 113, 114

Chemical Engineering Upper Division Requirements

Subject Areas and Courses
Chemistry 110A, 110B

Advanced chemistry electives
Select from upper division courses in Chemistry, Biological Sciences 101, 102, 103; Chemical Engineering 150C, 161A, 161B, 161L, 166, 170; Civil and Environmental Engineering 140, 140L, Materials Science Engineering 134, 144, 147, Environmental Toxicology 112A-112B, Fiber and Polymer Science 150; Food Science and Technology 100A-100B, 104, 119, Molecular and Cellular Biology 120L, 123, 126, Plant Biology 160.

Technical electives

Quarter Offered: I=Fall; II=Winter; III=Spring; IV=Summer; 2001–2002 offering in parentheses

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
The undergraduate program in Materials Science and Engineering provides the background for activities in research, processing, and the design of materials. A common core of courses basic to engineering are taken during your first two years and provide a strong foundation in fundamental engineering concepts.

Objectives. We educate students in the fundamentals of materials science and engineering, balanced with the application of these principles to practical problems; train students with a sense of community, ethical responsibility and professionalism; prepare students for careers in industry, government and academia; instill in students the necessity of continuing education and self-learning; graduate students who can think independently, but who can function effectively as part of a team; train students who can communicate their accomplishments proficiently in written and oral form.

Materials Science Curriculum

The Materials Science and Engineering curriculum is accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology, Inc.

Lower Division Program

In your third year, you will take "fundamentals" courses (Materials Science and Engineering 140, 142, 144, 146, 147, 148, 149, 151, 152, Viticulture and Enology 140, 186) from corrosion behavior in petro-chemical refineries to radiation-induced damage in solid-state electronic devices in materials with capabilities far superior to common metals, alloys, and ceramics.

Technical electives, selected from other engineering or physical and natural science disciplines, give you some degree of specialization at the bachelor's degree level. They also provide preparation for research in a selected area at the graduate level. You may select 12 technical elective units to complete the undergraduate Materials Science and Engineering program. By selecting the appropriate technical electives and Humanities and Social Science/General Education electives, you may orient the program to suit your interests and career objectives: production and development, applied research, basic research, teaching, and/or management.

Upper division courses in engineering, chemistry, physics, mathematics, and biological sciences are generally acceptable as technical electives in Materials Science and Engineering.

The following list of suggested areas of specialization is given to assist you and your adviser in the preparation of study lists.

Suggested technical electives:

- Aerospace Structures: Aeronautical Science and Engineering 130, 133, 135, 137, 139
- Automatic Control and Systems Analysis: Mechanical Engineering 171, 172, 185, 187, 188
- Electrical and Computer Engineering 157A, 157B, 174
- Biomedical Engineering: Chemistry 107A, 107B
- Biological Sciences 1A, 1B
- Neuroscience, Physiology, and Behavior 111L, 112, 113
- Exercise Science 101, 102
- Chemical Corrosion: Chemistry 110A, 110B, 110C or 107A, 107B
- Chemical Engineering 151, 152A, 152B

Computers:
- Applied Science Engineering 115
- Computer Science Engineering 110, 122A, 122B, 142, 151A, 151B
- Electrical and Computer Engineering 170, 172, 180A, 180B
- Mathematics 128A, 128B, 168
- Statistics 130A, 130B

Environmental Engineering: Engineering 160 (only one unit of credit towards Technical Elective requirement)
Atmospheric Science 120
Biological Sciences 102, 103
Hydrologic Science 21
Chemistry 6A, 6B
Civil and Environmental Engineering 149

Heat Transfer:
Engineering 105B
Mechanical Engineering 165
Chemical Engineering 150A, 153

Materials Design and Processing:
Aeronautical Science and Engineering 137
Engineering 106
Materials Science and Engineering 146, 148, 155
Mechanical Engineering 50, 150A, 150B, 151, 152, 185A, 185B
Civil and Environmental Engineering 135

Physics of Solids:
Physics 115A, 115B, 140A, 140B
Electrical and Computer Engineering 145A, 145B, 148

Upper Division Requirements:

Subject Areas and Courses

<table>
<thead>
<tr>
<th>Course Area</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aeronautical Science and Engineering</td>
<td>137</td>
</tr>
<tr>
<td>Civil and Environmental Engineering</td>
<td>132, 135, 150A, 150B</td>
</tr>
<tr>
<td>Materials Science and Engineering</td>
<td>130, 132, 132L, 134L, 138L, 138L, 149</td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td>150A, 150B</td>
</tr>
</tbody>
</table>

Select two courses from Materials Science and Engineering 140, 148, 155

Select three courses from Materials Science and Engineering 142, 144, 146, 147 or (if not taken for the preceding requirement) 140, 148, 155

Select one course from Engineering 180; Mathematics 131, Statistics 120, 131A, Civil and Environmental Engineering 114, Chemical Engineering 159; or Applied Science 115

Select from Chemistry 110A, 110C or Physics 140A, 140B, or Chemistry 129A, 129B, or Physics 121, 122, or Geology 161, 162N, or Neurobiology, Physiology, and Behavior 101, 101L

Technical electives

General Education electives

Total Upper Division Units

Minimum Units Required for Major

Courses in Engineering: Chemical (ECH)

(Courses in Chemical Engineering (ECH) are listed below; courses in Materials Science and Engineering (MSE) are listed immediately following.)

Lower Division Courses

1. The Scope of Chemical Engineering (1)
Lecture—1 hour. Demonstrations and discussions of the opportunities in chemical engineering for professional development, contributions to basic knowledge, with clarification of what chemical engineers actually do in various jobs. (P/NP grading only)—II. (II)

98. Directed Group Study (1-5)
Prerequisite: consent of instructor and lower division standing. (P/NP grading only)

99. Special Study for Undergraduates (1-5)
Prerequisite: consent of instructor. (P/NP grading only)

Upper Division Courses

150A Chemical Engineering Fluid Mechanics (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 151 and 159, Engineering 35. Fluid statics and one-dimensional laminar flows. Kinematics of point and integral functions. Stress vector-stress tensor relation. Newton’s law of viscosity and application of the Navier-Stokes equations to laminar flow and dimensional analysis. Flow of non-Newtonian fluids. Not open for credit to students who have completed Engineering 103 or 103A.—II. (II)

150B Chemical Engineering Fluid Mechanics (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 150A. Turbulent flows and time averaging. Application of Bernoulli’s equation and the macroscopic mass, momentum, and mechanical energy balances to a variety of practical problems. Introduction to compressible flow. The entropy equation and isentropic processes. Shock waves and choke flow. Not open for credit to students who have completed Engineering 103B or Civil Engineering 141.—III. (III)

150C Rheology and Polymer Processing (4)
Lecture—4 hours. Prerequisite: course 150A. Fundamentals of rheology. Introduction to polymer processing unit operations.—III. (III)

151. Material Balances (3)
Lecture—3 hours. Prerequisite: Chemistry 110A, Chemistry 128B (may be taken concurrently). Engineering 5. Application of the principles of conservation of mass to single and multi-component systems in chemical process calculations. Studies of batch, semi-batch, and continuous processes involving mass transfer, change of phase, and chemical reaction.—I. (I)

152A Chemical Engineering Thermodynamics (3)
Lecture—3 hours. Prerequisite: course 151. Application of principles of thermodynamics to chemical processes. Not open for credit to students who have completed Engineering 105 or Engineering 105A.—II. (II)

152B Chemical Engineering Thermodynamics (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 152A. Continuation of course 152A. Not open for credit to students who have completed Engineering 105B.—III. (III)

153. Chemical Engineering Heat Transfer (4)
Lecture—4 hours. Prerequisite: course 150A. Steady and transient heat conduction. The energy equation, analysis of forced and free convective heat transfer. Turbulence, macrosopic balances, and heat transfer coefficients. The photon transport equation and radiant energy exchange. The design of heat exchangers.—III. (III)

154A Mass Transfer (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 152B and 153. Fundamentals of mass transfer in fluids. Problems in pure diffusion and convective mass transfer.—I. (I)

154B Applications of Mass Transfer (3)
Lecture—3 hours. Prerequisite: course 154A. Application of the principles of mass transfer and thermodynamic equilibrium to absorption, extraction, distillation, and other separation processes.—II. (II)

155A Chemical Engineering Laboratory (4)
Laboratory—6 hours; discussion—1 hour; term paper. Prerequisite: course 154A (may be taken concurrently) and satisfaction of the Engineering upper division English composition requirement. Open only to majors in Chemical Engineering, Chemical Engineering/Materials Science, Chemical/Biochemical Engineering, Biomedical Engineering, Food Engineering, Biological Systems Engineering. Laboratory experiments in transport phenomena, chemical kinetics, and thermodynamics. GE credit: Writ.—I, II, III. (I, II, III)

155B Chemical Engineering Laboratory (4)
Laboratory—6 hours; discussion—1 hour; extensive writing. Prerequisite: courses 154B (may be taken concurrently), 155A, and satisfaction of the Engineering upper division English composition requirement. Open only to majors in Chemical Engineering, Chemical Engineering/Materials Science, Chemical/Biochemical Engineering, Biomedical Engineering, Food Engineering, and Biosystems Engineering. Continuation of 155A. Laboratory experiments in transport phenomena, chemical kinetics, and thermodynamics. GE credit: Writ.—II, III. (II, III)

156A Chemical Engineering Kinetics (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 152B and 154A. Chemical kinetics and introduction to homogeneous and heterogeneous reactor design.—II. (II)

156B Chemical Engineering Kinetics (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 156A. Continuation of course 156A.—III. (III)

157. Process Dynamics and Control (3)
Lecture—3 hours. Prerequisite: course 159. Fundamentals of dynamic modeling of chemical processes. Design and analysis of classical feedback control of chemical processes.—I. (I) McDonald

157L Process Control Laboratory (1)
Laboratory—3 hours; discussion—1 hour. Prerequisite: course 157. Open only to majors in Chemical Engineering, Chemical Engineering/Materials Science, Materials Science, Chemical/Biochemical Engineering, Biomedical Engineering, and Food Engineering. Laboratory experiments in control system design and analysis.—II, III. (II, III)

158A Economics and Optimization of Chemical Processes (3)
Lecture—3 hours. Prerequisites: senior standing. Fundamentals of economics, interest calculations, depreciation, taxes. Economic analysis of chemical plant designs. Optimization methods. Linear and non linear programming.—I. (I) Palazoglu

158B Process Equipment Design (3)
Lecture—3 hours. Prerequisite: course 158A. Design of chemical process equipment. Equipment cost estimation techniques.—II. (II) Palazoglu
158C. Plant Design (3)
Lecture—1 hour; discussion—1 hour. Prerequisite: course 158B or 161C. Open only to majors in Chemical Engineering, Chemical Engineering/ Materials Science, or Chemical/Biochemical Engineering. Principles of chemical process design. Advanced tools and techniques, including computer-aided process design techniques. III. (III.) Longo

158H. Agricultural Biotechnology (3)
Lecture—2 hours; Prerequisite: 200A or consent of instructor. Advanced topics in agricultural biotechnology. Emphasis on the use of molecular and cellular processes to improve crop plants. Use of computer-aided design techniques. II. (II.) Ryu

159A. Instrumental Analysis (3)
Lecture—3 hours. Prerequisite: 159B. Instrumental analysis of chemical systems. Emphasis on the use of molecular and cellular processes to improve crop plants. Use of computer-aided design techniques. II. (II.) Ryu

160A. Advanced Thermodynamics (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 152A, 252, or the equivalent. Application of thermodynamic principles to phase and chemical reaction equilibrium; introduction to molecular simulations and the evaluation of thermodynamic properties of macromolecular systems. III. (III.) Palazoglu

252. Statistical Thermodynamics (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 152B, Engineering 108B, or the equivalent. A treatment of the statistical basis of thermodynamics; introduction to statistical mechanics; discussion of the laws of thermodynamics; application of thermodynamic relationships to phase and chemical reaction equilibrium; introduction to molecular simulations and the evaluation of thermodynamic properties of macromolecular systems. III. (III.) Palazoglu
144. Corrosion and Oxidation of Engineering Materials (3)
Lecture—3 hours. Prerequisite: upper division standing in Engineering, Principles governing the interaction between engineering materials and their environment; corrosion in aqueous media, soils and biological systems. Oxidation of structural materials in high temperature applications; design and selection criteria for the prevention and control of corrosion.—II. (II.)

146. Electronic and Optical Materials Processing (3)
Lecture—3 hours. Prerequisite: upper division standing in Engineering, Physics, Chemistry, or Geology. Principles of phase equilibria, thermodynamics and reaction kinetics applied to the processing of electronic and optical materials in polycrystalline, single crystal, and amorphous forms. GE credit: Wrt.—III. (III.) Groza

147. Principles of Polymer Materials Science (3)
Lecture—3 hours. Prerequisite: chemistry through organic or Engineering 45, introductory physics sequence. Basic principles of polymer science presented including polymer structure and synthesis; polymerization mechanisms, polymer classes, properties, and reactions; polymer morphology, rheology, and characterization; polymer processing. (Same course as Fiber and Polymer Science 100).—II. (II.)

148. Failure Analysis (4)
Lecture—3 hours. Laboratory—3 hours. Prerequisite: Engineering 45, 104A; course 138 and Mechanical Engineering 150A recommended. Fracture mechanics and failure mechanisms in metals, ceramics, and composites. Effects of fatigue, corrosion and wear. Methodology for investigating failure including optical microscopy, scanning electron microscopy and destructive testing. GE credit: Wrt.—III. (III.)

149. Materials Engineering Design Project (3)
Discussion—1 hour; laboratory—6 hours. Prerequisite: senior standing in Engineering and consent of instructor. A capstone engineering design experience involving analysis of real materials processes or engineering materials problems. The various principles of materials science introduced in other courses in the curriculum are integrated into the design project.—I. (I.)

155. Manufacturing Process Design (3)
Lecture—3 hours; discussion—1 hour. Prerequisite: Engineering 45 or Mechanical Engineering 50. Principles of materials processing and manufacturing properties, effects of processing variables on structure-property relationships, and the fundamentals of manufacturing process selection are described. Case histories are used to explore recent developments in manufacturing process design.—I. (I.)

190C. Research Group Conferences (1)
Discussion—1 hour. Prerequisite: consent of instructor; upper division standing. Individual and/or group conference on problems, progress and techniques in materials research. May be repeated for credit. (P/NP grading only).—I. (I.) III. (I., II., III.)

198. Directed Group Study (1-5)
Discussion—1 hour. Prerequisite: consent of instructor. Group study of selected topics. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)

Graduate Courses

230. Fundamentals of Electron Microscopy (3)
Lecture—2 hours; discussion—1 hour. Prerequisite: Engineering 132. Principles and techniques of electron imaging and scanning and transmission electron microscopy used in the study of materials. Emphasis upon practical applications. Offered in alternate years.—II. (II.)

230L. Laboratory for Electron Microscopy (2)
Lecture—6 hours. Prerequisite: course 230 concurrently. Practical application of techniques of electron scanning and transmission microscopy including x-ray microanalysis. Offered in alternate years.—II. (II.)

232. Advanced Topics in Transmission Electron Microscopy (3)
Lecture—1 hour; discussion—2 hours. Prerequisite: course 230. Advanced course in the techniques of electron microscopy including analytical techniques, probe diffraction methods, and high resolution imaging. Offered in alternate years.—II. (II.)

232L. Laboratory for Advanced Transmission Electron Microscopy (2)
Discussion—1 hour; laboratory—3 hours. Prerequisite: course 230L. Laboratory in advanced transmission electron microscopy techniques relevant to specific graduate research projects in materials science. Offered in alternate years.—II. (II.)

240. Transport Phenomena in Materials Processes (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: graduate standing in Engineering. Phenomenological and atomic mechanisms in transport processes in condensed and noncondensed phases. Application to heat treatment, chemical and physical vapor deposition, crystal growth, bonding, sintering and joining of metals. Offered in alternate years.—III.

241. Principles and Applications of Dislocation Mechanics (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: graduate standing in Engineering, consent of instructor. Concepts in dislocation theory are applied to explain plasticity of crystalline solids. Glide and climb of dislocations, strain hardening, recrystallization, theories of creep processes and interaction of dislocation with solute atoms, precipitates and impurity clouds are discussed. Offered in alternate years.—II. (II.)

Quarter Offered: I=Fall; II=Winter; III=Spring; IV=Summer; 2001-2002 offering in parentheses.

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
242. Advanced Mechanical Properties of Materials (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 138. Strength and structure of engineering materials. The dependence of their mechanical properties on time, stress, and temperature. Generalized concepts of dislocation theory in plastic deformation, including creep, superplasticity, and cavitation. Influence of microstructure in optimizing the mechanical strength properties. Offered in alternate years.—II. Mukherjee

Lecture—3 hours. Prerequisite: graduate standing in Engineering and consent of instructor; course 130 recommended. Theory of alloying, kinetics of phase changes, homogeneous and heterogeneous transformation, transformation by shear, order-disorder reactions. Offered in alternate years.—III. Groza

244. Interaction of Materials and their Environment (3)
Lecture—3 hours. Prerequisite: Engineering 45 and 105A, or consent of instructor. Thermodynamic and kinetic foundations of the corrosion and oxidation processes. Practical aspects of corrosion control and prevention. Stress-corrosion and gas-embrittlement phenomena. Special topics in corrosion: microbiological and atmospheric corrosion. Offered in alternate years.—I. Munir

245. Advanced Topics in Structure of Materials (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 132 and graduate standing in Engineering or consent of instructor, courses 138 and 142 recommended. Nature of microstructure in engineering materials will be explored. Crystallographic and non-crystalline structures will be studied with special emphasis on grain boundary segregation in development of polycrystalline microstructure and the radial distribution function of amorphous materials. Offered in alternate years.—III. Shackelford

247. Advanced Thermodynamics of Solids (3)
Lecture—3 hours. Prerequisite: course 130 or the equivalent. Thermodynamics of gas-solid reactions and solutions; criteria for phase stability; thermodynamics of surfaces and interfaces; thermodynamics of defects in compounds, their influence on transport processes; thermodynamics of EMF cells and application to solid-state electrolytes. Offered in alternate years.—(I.) Munir

248. Fracture of Engineering Materials (3)
Lecture—3 hours. Prerequisite: course 138. Description of failure of materials by crack propagation. Topics include the stress fields about elastic cracks, the Griffith-Irwin analysis, descriptions of plastic zones, fracture toughness testing, microstructural aspects of fracture and failure at elevated temperatures. Offered in alternate years.—(I.) Gibeling

249. Mechanisms of Fatigue (3)
Lecture—3 hours. Prerequisite: course 138 or consent of instructor; course 248 recommended. Microstructural description of mechanisms of fatigue in metals. Topics include a phenomenological treatment of cyclic deformation, dislocation processes in cyclic deformation, fatigue crack nucleation, stage I crack growth, threshold effects and high temperature cyclic deformation. Offered in alternate years.—I.

250A-F. Special Topics in Polymer and Fiber Science (3)
Lecture—3 hours. Prerequisite: course 147 or consent of instructor. Selected topics of current interest in polymer and fiber sciences. Topics will vary each time the course is offered. (Same course as Textiles and Clothing 250A-F.)—II. (II.)

251. Applications of Solid State Nuclear Magnetic Resonance Spectroscopy (3)
Lecture—3 hours. Prerequisite: graduate standing in chemistry, physics or engineering, or consent of instructor. Fundamentals of solid state NMR spectroscopy and principles of advanced NMR techniques for analyzing structure of solid materials.—III. (III.) Risbud

288A-G. Special Topics in Materials Science (1-5)
Lecture and/or laboratory. Prerequisite: consent of instructor. Special topics in: (A) Electronic Materials; (B) Ceramics and Minerals; (C) Physics and Chemistry of Materials; (D) Materials Processing; (E) Materials Science and Forensics; (F) Biomaterials; (G) Surface Chemistry of Metal Oxides. May be repeated for credit when topic differs.—I, II, III, (I, II, III.)

290C. Graduate Research Conference (1)
Discussion—1 hour. Prerequisite: consent of instructor. Individual and/or group conferences on problems, progress, and techniques in materials science and engineering research. May be repeated for credit. (S/U grading only.)—I, II, III, (I, II, III.)

294. Materials Science Seminar (1)
Seminar—1 hour. Current literature and developments in materials science with presentations by individual students. May be repeated for credit. (S/U grading only.)—I, II, III, (I, II, III.) Shackelford, Mukherjee, Munir, Howitt, Gibeling, Groza, Risbud

298. Group Study (1-5)
(S/U grading only.)

299. Research (1-12)
Prerequisite: consent of instructor. (S/U grading only.)

Professional Course

390. The Teaching of Materials Science (1)
Discussion—1 hour. Prerequisite: meet qualifications for teaching assistant and/or associate-in in materials science and engineering. Participation as a teaching assistant or associate-in in a designated engineering course. Methods of leading discussion groups or laboratory sections, writing and grading quizzes, use of laboratory equipment, and grading laboratory reports. May be repeated twice for credit. (S/U grading only.)—I, II, III, (I, II, III.)
Engineering: Civil and Environmental

(College of Engineering)

Daniel F. Chang, Ph.D., Chairperson of the Department (530-752-2537)
Ross W. Boulangier, Ph.D., Vice Chairperson of the Department
Debbie Niemeier, Ph.D., Vice Chairperson of the Department

Department Office, 2001 Engineering III (530-752-0586)
World Wide Web: http://cee. engr.ucdavis.edu

Faculty

Kandiah Anuranadanat, Ph.D., Professor
Takashi Asano, Ph.D., Adjunct Professor
John Bolander, Ph.D., Associate Professor
Ross W. Boulangier, Ph.D., Associate Professor
Y. K. (Rob) Chai, Ph.D., Associate Professor
Daniel Y. Zhang, Ph.D., Professor
Yannis F. Dafalias, Ph.D., Professor
Jeanne L. Darby, Ph.D., Professor, Academic Senate Distinguished Teaching Award
Johannes J. De Vries, Ph.D., Lecturer
Timothy R. Ginn, Ph.D., Associate Professor
Brita A. Holmen, Ph.D., Adjunct Assistant Professor
I. M. Idriss, Ph.D., Professor
Roy A. Imboden, D.E., Adjunct Professor
Boris Jeremic, Ph.D., Assistant Professor
Leonard R. Herrmann, Ph.D., Professor Emeritus, Academic Senate Distinguished Teaching Award
Academic Senate Distinguished Teaching Award, UC Davis Prize for Teaching and Scholarly Achievement
Yannis F. Dafalias, Ph.D., Professor
Y. K. (Rob) Chai, Ph.D., Associate Professor
Ross W. Boulanger, Ph.D., Associate Professor
John Bolander, Ph.D., Associate Professor
Michael J. Kleeman, Ph.D., Assistant Professor
Bruce L. Kutter, Ph.D., Professor
Bruce E. Larock, Ph.D., Professor
Jay R. Lund, Ph.D., Professor
Miguel A. Marinho, Ph.D., Professor (Civil and Environmental Engineering: Land, Air and Water Resources)
Brian Maroney, D.Engr., Adjunct Assistant Professor
Patricia L. Mokhtarian, Ph.D., Professor
Brian Maroney, D.Engr., Associate Professor
Robert Smith, Ph.D., Lecturer
Daniel Sperling, Ph.D., Professor (Civil and Environmental Engineering: Environmental Science and Policy)
Fred Stephenson, M.S., Lecturer
Thomas M. Young, Ph.D., Assistant Professor
H. Michael Zhang, Ph.D., Assistant Professor

Emeriti Faculty

Don O. Brush, Ph.D., Professor Emeritus
Robert H. Burgy, M.S., Professor Emeritus
James A. Cheney, Ph.D., Professor Emeritus
Leonard R. Hermann, Ph.D., Professor Emeritus, Academic Senate Distinguished Teaching Award, UC Davis Prize for Teaching and Scholarly Achievement
James R. Hutchinson, Ph.D., Professor Emeritus
Ian P. King, Ph.D., Professor Emeritus
Ray B. Krone, Ph.D., Professor Emeritus
Gerald T. Orlib, Ph.D., Professor Emeritus
Otto G. Raabe, Ph.D., Professor Emeritus
Karl M. Romstad, Ph.D., Professor Emeritus, Academic Senate Distinguished Teaching Award
Edward D. Schroeder, Ph.D., Professor Emeritus, Academic Senate Distinguished Teaching Award
Verne H. Scott, Ph.D., Professor Emeritus
Chih-Kang Shen, Ph.D., Professor Emeritus
Michael A. Taylor, Ph.D., Professor Emeritus
George Tchobanoglous, Ph.D., Professor Emeritus

The Civil and Environmental Engineering Programs

Mission. The Department of Civil and Environmental Engineering integrates research, education, and professional service in areas related to civil infrastructure and the environment. We provide the profession and academia with outstanding graduates who advance both engineering practice and fundamental knowledge.

Program Educational Objectives. Fundamentals: To educate students in the fundamental principles needed for civil and environmental engineering; mathematics, basic sciences, and engineering sciences. Application: To educate students in the application of fundamental principles for solving civil and environmental engineering problems; provide proficiency in at least four of the environmental, geotechnical, structural, transportation, and water resource areas; and expose students to current research. Professionalism: To imbue students with attributes that lead to professional growth throughout their careers: a sense of community and ethical responsibility; an awareness of business practices; a recognition of the need for lifelong learning, continuing education, and participation in professional societies; a readiness for graduate education; an appreciation for diversity in the engineering profession; the ability to think independently and perform effectively in multidisciplinary teams; and the ability to communicate effectively. Service to State and Profession: To provide an educational program that serves the needs of the state and profession; recruit and retain a diverse student population that is representative of the state; engage in outreach activities; provide an efficient program that minimizes the time-to-degree and maximizes enrollment opportunities; and prepare students for entry into postgraduate education or practice.

Civil Engineering Curriculum

The Civil Engineering curriculum is accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology, Inc.

Lower Division Program

Requirements for Civil Engineering and the double major, Civil Engineering/Materials Science and Engineering.

<table>
<thead>
<tr>
<th>COURSE</th>
<th>UNITS TAKEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics 21A-21B-21C-21D</td>
<td>16</td>
</tr>
<tr>
<td>Mathematics 22A-22B</td>
<td>6</td>
</tr>
<tr>
<td>Physics 9A-9B-9C and choice of</td>
<td>3-4-5-6</td>
</tr>
<tr>
<td>Physics 9D, Chemistry 2C, Biological Science 1A or Geology 50-50L</td>
<td>16</td>
</tr>
<tr>
<td>Chemistry 2A-2B or 2AH-2BH</td>
<td>10</td>
</tr>
<tr>
<td>Civil and Environmental Engineering 1</td>
<td>1</td>
</tr>
<tr>
<td>Civil and Environmental Engineering 3</td>
<td>3</td>
</tr>
<tr>
<td>Civil and Environmental Engineering 1 and 3 are designed for freshman students. More advanced students may petition to substitute equal units</td>
<td></td>
</tr>
<tr>
<td>Engineering 6</td>
<td>4</td>
</tr>
<tr>
<td>Civil and Environmental Engineering 10</td>
<td>6</td>
</tr>
<tr>
<td>Engineering 17</td>
<td>4</td>
</tr>
<tr>
<td>Engineering 35</td>
<td>3</td>
</tr>
<tr>
<td>Engineering 45</td>
<td>5</td>
</tr>
<tr>
<td>English 1 or 3, or Comparative Literature 1, 2, 3 or 4, or Native American Studies 5</td>
<td>1 or 2</td>
</tr>
<tr>
<td>Communication 1 or 3 (or an acceptable substitute as approved by the Undergraduate Study Committee of the College of Engineering)</td>
<td>4</td>
</tr>
<tr>
<td>General Education electives</td>
<td>12</td>
</tr>
<tr>
<td>Total Lower Division Units</td>
<td>91</td>
</tr>
</tbody>
</table>

Upper Division Program

Areas of Specialization

Undergraduates may emphasize one or more of the following areas of specialization, or generalize across all areas. You are urged to consult a faculty adviser when developing your individual program. Additional information on areas of specialization and potential faculty advisers can be obtained from the College of Engineering Bulletin and the departmental web page.

Environmental Engineering. The focus of this area is on the management and improvement of air, land, and water quality in the face of increasing population and expanding industrialization. Examples of environmental engineering problems include innovative analysis and design of air, water, wastewater, and solid waste treatment systems; mathematical modeling of natural and engineered systems; sampling, analysis, and transport and transformation of natural and anthropogenic pollutants; and modeling of air pollutant emissions.

Suggested technical electives

Applied Science Engineering 116, Atmospheric Science 120, 121A, 121B, 124, 158, 160, Biological Sciences 101, 102, 103, 122; Chemical Engineering 154A, 154B, 156A, 156B, 161A, 161B, 170, Chemistry 107A, 107B, 128A, 128B; Civil and Envi-
rformance Engineering 140, 140L, 142, 144, 145, 147, 148A, 148B, 149, 150, 153, 163; Engineering 180; Environmental Science and Policy 150A, 150B, 150C, 151, 155, 161, 166; Mathematics 128A, 128B, 128C; Mechanical Engineering 161, 163, 167B; Microbiology 102, 105, 120, 145; Soil Science 111, 112; Statistics 130A, 130B

Geotechnical Engineering. This area deals with civil infrastructure and environmental problems that require quantifying the behavior of geologic materials (e.g., soils and rocks). Examples of geotechnical engineering problems include foundations for buildings and bridges, earthwork (e.g., dams, tunnels, highways), earthquake hazards (e.g., ground motions, liquefaction, soil-structure interaction), and geo-environmental problems (ground water flow, subsurface contaminant transport and remediation).

Suggested technical electives:
Civil and Environmental Engineering 121, 130, 131, 133, 134, 135, 137, 138, 139, 140, 140L, 144, 171L, 173; Engineering 180; Geology 17, 50, 50L, 134, 161; Hydrology 146; Mathematics 128A, 128B, 128C

Structural Engineering and Structural Mechanics. The focus of this area is the conception, design, analysis, construction, and life-cycle modeling of all types of civil infrastructure, including buildings, bridges, dams, ports, highways, and industrial facilities.

Structural materials include metals, reinforced concrete, timber, and advanced composites. Loads range from earthquakes to adverse environmental conditions. Structural mechanics emphasizes theoretical and computational tools that may be used in structural engineering.

Suggested technical electives:
Civil and Environmental Engineering 130, 131, 132, 134, 135, 136, 137, 138, 139, 171, 171L, 173; Engineering 122, 180; Materials Science Engineering 138; Mathe-ematics 128A, 128B, 128C

Transportation Planning and Engineering. This area deals with the movement of people and goods in a manner consistent with society’s environmental (e.g. air and water quality) and socio-economic goals (e.g. equity and mobility). Transportation engineering applies engineering, economic, and behavioral science principles to the planning, analysis, design, and operation of transportation systems such as highways and public transit. Transportation planning involves the formulation and analysis of transportation policy, program, and project alternatives in consideration of societal goals, budgetary constraints, economic objectives, and technological feasibilities.

Suggested technical electives: Civil and Environmental Engineering 137, 149, 153, 161, 162, 163, 165; Engineering 160; Environmental Science and Policy 167, 168A, 168B, 171, 173, 178, 179

Water Resources Engineering. This area includes hydrology, hydraulics, fluid mechanics, and water resources systems planning and design. Hydrology deals with quantifying and understanding all aspects of the hydrologic cycle, including the relationships between precipitation, runoff, groundwater, and surface water. Water quality and contaminant transport issues are linked to hydrologic conditions. Hydraulics and fluid mechanics deal with flows in pipes, open-channel water-distribu- tion systems, and natural systems, such as lakes and estuaries. Water resources systems planning and design deals with the comprehensive development of water resources to meet the multiple needs of industry, agriculture, municipalities, recreation, and other activities.

Suggested technical electives:
Agricultural and Resource Economics 176; Atmospheric Science 120, 121A, 121B; Biological and Agricultural Engineering 145; Civil and Environmental Engineering 141, 144L, 142, 144, 145, 148B, 153, 165, Environmental Science and Policy 128, 150A, 151, Hydrology 110; Mechanical Engineering 167B

Civil Engineering Upper Division Requirements

<table>
<thead>
<tr>
<th>Subject Areas and Courses</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering 103, 103, 104L, 105, 106</td>
<td>20</td>
</tr>
<tr>
<td>Applied Science Engineering 113</td>
<td>4</td>
</tr>
<tr>
<td>Civil and Environmental Engineering 114</td>
<td>3</td>
</tr>
<tr>
<td>One course from Applied Science Engineering 116, Civil and Environmental Engineering 153, Mathematics 118A, 121A, or Statistics 108</td>
<td>3</td>
</tr>
<tr>
<td>Four or five of the following options: Civil and Environmental Engineering 135, 141-141L, 171-171L, 148A or 149, 161 or 163</td>
<td>15</td>
</tr>
<tr>
<td>Four courses from Civil and Environmental Engineering 132, 134, 136, 145, 147, 148B, 150, 155, 162, 173 (and must include one of Civil and Envi- ronmental Engineering 134, 135, 145, 148B, 150, 162, or 172)</td>
<td>14</td>
</tr>
</tbody>
</table>

Technological Electives

Fourteen units must be selected from upper division engineering courses; of these units, seven units must be selected from Civil and Environmental Engineering courses other than Civil and Environmental Engineering 192 or 199.

General Education electives

12

Total Upper Division Units

89

Minimum Units Required for Major

180

Civil Engineering/Materials Science and Engineering Upper Division Requirements

<table>
<thead>
<tr>
<th>Subject Areas and Courses</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering 100, 102, 103, 104L, 105, 106</td>
<td>23</td>
</tr>
<tr>
<td>Applied Science Engineering 115</td>
<td>4</td>
</tr>
<tr>
<td>Civil and Environmental Engineering 114</td>
<td>4</td>
</tr>
<tr>
<td>One course from Applied Science Engineering 116, Civil and Environmental Engineering 153, Mathematics 118A, 121A, or Statistics 108</td>
<td>3</td>
</tr>
<tr>
<td>Civil and Environmental Engineering 130, 135, 141, 141L, 145A, 150A, 171, 171L, 174</td>
<td>29</td>
</tr>
<tr>
<td>Three courses from Civil and Environmental Engineering 132, 134, 136, 145, 147, 148B, 150, 162, 173 (and must include one of Civil and Environmental Engineering 134, 136, 145, 148B, 150, 162, or 173)</td>
<td>12</td>
</tr>
<tr>
<td>Materials Science and Engineering 130, 132, 134, 136, 138, and two courses from Materials Science and Engineering 140, 142, 144, 147, 148, 149, 155, and two laboratory courses chosen from Materials Science and Engineering 123L, 134L, 138L</td>
<td>22</td>
</tr>
<tr>
<td>General Education electives</td>
<td>12</td>
</tr>
<tr>
<td>(Civil and Environmental Engineering 137 recommended.)</td>
<td>12</td>
</tr>
<tr>
<td>Total Upper Division Units</td>
<td>97</td>
</tr>
<tr>
<td>Minimum Units Required for Major</td>
<td>188</td>
</tr>
</tbody>
</table>

Courses in Engineering: Civil and Environmental (ECI)

Lower Division Courses

1. The Civil Engineer in Society (1)
Lecture—1 hour. Restricted to Civil Engineering and Civil Engineering/Materials Science and Engineering majors during Pass 1; open to all majors during Pass 2. Description of the field of civil engineering and the function of the professional civil engineer. Discussion of professional practice with emphasis on engineering ethics and responsibilities. (P/NP grading only.)—I. (I.) Schroeder

3. Introduction to Civil and Environmental Engineering Systems (2)
Lecture—2 hours; laboratory—3 hours. Prerequisite: trigonometry. Introduction to civil engineering systems. General view of the engineering process as obtained by participation in laboratory experiments illustrative of the solution of representative, but greatly simplified, engineering problems. GE credit. SciEng—I. (I.) Ramy

10. Introduction to Surveying (4)
Lecture—2 hours; laboratory—6 hours. Prerequisite: Physics 9A. Restricted to Civil Engineering and Civil Engineering/Materials Science and Engineering, and Biological Systems Engineering majors. Non-majors accommodated on a space available basis. Theory and practice of civil engineering surveying. Modern methods of land surveying and computer-aided design in civil engineering practice.—II. (III.) Ramy

90X. Lower Division Seminar—1-4 hours. Prerequisite: consent of instructor. Examination of a special topic in a small group setting. May be repeated for credit.

92. Internship in Engineering (1-5)
Internship. Prerequisite: lower division standing; approval of project prior to period of internship. Supervised work experience in civil engineering. May be repeated for credit. (P/NP grading only.)

98. Directed Group Study (1-5)
Prerequisite: consent of instructor and lower division standing. (P/NP grading only.)

99. Special Study for Undergraduates (1-5)
Prerequisite: consent of instructor; lower division standing. (P/NP grading only.)

Upper Division Courses

114. Probabilistic Systems Analysis for Civil Engineers (3)
Lecture—3 hours. Prerequisite: Mathematics 21C. Probabilistic concepts and models in engineering. Statistical analysis of engineering experimental and field data. Introduction to stochastic processes and models of engineering systems. Not open for credit to students who have completed Statistics 120.—I, II, (I. II.) Mokhtarian

121. Instrumentation, Data Visualization and Control (3)
Lecture—2 hours; laboratory—3 hours. Prerequisite: Mathematics 22A, Engineering 5 or 6, 17, 104L, courses 141 and 171. Dimensional analysis with application to data analysis and presentation. Theory and techniques for transducers and instruments used in Civil Engineering. Analog signal conditioning, data acquisition systems, digital data processing, transfer functions and feedback control systems. Techniques for data visualization.—I. (I.) Kutter
130. Structural Analysis (4)
Lecture—4 hours. Prerequisite: Mathematics 22A, Engineering 104. Elastic struc-
tural analysis of determinate and indeterminate trusses, beams and frames. Plastic
behavior and limit analysis.—II. (III.) Romstad

131. Matrix Structural Analysis and Introduction to Finite Element (3)
Lecture—2 hours; laboratory—3 hours. Prerequisite: Engineering 5 (or the equiva-
 lent) and 104. Open to Engineering majors only. Matrix formulation and computer
analysis of determinate structures. Introduction to finite element methods for elasticity and bending problems. (Former course 131B)—I. (I.) Ramay

132. Structural Design: Metallic Elements (4)
Lecture—4 hours. Prerequisite: Engineering 104 (may be taken concurrently).
Design of metallic beams, columns, and other members for various types of loading
and boundary conditions; design of connections between members; member per-
formance within structured systems.—II. (II.) Ramay

134. Analysis and Design of Bridges (4)
Lecture—3 hours; laboratory—3 hours; field trip. Prerequisite: courses 130 or 131;
136. Bridge design using state-of-the-art programs. Overview of Caltrans and Amer-
ican Association of State Highway and Transportation Officials (AASHTO) codes
and principles. Seismic analysis/retrofitting of bridges. Bridge design details, final
plans, specifications and estimate. Field Trip.—II. (II.) Imbsen

135. Structural Design: Concrete Elements (4)
Lecture—3 hours; laboratory—3 hours. Prerequisite: Engineering 104 (may be taken
concurrently). Restricted to Civil Engineering and Civil Engineering/Materials Sci-
ence and Engineering majors only. Strength design procedures for columns, rec-
tangular beams, T-beams and beams of general cross-section. Building code
requirements for beams, slab, shear, axial load, bonded stresses and bond. Intro-
duction to prestressed concrete.—I. (I., III.) Ramay

136. Building Design: Wood, Steel, and Concrete Applications (4)
Lecture—3 hours; laboratory—3 hours. Prerequisite: courses 130 or 131, course 135;
course 132 recommended. Horizontal and lateral load paths; dead and live loading;
earthquake and wind forces. Approximate analyses of building frames; wood engi-
nearing for buildings. Steel, concrete and wood building design.—III. (III.) Ramay

137. Construction Principles (3)
Lecture—2 hours; laboratory—3 hours. Prerequisite: senior standing in Engineer-
ning. A study of the construction industry; its form, evolution, and methods of oper-
ation; fundamental principles underlying construction practices; economic factors
in planning, organizing, and operating a construction force. Field trips and analysis
of local construction projects.—II. (III.)

138. Earthquake Loads on Structures (3)
Lecture—3 hours. Prerequisite: Engineering 102, course 130 or 131. Determination
of loads on structures due to base motions. Methods of static lateral forces, approx-
imate dynamic analysis (response spectrum), and time history. Concepts of mass,
damping, and stiffness for typical structures. Design for inelastic behavior. Consid-
eration of wind and blast loads.—II. (I., III.) Romstad

139. Advanced Structural Mechanics (3)
Lecture—3 hours. Prerequisite: Engineering 104 or the equivalent. Review of stress,
strain, equilibrium, compatibility, and elastic material behavior. Plane stress and
plane strain problems in elasticity theory; stress function. Theories for straight,
tapered, composite, and curved beams. Beams on elastic foundations. Introduction
to plates, curved membranes, and cables.—I. (I.) Rashid

140. Environmental Analysis of Aqueous Systems (3)
Lecture—3 hours. Prerequisite: Chemistry 2B, course 148A recommended. Intro-
duction to chemical principles underlying current practices in sampling and analy-
sis of water and wastewater.—I. (I.) Darby

140L. Environmental Analysis of Aqueous Systems Laboratory (1)
Laboratory—3 hours. Prerequisite: Chemistry 2B or the equivalent; course 140 (may
be taken concurrently). Restricted to Civil Engineering undergraduate and graduate
students. Introduction to “wet chemical” and instrumental techniques commonly
used in the examination of water and wastewater and associated data analysis.—I.
(I.) Darby

141. Engineering Hydraulics (3)
Lecture—3 hours. Prerequisite: Engineering 103. Nature of flow of a real fluid; flow in
pipes; open channel flow; turbomachinery; fluid forces on boundaries; boundary layers,
lift and drag.—I. (I., III.) (I., III.) Larock

141L. Engineering Hydraulics Laboratory (1)
Laboratory—3 hours. Prerequisite: course 141 (may be taken concurrently). Open to
Engineering students only. Laboratory experiments and demonstrations on flow
motions, open channel flow, sluice gates, hydraulic jump, flow characteristics, and centrifugal
pumps.—I. (I., III.) Larock

142. Engineering Hydrology (4)
Lecture—4 hours. Prerequisite: courses 141 (may be taken concurrently); course 114
recommended. The hydrologic cycle. Evapotranspiration, interception, depre-
sal, storage and filtration. Streamflow analysis and modeling. Flood flow routing
through channels and reservoirs. Frequency analysis of hydrologic variables. Pre-
cipitation analysis for hydrologic design. Hydrologic design.—II. (I.) Kavvas

144. Groundwater Systems Design (4)
Lecture—3 hours. Prerequisite: courses 141 and 148A. Groundwater occurrence,
distribution, and movement; groundwater flow systems; aquifer management;
groundwater quality and contamination; solute transport by groundwater; fate and transport of subsurface contaminants. Introduction to groundwater supply and transport modeling.—I. (I.) Ginn

145. Hydraulic Structure Design (3)
Lecture—2 hours; laboratory—3 hours. Prerequisite: courses 141 and 141L; course
142 recommended. Principles of project design. Methods of analysis and hydraulic
design of storage systems, conveyance and regulation systems, and hydraulic
structures. Emphasis is on application of principles of open channel hydraulics in
these systems.—III. (III.) Devries

146. Water Resources Simulation (3)
Lecture—3 hours; laboratory—2 hours. Prerequisites: courses 141, 114 and 142 recommended. Simula-
tion techniques in the analysis, design and operation of surface water systems;
 introduction to modeling concepts with particular application to surface runoff; wa-
ter quality in rivers and streams; and management of reservoirs. GE credit: Wrt.—II. (II.
Schladows)

147. Solid Waste Management (3)
Lecture—2 hours; laboratory—3 hours. Characteristics and amounts of solid wastes;
collection systems; introduction to waste treatment processes and return of treated
wastes to the environment.—I. (I.) Tchobanoglous

148A. Water Quality Management (4)
Lecture—4 hours. Prerequisite: Engineering 103. Basic concepts of water quality.
Fundamentals of water and wastewater treatment processes. Analysis of treatment
process flowsheets. Analysis of water quality management alternatives.—I. (II.)
Young

148B. Water Quality Management Systems Design (4)
Lecture—3 hours; laboratory—3 hours. Prerequisite: course 148A. Application of the
principles of fluid mechanics to the analysis and design of flow measuring devices,
pumps and pump station design, water distribution systems, wastewater collection
systems, water and wastewater loading on treatment plant headloss analysis, and bioremedi-
ation systems.—II. (III.) Schroeder

149. Introduction to Air Pollution (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: Mathematics 21D, 22B, Chem-
istry 2B, Atmospheric Science 121A or Engineering 103. Physical and technical
aspects of air pollution. Emphasis on geophysical processes and air pollution mete-
orology as well as physical and chemical properties of pollutants. (Same course as
Atmospheric Science 149)—I. (I.) Carroll

150. Air Pollution Control System Design (4)
Lecture—3 hours; laboratory—3 hours; discussion—1 hour. Prerequisite: Engineer-
ing 103, 106, 108, course 149. Design and evaluation of air pollution control devices
and systems.—II. (II.) Chang

153. Deterministic Optimization and Design (4)
Lecture—4 hours. Prerequisites: Mathematics 21C and 22A, Engineering 5 or the
equivalent; Applied Science Engineering 115 recommended. Introduction to opera-
tional design. Optimization techniques such as linear programming, dynamic pro-
gramming, and nonlinear programming. Applications in water resources planning,
transportation planning, systems engineering, and other civil engineering disci-
lines through computer-based design projects.—I. (I.) Lund

155. Water Resources Engineering Planning (4)
Lecture—4 hours. Prerequisite: Engineering 106 or Economics 1A, course 114 or
the equivalent, course 142; course 153 recommended. Basic water resources engi-
nering planning concepts; role of engineering, economic, environmental and social
influences; institutional, policy and legal aspects. Case studies will illustrate the
planning of water resource systems. GE credit: Wrt.—III. (III.) Lund

161. Transportation System Operations (4)
Lecture—4 hours. Prerequisite: Engineering 102. Principles of transportation system
operations; traffic characteristics and methods of measurement; models of trans-
portation operations and congestion applied to urban streets and freeways; traffic
simulation.—I. (I.) Zhang

162. Transportation System Design (4)
Lecture—3 hours; laboratory—3 hours. Prerequisite: course 161 or 163. Driver, vehi-
cle and roadway factors and their relationship to transportation planning and system
design. Generalized design paradigm; group problem solving.—II. (III.) Nemeer

163. Energy and Environmental Aspects of Transportation (4)
Lecture—3 hours; extensive writing. Prerequisite: Economics 1A and course 162.
Engineering, economic, and systems planning concepts. Analysis and evaluation of
energy, air quality and selected environmental attributes of transportation techno-
ologies. Strategies for reducing pollution and petroleum consumption in light of institu-
tional and political constraints. Evaluation of vehicle emission models. (Same course as
Environmental Science and Policy 163.) Offered in alternate years. GE credit: Wrt.—I.
Sperling

165. Transportation Policy (3)
Lecture—3 hours. Prerequisite: any two of Geography 5, Economics 1A, or Engi-
nering 106 recommended. Transportation and associated environmental prob-
lems confronting urban areas, and prospective technological and institutional
solutions. Draws upon concepts and methods from economics, engineering, politi-
cal science and environmental studies. Offered in alternate years. GE Credit: SocSci,
Wrt.—I. Sperling

171. Soil Mechanics (4)
Lecture—4 hours. Prerequisite: Engineering 103, 104 (may be taken concurrently),
course 10, and course 171 concurrently. Restricted to Civil Engineering, Civil Engi-
nering/Materials Science, and Engineering majors only. Soil formations, mass-vol-
ume relationships, soil classification, effective stress, soil-water void relationships,
compaction, seepage, capillarity, compressibility, consolidation, strength, states of
stress and failure, lateral earth pressures, and slope stability.—II. (II. III.) Kutter

Quarter Offered: I—Fall, II—Winter, III—Spring, IV—Summer; 2001-2002 offering in parentheses.
General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
171L. Soil Mechanics Laboratory (1) Laboratory—3 hours. Prerequisite: course 171 must be taken concurrently. Laboratory studies utilizing standard testing methods to determine physical, mechanical and hydraulic properties of soil and demonstration of basic principles of soil behavior.—II, III. (II, III.) Kutter

173. Foundation Design (4) Lecture—4 hours. Prerequisite: courses 135 (may be taken concurrently) and 171. Soil exploration and determination of soil properties for design; consolidation and elastic settlements of foundations; bearing capacity of soils and footing design; lateral earth pressures and retaining wall design; pile foundations; excavations and de-watering.—I. (I) Idris

174. Environmental Geotechnology (3) Lecture—3 hours. Prerequisites: courses 148A and 171. Soil and site characterization in relation to natural and man-made hazards, waste containment, and waste site remediation techniques.—III. (III.) Anulamandan

189A-J. Selected Topics in Civil Engineering (1-5) Prerequisite: consent of instructor. Directed group study of selected topics with separate sections in (A) Environmental Engineering; (B) Geotechnical Engineering; (C) Structural Engineering; (D) Transportation Engineering;—I, II, III. (I, II, III.)

192. Internship in Engineering (1-5) Internship. Prerequisite: upper division standing; approval of project prior to the period of the internship. Supervised work experience in civil engineering. May be repeated for credit. (P/NP grading only.)

198. Directed Group Study (1-5) Prerequisite: consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) Prerequisite: senior standing in engineering and at least a B average. (P/NP grading only.)

Graduate Courses

201. Introduction to Theory of Elasticity (4) Lecture—3 hours; discussion—1 hour. Prerequisite: Engineering 104. Fundamental equations of elasticity in three dimensions; plane stress and plane strain; flexure and torsion of bars of various shapes. Introduction to variational and approximate methods.—I. (I.)

203. Inelastic Behavior of Solids (3) Lecture—3 hours. Prerequisite: course 201. Fundamentals of theories of plasticity, viscoelasticity and viscoplasticity for solids. Macroscopic constitutive modelling for engineering materials, e.g., metals, polymers, soils, etc., and microscopic motivation. Offered in alternate years.—II, III. (II, III.)

205. Continuum Mechanics (3) Lecture—3 hours. Prerequisite: course 201. Tensor formulation of the field equations for continuum mechanics, including large deformation effects. Invariance and symmetry requirements. Introduction to nonlinear thermoelasticity and thermodynamics. Solution of three-dimensional problems. Selected topics. Offered in alternate years.—II, III. (II, III.)

211. Advanced Matrix Structural Analysis (3) Lecture—3 hours. Prerequisite: course 131. Analysis of complex frameworks by the displacement method; treatment of tapered beams, curved beams, and beams on elastic foundations; partially rigid connections; geometric and material nonlinearities; buckling.—II, III. (II, III.)

212A. Finite Element Procedures in Applied Mechanics (3) Lecture—3 hours. Prerequisite: Applied Science Engineering 115 or Mathematics 128A-B (may be taken concurrently), or consent of instructor. Approximate analysis procedures; Galerkin and stationary principle methods. Construction of approximate solutions by the finite element method. Applications to one- and two-dimensional problems in engineering. Introduction to time dependent, non-linear and three-dimensional problems, and other approximation procedures.—II, III. (II, III.)

212B. Finite Elements: Application to Linear and Nonlinear Structural Mechanics Problems (3) Lecture—3 hours. Prerequisite: course 212A. Application of the finite element method to linear and nonlinear, one-, two-, and three-dimensional problems in continuum mechanics, soil mechanics, and plate and shell theories.—III. (III.)

212C. Finite Elements: Application to Fluid Problems (3) Lecture—3 hours. Prerequisite: courses 141, 212A. Application of the finite element method to two- and three-dimensional fluid flow problems, including inviscid and viscous flows, convection-diffusion problems, the shallow water equations, and flow through porous media. Class lectures and independent study and projects. Offered in alternate years.—II. (II.)

213. Analysis of Structures Subjected to Dynamic Loads (3) Lecture—3 hours. Prerequisite: courses 138, 211. Analysis of structures subjected to earthquake, wind, and blast loading; distributed, consistent and lumped mass techniques; development of a computer program for complex structures; nonlinear response spectrum analysis; frequency and time domain analysis.—III. (III.)

222. Advanced Topics in Concrete Structures (3) Lecture—3 hours. Prerequisite: course 125. Ductility of reinforced concrete; design for torsion of structural concrete; seismic requirements; two-way slabs.—I, II, III. (I, II, III.)

225. Cement Composites (3) Lecture—2 hours; laboratory—3 hours. Prerequisite: Engineering 104. Survey of applications, materials selection and proportioning; component and composite properties; hydration reactions and microstructure development; mechanisms of failure; nondestructive test methods; fiber reinforcement; concrete durability; novel reinforcing materials; applications to structural design. Offered in alternate years. (Not open to students who have taken course 139 prior to spring 96.)—II. Bolander

235. Composites (3) Lecture—3 hours. Prerequisite: courses 130 and 132. Design considerations for steel column and frame buckling; steel-plate girder design; steel-concrete composite design; design of connections. Design basics follow AISC, LRFD, and ASD specifications.—II. (II.)

234. Prestressed Concrete (3) Lecture—3 hours. Prerequisite: course 130 or 131; 135. Survey of methods and applications; prestressing materials and systems; estimation of prestress losses; flexural design; design for shear and torsion; deflection and crack control; continuous beams and indeterminate structures; floor systems; introduction to partial prestressing. Offered in alternate years. (Not open to students who have taken course 139 prior to spring 96.)—II. Bolander

241. Air Quality Modeling (3) Lecture—3 hours. Prerequisite: structured programming language (FORTRAN or C), Applied Science Engineering 115, courses 149 and 150, and one of 242 or 247, or the equivalents. Modeling of urban and regional air quality problems including gas-phase chemical reactions, aqueous-phase chemical reactions, phase partitioning, and numerical solution schemes. Offered in alternate years.—II, III. Klemm

242. Air Quality (3) Lecture—3 hours. Prerequisite: Engineering 105, courses 141 and 149, or the equivalents. Factors determining air quality. Effects of air pollutants. Physical and chemical fundamentals of atmospheric transport and reaction. Introduction to dispersion modeling. Offered in alternate years.—III. Chang

243A. Water and Waste Treatment (4) Lecture—4 hours. Prerequisite: course 148A or the equivalent. Characteristics of water and airborne wastes; treatment processes and process kinetics; treatment system design.—I. (I.)

243B. Water and Waste Treatment (4) Lecture—4 hours. Prerequisite: course 243A. Continuation of course 243A. Aeration, thickening, biological processes, design of biological treatment systems.—II, III. Schroeder

244. Environmental Quality Modeling (3) Lecture—2 hours; laboratory—3 hours. Prerequisite: course 240 or 242A. Mathematical modeling of environmental quality, with emphasis on mathematical models of water quality, their structure, capabilities and limitations, sensitivity and reliability as analytical and/or predictive tools. Offered in alternate years.—III.

245A. Applied Environmental Chemistry: Inorganic (4) Lecture—3 hours; discussion—1 hour. Prerequisite: Engineering 105, Chemistry 2B or the equivalent, course 140, Chemistry 2C or 107A recommended. Chemistry of natural and polluted waters. Topics include chemical, kinetic and equilibrium principles, redox reactions, gas solution and solid-solution equilibria, thermodynamics, carbonate systems, coordination chemistry, interfacial phenomena. Offered in alternate years.—III. (III.)
274. Hydraulics of Pipe Lines (3)
Lecture—3 hours. Prerequisite: course 141 and some knowledge of FORTRAN. Mechanics of liquid flow in pipes and pipe network systems. Steady flow, unsteady flow, surge and waterhammer problems. Manifold flow. Offered in alternate years.—I. Larock

275. Hydrologic Time-Series Analysis (3)
Lecture—3 hours. Prerequisite: Engineering 118 and course 142 or the equivalent. Application of statistical methods for analysis and modeling of hydrologic series. Statistical simulation and prediction of hydrologic sequences using time series methodology. Offered in alternate years.—I. (II.) Idriss

276. Watershed Hydrology (4)
Lecture—4 hours. Prerequisite: course 142 or the equivalent. Analysis and mathematical modeling of hydrologic processes taking place in a watershed. Precipitation analysis and modeling. Theory of overland flow and its kinematic wave approximation. Analysis and modeling of saturated and unsaturated subsurface flow processes taking place on a hill slope.—I. (II.) Kavvas

277. Unsteady Flow in Surface Waters (3)

278. Hydrodynamics (3)
Lecture—3 hours. Prerequisite: course 141. Perturbation methods. Basic water waves. Governing equations for fluid motion on a rotating earth. Rotation effects, vorticity dynamics, Ekman layer. Stratification effects, internal waves and turbulent mixing. Combined effects. Offered in alternate years.—I. (III.) Larock

279. Advanced Mechanics of Fluids (4)
Lecture—4 hours. Prerequisite: course 141. Rotational flows. Navier-Stokes equations and solutions for laminar flow; boundary layer equations and solution techniques. Nature of turbulence. Reynolds equations. Introduction to turbulence modeling. Offered in alternate years.—I. (II.) Larock

281A. Advanced Soil Mechanics (3)
Lecture—3 hours. Prerequisite: course 171. Consolidation and secondary compression. Seepage and seepage pressures. Shear strength: friction, cohesion, dilatancy, and critical states.—I. (I.) Idriss

281B. Advanced Soil Mechanics (3)
Lecture—2 hours; laboratory—3 hours. Prerequisite: course 281A. Site investigation methods: CPT, SPT, pressuremeter, vane, seismic investigation, electrical properties. Slope stability, including seepage pressures and earthquake effects. Centrifuge modeling.—I. (II.) Kutter

283. Physico-Chemical Influences and In Situ Evaluation of Soil Behavior (3)
Lecture—2 hours; laboratory—3 hours. Prerequisite: course 171. Analysis of the mechanical behavior of soils from consideration of clay mineralogy, colloidal phenomena, ion-exchange. Soil-water-electrolyte characteristics and soil structure. Laboratory includes methods of characterization of soils, quantification of soil structure, and rotating cylinder tests to evaluate soil erosion.—I. (I.) Arulanandan

284. Theoretical Soil Mechanics (3)

285. Soil Modification (3)
Lecture—3 hours. Prerequisite: course 171. Purposes, principles, and methods of soil modification for various geotechnical applications. Offered in alternate years.—I. Boulanger

286. Advanced Foundation Design (3)
Lecture—3 hours. Prerequisite: course 173. Design and analysis of bulkheads; deep excavation; tie-back systems; coffer dams; loads on buried conduits; lateral pile loading capacity; pier foundations; and other related topics.—I. (II.) Idriss

287. Geotechnical Earthquake Engineering (3)
Lecture—3 hours. Prerequisite: course 138; course 281A or consent of instructor. Characteristics of earthquake ground motions; empirical and simulation procedures for estimating these motions; local site response; liquefaction potential; residual strength and stability considerations; generation and dissipation of pore water pressures; settlement.—I. (III.) Idriss

288. Earth and Rockfill Dams (3)
Lecture—3 hours. Prerequisite: courses 281A, 281B. Site selection; preliminary design considerations; layout; seismic effects including considerations of fault movements; construction; instrumentation; maintenance.—I. (II.) Idriss

289A-I. Selected Topics in Civil Engineering (1-5)
Lecture, laboratory, or combination. Prerequisite: consent of instructor. Directed group study of special topics with separate sections in (A) Environmental Engineering; (B) Hydraulic and Hydrologic Engineering; (C) Engineering Planning; (D) Geotechnical Engineering; (E) Structural Engineering; (F) Structural Mechanics; (G) Transportation Engineering; (H) Transportation Planning; (I) Water Resources Engineering. May be repeated for credit.—I. II. III. I. II. III.

290. Seminar (1)
Seminar—1 hour. Discussion of current graduate research, and guest lectures on recent advances. Oral presentation of individual study. Course required of graduate degree candidates. (S/U grading only.)

290C. Graduate Research Group Conference (1)
Discussion—1 hour. Research problems, progress, and techniques in civil engineering. May be repeated for credit. (S/U grading only.)—I. II. III. I. II. III.

296. Topics in Water and Environmental Engineering (1)
Seminar—2 hours. Seminars presented by visiting lecturers, UC Davis faculty and, graduate students. May be repeated for credit. (S/U grading only.)—I. II. III. I. II. III.

298. Group Study (1-5)
Prerequisite: consent of instructor. (S/U grading only.)

299. Research (1-12)
Prerequisite: consent of instructor. (S/U grading only.)

Professional Course
300. The Teaching of Civil Engineering (1)
Discussion—1 hour. Prerequisite: meet qualifications for teaching assistant and/or associate-in in Civil Engineering. Participation as teaching assistant or associate-in in a designated engineering course. Methods of leading discussion groups or laboratory sections, writing and grading quizzes, use of laboratory equipment, and grading laboratory reports. May be repeated for total of 9 units. (S/U grading only.)—I. II. III. I. II. III.

Quarter Offered: I=Fall; II=Winter; III=Spring; IV=Summer, 2001-2002 offering in parentheses. General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
Faculty

Daniel W. Anderson, Ph.D., Professor (Wildlife, Fish, and Conservation Biology)
Conrad J. Bahre, Ph.D., Professor (Land, Air and Water Resources)
Michael G. Barbour, Ph.D., Professor (Environmental Horticulture)
Alison Barry, Ph.D., Professor (Environmental Horticulture)
Robert L. Bettinger, Ph.D., Professor (Anthropology)
Caroline Bledsoe, Ph.D., Professor (Land, Air and Water Resources)
Monique Borg, Poff Mulder, Ph.D., Professor (Anthropology)
Louis W. Botsford, Ph.D., Professor (Wildlife, Fish, and Conservation Biology)
Walter M. Boyce, Ph.D., Professor (Pathology, Microbiology, and Immunology)
David J. Boyd, Ph.D., Associate Professor (Anthropology)
Stephen Brush, Ph.D., Professor (Human and Community Development)
Tim Caro, Ph.D., Professor (Wildlife, Fish, and Conservation Biology)
Edward P. Caswell-Chen, Ph.D., Associate Professor (Nematology)
Joseph J. Cech, Jr., Ph.D., Professor (Wildlife, Fish, and Conservation Biology)
Ernest S. Chang, Ph.D., Professor (Bodega Marine Laboratory)
Peter L. Chesson, Ph.D., Professor (Evolution and Ecology)
Douglas E. Conklin, Ph.D., Associate Professor (Animal Science)
Richard G. Coss, Ph.D., Professor (Psychology)
James G. Cramer, Ph.D., Professor (Sociology)
Randy A. Dahlgren, Ph.D., Professor (Land, Air and Water Resources)
Montague W. Demment, Ph.D., Professor (Agronomy and Range Science)
R. Ford Denison, Ph.D., Professor (Agronomy and Range Science)
Holly Doremus, Ph.D., Acting Professor of Law (School of Law)
Serge I. Doroshov, Ph.D., Professor (Animal Science)
John M. Eidell, Ph.D., Associate Professor (Wildlife, Fish, and Conservation Biology)
Deborah L. Elliott-Fisk, Ph.D., Professor (Wildlife, Fish, and Conservation Biology)
Y. Hossein Farzin, Ph.D., Associate Professor (Agricultural and Resource Economics)
Howard Ferris, Ph.D., Professor (Nematology)
Albert Fischer, Ph.D., Assistant Professor (Vegetable Crops)
Theodore C. Foin, Ph.D., Professor (Agronomy and Range Science)
Shu Geng, Ph.D., Professor (Agronomy and Range Science)
Paul L. Gepts, Ph.D., Professor (Agronomy and Range Science)
Charles R. Goldman, Ph.D., Professor (Environmental Science and Policy)
Jeffrey Granett, Ph.D., Professor (Entomology)
Susan Harrison, Ph.D., Professor (Environmental Science and Policy)
Alan Hastings, Ph.D., Professor (Environmental Science and Policy)
David E. Hinton, Ph.D., Professor (Wildlife, Fish and Conservation Biology)
William Horwath, Ph.D., Assistant Professor (Land, Air and Water Resources)
Siss L. O. Hunger, Ph.D., Professor (Animal Science)
Louise E. Jackson, Ph.D., Associate Professor (Vegetable Crops)
Robert A. Johnston, M.S., Professor (Environmental Science and Policy)
Richard Karban, Ph.D., Professor (Entomology)
Douglas A. Kelt, Ph.D., Assistant Professor (Wildlife, Fish, and Conservation Biology)
Emilio A. Laca, Ph.D., Assistant Professor (Agronomy and Range Science)
Douglas M. Larson, Ph.D., Associate Professor (Agricultural and Resource Economics)
Sharon P. Lawler, Ph.D., Assistant Professor (Entomology)
David F. Layton, Ph.D., Assistant Professor (Environmental Science and Policy)
J. Heinrich Lieth, Ph.D., Professor (Environmental Horticulture)
Jay R. Lund, Ph.D., Professor (Civil and Environmental Engineering)
Steven G. Morgan, Ph.D., Associate Professor (Bodega Marine Laboratory)
Peter R. Moyle, Ph.D., Professor (Wildlife, Fish, and Conservation Biology)
David Rizzo, Ph.D., Assistant Professor (Plant Pathology)
David A. Robertson, Ph.D., Professor (English)
David M. Rocke, Ph.D., Professor (Graduate School of Management)
Jay A. Rosenheim, Ph.D., Professor (Entomology)
Paul A. Sabatier, Ph.D., Professor (Environmental Science and Policy)
Thomas W. Schoener, Ph.D., Professor (Evolution and Ecology)
Mark W. Schwartz, Ph.D., Assistant Professor (Environmental Science and Policy)
Seymour I. Schwartz, Ph.D., Professor (Environmental Science and Policy)
Kate M. Scow, Ph.D., Professor (Land, Air and Water Resources)
Kenneth A. Shackel, Ph.D., Associate Professor (Pomology)
H. Bradley Shaffer, Ph.D., Professor (Evolution and Ecology)
Arthur M. Shapiro, Ph.D., Professor (Evolution and Ecology)
Daniel Sperling, Ph.D., Professor (Institute of Transportation)
Jay Stachowicz, Ph.D., Assistant Professor (Evolution and Ecology)
Sharon Y. Strauss, Ph.D., Associate Professor (Evolution and Ecology)
Donald Strong, Ph.D., Professor (Animal Science)
Jerold H. Theis, Ph.D., Professor (Microbiology)
Ron Tjeerdema, Ph.D., Professor (Environmental Toxicology)
Catherine A. Tott, Ph.D., Professor (Evolution and Ecology)
Susan L. Ustin, Ph.D., Associate Professor (Land, Air and Water Resources)
Dirk Van Vuren, Ph.D., Associate Professor (Wildlife, Fish, and Conservation Biology)
Geaelt J. Vermeij, Ph.D., Professor (Geology)
Peter C. Weinwright, Ph.D., Associate Professor (Evolution and Ecology)
Philip S. Ward, Ph.D., Professor (Entomology)
Wesley W. Weathers, Ph.D., Professor (Avian Sciences)
Steven Weirbaun, Ph.D., Professor (Pomology)
Barry W. Wilson, Ph.D., Professor (Animal Science)
Lin Wu, Ph.D., Professor (Environmental Horticulture)
Truman P. Young, Ph.D., Assistant Professor (Environmental Horticulture)

Affiliated Faculty

M. Kat Anderson, Ph.D., Professor (Environmental Horticulture)
Sam Bledsoe, Ph.D., Associate Research Engineer (Civil and Environmental Engineering)
Christopher M. Dewees, Ph.D., Marine Fishery Specialist (Wildlife, Fish, and Conservation Biology)
Edwin DeHaven Grosholz, Ph.D., Assistant Cooperative Extension Specialist (Environmental Science and Policy)
Janet E. Foley, Ph.D., Research Veterinarian (Veterinary Medicine)
D. Michael Fry, Ph.D., Assistant Researcher (Avian Science)
James E. Hill, Ph.D., Cooperative Extension Specialist (Agriculture and Range Science)
Michael L. Johnson, Ph.D., Associate Research Engineer (John Muir Institute)
Peter Kimley, Ph.D., Associate Research Biologist (Bodega Marine Laboratory)
Bernie May, Ph.D., Associate Research Biologist (Animal Science)
Brenda McGowan, Ph.D., Assistant Researcher (Veterinary Medicine Research Center)
Keith A. Miles, Ph.D., Wildlife Biologist (Wildlife, Fish, and Conservation Biology)
Malcolm North, Ph.D., Associate Forest Ecologist (Environmental Horticulture)
Terrell P. Salmon, Ph.D., Specialist in Cooperative Extension (Wildlife, Fish, and Conservation Biology)
Christine M. Schonefeld, Ph.D., Research Scientist
Thomas H. Suchaneck, Ph.D., Research Ecologist (Wildlife, Fish, and Conservation Biology)
Steve R. Temple, Ph.D., Extension Agronomist (Agriculture and Range Science)
Desley Whisson, Ph.D., Assistant Vertebrate Pest Specialist (Wildlife, Fish, and Conservation Biology)

Graduate Study.
The Graduate Group in Ecology offers the M.S. and Ph.D. degrees in several areas of specialization within the spectrum of ecology. The Ecology program is one of the most diverse on the Davis campus. In order to accommodate varied student interests, the Group depends on close consultation between students and faculty for program development. Several curricular plans are now available in the following areas of emphasis: agricultural ecology, conservation ecology, ecosystems and landscapes, ecology, ecotoxicology, environmental policy analysis, human ecology, integrative ecology, marine ecology, physiological ecology, and restoration ecology. For further details, contact the Group office.

Preparation. Appropriate preparation is undergraduate work in any of the biological, social, behavioral, and physical sciences, mathematics or engineering. Applicants will normally be expected to have completed two courses each in introductory biology and general chemistry; one course each in calculus, ecology and statistics, are also required. Applicants in the human ecology area may substitute quantitative social science courses for up to two courses of chemistry. Each of the three broad areas requires certain advanced preparation appropriate to the option. Details can be found in the Group Announcement.

Graduate Advisers. K.J. Rice, E. Caswell-Chen.
Courses in Ecology (ECL)

Graduate Courses

200A. Principles and Application of Ecological Theory (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: first course in ecology; Statistics 102; Mathematics 16A, 16B. Critical evaluation of ecological theory and applications to ecological management. Historical development of ecological theory is emphasized. Critical evaluation of ecological principles pertaining to the structure and dynamic properties of ecological systems, their organization and evolution.—I. (I.) Forin

200B. Principles and Application of Ecological Theory (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 200A. Continuation of course 200A. Critical evaluation of theory and application in the areas of ecological adaptation and system plasticity, spatial and temporal scales, ecological energetics, and system dynamics. Synthesis of ecological theory into testable principles.—II. (I.) Young

201. Ecosystems and Landscape Ecology (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 200A and 200B. Overview of ecosystem and landscape principles (structure, energy, nutrient flow, species diversity, landscape heterogeneity, change and stability), building on ecological principles and theory. Introduction to analysis tools (remote sensing, geographic information systems, modeling) applied to landscape systems. Offered in alternate years.—III. (I.) Ustin

203. Physiological Ecology (3)
Lecture—3 hours. Prerequisite: Evolution and Ecology 101 or Environmental Studies 100; Neurobiology, Physiology and Behavior 110 or Plant Biology 111 or Environmental Studies 120. Laboratory assignment of several animal groups addressing fundamental physiological mechanisms that shape the ecology of each animal group.—III. (I.) Cech

204. Population and Community Ecology (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: Environmental Studies 100 or Evolution and Ecology 101, Mathematics 21A-21B or consent of instructor; Mathematics 22B recommended. Review of major concepts of population ecology and community ecology, with emphasis on the rationale of theory and use of theory as applied in the ecology of natural and managed systems. Offered in alternate years.—I. Caswell-Chen

205. Community Ecology (4)
Lecture—2 hours; discussion—2 hours. Prerequisite: Environmental Studies 100, Evolution and Ecology 101, or Plant Biology 117. Introduction to literature and contemporary research into processes structuring ecological communities.—II. (II.) Kaban-Lawler

Lecture—3 hours; laboratory—4 hours. Prerequisite: introductory courses in statistics and plant ecology; consent of instructor. Principles and techniques of vegetation analysis, including structure, composition, and dynamics. Emphasis given to sampling procedures, association analysis, ordination, processes and mechanisms of succession, and classification. Most techniques are demonstrated or conducted during field trips and laboratories.—I. (I.) Rejmanek, Barbour

207. Plant Population Biology (3)
Lecture—2 hours; laboratory—1 hour. Prerequisite: advanced under-graduate ecology course (e.g., Environmental Science and Policy 100, Evolution and Ecology 101, Entomology 104 or Plant Biology 117), and advanced undergraduate training in geometry and/or evolution (e.g., Biological Sciences 101 or Evolution and Ecology 100). Introduction to theoretical and empirical research in plant population biology. Emphasis placed on linking ecological and genetic approaches to plant population biology. (Same course as Population Biology 207.) Offered in alternate years.—II. (I.) Raza

208. Issues in Conservation Biology (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: one of Environmental Studies 100, Zoology 125, Botany 117, or Entomology 106. Graduate-level introduction to current research in conservation biology. Course will emphasize reading and discussing primary literature. Specific topics will reflect the research interests of UCD conservation biology faculty.—I. (I.) Harrison

210. Advanced Topics in Human Ecology (4)
Lecture—2 hours; discussion—2 hours. Prerequisite: graduate standing. Course stresses the commonalities that human ecologists have as social scientists who specialize in problems relating human populations and environmental variables. General epistemological issues and theoretical models are reviewed. Similarities and differences of human and biological ecology are examined. Offered in alternate years.—I. (I.) Richardson

211. Advanced Topics in Cultural Ecology (4)
Lecture/discussion—3 hours; term paper. Prerequisite: Environmental Science and Policy 133/Anthropology 133 and graduate standing in Ecology or Anthropology. Topics of current analytical and methodological importance in cultural ecology. Examination of general issues in cultural ecology through study of human response to and influences on climate. (Same course as Anthropology 211.) Offered in alternate years.—III. (I.) Orito

212A. Environmental Policy Process (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course in public policy (e.g., Environmental Studies 160) or environmental law (e.g., Environmental Studies 161); course in bureaucratic theory (e.g., Political Science 187 or Environmental Studies 166); course in statistics (e.g., Sociology 106 or Agricultural and Resource Economics 106). Introduction to selected topics in the policy process, applications to the world of environmental policy. Develops critical thinking skills, understanding of frameworks of the policy process and political behavior, and an ability to apply multiple frameworks to the same phenomena. Offered in alternate years. (Same course as Environmental Science and Policy 212A.)—III. Sabatier

212B. Environmental Policy Evaluation (4)
Lecture—1 hour; seminar—2 hours. Prerequisite: intermediate microeconomics (e.g., Economics 100); Statistics 108 or Agricultural and Resource Economics 106; policy analysis (e.g., Environmental Studies 168A or the equivalent); Agricultural and Resource Economics 176. Methods and practices of policy analysis; philosophical and intellectual bases of policy analysis and the political role of policy analysis. (Same course as Environmental Science and Policy 212B.)—II. (II.) Schwartz

213. Population, Environment, and Social Structure (4)
Seminar—3 hours; term paper. Prerequisite: at least one course in population or human ecology, or in environment and resources. Relationships among population dynamics, resource scarcity and environmental problems, and social structure; focus on demographic content of global ecological models and simulations, ecological content of modern demographic theories, and debates about scarcity, inequality, and social conflict and change. Offered in alternate years.—III. Cramer

216. Ecology and Agriculture (3)
Lecture/discussion—3 hours. Prerequisite: Plant Biology 142 or consent of instructor. Ecological principles and relationships as applied to agriculture. Integration of ecological approaches in developing and managing agricultural and biological soil and water management practices. Topics include crop autecology, biotic interactions among crops and pests, and crop systems ecology. (Same course as Vegetable Crops 216.)—I. (I.) Jackson

217. Conservation and Sustainable Development in Third World Nations (4)
Lecture/discussion—3 hours; fieldwork—2 hours. Prerequisite: at least one course from two of these three groups: (a) Environmental Studies 160, 161, 169A, 169B; (b) Environmental Studies 101, 133, International Agricultural Development 103, Geography 142; (c) Anthropology 128, 131, Geography 141, Sociology 144, 145A, 145B. Examination of the patterns of resource ownership, control and management in agricultural lands, extractive zones (fisheries, forests) and wildlands, with emphasis on conservation and sustainability. Comparison of international democracies and poorer nations. (Same course as International Agricultural Development 217.) Offered in alternate years.—II. Ortove

219. Ecosystem Biogeochemistry (4)
Lecture—3 hours; laboratory/discussion—2 hours. Prerequisite: introductory courses in ecology/biology and soils are recommended; undergraduates accepted with consent of instructor. Multi-disciplinary analysis of energy and nutrient transfers within terrestrial ecosystems. Examination of processes and inter- and intra-system interactions between the atmosphere, biosphere, lithosphere, and hydrosphere. Laboratory sector uses biogeochemical simulation models to examine case studies. (Same course as Soil Science 219.) Offered in alternate years.—II. Dahlgren

222. Human Ecology of Agriculture (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: upper division course work in environmental sciences, cultural anthropology, economics, international agricultural development, or sociology; consent of instructor. Social and cultural contexts of agricultural change, states and markets. Social and cultural contexts of biodiversity and agricultural resource conservation.—II. Brush

225. Terrestrial Field Ecology (4)
Seminar—1 hour; field work—12 hours. Prerequisite: introductory ecology and introductory statistics or consent of instructor. A field course conducted over spring break and four weekends at Bodega Bay, emphasizing student projects. Ecological hypothesis testing, data gathering, analysis, and written and oral presentation of results will be stressed. (Same course as Entomology 225/Population Biology 225.)—III. (III.) Karban

231. Mathematical Methods in Population Biology (3)
Lecture—3 hours. Prerequisite: Mathematics 16C or 21C or the equivalent. Mathematical methods used in population biology. Linear and nonlinear difference equation and differential equation models are studied, using stability analysis and qualitative methods. Partial differential equation models are introduced. Applications to population biology models are stressed. (Same course as Population Biology 231.)—I. (I.) Hastings

232. Theoretical Ecology (3)
Lecture—3 hours. Prerequisite: course 204 or the equivalent, and Mathematics 16C or 21C, or one of courses 100 or 121 or Evolution and Ecology 101, and a strong background in mathematical methods (preferably equivalent to Calculus B). Examination of major conceptual and methodological issues in theoretical ecology. Model formulation and development will be emphasized. Topics will vary from year to year. May be repeated for credit. Offered in alternate years.—II. (II.) Hastings
290. Seminar in Ecology (1-4)
Seminar—1-4 hours. Prerequisite: consent of instructor. Topics in biological, human, physical, and chemical ecology. Students are expected to present an oral seminar on a particular aspect of the general topic under consideration. (S/U grading only.)—I, II, III. (I, II, III.)

291. Biological Conservation (3)
Seminar—3 hours. Prerequisite: graduate standing or consent of instructor. Examines characteristics of populations that make them vulnerable to extinction and examines various methods that can be used in the restoration process. Although both plants and animals are of interest, emphasis will be on vertebrates. Offered in alternate years.——(II.) Schonewald

296. Topics in Ecology and Evolution (1)
Seminar—1 hour. Prerequisite: graduate standing. Seminars presented by visiting lecturers, UCD faculty, and graduate students. May be repeated for credit. (Same course as Population Biology 292.) (S/U grading only.)—I, II, III. (I, II, III.)

297T. Tutoring in Ecology (1-4)
Lecture—1 hour; discussion—1 hour. Prerequisite: graduate standing in ecology; consent of instructor. Teaching ecology including conducting discussion groups for regular departmental courses under direct guidance of staff. May be repeated for credit. (S/U grading only.)

298. Group Study (1-5)
(S/U grading only.)

299. Research (1-12)
Prerequisite: graduate standing. (S/U grading only.)
Economics

(Completed Letters and Science.)

Kevin D. Hoover, Ph.D., Chairperson of the Department
Department Office, 1115 Social Sciences and Humanities Building (530-752-0741)

Faculty

Paul Bergin, Ph.D., Assistant Professor
Giaccomo Bonanno, Ph.D., Professor
Lee Branstetter, Ph.D., Assistant Professor
Colin Cameron, Ph.D., Associate Professor
Gregory Clark, Ph.D., Professor
Robert C. Feenstra, Ph.D., Professor
L. Jay Helms, Ph.D., Associate Professor
Kevin D. Hoover, D.Phil., Professor
Oscar Jorda, Ph.D., Assistant Professor
Peter H. Lindert, Ph.D., Professor, Academic Senate Distinguished Teaching Award

Economi Faculty

Andrzej Brzeski, Ph.D., Professor Emeritus
W. Eric Gustafson, Ph.D., Senior Lecturer Emeritus, Academic Senate Distinguished Teaching Award

The Major Program

Economics is the study of how individuals, organizations, and societies choose among alternative uses of resources and how these resources are turned into the things people want.

The Program. Economics majors complete an introductory course sequence in economics, in several courses in quantitative methods. Intermediate theory and economic history are taken on the upper division level and then students are free to concentrate the remainder of their units in various areas of interest, including more courses in economic theory or history, international economics, labor, industry, alternative economic systems, economic development, public finance, econometrics, or mathematical economics.

Internships and Career Alternatives. Internships for economics majors have been arranged at banks, brokerages, other business enterprises, and governmental units. The internships must complement the student's course work. A degree in economics is excellent preparation for students who want to go on to law school, business school, advanced work in economics, or graduate work in international relations. It is also a good background for careers in management and positions with the government.

A.B. Major Requirements:

Preparatory Subject Matter: 19-22

<table>
<thead>
<tr>
<th>Course</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Economics 1A-1B</td>
<td>10</td>
</tr>
<tr>
<td>Statistics 13, 32, or 102</td>
<td>3-4</td>
</tr>
<tr>
<td>Mathematics 16A-16B or 21A-21B</td>
<td>6-8</td>
</tr>
</tbody>
</table>

Depth Subject Matter: 42

<table>
<thead>
<tr>
<th>Course</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Economics 100, 101</td>
<td>10</td>
</tr>
<tr>
<td>One course from Economics 110A, 110B, 111A, 111B</td>
<td>4</td>
</tr>
<tr>
<td>Additional upper division Economics courses</td>
<td>12</td>
</tr>
</tbody>
</table>

Total Units for the Major: 61-64

Recommended

Students considering graduate study in economics are strongly urged to take Mathematics 21A-21B and 22A.

The Economics Department suggests that Economics 100 and 101 be taken as soon as possible after the introductory courses.

Major Advisers. Contact Department Office.

Minor Program Requirements:

<table>
<thead>
<tr>
<th>Course</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Economics 100, 101</td>
<td>10</td>
</tr>
<tr>
<td>Select 4 units from upper division Economics courses</td>
<td>4</td>
</tr>
</tbody>
</table>

Preparation. Economics 1A and 1B; Statistics 13, 32, or 102; Mathematics 16A and 16B or 21A and 21B. Mathematics 16A and 16B or 21A and 21B should be completed before taking Economics 100 and 101. Students need to complete Economics 100 and 101 before taking the advanced courses.

Course Limits. Except under extraordinary circumstances, not more than three economics courses may be taken in any one quarter. In special cases, the department will accept a limited number of related upper division courses from other departments in satisfaction of the economics upper division course requirements.

Approval from a departmental adviser is required in all such cases.

Graduation with High or Highest Honors. To be eligible for departmental recommendation for High or Highest Honors in Economics at graduation, a student must take all upper division courses in Economics for a letter grade, earn at least a 3.5 cumulative average in those courses, and complete at least eight units of course work that result in the submission of an Honors project. Consult the College of Letters and Science section of this catalog and contact the Department for more information.

Graduate Study. Students who meet the admission requirements of Graduate Study and the Department of Economics may pursue studies leading to the M.A. and Ph.D. degrees. Fields of emphasis for graduate study include: Economic Theory; Monetary Economics; Economic Development; Economic History; International Economics; Labor Economics; Industrial Organization; Economic Systems; Public Finance; Mathematical Economics; and Quantitative Methods (Econometrics). For information on admission to graduate study, degree requirements, and financial aid, consult the Graduate Announcement and the following Web page: www.econ.ucdavis.edu.

Graduate Advisers. Contact Department Office.

American History and Institutions. This University requirement can be satisfied by completion of Economics 111A, 111B. (See also Under University requirements.)

Courses in Economics (ECN)

Lower Division Courses

1A. Principles of Microeconomics (5)

Lecture—3 hours; discussion—2 hours. Courses 1A and 1B may be taken in either order. Analysis of the allocation of resources and the distribution of income through a price system; competition and monopoly; the role of public policy; comparative economic systems. GE credit: SocSci—II, III, (II, III.)

1B. Principles of Macroeconomics (5)

Lecture—3 hours; discussion—2 hours. Courses 1A and 1B may be taken in either order. Analysis of the economy as a whole; determinants of the level of income, employment, and prices; money and banking, economic fluctuations, international trade, economic development; the role of public policy. GE credit: SocSci—II, III, (II, III.)

90X. Lower Division Seminar (1-2)

Seminar—1 to 2 hours. Prerequisite: lower division standing and consent of instructor. Examination of a special topic in Economics through shared readings, discussions, and written assignments. May not be repeated for credit. Limited enrollment.

92. Internship and Field Work (1-12)

Internship—3-36 hours; term paper. Prerequisite: junior or senior standing; availability of internship position or approved field work project; stock-brokerage intern must have completed Management 11A-11B; consent of instructor. Intensive study of practical application of concepts in economics, stressing research methods and empirical analysis. (P/NP grading only.)

Quarter Offered: I–Fall; II–Winter; III–Spring; IV–Summer. 2001–2002 offering in parentheses.
121A. Industrial Organization (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 1A-1B, 100 or 104, or consent of instructor. An appraisal of the role of competition and monopoly in the American economy; market structure, conduct, and economic performance of a variety of industries. GE credit: SocSci.—II. (I.) Bonanno

121B. Industrial Organization (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 121A. Public policy in a private enterprise economy; antitrust and other policies toward industry; economics of regulated industries. GE credit: SocSci.—III. (II.) Prieger

122. Theory of Games and Strategic Behavior (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 121A. Public policy in a private enterprise economy; antitrust and other policies toward industry; economics of regulated industries. GE credit: SocSci.—III. (II.) Bonanno

130. Public Microeconomics (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 100 or 104, or consent of instructor. Public expenditures; theory and applications. Efficiency and equity of competitive markets; externalities, public goods, and market failures; positive and normative aspects of public policy for expenditure, including benefit-cost analysis. Topics include consumer protection, pollution, education, poverty and crime.—II, III. (II.) Helms, Silvestre

131. Public Finance (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 100 or 104. Assessing the economic burden of taxation; equity and efficiency considerations in tax design; structure and economic effects of the U.S. tax system (including personal income tax, corporate income tax, and property tax); tax loopholes; recent developments; tax reform proposals.—I, II, III. (III.) Quinzii

132. Health Economics (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 100 or consent of instructor. Health care market, emphasizing the role and use of economics. Individual demand, provision of services by doctors and hospitals, health insurance, managed care and competition, the role of government access to health care.—II, III. (I.) Cameron

134. Financial Economics (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 1A, 1B, and 100 or 104; Mathematics 16A; Statistics 13. General background and rationale of corporation; finance as resource allocation over time; decision making under uncertainty and the role of information; capital market and interest rate structure; financial decisions. Students who have completed Agricultural and Resource Economics 171A may not receive credit for this course.—I, II, III. (II.) Quinzii

135. Money, Banks and Financial Institutions (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 101 or 105. Monetary institutions, the banking system, money creation, the Federal Reserve System, the tools of monetary policy.—III. (II.) Cameron

136. Topics in Macroeconomic Theory (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 101 or 105. Advanced topics in macroeconomic theory; Possible topics include money demand, financial intermediation, real business cycle, growth theory.—I. (III.) Makowski

137. Macroeconomic Policy (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 101 or 105. Theory and practice of macroeconomic policy, both monetary and fiscal.—III. (III.) Salyer

140. Econometrics (4)
Lecture—3 hours; laboratory—2 hours. Prerequisites: courses 100 or 104, and 101 or 105. Mathematics 16A-16B or 21A; Statistics 13. Introduction of problems of observation, estimation and hypotheses testing in economics through the study of the theory and application of linear regression models, critical evaluation of selected examples of empirical research and exercises in applied econometrics.—II, III. (III.) Jorda

151A. Economics of the Labor Market (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 100 or 104. Theory of labor supply and demand; determination of wages and employment in the labor market. Economic theories of labor unions. Policy issues; labor force participation by married women; minimum wages and youth unemployment; effect of unions on wages.—II, III. (II.) Boyce

151B. Economics of Human Resources (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 151A. Human resource analysis; introduction to human capital theory and economics of education; the basic theory of wage differentials, including theories of labor market discrimination; income distribution; poverty. Policy issues; negative income tax; manpower training programs; incomes policy.—III. (II.) Page

160A. International Microeconomics (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 1A, 1B, and 100 or 104, or consent of instructor. International trade theory; impact of trade on the domestic and world economies; public policy toward external trade. Only 2 units of credit allowed to students who have completed course 162.—II, III. (II.) Feenstra, Swenson

160B. International Macroeconomics (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 1A, 1B, and 100 or 104, and course 101 or 105, or consent of instructor. Macroeconomic theory of an open economy. Balance of payments adjustment mechanism; international monetary economics issues; international financial institutions and their policies. Only 2 units of credit allowed to students who have completed course 162.—II, III. (III.) Jorda, Steinherr, Taylor
200–2001/2002 UC Davis General Catalog

162. International Economic Relations (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 1A-1B or consent of instructor. International trade and monetary relations, trade policy, exchange rate policies, policies toward international capital migration and investment. Emphasis on current policy issues. Course intended especially for non-majors. Not open for credit to students who have completed course 160A or 160B. GE credit: SocSci.—I, II, III (Division III.)

171. Economy of East Asia (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 1A-1B or consent of instructor. Intensive reading, discussion and research on selected topics from the economies of the countries of East Asia. Consult department for course scheduling.—III (Division III.)

190. Topics in Economics (4)
Lecture/discussion-seminar—4 hours. Selected topics in economic analysis and public policy. Variable content. May be repeated for credit.—I, II, III, IV (Division III.)

190X. Upper Division Seminar (1-4)
Seminar—1-4 hours. Prerequisite: courses 100 or 104, and 101 or 105; and consent of instructor. In-depth examination at an upper division level of a special topic in Economics. Emphasis on focused analytical work. May not be repeated for credit. Limited enrollment.

192W. Internship in the Davis-in-Washington Program (6-8)
Internship—18-24 hours. Prerequisite: junior or senior standing in Economics; completion of 84 units of credits with a minimum grade-point average of 3.00; admission to the Davis-in-Washington Program. Internship in Washington, DC with associated research project. Students must arrange for a faculty sponsor before embarking on the internship. Maximum of 3 units will count toward satisfying Economics major requirements. (P/NP grading only.)

194HA-194HB. Special Study for Honors Students (4-4)
Independent study—3 hours; seminar—1 hour. Prerequisite: major in Economics with senior standing; consent of instructor and completion of 136 units with a minimum GPA of 3.5 in courses counted toward the major. A program of research culminating in the writing of a senior honors thesis under the direction of a faculty adviser. (Deferred grading only, pending completion of course.)

197T. Tutoring in Economics (1-5)
Tutoring—3-15 hours. Prerequisite: consent of instructor and chairperson. Undergraduates assist the instructor by tutoring students in one of the department's regularly scheduled courses. Units may not be counted toward satisfaction of major requirements. (P/NP grading only.)

198. Directed Group Study (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)

Graduate Courses

200A. Microeconomic Theory (5)
Lecture—4 hours; discussion—1 hour. Prerequisite: graduate standing. Linear and non-linear optimization theory applied to develop the theory of the profit-maximizing firm and the utility-maximizing consumer. (Same course as Agricultural and Resource Economics 200A.)—I, II (Division II.) Silvestre

200B. Microeconomic Theory (5)
Lecture—4 hours; discussion—1 hour. Prerequisite: course 200A. Characteristics of market equilibrium under perfect competition, simple monopoly and monopsony. Emphasis on general equilibrium and welfare economics; the sources of market success and market failure. (Same course as Agricultural and Resource Economics 200B.)—I, II (Division II.) Quinzii

200C. Microeconomic Theory (5)
Lecture—4 hours; discussion—1 hour. Prerequisite: course 200B. Uncertainty and information economics. Individual decision making under uncertainty. Introduction to game theory, with emphasis on applications to markets with firms that are imperfect competitors or consumers that are imperfectly informed. (Same course as Agricultural and Resource Economics 200C.)—III (Division III.) Makowski

200D. Macroeconomic Theory (5)
Lecture—4 hours; discussion—1 hour. Prerequisite: course 101, Mathematics 21A, 21B, and 21C. Macroe static theory of income, employment, and prices.—II (Division II.)

200E. Macroeconomic Theory (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 200B (may be taken concurrently) and 200D. Macrodynmic theory of income, employment, and policy. Fall only—May appear

201A. History of Economic Thought (4)
Lecture—3 hours; discussion—1 hour. Economic thought from the classical Greece era to modern times. Offered in alternate years.—(III) Hoover

201B. History of Economic Thought II (4)
Lecture—3 hours; discussion—1 hour. Origins and emergence of modern economic analysis. Offered in alternate years.—I, II (Division II.) Hoover

203A. Advanced Economic Theory (4)
Lecture—4 hours. Prerequisite: course 200A, 200B. Advanced topics in general equilibrium theory and welfare economics: existence, determinateness and efficiency, intertemporal economies; uncertainty.—(I) Quinzii

203B. Advanced Economic Theory: Game Theory (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 200A, 200B, 200C. Covers the most recent developments in game theory, with the focus changing from year to year. Main topics are: refinements of Nash equilibrium, repeated games, evolution, social situations, bounded rationality, and bargaining theory.—II (Division II.) Bonanno

203C. Topics in Economic Theory (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 200A, 200B, 200C. Selected topics in contemporary microeconomic theory. May be repeated for credit with the consent of the Graduate Studies Committee.—(III) Nehring

204. Microeconomic Analysis (5)
Lecture—4 hours; discussion—1 hour. Prerequisite: course 100 or Agricultural and Resource Economics 100A-100B, Mathematics 21A, 21B and 21C (or Mathematics 16A, 16B and 16C). Open to advanced undergraduates with consent of instructor. Economic reasoning and social choice: behavior of firms and households, theory of markets, partial and general equilibrium analysis, welfare economics, illustrations and applications. (Same course as Agricultural and Resource Economics 204.)—I, II (Division II.)

207. Contemporary Economics Seminar (1)
Seminar—1 hour. Prerequisite: graduate standing in Economics. Seminar series on topics of current interest. May be repeated for credit. (S/U grading only.)—I, II, III (Division III.)

209A. Economics of Distinctive Justice (4)
Lecture—4 hours. Prerequisite: course 200B. Introduction to social choice theory; envy-free allocations; axiomatic bargaining theory; axiomatic characterizations of resource allocation. Applications to modeling of the distributive theories of political philosophers J. Rawls, R. Dworkin, R. Nozick, and G.A. Cohen. Offered in alternate years.—II (Division II.)

209B. Public Ownership Economics (4)
Lecture—4 hours. Prerequisite: course 200B. Public ownership from the viewpoint of microeconomics, in particular general equilibrium and welfare economics. Topics include returns to scale and firm ownership, common-pool resources, externalities, and solution concepts for economies with public and private ownership. Offered in alternate years.—(III) Silvestre

209C. Foundations of Decision Theory (4)
Lecture—4 hours. Prerequisite: course 200B. Rigorous exposition of subjective expected utility theory; foundations, normative and empirical challenges. Topics include intertemporal decision; learning; incompleteness and ambiguity; individual and social choice; game theory as interactive decision theory; bounded rationality. Offered in alternate years.—III (Division II.)

210A. Economic History (4)
Lecture/discussion—4 hours. Economic history of the eastern hemisphere in the modern period. Medieval Europe or other regions may be studied, depending on student interest.—II (Division II.)

210B. Economic History (4)
Lecture/discussion—4 hours. The United States from Colonial times to the present. Other areas of the western hemisphere may be studied, according to student interest.—I, II (Division II.)

214. Development Economics (4)
Lecture—4 hours. Prerequisite: Agricultural and Resource Economics 100A, 100B, course 101; Agricultural and Resource Economics/Economics 204 and course 160A-160B recommended. Review of the principal theoretical and empirical issues whose analysis has formed development economics. Analysis of economic development theories and development strategies and their application to specific policy issues in developing country contexts. (Same course as Agricultural and Resource Economics 214.)—I, II (Division II.)

215A. Microdevelopment Theory and Methods I (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 200A or 204; course 240A recommended. Agricultural development theory, with a focus on microeconomics. Agricultural household behavior with and without market imperfections and uncertainty. Analysis of rural land, labor, credit and insurance markets, institutions, and contracts. (Same course as Agricultural and Resource Economics 215A.)—I, II (Division II.)

215B. Open Macroeconomics of Development (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: Agricultural and Resource Economics/Economics 200A or 204, 200D or 205, and 214 or 215A. Models and policy approaches regarding trade, monetary and fiscal issues, capital flows and debt are discussed in the macroeconomic framework of an open developing country. The basic analytical focus is real exchange rate and its impact on sectoral allocation of resources. (Same course as Agricultural and Resource Economics 215B.)—II (Division II.)

215C. Microdevelopment Theory and Methods II (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 215A. Extension of development theory and microeconomic methods. Agricultural growth and technological change; poverty and income inequality; multisectoral, including village and regional models. Computable general equilibrium methods and applications. (Same course as Agricultural and Resource Economics 215C.)—III (Division III.)

Quarter Offered: I—Fall; II—Winter; III—Spring; IV—Summer. 2001-2002 offering in parentheses.
215D. Environment and Economic Development (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 200A, 204 or Agricultural and Resource Economics 275. Interdisciplinary course drawing on theoretical and empirical research on interactions between environmental resource use and economic development processes. Analysis of issues emerging at the interface of environmental and development economics. (Same course as Agricultural and Resource Economics 215D.)—II. (III.) Farzin

221A. Industrial Organization (4)
Lecture—3 hours, to be arranged—1 hour. Analysis of market structure, business behavior, and economic performance under conditions of limited governmental interference.—I. (I.) Bonanno

221B. Industrial Organization (4)
Lecture—2 hours; seminar—2 hours. Social standards and public policies toward the business sector of the economy.—II. (II.) Branstetter

221C. Topics in Industrial Organization (4)
Lecture—3 hours; seminar—1 hour. Prerequisite: course 221A. Advanced topics in industrial organization and in applied microeconomics. Emphasis on current research. Content may vary from year to year.—III. (III.) Preiger

230A. Public Economics (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 200A or 204. Measures of deadweight loss and consumer surplus; optimal commodity and income taxation; tax incidence; policy issues in personal taxation, corporate taxation, and social insurance; evaluation of effective tax rates.—I. (I.) Helms

230B. Public Economics (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 200A or 204. Effects of tax policies on economic behavior; production, consumption, savings, investment, and labor supply. Distribution and equity: social welfare evaluation and the measurement of inequity.—II. (II.)

230C. Public Economics (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 200A or 204. Advanced topics in economics of the public sector, with emphasis on current research. Content may vary from year to year.—III. (III.)

235A. Alternative Approaches to Monetary Analysis (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 200D (may be taken concurrently). Focuses on relation between changes in money supply and changes in nominal GDP. Also discusses the effect of changes in money supply on interest rates.—II. (II.) Salyer

235B. Monetary Theory (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 235A. Emphasizes problems of finding an appropriate place for money in microeconomic/general equilibrium models. Consideration given to meaning of money, its relation to inflation and the real economy and to its role in models of finance.—III. (III.) Jorda

235C. Monetary Policy (4)
Lecture—3 hours; discussion—1 hour. Organization of the Federal Reserve Bank, the definition of money, goals and tools of monetary policy, alternative targets for monetary policy, impact of monetary policy, the problem of lags, alternative policies.—(II.)

240A. Econometric Methods (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: Statistics 133 and a course in linear algebra or the equivalent. Least squares, instrumental variables, and maximum likelihood estimation and inference for single equation linear regression models: linear restrictions; heteroskedasticity; autocorrelation; lagged dependent variables. (Same course as Agricultural and Resource Economics 240A.)—I. (II.) Chalfant

240B. Econometric Methods (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 240A. Topics include asymptotic theory and instrumental variables, pooled time-series cross-section estimation, seemingly unrelated regression, classical hypothesis tests, identification and estimation of simultaneous equation models, counterfactual, error-correction models, and qualitative and limited dependent variable models. (Same course as Agricultural and Resource Economics 240B.)—III. (II.) Chalfant

240C. Econometric Theory (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 240B. Finite sampling theory; nonlinear and dynamic econometric models; asymptotic distribution theory. (Same course as Agricultural and Resource Economics 240C.)—II. (II.) Jorda

240D. Topics in Econometrics (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 240B. Advanced topics in nonlinear econometric modeling. Contents may vary from year to year. (Same course as Agricultural and Resource Economics 240D.)—I. (II.) Cameron

240E. Topics in Applied Econometrics (4)
Lecture—3 hours; discussion—1 hour. Prerequisites: courses 240A and 240B. Examination of modern econometric techniques used in applied fields of economic research, such as demand analysis, environmental economics, macroeconomics, etc. Emphasis on selection of appropriate tools for individual fields. Course focus will expand topics covered in Economics 240A and 240B. (Same course as Agricultural and Resource Economics 240E.)—III. (II.)

250A. Labor Economics (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 150A-150B or the equivalent. Philosophy, theory and history of American and foreign labor movements; union structure, organization and collective bargaining under changing labor market conditions; current labor market issues.
Engineering: Computer Science

The Department of Computer Science administers two curricula: Computer Science and Engineering in the College of Engineering, and Computer Science in the College of Letters and Science. It also administers a minor in the College of Letters and Science. For information on the Computer Science curriculum and minor, see “Computer Science” in this catalog.

The field of Computer Science and Engineering encompasses the organization, design, analysis, theory, programming, and application of digital computers and computing systems. It develops versatile engineers with backgrounds spanning a broad computer hardware/software spectrum.

The Computer Science and Engineering major provides students with a solid background in mathematics, physics, chemistry, and electronic circuits and systems, all supporting the computer hardware and computer software courses which form the focus of the curriculum.

Mission. The University of California, Davis, is first and foremost, an institution of learning and teaching, committed to serving the needs of society. The Department of Computer Science contributes to the mission of the University in three ways. First, its undergraduate and graduate education programs seek to educate students in the fundamental principles of computer science and the skills needed to solve the complex technological problems of modern society; the breadth of course work provides a framework for life-long learning and an appreciation for multidisciplinary activities. Second, through its research programs, the department contributes to the development and practice of computer science, and software and information technology, to provide innovative, creative solutions for societal needs. Finally, the department disseminates its research—to enhance collaborations with the public sector, further interdisciplinary interests that benefit society, and educate the public—through publications, public service, and professional activities.

Department Objectives. Teaching—To provide undergraduate students with a thorough understanding of the key principles and practices of computing, which include a strong theoretical background in mathematics, basic sciences, and engineering fundamentals and an ability to apply this knowledge to practical problems. To provide students with sufficient breadth to work creatively and productively in multidisciplinary work teams; this breadth, in its broadest context, will form the basis for an appreciation and interest in life-long learning. To provide students with the ability to design and conduct experiments, and to collect and analyze data in core, as well as more specialized, areas of computer science. To provide students with breadth in the humanities and social sciences so they learn to communicate effectively, understand professional and ethical issues in society, and appreciate the interrelatedness between computing and society. To educate graduate students to be our next generation of teachers or leaders in industry, or to pursue meaningful, creative research in industry, government, or academia. Research—To develop and maintain research programs that produce fundamental scientific advances, as well as useful technological innovations, while simultaneously training the next generation of researchers and leaders in the field of computer science.

Program Objectives. The Computer Science and Engineering program has adopted the following objectives to serve the long-term interests of our students and society. Foundation—To provide graduates with a solid foundation in the principles and practices of computer science, including mathematics, physical sciences, and basic engineering. This foundation is necessary to succeed in more advanced computer science and engineering coursework, where students will apply these principles and practices to a variety of complex problems, and which will further develop their analytical and creative problem-solving skills and enable them to work successfully on multidisciplinary teams, in both classroom and laboratory settings. Breadth—To provide graduates with sufficient breadth in computer science and related technical disciplines. This breadth is required not only to understand engineering trade-offs that cross disciplines (for example hardware and software boundaries), but also to participate effectively in multi-disciplinary teams. To provide students with breadth in the humanities and social sciences to develop their awareness of societal issues; to develop effective oral and written communication skills; and to develop an understanding of professional and ethical issues related to computing. Depth—To provide our graduates with advanced training in focused areas of their choice. This depth is necessary to solve complex real-world engineering problems and to prepare them to contribute to a specific discipline within computer science and possibly pursue advanced study or research.

Integrated Degree Program. An integrated B.S./M.S. plan in Computer Science allows Davis students in Computer Science, Computer Science Engineering, or Computer Engineering to complete a master’s degree in Computer Science in one year. Formal course work for the master’s degree is reduced by 6 units for students. Students can begin graduate studies immediately after completing their B.S. degree. More information is available in the graduate section of the College of Engineering Bulletin, or on the Internet at www.cs.ucdavis.edu/instruction/announcements/burs-mst.html.

Computer Science and Engineering Curriculum

The Computer Science and Engineering curriculum is accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology and the Computer Science Accreditation Commission of the Computing Science Accreditation Board.

Lower Division Program

<table>
<thead>
<tr>
<th>QUARTER USUALLY TAKEN</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Courses</td>
<td></td>
</tr>
<tr>
<td>Mathematics 21A, 21B, 21C, 21D</td>
<td>16 1-2-3-4</td>
</tr>
<tr>
<td>Mathematics 22A-22B</td>
<td>6 5-6</td>
</tr>
<tr>
<td>Physics 9A, 9B, 9C, 9D</td>
<td>16 3-4-5-6</td>
</tr>
<tr>
<td>Chemistry 2A</td>
<td>5 1 or 2</td>
</tr>
<tr>
<td>Computer Science Engineering 20</td>
<td>4</td>
</tr>
<tr>
<td>Computer Science Engineering 30</td>
<td>4 1 or 2</td>
</tr>
<tr>
<td>Computer Science Engineering 40</td>
<td>4 2 or 3</td>
</tr>
<tr>
<td>Computer Science Engineering 50</td>
<td>4</td>
</tr>
<tr>
<td>Electrical and Computer Engineering 70</td>
<td>4 3, 4 or 5</td>
</tr>
<tr>
<td>Engineering 17</td>
<td>4 6</td>
</tr>
<tr>
<td>English 1 or 3, or Comparative Literature 1, 2, 3 or 4, or Native American Studies 5</td>
<td>4 1 or 2</td>
</tr>
<tr>
<td>Communication 1 or 3 (or an acceptable substitute as approved by the Undergraduate Study Committee of the College of Engineering)</td>
<td>4</td>
</tr>
<tr>
<td>General Education Electives</td>
<td>12</td>
</tr>
<tr>
<td>Unrestricted electives</td>
<td>7 1-4-5</td>
</tr>
<tr>
<td>Total Lower Division Units</td>
<td>90</td>
</tr>
</tbody>
</table>

Upper Division Program

A key theme of this curriculum is the hardware/software interaction in today’s computer systems design, a theme reflected in the balance between computer hardware and computer software aspects in the course requirements. The key theme of
hardware/software interaction is also reflected in the orientation of the courses them-
selves. The Computer Science and Engineering major also requires additional gen-
eral education electives, helping to develop the verbal skills and intellectual breadth demanded by today’s employers.

The Computer Science and Engineering program prepares students to do further
work in hardware, software, or electronics, either in industry or postgraduate study.

Upper Division Requirements

<table>
<thead>
<tr>
<th>Subject Area and Courses</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Science Engineering 188 or Engineering 190</td>
<td>3</td>
</tr>
<tr>
<td>Electrical and Computer Engineering 100 and 180A</td>
<td>10</td>
</tr>
<tr>
<td>Mathematics 131 or Statistics 131A</td>
<td>1</td>
</tr>
<tr>
<td>Computer Science Engineering 110</td>
<td>4</td>
</tr>
<tr>
<td>Computer Science Engineering 120I or 122A</td>
<td>4</td>
</tr>
<tr>
<td>Computer Science Engineering 152A, 154A, 154B, and Electrical and Computer Engineering 172</td>
<td>15</td>
</tr>
<tr>
<td>Computer Science Engineering 140A, 150I or 151A, and 160.....</td>
<td>12</td>
</tr>
<tr>
<td>Computer electives—a minimum of 4 courses and a minimum of 13 units chosen from Computer Science Engineering 120I, 122A, 122B, 140B, 142, 150I, 151A, 15B, 152B, 153, 158, 163, 165A, 165B, 166, 170, 172, 175, 177, 178; one course (minimum 3 units) from approved 192, 199, Electrical and Computer Engineering 180B, 194.....</td>
<td>13</td>
</tr>
<tr>
<td>General Education electives</td>
<td>21</td>
</tr>
<tr>
<td>Unrestricted elective</td>
<td>4</td>
</tr>
<tr>
<td>Total Upper Division Units</td>
<td>90</td>
</tr>
<tr>
<td>Minimum Units Required for Major</td>
<td>180</td>
</tr>
</tbody>
</table>

† Completion of both Computer Science Engineering 120 and 122A will satisfy the computer science theory requirement and a computer elective requirement.

‡ Completion of both Computer Science Engineering 150 and 151A will satisfy a portion of the computer software operative system requirement and a computer elective requirement.

Courses in Engineering: Computer Science (ECS)

Lower Division Courses

10. Basic Concepts of Computing (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: two years of high school alge-
bra. Introduction to principles of computing. Methods and algorithms for solving problems by use of a digital computer. Not intended for students in physi-
cal sciences, engineering, or mathematics. Not open for credit to students who have completed course 30, Engineering 5, or former course 30H.—II. (I, II)

15. Introduction to Computers (4)
Lecture—3 hours; laboratory—3 hours. Computer uses in modern society. Empha-
sis on uses in non-technical disciplines. Includes word processing, other applica-
tions, elementary programming concepts, overview of current/projected computer uses. Intended for Letters and Science and other non-computer majors. Not open for credit to students who have completed course 15AT, 30, Engineering 5 or former course 30H. Only 2 credits allowed to students who have completed Agricultural Systems and Environment 21. GE credit: SciEng, Wrt—II, III, (I, II, III) Warters

15AT. Introduction to Computers (4)
Independent study—4 hours. Prerequisite: consent of instructor. Computer uses in modern society. Includes word processing, spreadsheet, DOS, networks and pro-
gramming concepts. Independent study course paralleling course 15 lectures. Not open to students who have completed course 15, 30, or Engineering 5. Only 2 units of credit allowed to students who have completed Agricultural Systems and Environ-

20. Discrete Mathematics for Computer Science (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: Mathematics 21C. Discrete structures and applications in computer science. Proofs, particularly induction.
Introduction to propositional logic, circuit design, combinatorics, recursion and solution of recurrence relations, analysis of algorithms, graph theory and trees, finite state machines. Not open for credit to students who have taken ECS 100.—II, III, (I, II, III) Gusfield, Levitt, Martel, Rogaway

30. Introduction to Programming and Problem Solving (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: Mathematics 16A or 21A (may be taken concurrently); prior experience with basic programming concepts (vari-
able, loops, conditional statements) recommended. Introduction to computers and computer programming, algorithm design, and debugging. Elements of good pro-
gramming style. Programming in the C language. Use of basic UNIX tools.—II, III, (I, II, III) Pritchett

40. Introduction to Software Development and Object-Oriented Programming (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 30 or the equivalent with a grade of C- or better. Elements of program design, style, documentation, effi-

50. Computer Organization and Machine-Dependent Programming (4)
Lecture—3 hours; discussion—1 hour. Prerequisite; course 40. Comparative study of different hardware architectures via programming in the assembly languages of various machines. Role of system software in producing an abstract machine. Only one unit of credit allowed for students who have taken Electrical and Computer Engineering 70.—II, III, (I, II) Farrens, Matloff

89A-L. Special Topics in Computer Science (1-5)
Lecture—3 hours; laboratory—1 hour. Prerequisite: consent of instructor. Special top-
ic in (A) Computer Science Theory; (B) Architecture; (C) Programming Languages and Compilers; (D) Operating Systems; (E) Software Engineering; (F) Databases; (G) Artificial Intelligence; (H) Computer Graphics; (I) Networks; (J) Computer-Aided Design (K) Scientific Computing; (L) Computing Science. May be repeated for credit when the topic is different.—I, II, III, (I, II, III)

92. Internship in Computer Science (1-5)
Internship. Prerequisite: lower division standing; project approval prior to period of internship. Supervised work experience in computer science. May be repeated for credit.—I, II, III, (I, II, III)

98. Directed Group Study (1-5)
(P/NP grading only.)

99. Special Study for Lower Division Students (1-5)
(P/NP grading only.)

Upper Division Courses

110. Data Structures and Programming (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 40 or the equivalent (CSCI 44A+ or CSCI 44B) with a grade of C- or better. Design and analysis of data structures for a variety of applications. Trees, heaps, searching, sorting, hashing, graphs. Extensive programming.—I, II, III, (I, II, III) Martel, Joy, Rogaway

120. Introduction to the Theory of Computation (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 20, Mathematics 108 recommended. Fundamental ideas of the theory of computation, including formal
languages, computability and complexity. Reducibility among computational prob-
lems.—I, II, III (I, II) Rogaway, Gusfield, Martel

122A. Algorithm Design and Analysis (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 20, 110. Complexity of algorithms, bounds on complexity, algorithms for searching, sorting, pattern match-
ing, graph manipulation, combinatorial problems, introduction to NP-complete prob-
lms. Not open for credit to students who have taken course 122.—II, III, (I, II, III) Rogaway, Gusfield, Martel

122B. Algorithm Design and Analysis (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 122A. Theory and prac-
tice of hard problems, and problems with complex algorithm solutions. NP-com-
pleteness, approximation algorithms, randomized algorithms, dynamic program-
ing and branch and bound. Students do theoretical analysis, implementa-
tion and practical evaluations. Examples from parallel, string, graph, and geo-
metric algorithms.—I, II, III Rogaway, Gusfield, Martel

124. Theory and Practice of Bioinformatics (4)
Lecture—3 hours; laboratory—1 hour. Prerequisite: course 10 or 30 or Engineering 5 or 6. Statistics 12 or 13 or 32 or 100 or Mathematics 131A/Statistics 131A Biological
Sciences 1A or Molecular and Cellular Biology 10. Fundamental biological, mathe-
matical and algorithmic models underlying bioinformatics, sequence analysis,
database search, gene prediction, molecular structure comparison and prediction, phan-
tomatic trees, high throughput biology, massive datasets; applications in mole-
cular biology and genetics; use and extension of common bioinformatics tools—
III, (III) Gusfield

140A. Programming Languages (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 50 or Electrical and Computer Engineering 70; course 110. Syntactic definition of programming languages. Introduction to programming language features including variables, data types, data abstraction, parameter passing, exception handling. Comparative study of several high-level programming languages. Not open for credit to students who have taken course 140.—II, (I, II) Ossoon, Pandey

140B. Programming Languages (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 20, 140A; course 120 recom-

142. Compilers (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 20, 140A; course 120 recom-

150. Operating Systems and System Programming (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 40; course 154A or Elec-
trical and Computer Engineering 70; course 154B or Electrical and Computer Engi-
neering 170 strongly recommended. Basic concepts of operating systems and sys-
tem programming. Processes and interprocess communication/synchronization; virtual memory, program loading and linking; file and I/O subsystems; system programs. Study of a real operating system.—I, II, III, (I, II) Levitt, Matloff, Ossoon

Quarter Offered: I—Fall; II—Winter; III—Spring; IV—Summer, 2001-2002 offering in parentheses.

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
151A. Operating System Design (4)
Lecture—3 hours; laboratory—3 hours. Prerequisite: course 154A or Electrical and Computer Engineering 170. Architectural support of operating system concepts. System programming; major components of an operating system, their functions, and their interactions. Lecture material is closely coupled with a project that involves a machine simulator and the implementation of a matching multi-programming system. Not open to students who have taken Electrical and Computer Engineering 182A.—II. (I.II.) Ruschakza

151B. Operating System Design (3)
Lecture—3 hours. Prerequisite: course 151A and an introductory probability course. Contempory architectures: virtual memory and operating system support of virtual memory. Protection mechanisms; problems of determining objects and processes, deadlock, synchronization, protection of physical and virtual resources. Protection mechanisms. User interface and ease-of-use considerations. Not open to students who have taken Electrical and Computer Engineering 182B.—II. (I.II.) Ruschakza.

152A. Computer Networks (3)
Lecture—3 hours. Prerequisite: course 154A or Electrical and Computer Engineering 170, course 110 or Electrical and Computer Engineering 73, Mathematics 131 or Statistics 131A or 120 or 32. Overview of local and wide-area computer networks, ISO seven-layer model. Physical aspects of data transmission. Dat-link protocols multiplexing. Switched networks; broadcast networks. Internetworking.—II, III, IV. (II, III, IV) Mukherjee, Matloff, Ghosal

152B. Computer Networks (3)
Lecture—3 hours. Prerequisite: course 152A; course 150 or 151A. Upper-layer protocols; Communication software; UNIX network programming, Transport layer interfaces. Sockets. TCP/IP. Applications. Remote procedure calls. Network management.—II, III, IV. (II, III, IV) Mukherjee, Ghosal

153. Introduction to Computer Security (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 150 or 151A-151B. Study of the principles of mechanisms, and implementation of computer security and data protection. Policy, encryption and authentication, access control and integrity models and mechanisms; network security; secure systems; programming and vulnerability analysis. An existing operating system will be studied.—II, III) Bishop.

154A. Computer Architecture (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 50 or Electrical and Computer Engineering 70, and course 110. Introduction to digital design. Interfacing of devices for IO, memory and memory management. Input/output programming, via wait loops, hardware interrupts and calls to operating system services. Hardware support for operating systems software. Only one unit of credit allowed for students who have taken Electrical and Computer Engineering 170.—II, III, IV. (II, III, IV) Farrens, Matloff, Mukherjee, Chong

154B. Computer Architecture (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 154A or Electrical and Computer Engineering 170, and course 110. Hardwired and microprogrammed CPU design. Memory hierarchies. Unprocessor performance analysis under varying program mixes. Introduction to pipelining and multiprocessors.—II, III, IV. (II, III, IV) Farrens, Matloff, Chong.

158. Programming on Parallel Architectures (3)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 140A. Requirements, specialization, design, implementation, testing, and verification of large software systems. Study and use of software engineering methodologies. Team programming.—II, III, IV. (II, III, IV) Levitt, Devanbu

163. User/Computer Interfaces (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 20, 110. Study of the principles of computer interaction. User interface management system architectures; semantics of input devices; transition network and event-based systems, models of interaction, graphical interfaces, implementations, and performance issues and tradeoffs.—II, III, IV. (II, III, IV) Joy.

165A. Database Systems (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 110. Database design, entity-relationship and relational models, relational algebra, query language SQL, storage and file structures, query processing, system architectures.—II, III, IV. (II, III, IV) Gertz.

165B. Database Systems (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 165A. Advanced database systems: object-oriented and object-relational database systems; distributed and multidatabase systems; advanced database applications: web-based database access, data warehouses.—II, III, IV. (II, III, IV) Gertz.

167. Databases in Humanities and Sciences (4)
Lecture—3 hours; laboratory—3 hours. Prerequisite: course 15 or the equivalent. Introduction for non-majors to basic principles of database management systems; overview of typical commercial database packages; overview of database systems in various fields in humanities and sciences; design and implementation of individual database applications. Not open for credit to College of Engineering students. GE credit: SciEng, Wrt.—II, III. (II, III) Walters

168. Information Systems (3)
Lecture—3 hours. Prerequisite: course 40 or the equivalent; upper division standing. Design, creation, implementation, and case study evaluation of information systems. Project-oriented, self-paced, implementation of actual information including survey collection of data, input design, and development of components to edit, sort, and retrieve data. Case study of typical information systems problems. Offered in alternate years.—II, III, IV. (II, III, IV) Walters.

170. Introduction to Artificial Intelligence (4)

177. Introduction to Visualization (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 175. Graphics techniques for generating images of various types of measured or computer-simulated data. Typical applications for these graphics techniques include study of air flows around car bodies, medical data, and molecular structures.—II, III, IV. (II, III, IV) Joy, Hamann, Max.

188. Ethics and the Information Age (3)
Seminar—2 hours; term paper. Prerequisite: senior standing. Ethics and professional responsibilities as these are influenced by the growth of computer usage and networks in today's society.—II, III, IV. (II, III, IV) Joy.

190A-L. Special Topics in Computer Science (1-5)
Lecture, laboratory or combination. Prerequisite: consent of instructor. Special topics in (A) Computer Science Theory; (B) Architecture; (C) Programming Languages and Compilers; (D) Operating Systems; (E) Software Engineering; (F) Data Bases; (G) Artificial Intelligence; (H) Computer Graphics; (I) Networks; (J) Computer-Aided Design; (K) Scientific Computing; (L) Computer Science. May be repeated for credit when topic differs.—II, III, IV. (II, III, IV) Joy, Hamann, Max.

190C. Research Group Conferences in Computer Science (1)
Discussion—1 hour. Prerequisite: upper division standing in Computer Science and Engineering; consent of instructor. Research group conferences. May be repeated for credit. (P/NP grading only.)—II, III, IV. (II, III, IV) Joy.

190X. Senior Seminar (2)
Seminar—2 hours. Prerequisite: senior standing. Examination of a special topic in a small group setting.

192. Internship in Computer Science (1-5)
Internship. Prerequisite: completion of a minimum of 84 units; project approval prior to period of internship. Supervised work experience in computer science. May be repeated for credit. (P/NP grading only.)—II, III, IV. (II, III, IV) Joy.

197T. Tutoring in Computer Science (2-3)
Discussion—1 hour; laboratory—3-4 hours. Prerequisite: upper division standing and consent of instructor. Tutoring in computer science courses, especially introductory computing. For upper division undergraduate students who will provide tutorial assistance. May be repeated for credit. (P/NP grading only.)—II, III, IV. (II, III, IV) Joy.

198. Directed Group Study (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)—II, III, IV. (II, III, IV) Joy.

199. Special Study for Advanced Undergraduates (1-5)
(P/NP grading only.)

Graduate Courses

220. Theory of Computation (3)
Lecture—3 hours. Prerequisite: course 120 and 122A. Time and space complexity classes. Reductions, completeness, and the role of randomness. Logic and undecidability.—II, III, IV. (II, III, IV) Rogaway.

222A. Design and Analysis of Algorithms (3)
Lecture—3 hours. Prerequisite: course 122A; Statistics 131A recommended. Techniques for designing efficient algorithms and analyzing their complexity. Use of data structures. Counting and estimating. Search techniques. Graph algorithms.—II, III, IV. (II, III, IV) Gusfield, Martel, Rogaway.

222B. Advanced Design and Analysis of Algorithms (3)

223. Parallel Algorithms (3)
Lecture—3 hours. Prerequisite: course 222A. Models of parallel computer systems including PRAMs, loosely coupled systems and interconnection networks. Parallel algorithms for classical problems are studied as well as general techniques for their design and analysis. Lower bounds on parallel computation are proved in several settings.—II, III, IV. (II, III, IV) Martel
224. String Algorithms and Applications in Computational Biology (3)
Lecture—3 hours. Prerequisite: course 122A. Algorithms that operate on strings. Pattern matching, sets of patterns, regular expression pattern matching, suffix trees and applications, extract similarity, parametric sequence alignment, applications to DNA sequencing and protein database searching. Offered in alternate years.—(III) Gusfield

225. Graph Theory (3)

227. Modern Cryptography (3)
Lecture—3 hours. Prerequisite: course 220 or 222A. Modern cryptography, as a discipline emphasizing formal definitions and proofs of security. One-way functions, pseudo-randomness, encryption, digital signatures, zero-knowledge, secure protocols.—II. (II) Rogaway

240. Programming Languages (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 140A, 142. Advanced topics in programming languages, including formal syntax and semantics, the relation between formal semantics and verification, an introduction to the lambda calculus. Additional topics will include language design principles, alternative programming languages, in-depth semantic theory and models of language implementation.—II. (II) DesJardins

242. Translation of Programming Languages (4)
Lecture—3 hours; laboratory—3 hours. Prerequisite: course 240. Lexical analysis, parsing, storage management, symbol table design, semantic analysis and code generation. LR, LL(1) grammars. Compiler-compiler.—III. (III) Panary

243. Code Generation and Optimization (3)

244. Principles of Concurrent Programming (4)
Lecture—3 hours; laboratory—3 hours. Prerequisite: course 20; and course 150 or 151B. Fundamental concepts and applications of concurrent programs; concurrent program verification and derivation; synchronization mechanisms in programming languages; distributed programming techniques; case studies of languages.—I. (I) Olsson, Pandey

247. Concurrent Programming Languages (4)
Lecture—3 hours; laboratory—3 hours. Prerequisite: course 140A, 150. Language design parameters. Models of parallel machines. Load balancing. Scalability. Portability. Efficiency measures. Design and implementation techniques for several classes of concurrent programming languages (such as object-oriented, functional, logic, and constraint programming languages).—I. (I) Pandey, Olsson

250A. Advanced Computer Architecture (4)
Lecture—3 hours; term paper. Prerequisite: course 151B or Electrical and Computer Engineering 170. Course 150 or 151A. Introduction to modern research topics and methods in computer architecture. Design implications of memory latency and bandwidth limitations. Performance enhancement via within-processor and between-processor parallelism. Term project involving student-proposed extensions to computer architecture techniques.—I. (I) Panary

250B. High-Performance Uniprocessing (3)
Lecture—3 hours. Prerequisite: course 250A. Maximizing uniprocessor performance. Barriers to high performance; solutions to the problems; historical and current processor designs.—II. (II) Farrens

250C. Parallel Processing (3)
Lecture—3 hours. Prerequisite: course 250A. Parallel architectures have evolved from special-purpose machines to commodity servers. Emphasis on recent machines and applications that drive them. Readings of current research papers. Final paper and presentation critiquing three related readings and extending their area with a small project.—III. (III) Chong

251. Operating System Models (4)
Lecture—3 hours; laboratory—3 hours. Prerequisite: course 151B; introductory probability theory course. A survey of formal models for the study of operating systems. Modeling of parallel processes and their synchronization in terms of partial orderings and procedure relations. Deterministic and probabilistic models for the evaluation of system performance. Pertinent programming projects.—III. (III) Ruschitzka

252. Local and Metropolitan Area Networks (4)
Lecture—3 hours; laboratory—3 hours. Prerequisite: course 152A. Local and metropolitan area networks, technologies, functions, structures, access protocols. Performance modeling and analysis of multi-access techniques in polling, ring, and random access networks. Standards, example products, high-speed LANs (FDIO), MANs (IEEE 802 family), local lightwave networks.—III. (III) Mukherjee

253. Cryptography and Data Security (4)
Lecture—3 hours; laboratory—3 hours. Prerequisite: course 150; consent of instructor. Methods of protecting data in computer and communication systems from unauthorized disclosure and modification. Introduction to mathematical principles of security with applications to operating systems, database systems, and computer networks.—I. (I) Levitt, Bishop

254. Analytic Methods for Computer Systems Design (3)
Lecture—3 hours. Prerequisite: course 20; courses 154A-154B or Electrical and Computer Engineering 170; and Statistics 131A or the equivalent; course 150 or 151A-151B recommended. Use of simulation and queueing theory in computer design. Applications to memory hierarchies; file storage; computer networks; fault-tolerance; scheduling.—I. (I) Mukherjee, Mattoff, Ghosal

256. High Speed Networks (4)
Lecture—3 hours; laboratory—3 hours. Prerequisite: course 152A. Various issues in emerging high speed networks. Topics include network modeling, analysis, and optimization; routing; design of high speed switching fabrics; congestion control; traffic characterization; and broadband ISDN and ATM networks.—III. (III) Ghosal, Mattoff, Pandey

258. Optical Networks (4)

260. Software Engineering (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 140A and 160. Advanced techniques for program specification, design, rapid prototyping, optimized implementation, testing, validation, documentation, maintenance through the entire lifecycle. Each student will produce informal requirements, formal design specifications, a rapid prototype, test plan, optimized implementation, plan for maintaining the system over the lifecycle.—I. (I) Devanbu, Levitt

261. Program Verification (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: Mathematics 125 or Philosophy 112 or familiarity with first-order logic; knowledge of an iterative and functional programming language. Methods of proving correctness of programs with respect to formal specifications, with attention to those suited for employing automated deduc tion. Formal background; symbolic execution; techniques suited to iterative programming methods from denotational semantics, termination, dynamic logic and proofs of concurrent programs.—I. (I) Levitt

262. Formal Specification (3)
Lecture—3 hours. Prerequisite: course 261. Formal specification of modules, and its relationship to top-down programming development and verification. Abstract data types, together with methods for specifying them. Implementations and proofs of implementation. Using specifications to reason about programs. Parameterized types. Constructing good formal specifications. Offered in alternate years.—II. Levitt

265. Distributed Database Systems (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 165A. Concepts of distributed database systems and architectures, distributed database design, distributed query processing and optimization, transaction management and concurrency control, heterogeneous and multidatabase systems.—I. (I) Gertz

270. Artificial Intelligence (3)
Lecture—3 hours. Prerequisite: courses 140A, 172. Concepts and techniques underlying the design and implementation of models of human performance on intelligent tasks. Representation of high-level knowledge structures. Models of memory and inference. Natural language and story understanding. Common sense planning and problem solving.—II. (II)

271. Machine Learning and Discovery (3)
Lecture—3 hours. Prerequisite: course 170 or the equivalent. Artificial intelligence techniques for the discovery of hidden patterns and dependencies in the research literature. Fundamental problems in machine learning and discovery. Systems that learn from examples, analogies, and solved problems. Systems that discover numerical laws and qualitative relationships. Projects centering on implementation and evaluation.—III. (III)

274. Automated Deduction (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: Mathematics 125 or Philosophy 112 or familiarity with first-order logic. Techniques of mechanical theorem proving. Methods based on resolution and term-rewriting. Decision procedures. Induction. Applications to program verification, question-answering and plan generation. Study existing mechanical theorem provers. Offered in alternate years.—III. Levitt

275A. Advanced Computer Graphics (4)
Lecture—3 hours; laboratory—3 hours. Prerequisite: course 175 or 177 or 178. Advanced topics in computer graphics. Hidden surface models, rendering of various surface types, subdivision methods, shading techniques, anti-aliasing, modeling techniques.—I. (I) Joy, Hamman, Ma

275B. Advanced Computer Graphics (4)
Lecture—3 hours; laboratory—3 hours. Prerequisite: course 175 or 177 or 178. Advanced topics in computer graphics and geometric modeling. Topics taken from advanced research papers in computer graphics, image synthesis, visualization and geometric modeling. Discussion of current research in the field. Offered in alternate years.—III. (III) Joy, Hamman, Ma

276. Advanced Volume Visualization (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 177. Applications, available tools and techniques, the challenges confronting the field of volume visualization, and some of the advanced topics in the field. Primary emphasis on advanced software and hardware techniques to achieve interactive visualization.—II. (II) Hamman, Joy, Ma, Max

277. Advanced Visualization (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 177. Visualization of 3D
data, including scalar fields, vector fields, and medical data.—II. (II.) Hamann, Joy

278. Computer-Aided Geometric Design (4)
Lecture—3 hours, laboratory—3 hours. Prerequisite: course 175 or 177 or 178.
Mathematical techniques for the definition and manipulation of curves and surfaces.
Coon's patches, Bezier curves and surfaces. B-spline curves and surfaces, beta-
splines, box-splines. Integration into various computer graphics rendering models,
and computer-aided design systems. Offered in alternate years.—III.) Joy, Hamann

279. Computer Animation (4)
Lecture—3 hours; laboratory—3 hours. Prerequisite: course 175 or 177 or 178, or
Applied Science 213A. Control of camera and object motion necessary to produce
computer animation, modeling of articulated objects made from jointed segments,
and of deformable objects. Students will complete a final animation project. (Same
course as Applied Science Engineering 215.)—III. (III.) Joy, Hamann

289A-L. Special Topics in Computer Science (1-5)
Lecture, laboratory, or combination. Prerequisite: consent of instructor. Special top-
ics in (A) Computer Science Theory; (B) Architecture; (C) Programming Languages
and Compilers; (D) Operating Systems; (E) Software Engineering; (F) Data Bases;
(G) Artificial Intelligence; (H) Computer Graphics; (I) Networks; (J) Computer-Aided
Design; (K) Scientific Computing; (L) Computer Science. May be repeated for credit
when topic differs.—I, II, III. (I, II, III.)

290. Seminar in Computer Science (1)
Seminar—1 hour. Participating seminar; discussion and presentation of current
research and development in computer science. (S/U grading only.)—I, II, III. (I, II,
III.)

290C. Graduate Research Group Conference (1)
Discussion—1 hour. Research problems, progress and techniques in computer
science. May be repeated for credit. (S/U grading only.)—I, II, III. (I, II, III.)

298. Group Study (1-5)
Lecture, laboratory, or combination. Prerequisite: consent of instructor. (S/U grading
only.)

299. Research (1-12)
(S/U grading only.)

Professional Courses

315. Teaching Computer Science (3)
Lecture—2 hours; discussion/laboratory—1 hour. Prerequisite: course 110. Funda-
mentals of instructional methodology applied to teaching computer science, espe-
cially at the introductory level. Behavioral objectives, testing methods, course
design, evaluation, technology in instruction.—I. (I.)

390. The Teaching of Computer Science (1)
Discussion—1 hour. Prerequisite: meet qualifications for teaching assistant and/or
associate-in in Computer Science. Participation as a teaching assistant or associ-
cate-in in a designated engineering course. Methods of leading discussion groups or
laboratory sections, writing and grading quizzes, use of laboratory equipment, and
grading laboratory reports. May be repeated for credit. (S/U grading only.)—I, II, III.
(I, II, III.)

396. Teaching Assistant Training Practicum (1-4)
Prerequisite: graduate standing. May be repeated for credit. (S/U grading only.)

Quarter Offered: I—Fall; II—Winter; III—Spring; IV—Summer; 2001-2002 offering in parentheses.

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
Endocrinology (A Graduate Group)

Judith Turgeon, Ph.D., Chairperson of the Group
Group Office, 4136 Tupper Hall (Human Physiology, 752-3230)

Faculty
Thomas Adams, Ph.D., Professor (Animal Science)
Marylynn Barkley, Ph.D., Associate Professor (Neurobiology, Physiology, and Behavior)
Chris Calvert, Ph.D., Professor (Animal Science)
Ernest S. Chang, Ph.D., Professor (Bodega Marine Laboratory)
Bruce Hammock, Ph.D., Professor (Entomology)
Robert Hansen, Ph.D., Professor (Molecular Biosciences)
Larry Hjelmeland, Ph.D., Professor (Ophthalmology)
Bill L Lasley, Ph.D., Professor (Public Health and Reproduction)
Harry Matthews, Ph.D., Professor (Biological Chemistry)
Stanley Meizel, Ph.D., Professor (Cell Biology and Human Anatomy)
James R. Millam, Ph.D., Associate Professor (Animal Science)
Marty Privalsky, Ph.D., Professor (Microbiology)
Jan F. Roser, Ph.D., Professor (Animal Science)
Judith Stern, Sc.D., Professor (Nutrition)
Dennis M. Styne, M.D., Professor (Pediatrics)
Judith L. Turgeon, Ph.D., Professor (Human Physiology)
Donal A. Walsh, Ph.D. Professor (Biological Chemistry)
Dorothy E. Woolley, Ph.D., Professor (Neurobiology, Physiology, and Behavior)

Courses in Endocrinology (EDO)

Graduate Courses

218. Mammalian Endocrinology and Homeostasis (4)
Lecture—4 hours. Prerequisite: Biological Sciences 102 and 103, Neurobiology, Physiology and Behavior 101, and consent of instructor. Biochemical, physiological, and regulatory properties of the mammalian endocrine system; at the molecular, cellular and systemic level. Signal transduction mechanisms and hormonal actions. Principles that regulate homeostasis, especially in organ–organ interrelationships, metabolism and minerals, fluids and electrolytes. Reproductive endocrinology.—III. (III.) Turgeon

220. Endocrinology Literature Critique (1)
Discussion—1 hour. Prerequisite: consent of instructor. Critical reading and evaluation of current original publications in endocrinology. Selected papers will be presented and discussed in detail by faculty and students. May be repeated for credit. (SU grading only.)—I, II, (I, II.) Turgeon

235. Personal Computing in the Life Sciences (3)
Lecture—1 hour; laboratory—6 hours. Prerequisite: consent of instructor. Current and near-future uses of “state-of-the-art” personal computers, including the Internet and local area networks. Application in the life sciences. Running programs on Macintosh and PC-compatible computers and on Windows NT local area network in Endocrinology Graduate Group computer laboratory.—III. (III.) Matthews

240. Biochemical Endocrinology (3)
Lecture—3 hours. Prerequisite: graduate standing or consent of instructor. Examination of recent advances in biochemical endocrinology and molecular and cell biology of endocrine systems with emphasis on processes of hormone and receptor synthesis, second messenger phenomena, and hormonal control of gene expression.—III. (III.) Adams

298. Group Study (1-5)
Prerequisite: consent of instructor.

299. Research (1-12)
(SU grading only.)
Education

MINOR PROGRAM IN EDUCATION

Minor Program Requirements:

Education theory is considered to be the foundation for undergraduates to elect as a minor if they wish to (1) major in an allied program, (2) obtain a teaching credential, (3) obtain a master's degree in education or related field, (4) obtain a Ph.D. degree in education, (5) enter a profession that focuses on work with people, (6) seek employment in a governmental or industrial training program, or (7) obtain a better understanding of the issues and concerns of public and private education.

At least 15 units of the 20-unit minimum for the minor must be in Education. One course in a related field is acceptable for the minor.

UNITS

Education

Education 100, 110, 120
Elective courses

The remaining 8 units may be taken from the following courses in Education, with the option of selecting one course from the list of approved elective courses outside of Education:

Education: Education 115, 130, 151, 152, 153, 163

Approved courses outside of Education:

Agricultural Education 100, 160, Human Development 100A, 100B, 101, 103, Linguistics 163, 166, Psychology 130, 132

Minor Advisers. A designated faculty member in the Division of Education may advise students and give final approval on the minor. For additional advising and information, contact P. Gandara, or the Student Services Office, 2078 Academic Surge.

Graduate Study

The Division of Education, in conjunction with the Graduate Group in Education, offers programs of study and research leading to the M.A. and Ph.D. degree in Education. The Ph.D. is offered by the Education Graduate Group. Detailed information regarding graduate study may be obtained by writing the Graduate Coordinator, Division of Education, 2078 Academic Surge.

Graduate Coordinator, K. Bray.

Graduate Advisers. A. Cavallo, J. Sandoval (M.A.); M. McMahon, S. Dugdale (Ph.D.)

Teacher Education—Credentialing

For a statement of complete requirements and appointments with credential advisers, contact the Student Services office, 2078 Academic Surge. Interested students are urged to do this as early as possible in their academic career.

Applicants to the elementary or secondary teaching credential programs should contact Student Services for forms and procedural information early in the fall quarter of their senior year.

Credential Adviser. J. MacDonald

Teacher Education Faculty Advisers—Elementary. A. Kato.

Bilingual Emphasis. B.J. Merino.

Teacher Education Faculty Advisers—Secondary. P. Holmes, J.R. Pomeroy.

Graduate Adviser. B. Merino, B. Goldman (Teaching Credential Program).

UCD/CSU Sacramento Collaborative Elementary Credential Program

Barbara Goldman (UC Davis) and Harold Mural (CSU Sacramento), Program Directors.

Program Office, 2078 Academic Surge (530) 1-888-smr-2-rrn; e-mail: smrbrim@ucdavis.edu

The Collaborative Elementary Credential Program offers accelerated course work for the CLAD or BCLAD elementary credential during the summers; the supervised field experience is completed during the academic year. This program is designed to meet the needs of emergency credential holders and working professionals who are changing careers.

Collaborative Adviser. C. Johnson

UCD/CSU Fresno Joint Doctoral Program (Ed.D.)

Sharon Brown-Welty, (CSU Fresno) and Jonathan Sandoval (UC Davis), Program Directors.

UCD Campus Program Office (530) 1-888-smr-2-rrn; e-mail: smrbrim@ucdavis.edu

CSU Fresno Program Office (559) 278-0427; Fax: 559-278-0457; e-mail: diane_rivera-pasillas@csufresno.edu
Upper Division Courses

100. Introduction to Schools (4)
Lecture—3 hours; field work—3 hours. Prerequisite: upper division standing. Study of educational concerns of teachers; skills for observing classroom activities; school organization and finance; school reform movement; observing, aiding, and tutoring in schools.—I, II, III. (I, II, III.) Wampler

110. Educational Psychology: General (4)
Lecture/discussion—4 hours. Prerequisite: Psychology 1; upper division standing. Learning processes, cognitive development, individual differences, testing and evaluation. GE credit: SocSci, Wrt.—I, II, III. (I, II, III.)

114. Quantitative Methods in Educational Research (4)
Lecture/discussion—4 hours. Prerequisite: two years of high school algebra. Problems and methods in data analysis. Design of research projects. Some consideration of procedures suited to digital computers.—I (I.)

115. Educating Children with Disabilities (4)
Lecture—2 hours. Prerequisite: upper division standing. Educational issues and processes involved in teaching children with disabilities. The course will focus on the structure of special education, with an emphasis on meeting the educational needs of children who are mainstreamed in regular classes.—I, II, III. (I, II, III.) Figueroa, Sandoval

120. Philosophical and Social Foundations of Education (4)

130. Issues in Higher Education (4)
Discussion—3 hours; field work—3 hours. Prerequisite: upper division standing or consent of instructor. Analysis of current issues in higher education and some of practical implications of varying philosophical approaches to the role of the university.—I, II, III.

151. Language Development in the Chicano Child (3)
Lecture—3 hours. Prerequisite: some knowledge of Spanish and linguistics recommended. Bilingualism, first and second language acquisition, bilingual education, language assessment, Chicano Spanish, and the role of dialect varieties in the classroom.—I (I.) Merino

152. Communication Skills for Bilingual Teachers (3)
Lecture—2 hours; field work—3 hours. Prerequisite: course 151; Spanish 2, 8A-8B. The development of communication skills of prospective educators with an emphasis on the study and use of standard Spanish and Southwest Spanish dialects in teaching science, mathematics, social science, music, art, and language arts to bilingual elementary school pupils.—III (III.)

153. Cultural Diversity and Education (2)
Lecture/discussion—2 hours. Prerequisite: upper division standing. Analysis of research on learning styles among culturally-diverse students with review and evaluation of responsive curricula and classroom teaching techniques. The ethno- graphic interview as a research tool.—III (III.)

160A. Introduction to Peer Counseling (2)
Lecture/discussion—2 hours. Prerequisite: upper division standing and consent of instructor. Introduction to peer counseling techniques and development of peer counseling skills. (P/NP grading only.)—I, II, III.

160B. Issues in Peer Counseling (2)
Lecture/discussion—2 hours. Prerequisite: upper division standing and consent of instructor; course 160A recommended. In-depth review and development of skills for specific counseling topics. May be repeated once for credit when topic differs. (P/NP grading only.)—I, II, III.

163. Guidance and Counseling (4)
Lecture—4 hours. Prerequisite: course 110 (may be taken concurrently). Nature and scope of pupil personnel services; basic tools and techniques of guidance; theory and practice of counseling psychology, with emphasis on educational and vocational adjustment.—I, II, III. (I, II, III.) Figueroa

180. Computers in Education (3)
Lecture—4 hours; seminar—1 hour; laboratory—1 hour. Prerequisite: upper division standing or graduate student. Applications of computers in education as instructional, intellectual, and communication tools. Not open for credit to students who have taken course 181 or 182.—I, II, III. (I, II, III.) Dugdale

202. Educational Research (4)
Lecture—2 hours; discussion—2 hours. Prerequisite: introductory statistics and graduate standing in education or consent of instructor. Defining educational research questions, reviewing relevant literature, developing research designs, developing research instruments, selecting appropriate data analysis procedures, and writing research projects. A case problem will provide practice in designing and reporting research.—III. (III.) Sandoval

205A. Ethnographic Research in Schools I: Current Theory and Practice (4)
Lecture—4 hours. Prerequisite: graduate standing. Current literature from anthropology and sociology related to schools. Emphasis on the organizational structure of institutions, and the analysis of face-to-face interaction. Will explore the relationship between field-based research and theory development on the acquisition of knowledge in specific social and cultural contexts. (Former course 203.)—II. (III.) Wagner

205B. Ethnographic Research in Schools II: Field-Based Research Projects (4)
Discussion—4 hours. Prerequisite: graduate standing and course 205A. Student research projects in specific schools with cooperative critical analysis of the design, data collection, and interpretation by researchers. Students will continue to meet with instructor as a group throughout the quarter to discuss specific projects. (Former course 201B.)—II. (III.) Watson-Giego

207. Concepts of the Curriculum (4)
Lecture—2 hours; discussion—2 hours. Prerequisite: graduate standing or consent of instructor. Development of the skills of philosophical analysis and argument for the establishment of a point of view, in the consideration of curriculum theory and practice. Classical and contemporary approaches to subject matter and activity emphases, hidden curriculum, and moral education.—I (I.)

208. Presenting Educational Research in Written Reports (4)
Seminar—3 hours, extensive writing. Prerequisite: graduate standing or consent of instructor. Rhetorical and substantive challenges of presenting educational research. May be repeated once for credit. Offered in alternate years.—(I, II.) Wagner

210. The Psychology of School Learning (4)

Graduate Courses

200. Educational Research (4)
Lecture—2 hours; discussion—2 hours. Prerequisite: introductory statistics and graduate standing in education or consent of instructor. Defining educational research questions, reviewing relevant literature, developing research designs, developing research instruments, selecting appropriate data analysis procedures, and writing research projects. A case problem will provide practice in designing and reporting research.—III. (III.) Sandoval

201. Quantitative Methods in Educational Research (4)
Lecture/discussion—4 hours. Prerequisite: graduate standing or consent of instructor. Examines the design and conduct of educational research using non-numerical data (e.g., text, discourse, imagery and artifacts). Focuses on issues (e.g., validity, reliability, generalizability, ethics) and reporting genres (e.g., narrative accounts, case studies, and arguments). (Former course 203.)—III. (III.) Wagner

203. Educational Testing and Evaluation (4)
Lecture/discussion—4 hours. Prerequisite: graduate standing or consent of instructor. Introduction to the theoretical assumptions underlying traditional test construction, as well as the basic statistical principles involved in the design, evaluation, and interpretation of standardized tests. Also introduces the debates surrounding the uses of different kinds of tests and evaluation tools.—II. (III.) Gandara

205A. Ethnographic Research in Schools I: Current Theory and Practice (4)
Lecture—4 hours. Prerequisite: graduate standing. Current literature from anthropology and sociology related to schools. Emphasis on the organizational structure of institutions, and the analysis of face-to-face interaction. Will explore the relationship between field-based research and theory development on the acquisition of knowledge in specific social and cultural contexts. (Former course 201A.)—I. (I.) Watson-Giego

205B. Ethnographic Research in Schools II: Field-Based Research Projects (4)
Discussion—4 hours. Prerequisite: graduate standing and course 205A. Student research projects in specific schools with cooperative critical analysis of the design, data collection, and interpretation by researchers. Students will continue to meet with instructor as a group throughout the quarter to discuss specific projects. (Former course 201B.)—II. (III.) Watson-Giego

207. Concepts of the Curriculum (4)
Lecture—2 hours; discussion—2 hours. Prerequisite: graduate standing or consent of instructor. Development of the skills of philosophical analysis and argument for the establishment of a point of view, in the consideration of curriculum theory and practice. Classical and contemporary approaches to subject matter and activity emphases, hidden curriculum, and moral education.—I (I.)

208. Presenting Educational Research in Written Reports (4)
Seminar—3 hours, extensive writing. Prerequisite: graduate standing or consent of instructor. Rhetorical and substantive challenges of presenting educational research through written reports; research rhetoric and genres; competing discourse conventions of educational research, policy, and practice, the social organization of publishing educational research. May be repeated once for credit. Offered in alternate years.—(I, II.) Wagner

210. The Psychology of School Learning (4)

182. Computer Project for Curricular Integration (1)
Seminar—1 hour. Prerequisite: Agricultural Systems and Environment 21 or appropriate microcomputer course, experience with instructional computing and consent of instructor. Design and implementation of a curricular unit to incorporate computer technology into a K-12 classroom setting. A project-based seminar intended for students with substantial prior experience with instructional use of computers and related technologies. Not open for credit to students who have completed course 180 or 181.

192. Internship (1-3)
Internship—2-8 hours. Prerequisite: upper division standing and consent of instructor. Internship as a tutor, teacher’s aide, or peer counselor in a school or educational counseling setting under the supervision of a faculty member. May be repeated once for credit. (P/NP grading only.)

197. Tutoring in Education (1-2)
Tutoring—1-2 hours. Prerequisite: upper division standing and consent of instructor. Leading of small voluntary discussion groups affiliated with the Division’s upper division courses under the supervision of, and at the option of, the course instructor, who will submit a written evaluation of the student’s work. May be repeated once for credit for a total of 4 units. (P/NP grading only.)

198. Directed Group Study (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)
213. Individual Assessment (4)
Lecture—4 hours. Prerequisite: courses 114 and 219, admission to school psychology credential program. Theories of intellectual functioning and the measure ment of cognitive abilities in school-aged children. Supervised practice in administration and scoring of contemporary tests for children including the WISC-R, the WAIS-R, the Stanford Binet, the McCarthy Scales of Children’s Ability.—III. Sandoval

215. Research on Achievement Motivation in Education (4)
Seminar—3 hours; term paper. Prerequisite: graduate standing in Education or consent of instructor. Analysis and critique of recent research on cognitive processes related to achievement motivation in school settings. Topics include self-determina tion theory, attribution theory, goal theory, intrinsic and extrinsic motivation, learned helplessness, psychological reactance, gender and culture, and research design.—II. (II.) Spring

216. School-Based Prevention Programs (4)
Seminar—3 hours; term paper. Prerequisite: graduate standing or consent of instructor. Promotion of health and mental health in schools. Topics include the theoretical base, prevention models, specific examples of techniques and programs designed to prevent learning and adjustment problems, and evaluation issues. Offered in alternate years.—III. Sandoval

218. Testing Minority Children (4)
Lecture—3 hours; field work—3 hours. Prerequisite: admission to school psychology program or to M.A. bilingual education program or consent of instructor. Emphasizes testing and techniques that are appropriate for use with Hispanic students. The use of multicultural pluralistic assessment. Review studies and guidelines on use of tests with minority students. Offered in alternate years.—II. Figueroa

221. Culture and Social Organization of Schools (4)
Seminar—4 hours. Prerequisite: graduate standing or consent of instructor. Culture and social organization of schools. Examine perspectives of social researchers, educational policy makers, and school members and their implications for educational research, policy, and practice.—I. (I.) Wagner, Gandara

222. School Change and Educational Reform (4)
Lecture/discussion—2 hours; seminar—2 hours. Prerequisite: graduate standing in Education with course 120 or the equivalent. Analysis of models, processes, and case studies of school change and educational reform with respect to variable characteristics of schools and schooling, planned and unplanned change, the moral evaluation of school change, and the role of educational research. (Former course 204.)—II. (II.) Wagner

223. Education and Social Policy (4)
Seminar—4 hours. Prerequisite: graduate standing in Education or consent of instructor. Focuses on understanding the social and political context of education in the U.S. and California and how education policy is formed in the broader public arena. Develops skills in educational policy analysis. Offered in alternate years. (Former course 237.)—II. Gandara

226. Culture and Social Organization of Higher Education (4)
Seminar—3 hours; field work—1 hour. Prerequisite: graduate standing or consent of instructor. Critical study of culture and social organization of higher education institutions and policies and functions in the U.S., with some attention to other countries. Offered in alternate years.—III. (III.) Wagner, Sandoval, Gandara

231. Culture and Learning (4)
Seminar—4 hours. Prerequisite: graduate standing in Education with course 120 or the equivalent, or consent of instructor. Analysis of major theories of relationships between culture and learning, and how learning takes place, issues related to the academic achievement of different language groups, and implications for research and pedagogical reform.—II. (II.) Delgado-Gaitan

233. Anthropology of Education (4)
Seminar—3 hours; term paper. Prerequisite: one of the following courses: Anthropology 117, 127, or 222, or course 231, 201A, or 201B, or consent of instructor. Uses concepts of anthropology to examine education in such settings as family, community, and formal institutions of schooling. Course goal is to raise questions about educational issues often taken for granted and provide a perspective from which problems may be analyzed. Offered in alternate years. (P/NP grading only.)—I. Delgado-Gaitan

235. Critical Pedagogy (4)
Seminar—4 hours. Prerequisite: Critical Theory 200A and graduate standing. A sociocritical, democratic and interdis ciplinary perspective, of educational reform and change. The critique will include an analysis of the influence of text content on the perpetuation of social power differences.—III. (III.) Delgado-Gaitan

242. Research on Text Comprehension (4)
Seminar—3 hours; term paper. Prerequisite: graduate standing or consent of instructor. Analysis of research related to cognitive processing of written texts. Topics include word decoding, schema theory, background knowledge, assimilation, accommodation, working memory, processing depth, vocabulary acquisition, sentence-level processes, text-level processes, text structure, implica tions for curriculum and instruction.—I. (I.) Delgado-Gaitan

243. Research on the Teaching and Learning of Writing (4)
Seminar—4 hours. Prerequisite: graduate standing in Education or consent of instructor. Study of issues in research on composition; history of composition studies; data analysis techniques; product and process approaches; cognitive and social perspectives. Offered in alternate years.—Ill. Murphy

249. Discourse Analysis in Educational Settings (4)
Seminar—3 hours; term paper. Prerequisite: graduate standing and at least one previous course in linguistics or sociolinguistics, or consent of instructor. Examines form and function in discourse (e.g., narrative, conversation, reports), approaches to discou rs analysis, and research on classroom discourse (lessons, teaching/learning interactional sequences). Final term paper is an analysis of discourse data tape recorded by consent on a field trip.—III. G. McMahon

251. Research in Bilingual and Second Language Education (3)
Seminar—3 hours. Prerequisite: course 151; knowledge of a foreign language. Discus sion and analysis of recent research in bilingual and second language education. Topics include: language acquisition in second language learners and bilingual children; second language teaching methods, language-use models in bilingual education, interaction analysis in bilingual/cross-cultural classrooms, use of the vernacular in classrooms. Offered in alternate years.—III. Merino

252. Multicultural Teaching and Curriculum (3)
Seminar—2 hours; field work—3 hours. Prerequisite: graduate standing or consent of instructor. Cross-cultural research on socialization, motivation, language acquisi tion and cognition and its application to effective classroom strategies and curricula development for minority students. Students will develop and implement multicultural curriculum as well as use ethnographic research techniques in an educational setting. Offered in alternate years.—II. (II.) Delgado-Gaitan

253. Language and Literacy in Linguistic Minorities (3)
Seminar—2 hours; field work—3 hours. Prerequisite: familiarity with another language and culture. Graduate standing. Analysis and application of research on oral language development and literacy in language minority students. Through the development and implementation of research-based language arts curricul um.—II. (II.) Merino, Watson-Geggo

255. Curriculum Development and Evaluation in Mathematics (4)
Seminar—4 hours. Prerequisite: graduate standing in Education with upper divi sion coursework in mathematics or consent of instructor. Analysis of curricular issues and goals in mathematics education, including long-term trends, current status and influences, proposed changes, and evaluation issues. Selected curriculum projects will be examined.—I. (I.) Dugdale

256A. Research in Mathematics Education (4)
Seminar—4 hours. Prerequisite: graduate standing in Education with upper division course work in mathematics, or consent of instructor. Examination of research process in mathematics education; review of critical productive problems identified by researchers; evolution of trends, issues, theories and hypotheses in various areas of mathematics education research. Course emphasizes foundations. Offered in alternate years.—II. Dugdale

256B. Research in Mathematics Education (4)
Seminar—4 hours. Prerequisite: graduate standing in Education with upper division coursework in mathematics, or consent of instructor. Current research issues and activities in mathematics education: status, trends, theories and hypotheses. Formulation of research questions and design of studies. Projection of future directions for research. Offered in alternate years.—II. Dugdale

257. Computer Technology in Mathematics Education (4)
Seminar—4 hours. Prerequisite: graduate standing in Education with mathematics course work; or consent of instructor. The roles of calculators, computers, and graphing calculators in mathematics education will be addressed, with emphasis on the impact of these technologies on curriculum reform. Selected efforts to integrate technology into mathematics instruction will be examined. Offered in alternate years.—III. (III.) Dugdale

260. The Modern History of Science Education (4)
Seminar—4 hours. Prerequisite: graduate standing in Education with upper division coursework in science, or consent of instructor. History of curricular issues and goals in the science education from the late 19th century forward, including long-term trends, current status and influences, proposed changes, and evaluation issues. National science standards and curriculum projects. Offered in alternate years.—(I.)

262A. Research Topics in Science Education I (4)
Seminar—4 hours. Prerequisite: graduate standing in Education with upper division coursework in science, or consent of instructor. Research process and product in science education; review of critical science education issues; evolution of trends, theories and hypotheses in various areas of science education research. Survey of current major research in science education. Offered in alternate years.—I. (I.) McMahon, Cavallon

262B. Research Topics in Science Education II (4)
Seminar—4 hours. Prerequisite: course 262A and graduate standing in Education with upper division coursework in science, or consent of instructor. Analysis of research issues in science education: status, trends, theories and hypotheses. Formulation of research questions, design of studies and critical, in-depth review of literature related to the student’s research interests. Offered in alternate years.—II. (II.) McMahon, Cavallon

264. Scientific Literacy and Science Education Reform (4)
Seminar—4 hours. Prerequisite: graduate standing in Education with upper division coursework in science, or consent of instructor. Current trends in science education reform: locally, regionally, and nationally focusing on scientific literacy, equity, access, and “science for all.” Offered in alternate years.—(III.) McMahon

Quarter Offered: I=Fall; II=Winter; III=Spring; IV=Summer. 2001-2002 offering in parentheses.

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
275. Effective Teaching (4)
Seminar—4 hours. Review of research on the relationship of effective teacher behavior and student learning. Use of research on teacher effectiveness to develop teaching strategies. Ways to decide on the most appropriate instructional strategies in specific teaching situations.—I. (I.)

290C. Research Conference in Education (1)
Discussion—1 hour. Prerequisite: graduate standing. Presentations and critical discussions of research in education by graduate students with their major professors. May be repeated twice for credit. (SU/grading only.)—I, II, III. (I, II, III)

291. Proseminar in Education (3)
Seminar—3 hours. Prerequisite: admission to the Ph.D. graduate program in Education. Seminar for first-year education doctoral students. The study of multi-disciplinary research approaches to educational issues. Reports and discussions of recent advances in education. Speakers from the graduate group faculty in Education. May be taken twice for credit.—I, II, III. (I, II, III) Sandoval

292. Special Topics in Education (2-4)
Variable—2-4 hours. Prerequisite: completion of doctoral core courses in Education or consent of instructor. Selected topics in education. Designed to facilitate preparation for the qualifying examination or dissertation. Students will critically analyze scholarly work including their own works in progress. May be repeated for credit.

293. Topical Seminar in School Psychology (3)
Seminar—3 hours. Prerequisite: graduate standing in Education and consent of instructor. Critical study of selected issues in education and school psychology related to the learning and mental health of children and adolescents in schools. May be repeated once for credit.—I, II, III. (I, III) Sandoval

296. Group Study (1-5)
(SU/grading only.)

299. Individual Study (1-6)
Independent study—3-18 hours. Individual study under the direction of a faculty member. (SU grading only.)

299D. Research (1-12)
Research for individual graduate students. (S/U grading only.)

Professional Courses

300. Reading in the Elementary School (4)
Lecture—3 hours; field work—3 hours. Prerequisite: graduate standing. Principles, procedures, and curriculum materials for teaching of reading. Includes decoding skills with a special emphasis on phonics, comprehension skills, study skills, and reading in the content areas.—I, II, III. (I, II, III)

301. Reading in the Secondary School (4)
Discussion—4 hours. Prerequisite: graduate standing, enrollment in the secondary credential program, or consent of instructor. Principles, procedures, and materials to help secondary school teachers improve the reading competence of students. Strategies for enhancing learning through reading and writing in all disciplines, with special attention to linguistically diverse populations.—I, II, III. (I, II, III) Murphy

302. Language Arts in the Elementary School (2)
Lecture—2 hours. Prerequisite: graduate standing. Principles, procedures, and materials for the teaching of oral and written expression, listening skills, drama, and children's literature in elementary schools.—I. (I.)

303. Art Education (3)
Lecture/discussion—2 hours; laboratory—2 hours. Prerequisite: admission to multiple subject credential program. Understanding the principles of education in the arts through participation. Development of concepts, introduction to media, and techniques suitable for the elementary school with emphasis on cross-discipline exploration.—I, II, III. (I, II, III) Murphy

304A. Teaching in the Elementary Schools (2-18)
Lecture/discussion—2 hours; fieldwork—9-48 hours. Prerequisite: acceptance into a teacher education program. Supervised teaching in regular classrooms in elementary schools. Selection and organization of teaching materials. Introduction to techniques of diagnosing school achievement of children.—I. (I.)

304B. Teaching in the Elementary Schools (2-18)
Lecture/discussion—2 hours; fieldwork—9-48 hours. Prerequisite: acceptance into a teacher education program. Supervised teaching in regular classrooms in elementary schools. Current conceptions of elementary school curriculum, emphasis on contributions from the social, biological, and physical sciences. Emphasis on effective teaching methods.—II. (II.)

304C. Teaching in the Elementary Schools (2-18)
Lecture/discussion—2 hours; fieldwork—9-48 hours. Prerequisite: acceptance into a teacher education program. Supervised teaching in regular classrooms in elementary schools. Evaluation of teaching materials including instructional technology. Current elementary school curriculum with emphasis on contributions from the arts and humanities.—III. (III.)

305A. Teaching in the Middle Grades (5-8)
Lecture—2 hours; seminar—2 hours; student teaching—15-30 hours. Prerequisite: acceptance into a teacher education program. Supervised teaching in regular or special education classrooms by graduate students. Current conceptions of the middle-grades curriculum with emphasis on social, biological, and physical sciences. Effective teaching methods.—I. (I.)
Education (A Graduate Group)

Sharon Dugdale, Chairperson of the Group
Group Office, 2078 Academic Surge (530-752-0761; Fax: 530-752-5411); e-mail: kbray@ucdavis.edu

Faculty
Steven Athanases, Ph.D., Assistant Professor (Education)
Robert Blake, Ph.D., Professor (Spanish)
Alan Blakely, Ph.D., Education Program Specialist (Medical Education Opportunities Program)
Marc Blanchard, Ph.D., Professor (French, Comparative Literature)
Brenda Bryant, Ph.D., Professor (Human Development)
Ann Cavallo, Ph.D., Assistant Professor (Education)
Sharon S. Dugdale, Ph.D., Professor (Education)
Richard A. Figueroa, Ph.D., Professor (Education)
Patricia Gandara, Ph.D., Professor (Education)
Barbara Goldman, Ph.D., Associate Director of Teacher Education
Suad Joseph, Ph.D., Professor (Anthropology)
M. McMahon, Ph.D., Director, Special Projects
Maureen McMahon, Ph.D., Assistant Professor (Education)
Barbara J. Merino, Ph.D., Professor (Education)
Jay Mechling, Ph.D., Professor (American Studies)
Sandra M. Murphy, Ph.D., Professor (Education)
Wendell Potter, Ph.D., Lecturer, (Physics)
Tom Sallee, Ph.D., Professor (Mathematics)
Jonathan Sandovall, Ph.D., Professor (Education)
Evelyn Silvia, Ph.D., Professor (Mathematics)
Mary Schleppegrell, Ph.D., Associate Professor (Linguistics)
Kenneth Verosub, Ph.D., Professor (Geology)
Jon Wagner, Ph.D., Professor (Education)
Karen Watson-Gegeo, Ph.D., Professor (Education)
Fred Wood, Ph.D., Lecturer (Chemistry)

Emeriti Faculty
Donald G. Arnstine, Professor Emeritus
Concha Delgado-Gaitan, Professor Emeritus
Kurt Kleeth, Professor Emeritus
Douglas L. Minnis, Lecturer Emeritus
Susan A. Ostergard, Lecturer Emeritus
Julius M. Sassenrath, Professor Emeritus
Carl J. Spring, Professor Emeritus
David R. Wampler, Ph.D., Lecturer Emeritus
George Yonge, Professor Emeritus

Graduate Study. The Graduate Group in Education offers programs of study and research leading to the Ph.D. degree. Students may concentrate in educational psychology; language, literacy and culture; mathematics education; school organization and educational policy; and science education. Students may also combine these fields of study with designated emphasis areas such as critical theory, second language acquisition, and women's studies. Detailed information regarding graduate study may be obtained by writing the group administrative assistant.

Preparation. Students should have earned an M.A. degree or the equivalent in a discipline relevant to their proposed emphasis program. For example, students applying for the mathematics education emphasis should have earned the M.A. or M.A.T. degree in mathematics or mathematics education; students applying to the educational psychology program should have an M.A. in psychology or educational psychology.

Graduate Adviser. M. McMahon
Graduate Coordinator. K. Bray

Courses. See Education for courses.
The department administers three curricula in the College of Engineering:

- The Electrical and Computer Engineering Major

Affiliated Faculty

- Olav Solgaard, Ph.D., Associate Professor
- Shu Lin, Visiting Professor

Emeriti Faculty

- Michael A. Soderstrand, Ph.D., Professor Emeritus
- Richard C. Dorf, Ph.D., Professor Emeritus
- John N. Churchill, Ph.D., Professor Emeritus
- V. Ralph Algazi, Ph.D., Professor Emeritus

Integrated Degree Program. IDP leads to both the Bachelor of Science and the Master of Science degrees. The program provides a student the opportunity to obtain superior breadth and depth of technical material. The IDP program in the Department of Electrical and Computer Engineering is available only to UC Davis undergraduates with strong academic records enrolled in the Electrical Engineering, Computer Engineering, or Electrical Engineering/Materials Science curricula. Applicants in their junior year must apply for the IDP by March 31. Further information on IDP is listed in the College of Engineering Bulletin.

Mission. Under its land grant status, the University of California has a mission to provide the state with the trained workforce it needs and to advance knowledge and research in directions that contribute to the general welfare of the state and the nation. The Department of Electrical and Computer Engineering contributes to the mission of the University in three ways: First, its undergraduate and graduate education programs seek to provide students with an understanding of the fundamental principles of electrical and a computer engineering, the skills needed to solve the complex technological problems of modern society and the ability to continue to learn and develop throughout their careers. Second, through its research programs, the department contributes to the development and progress of electronics, communications, and computer technology. Finally, the department helps to transfer research results to the industry through publication, public service and professional activities.

Objectives. Teaching.—To provide undergraduate students with sufficient breadth to allow them to participate in teams, continue their own education after graduation and select a focus area intelligently; to provide undergraduate students with sufficient depth in a narrower discipline to allow them to develop the ability to solve complex engineering problems; to educate the students in the graduate program to be able to lead industry in or to do meaningful research in industry, government or academia. Research.—To develop and maintain research programs that are useful technological advances while simultaneously training the next generation of researchers and leaders; to update and/or shift the foci of these programs frequently in response to the needs of our constituency and the nation; to provide a stimulating environment that encourages our graduate students to develop their abilities as far as possible.

Electrical Engineering Curriculum

Electrical Engineering involves the design, analysis, and effective use of electrical systems including electronic computers. Electrical systems and computers play a central role in nearly all aspects of modern life, including communication, medicine, education, environmental protection, space exploration, defense, and home entertainment. Students who complete the Electrical Engineering curriculum will obtain a Bachelor of Science in Electrical Engineering, one of the engineering degrees recognized in all fifty states as eligible for registration as a Professional Engineer.

Objectives. The Electrical Engineering program has adopted the following objectives to serve the long-term interests of our students and the industries of Northern California and the nation. Foundation.—To provide our graduates with a solid foundation in engineering science, including mathematics, physical science, and the fundamentals of electrical engineering. This foundation is necessary to succeed in more advanced engineering courses and to be able to continue learning throughout a career. Breadth.—To provide our graduates with sufficient breadth in electrical engineering. This breadth is required for students to understand engineering tradeoffs that cross disciplines, for them to contribute effectively to multidisciplinary projects and for them to make an informed decision about their area of specialization. Depth.—To provide our graduates with sufficient depth in a specific area of electrical engineering. This depth is necessary to solve complex real-world engineering problems and to prepare to contribute to a specific discipline within electrical engineering.

Lower Division Program

Integrated Degree Program

The Electrical and Computer Engineering Major Programs

The department administers three curricula in the College of Engineering: (1) the Electrical Engineering curriculum, (2) the Computer Engineering curriculum, and (3) the Electrical Engineering/Materials Science and Engineering curriculum. The Electrical Engineering, Computer Engineering, and Electrical Engineering/Materials Science and Engineering curricula are all accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology.

Quarter Offered: I=Fall; II=Winter; III=Spring; IV=Summer, 2001-2002 offering in parentheses.

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.

Quarterly Offered: I=Fall; II=Winter; III=Spring; IV=Summer, 2001-2002 offering in parentheses.
Upper Division Program

Electrical Engineering Curriculum

The Electrical Engineering curriculum prepares students for careers in electrical engineering or for graduate studies by providing a solid background in mathematics, physical sciences, and traditional electrical engineering subjects of (1) physical electronics, (2) electromagnetics, (3) analog electronics, (4) digital electronics, and (5) signal processing and communication. Through the proper choice of 29 units of flexible design and technical electives, you may focus on any of these five specialty areas or distribute the 29 units of electives among these areas.

Areas of Specialization

Physical Electronics: devices, solid-state circuits and fabrication and the theory courses supporting those subjects.
Recommended elective courses:
- Core electives: Electrical and Computer Engineering 130B, 140B
- Elective design courses: Electrical and Computer Engineering 110B, 118, 135, 146A, 146B, 218A

Electromagnetics: microwave circuits and systems, and fiber optical systems.
Recommended elective courses:
Suggested advisers: G.R. Branner, B. Yoo.

Analog Electronics: transistor-level analog circuit design.
Recommended elective courses:
- Core electives: Electrical and Computer Engineering 140B, 150B
- Technical electives: Electrical and Computer Engineering 130B and 146A, or 157A or 194A-194B-194C or 146B or 218A

Digital Electronics: transistor-level digital circuit design.
Recommended elective courses:
- Core electives: Electrical and Computer Engineering 140B, 150B
- Technical electives: Electrical and Computer Engineering 130B and 146A, or 112 or 146B or 157A or 160 or 210

Signal Processing and Communications: digital communication, robotics, classical controls and communication, wireless and cellular digital communication systems, signal and image processing, and computer vision.
Recommended elective courses:
- Core electives: Electrical and Computer Engineering 130B, 150B

Electrical Engineering Upper Division Requirements

<table>
<thead>
<tr>
<th>Required Courses</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical and Computer Engineering 100, 110A, 130A, 140A, 150A, 180A, plus two courses from 110B, 130B, 140B, 150B</td>
<td>34</td>
</tr>
<tr>
<td>Statistics 120, 131A, or Mathematics 131</td>
<td>4</td>
</tr>
<tr>
<td>Engineering 160, 190 or Applied Science Engineering 137 or Computer Science Engineering 189</td>
<td>3</td>
</tr>
</tbody>
</table>

Design electives: Select 6 courses from the following list:
- Select at least 1 project course** from Electrical and Computer Engineering 112B, 132B, 133, 135, 136, 146A, 157B, 183, 194A-194B-194C (must be taken together to count as one design elective) and Electrical and Computer Engineering 195A-195B-195C (must be taken together to count as one design elective).

The remaining 4 courses may be chosen from the lists above, or chosen from the following courses: Electrical and Computer Engineering 110B, 116, 166, 170F, approved 192 and 199 courses*; Engineering: Computer Science 110, 150, 152B, 158, 163, 175, 177 & 178, approved 192 and 199 courses*.

Technical electives—Select courses from the College of Engineering Technical Electives list, plus Engineering 35 and 45, with at least 4 units from courses in Electrical and Computer Engineering. **

General Education electives

<table>
<thead>
<tr>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
</tr>
</tbody>
</table>

Total Upper Division Units: 90

Minimum Units Required for Major: 180

† Electrical and Computer Engineering 110B may not be counted toward both the Electrical Engineering Core requirement and the Electrical Engineering Design Electives.

‡ Electrical and Computer Engineering students may substitute Computer Science Engineering 154B for Electrical and Computer Engineering 170.

* A maximum of two distinctly different approved 192 or 199 projects may be counted toward the design elective requirement.

** Courses appearing on both the laboratory elective list and on the project elective list may be counted toward both the laboratory requirement and the project requirement simultaneously.

Computer Engineering Curriculum

The program in Computer Engineering provides the student with a broad and well-integrated background in the concepts and methodologies that are needed for the analysis, design, development, organization, theory, programming, and applications of information processing systems. Although such systems are popularly called “computers,” they involve a far wider range of disciplines than merely computation, and the Computer Engineering curriculum is correspondingly broad. The program presents the essential material in electronic circuits, digital logic, discrete mathematics, computer programming, data structures, and other topics. Students who complete the Computer Engineering curriculum receive a Bachelor of Science in Computer Engineering.

Objectives. The Computer Engineering program has adopted the following objectives to serve the long-term interests of our students and the industries of Northern California and the nation. Foundation—To provide our graduates with a solid foundation in engineering science, including mathematics, physical science, and the fundamentals of computer engineering. This foundation is necessary to succeed in more advanced engineering courses and to be able to continue learning throughout a career. Breadth—To provide our graduates with sufficient breadth in computer engineering. This breadth is required for students to understand engineering tradeoffs that cross disciplines, for them to contribute effectively to multi-disciplinary projects and for them to make an informed decision about their area of specialization. Depth: To provide our graduates with sufficient depth in a specific area of computer engineering. This depth is necessary to solve complex real-world engineering problems and to prepare to contribute to a specific discipline within computer engineering.

Lower Division Program

<table>
<thead>
<tr>
<th>QUARTER</th>
<th>USUALLY TAKEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNITS</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

** Courses appearing on both the laboratory elective list and on the project elective list may be counted toward both the laboratory requirement and the project requirement simultaneously.

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
Upper Division Program

The Computer Engineering curriculum prepares students for careers in computer engineering or for graduate studies by providing a solid background in mathematics, physical sciences, and the traditional computer engineering subjects: electronics, computer hardware, and computer software. Here electronics refers to the five Electrical Engineering specialty areas: (1) physical electronics, (2) electromagnetics, (3) analog electronics, (4) digital electronics, and (5) signal processing and communication. The 63 upper division units in electronics, computer hardware, and computer software consist of 13 units in electronics courses, 18 units in computer hardware courses, and 12 units in computer software courses. The remaining 20 units consist of 9 units of design electives and 11 units of technical electives. By carefully selecting these 20 design and technical electives, students can focus on electronics, computer hardware, or computer software, or can distribute these units among the three areas.

Areas of Specialization

Computer Systems and Software
Involves computer architecture, computer design, computer interfacing, and computer software.

Recommended elective courses:

- Design electives: Electrical and Computer Engineering 183, Computer Science and Engineering 140A, 160

Logic Design
Involves the design of computer circuits at various levels, including the use of CAD systems, VHDL, and the design and fabrication of transistor-level digital circuits.

Recommended elective courses:

- Design electives: Electrical and Computer Engineering 110B, 118, 183

Computer Engineering Upper Division Requirements

<table>
<thead>
<tr>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Courses</td>
</tr>
<tr>
<td>Electrical and Computer Engineering 100, 110A, 140A, 180A, 180B</td>
</tr>
<tr>
<td>Electrical and Computer Engineering 170*</td>
</tr>
<tr>
<td>Computer Science and Engineering 150 or 151A</td>
</tr>
<tr>
<td>Computer Science Engineering 110, 122A</td>
</tr>
<tr>
<td>Statistics 120, 131A, or Mathematics 131</td>
</tr>
<tr>
<td>Engineering 160, 190, Applied Science Engineering 137, or Computer Science Engineering 188</td>
</tr>
<tr>
<td>Design electives</td>
</tr>
<tr>
<td>Select 3 courses from the following list. At least one course must have a project:</td>
</tr>
<tr>
<td>1 project course from Electrical and Computer Engineering 114, 132B, 133, 135, 136, 146A, 157B, 183, 194A-194B-194C (must be taken together to count as one design elective), 195A-195B-195C (must be taken together to count as one design elective).</td>
</tr>
<tr>
<td>The remaining 2 courses may be taken from the list above or chosen from the following courses: Electrical and Computer Engineering 106, 110B, 112, 118, 132A, 132C, 146B, 151, 157A, 160, 166, 171, approved 192 and 199 courses**</td>
</tr>
<tr>
<td>Technical electives—select courses from the College of Engineering Technical Electives list, plus Engineering 35 and 45, with at least 4 units from courses in Electrical and Computer Engineering</td>
</tr>
<tr>
<td>General Education electives</td>
</tr>
<tr>
<td>Unrestricted electives</td>
</tr>
<tr>
<td>Total Upper Division Units</td>
</tr>
</tbody>
</table>

Minimum Units Required for Major

<table>
<thead>
<tr>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Science Engineering 154B may be substituted for the Electrical and Computer Engineering 170 requirement.</td>
</tr>
</tbody>
</table>

** *A maximum of two distinctly different approved 192 or 199 projects may be counted toward the design elective requirement.**

Electrical Engineering/Materials Science and Engineering Curriculum

The Electrical Engineering/Materials Science curriculum is a combined major, including portions of the Electrical Engineering curriculum in the Department of Electrical and Computer Engineering and the Materials Science curriculum in the Department of Chemical Engineering and Materials Science. In the past decade, the fields of solid-state electronics, opto-electronics, magnetics, and superconductors have developed to the point that demand for new materials now sets the pace for progress in these fields. Materials scientists with an electronics background are key to continued progress in these areas. The Electrical Engineering/Materials Science curriculum provides students with the background necessary to pursue careers in electrical engineering or materials science or to go on to graduate study. Students who complete the Electrical Engineering/Materials Science curriculum will receive a Bachelor of Science in Electrical Engineering/Materials Science.

Lower Division Program

<table>
<thead>
<tr>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Courses</td>
</tr>
<tr>
<td>Mathematics 21A, 21B, 21C, 21D</td>
</tr>
<tr>
<td>Mathematics 22A-22B, 22C-22D</td>
</tr>
<tr>
<td>Physics 9A, 9B, 9C, 9D</td>
</tr>
<tr>
<td>Chemistry 2A, 2B</td>
</tr>
<tr>
<td>Computer Science Engineering 30</td>
</tr>
<tr>
<td>Engineering 6</td>
</tr>
<tr>
<td>Computer Science Engineering 40 or Electrical and Computer Engineering 73</td>
</tr>
<tr>
<td>Electrical and Computer Engineering 70</td>
</tr>
<tr>
<td>or Computer Science Engineering 50</td>
</tr>
<tr>
<td>Engineering 35</td>
</tr>
<tr>
<td>Engineering 45</td>
</tr>
<tr>
<td>Engineering 17</td>
</tr>
<tr>
<td>or 4 or Comparative Literature 1, 2, 3, or 4</td>
</tr>
<tr>
<td>General Education electives</td>
</tr>
<tr>
<td>Total Lower Division Units</td>
</tr>
</tbody>
</table>

Electrical Engineering/Materials Science and Engineering Upper Division Requirements

<table>
<thead>
<tr>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Courses</td>
</tr>
<tr>
<td>Electrical and Computer Engineering 100, 110A, 110B, 130A, 130B, 140A, 140B, 150A, 180A</td>
</tr>
<tr>
<td>Materials Science and Engineering 130, 132, 134, 146, and one laboratory course from Materials Science and Engineering 138B, 134L</td>
</tr>
<tr>
<td>Engineering 105</td>
</tr>
<tr>
<td>Statistics 120, 131A, or Mathematics 131</td>
</tr>
<tr>
<td>Engineering 160, 190, Applied Science Engineering 137, or Computer Science Engineering 188</td>
</tr>
<tr>
<td>Design electives</td>
</tr>
<tr>
<td>Select two courses, at least one of which must be a Materials Science and Engineering course, from the following:</td>
</tr>
<tr>
<td>Materials Science and Engineering 140, 142, 148, 155</td>
</tr>
<tr>
<td>May also include approved Electrical and Computer Engineering 192 or 199, or Materials Science Engineering 199 courses.*</td>
</tr>
<tr>
<td>*Laboratory courses—Materials Science and Engineering 149, Electrical and Computer Engineering 146A</td>
</tr>
<tr>
<td>Advanced science electives—Geology 161 and 162N; or Physics 140A and 140B; or Physics 121 and 122; or Chemistry 110A and 110C</td>
</tr>
<tr>
<td>General Education electives</td>
</tr>
<tr>
<td>Total Upper Division Units</td>
</tr>
<tr>
<td>Minimum Units Required for Major</td>
</tr>
</tbody>
</table>

Quarter Offered: I=Fall; II=Winter; III=Spring; IV=Summer, 2001-2002 offering in parentheses.

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
Courses in Engineering: Electrical and Computer Engineering (EEC)

Lower Division Courses

1. Introduction to Electrical and Computer Engineering (1)
Lecture—1 hour. Electrical and computer engineering as a professional activity. What electrical engineers know and how they use their knowledge. Problems they are concerned with and how they go about solving them. Presentation of basic ideas and their applications. Examination of some case studies. (P/NP grading only.)—II, III

70. Computer Structure and Assembly Language (4)
Lecture—3 hours; workshop—3 hours. Prerequisite: Computer Science Engineering 30 or 35. Restricted during Pass 1 registration to Electrical Engineering, Computer Engineering, Computer Science, Computer Science and Engineering, and Electrical Engineering/Material Science majors. Introduction to computer architecture; machine language; assembly language; macros and conditional macros; subroutine/parameter passing; input-output programming; interrupt and trap; direct-memory-access; absolute and relocatable code, re-entrant code, program development in an operating system.—I, II, III, (I, II, III) Redinbo, Wilken

73. Applications of Object-Oriented Programming (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: Computer Science Engineering 30. Restricted to the following majors: Electrical Engineering, Computer Engineering, Electrical/ material Science Engineering, and Electrical Engineering graduate students. Non-majors accommodated on a space-available basis. Introduction to the modern programming paradigms of data abstraction and object-oriented programming for engineering applications. Introduction to object-oriented programming in C++ and Java language. The technique of modeling an application by defining new types that match the concepts in the language. Not open for credit to students who have taken course 173.—I, II, III, (II, III) Wang

90C. Research Group Conference in Electrical and Computer Engineering (1)
Discussion—1 hour. Prerequisite: consent of instructor; lower division standing. Research group conferences. May be repeated for credit. (P/NP grading only.)—I, II, III, (I, II, III)

90X. Lower Division Seminar (1-4)
Seminar—1-4 hours. Prerequisite: consent of instructor. Examination of a special topic in a small group setting. May be repeated for credit.

92. Internship in Electrical and Computer Engineering (1-5)
Internship—3-15 hours. Prerequisite: lower division standing; project approval prior to period of internship. Supervised work experience in Electrical and Computer Engineering. May be repeated for credit. (P/NP grading only.)

98. Directed Group Study (1-5)
Prerequisite: consent of instructor. (P/NP grading only)

99. Special Study for Lower Division Students (1-5)
(P/NP grading only)

Upper Division Courses

100. Circuits II (5)
Laboratory—3 hours; lecture—3 hours; discussion—1 hour. Prerequisite: Engineering 132. Restricted to the following majors: Electrical Engineering, Computer Engineering, Computer Science/Engineering, Electrical Engineering/Material Science, Applied Science/Optical Science Engineering, Electrical Engineering graduate students. Theory, application and design of analog circuits. Methods of analysis including frequency response, and Laplace transform. Operational amplifiers and design of active filters. Students who have completed Engineering 100 may receive 3.5 units of credit.—I, II, III, (I, II, III)

106. Introduction to Image Processing and Computer Vision (4)
Lecture—3 hours; laboratory—3 hours. Prerequisite: course 150B. Imaging geometry; transforms and sampling; enhancement, restoration, and conversion; image compression; time-varying image analysis; elementary pattern recognition; segmentation; multi-resolution analysis.—I, II, III, (I, II, III)

110A. Electronic Circuits I (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 100 and 140A. Operation of bipolar and field-effect transistors. Use and modeling of nonlinear solid-state electronic devices in basic analog and digital circuits. Introduction to the design of transistor amplifiers and logic gates.—II, III, (I, II, III) Spencer, Lewis, Current, Hurst

110B. Electronic Circuits II (4)

112. Communication Electronics (4)
Lecture—3 hours; laboratory—3 hours. Prerequisite: courses 110B and 150A. Electronic circuits for analog and digital communication, including oscillators, mixers, tuned amplifiers, modulators, demodulators, and phase-locked loops. Circuits for amplitude modulation (AM) and frequency modulation (FM) are emphasized.—II, (II, II)

114. Analog Integrated Circuits (3)

118. Digital Integrated Circuits (3)
Lecture—2 hours; laboratory—3 hours. Prerequisite: courses 110A, 180A. Analysis and design of digital integrated circuits. Emphasis on MOS logic circuit families. Logic gate construction, voltage transfer characteristics, and propagation delay. Regenerative circuits, RAMs, ROMs, and PLAs.—III, (III) Hurst, Current

130A. Introductory Electromagnetics I (4)

130B. Introductory Electromagnetics II (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 130A. Plane wave propagation in lossy media, reflections, guided waves, simple modulated waves and dispersion, and basic antennas.—I, II, III, (I, II, III) Heritage, Knoesen, Yoo

132A. High-Frequency Systems, Circuits and Devices (4)
Lecture—3 hours; laboratory—3 hours. Prerequisite: courses 110B, 130B, and 140B. Application of electromagnetic theory to analysis and design of practical devices, circuits and systems operating at radio frequencies. Energy transfer at high frequencies, transmission lines, microwave integrated circuits, circuit analysis of electromagnetic energy transfer, the scattering parameters.—I, III, (II, III) Branner

132B. High-Frequency Systems, Circuits and Devices (5)
Lecture—3 hours; laboratory—3 hours; discussion—1 hour. Prerequisite: course 132A. High-frequency device design, analysis, design of microwave circuit and filter design. Introduction to analysis and design of microwave transistor and tunnel diode amplifiers.—II, (II) Branner

132C. RF Amplifiers, Oscillators, Mixers and Antennas (5)
Lecture—3 hours; laboratory—3 hours; discussion—1 hour. Prerequisite: course 132B. Microwave amplifier theory and design, including transistor circuit models, stability considerations, noise models and low noise design. Theory and design of microwave transistor oscillators and mixers.—II, (II) Branner

133. Electromagnetic Radiation and Antenna Analysis (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 130B. Properties of electromagnetic radiation; analysis and design of antennas; ideal cylindrical, small loop, aperture, and arrays; antenna field measurements.—I, II, (I, II) Knoesen, Heritage

135. Optical Communications I: Fibers (3)

136. Opto-Electronics and Fiber-Optics Laboratory (3)
Lecture—1 hour; discussion—1 hour; laboratory—3 hours. Prerequisite: course 130B or consent of instructor; course 135 recommended. Characteristics and applications of state-of-the-art optical electronic components (semiconductor detectors, optical modulators and optical fibers) and fiber-optic communication systems.—III, (III) Knoesen, Yoo

140A. Principles of Device Physics I (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: Engineering 17, Physics 9D. Semiconductor device fundamentals, equilibrium and non-equilibrium statistical mechanics, conductivity, diffusion, density of states, electrons and holes, p-n junctions, Schottky junctions, and junction field effect transistors.—I, II, III, (I, II, III) Bower, Haley, Hunt, Smith, Colinge

140B. Principles of Device Physics II (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 140A. Electrical properties, design, and models for Bipolar and MOS devices.—I, II, III, (I, II, III) Bower, Haley, Hunt, Smith

145A. Solid-State Electronics (3)
Lecture—3 hours. Prerequisite: course 140B. Semiconductor device physics, the principal techniques employed in creating device structures, materials for thin film devices, and heterostructure devices.—I, II, (I, II) Bower, Haley, Hunt

145B. Solid-State Electronics (3)
Lecture—3 hours. Prerequisite: course 140B. Magnetism and superconductivity. Description of devices and their associated circuits utilizing the magnetic and superconducting properties of solids. Magnetic devices studied include masers and magnetic media: disk, tape and bubbles. Superconducting devices studied include Josephson junctions, SQUIDS, and SC microcircuits.—II, III, (II, III) Haley

146A. Integrated Circuits and Interconnection (3)
Lecture—2 hours; laboratory—3 hours. Prerequisite: course 140B. Restricted to Electrical, Computer, and Electrical/Materials Science majors and Electrical Engineering graduate students. Non-majors accommodated when space available. Basic fabrication processes for metal-oxide semiconductor (MOS) integrated circuits. Laboratory assignments covering oxidation, photolithography, impurity diffusion, metalization, wet chemical etching, and characterization work together in producing metal-gate PMOS test chips which will undergo parametric and functional testing.—I, II, (I, II) Bower, Smith
146B. Advanced Integrated Circuits Fabrication (3)
Lecture—2 hours; laboratory—3 hours. Prerequisite: course 146A. Restricted to Electrical, Computer, and Electrical/Materials Science majors and Electrical Engineering/Computer Science non-majors accommodated when space available. Fabrication processes for CMOS VLSI. Laboratory projects examine deposition of thin films, ion implantation, process simulation, anisotropic plasma etching, sputter metallization, and C-V analysis. Topics include isolation, projection alignment, epitaxial growth, thick gate oxidation, and rapid thermal annealing.—II, (Ill.) Hunt, Bower, Smith

150A. Introduction to Signals and Systems I (4)
Lecture—4 hours. Prerequisite: Engineering 6 (may be taken concurrently), course 100. Characterization and analysis of continuous-time linear systems. Fourier series and transforms with applications. Introduction to communication systems. Transfer functions and block diagrams. Elements of feedback systems. Stability of linear systems.—I, II, (II.) Abdel-Ghaffar, Ford, Levy

150B. Introduction to Signals and Systems II (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 150A. Characterization and analysis of discrete time systems. Difference equation models. Z-transform analysis methods. Discrete and fast Fourier transforms. Introduction to digital filter design.—II, III, (III.) Ford, Levy, Reed

151. Instrumentation Interfacing, Signals and Systems (4)
Lecture—2 hours; laboratory—4 hours. Prerequisite: courses 100, 150A, 180A. Study of instrument interfacing systems, including software development, hardware interfacing, transducers, dynamic response, signal conditioning, A/D conversion, and data transmission.—III. (III.) Knoesen, Ford

157A. Control System Design (3)
Lecture—3 hours; laboratory—3 hours. Prerequisite: course 150A. Analysis and design of feedback control systems. Examples are drawn from electrical and mechanical systems as well as other engineering fields. Mathematical modeling of systems, stability, root-locus and frequency domain design methods.—I, (I.) Gundes, Wang, Chang, Hsia

157B. Control Systems (4)
Lecture—3 hours; laboratory—3 hours. Prerequisite: course 157A. Control system design, transfer-function and state-space methods; sampled-data implementation, digital controller design; includes feedback system experiments and simulation studies.—II, (II.) Chang, Gundes, Hsia, Wang

158. Control System Design Methods (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 150A and knowledge of Matlab, FORTRAN, or C; course 157A recommended. Design methods for feedback control systems including quantitative feedback theory, linear quadratic regulators, and fuzzy control systems.—III. (III.) Chang, Wang

160. Signal Analysis and Communications (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 150A. Signal analysis based on Fourier methods. Fourier series and transforms; time-sampling, convolution, and filtering; spectral density; modulation; carrier-amplitude, carrier-frequency, and pulse-amplitude.—I, (I.) Feher, Ford, Gardner, Levy

165. Modulation, Coding, and Noise (3)
Lecture—3 hours. Prerequisite: course 160. Statistics 120. Introduction to random process models of modulated signals and noise, and analysis of receiver performance. Analog, carrier, and digital pulse modulation. Signal-to-noise ratio, probability of error, matched filters, and Wiener filters. Introduction to information theory and coding.—III. (III.) Gardner, Levy

166. Digital Communication Design Techniques (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 160. Baseband digital signal processing for digitalMODEM Modulator-Demodulators. Digital modulation techniques including BPSK, QPSK, MSK and QAM. Spread spectrum, TDMA and FDMA access methods. Satellite, cellular-mobile, microwave and personal communication systems (PCS) applications. Computer-aided and hardware design projects.—II, (II.) Feher

167. Telecommunications Measurements and Instrumentation (3)
Lecture—3 hours. Prerequisite: course 160. Measurement techniques; instrumentation. Analysis of bit error rate, eye and overshoot distortion, noise and jitter measurement in digital communication and signal processing systems. Spectral and time measurements in digitized PCM voice and video, cellular digital mobile systems. Expert (artificial intelligence) applications. In-class experiments/demonstrations.—III. (III.) Feher

170. Introduction to Computer Architecture (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 180A; course 70 or Computer Science Engineering 50. Introduces basic aspects of computer architecture, including computer performance measurement, instruction set design, compiler, and computer-aided design. Introduction to non-pipelined implementation, and memory hierarchies (cache and virtual memory). Presents a simplified Reduced Instruction Set Computer using logic design methods from the prerequisite course.—I, III, (III.) Oklobdzija, Redinbo, Wilken, Akella

171. Parallel Computer Architecture (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 170. Organization and design of parallel processors including shared-memory multiprocessors, cache coherence, memory consistency, snooping protocols, synchronization, scalable multiprocessors, message passing protocols, distributed shared memory and interconnection network.—II, (III.) Akella, Oklobdzija, Redinbo, Wilken

172. Microcomputer-Based System Design (4)
Lecture—2 hours; laboratory—6 hours. Prerequisite: course 70 and Computer Science Engineering 50, and course 180A; course 180B recommended. Study of microcomputer-based architecture and its software conventions. I/O interface design with emphasis on devices such as transceivers, A/D-D/A converters and timers. Periph- eral polling and interrupt-driven system design are studied and contrasted. Programming in both assembly and high-level languages.—I, II, (II.) Oklobdzija, Redinbo, Wilken, Akella, Al-Asaad

180A. Digital Systems I (5)
Lecture—3 hours; laboratory—6 hours. Prerequisite: course 70 or Computer Science Engineering 50; course 100 (may be taken concurrently). Restricted to Electrical and Computer Engineering, Computer Science and Engineering, Computer Science, and Electrical Engineering/Materials Science majors and Electrical Engineering graduate students. Non-majors accommodated when space available. Introduction to digital system design including combinational logic design, sequential and asynchronous circuits, computer arithmetic, memory systems and algorithmic state machine design; computer-aided design (CAD) methodologies and tools.—I, II, III. (I, II, III.) Oklobdzija, Redinbo, Wilken, Akella, Al-Asaad

180B. Digital Systems II (5)
Lecture—3 hours; laboratory—6 hours. Prerequisite: courses 110A and 180A. Restricted to Electrical Engineering, Computer Engineering, Computer Science and Engineering, Electrical Engineering/Materials Science and Engineering majors, Electrical Engineering graduates, and Computer Science. Non-majors accommodated when space available. Computer-aided digital system design, FPGA-based design, programmable logic, clocking schemes, memory systems, arithmetic, optimizing combinational and sequential digital logic. Not open for credit to students who have taken course 177.—I, II, III. (I, II, III.) Oklobdzija, Redinbo, Wilken, Akella

183. Testing and Verification of Digital Systems (5)
Lecture—3 hours; laboratory—4 hours. Prerequisite: courses 170 and 180B. Computer-aided testing and design verification techniques for digital systems; physical fault testing; simulation-based design verification; formal verification; timing analysis.—III. (III.) Al-Asaad

189A-U. Special Topics in Electrical Engineering and Computer Science (1-5)
Lecture, laboratory, or combination. Prerequisite: consent of instructor. Special topics in (A) Computer Science; (B) Programming Systems; (C) Digital Systems; (D) Communications; (E) Signal Transmission; (F) Digital Communication; (G) Control Systems; (H) Robotics; (I) Signal Processing; (J) Image Processing; (K) High-Frequency Phenomena and Devices; (L) Solid-State Devices and Physical Electron- ics; (M) Systems Theory; (N) Active and Passive Circuits; (O) Integrated Circuits; (P) Computer Software; (Q) Computer Engineering; (R) Microprocessing; (S) Electron- ics; (T) Electromagnetics; (U) Opto-Electronics. May be repeated for credit when topic differs.—I, II, III. (I, II, III.)

190C. Research Group Conferences in Electrical and Computer Engineering (1)
Discussion—1 hour. Prerequisite: upper division standing in Electrical and Computer Engineering, consent of instructor. Research group conferences. May be repeated for credit. (P/NP grading only.)—I, II, III. (I, II, III.)

192. Internship in Electrical and Computer Engineering (1-5)
Internship—3-15 hours. Prerequisite: completion of a minimum of 84 units; project approval prior to period of internship. Supervised work experience in electrical and computer engineering. May be repeated for credit. (P/NP grading only.)

194A-194B-194C. Micromouse Design Project (2-2-1)
Workshop—3 hours (194A and 194B only); laboratory—3 hours. Prerequisite: course 70 or Computer Science Engineering 50; Engineering 17 (may be taken concurrently); course 100 or Engineering 100 recommended (may be taken concurrently); course 180A recommended (may be taken concurrently). Enrollment in course 194A automatically enrolls student in 194B and 194C. Design of a robotic mouse for the IEEE Micromouse competition. Limited enrollment. May be repeated for credit. (Deferred grading only, pending completion of three-course sequence.)—I-I-II-III. (I-II-III)

195A-195B-195C. Student Design Project (2-2-1)
Laboratory and discussion. Prerequisite: consent of instructor. Enrollment in course 195A automatically enrolls student in 195B and 195C. Design projects and/or contests sponsored by industry. Topics vary; check with department for availability. Course offering subject to student demand/availability of resources. May be repeated for credit. Limited enrollment. (Deferred grading only, pending completion of sequence.)—I-II-III. (I-II-III)

197. Tutoring in Electrical and Computer Engineering (1-3)
Discussion—1 hour; discussion/computatory—2-6 hours. Prerequisite: upper division standing, consent of instructor. Tutoring in Electrical and Computer Engineering courses, especially introductory circuits. For upper division undergraduate students who will provide tutorial assistance. (P/NP grading only.)

198. Directed Group Study (1-5)
Directed Group Study.—I, II, III. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5)
(P/NP grading only.)

Quarter Offered: I=Fall; II=Winter; III=Spring; IV=Summer. 2001-2002 offering in parentheses.

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience

Graduate Courses

201. Digital Processing of Signals (4)
Lecture—4 hours. Prerequisite: course 150B. Theory and applications of digital pro-
cessing of signals. Z-transform analysis of discrete-time systems, filter design tech-
niques, structures for discrete-time systems, discrete Fourier transform, and Hilbert transforms.—II. (I.) Ford

206. Digital Image Processing (4)
Lecture—3 hours; laboratory—3 hours. Prerequisite: course 150B. Two-dimensional
systems theory, image perception, sampling and quantization, transform theory and
applications, enhancement, filtering and restoration, image analysis, and image pro-
cessing systems.—II. (I.) Ford, Levy, Reed

207. Pattern Recognition and Classification (3)
Lecture—3 hours. Prerequisite: Statistics 120. Topics in statistical pattern recogni-
tion and classification: linear decision functions and minimum distance classifica-
tion, Bayes decision theory, clustering algorithms, the generalized perceptron,
multi-layer neural networks, and feature extraction. Offered in alternate years.—
(III.) Ford, Reed

208. Image Analysis and Computer Vision (3)
Lecture—3 hours. Prerequisite: course 150B. Geometry of two-dimensional objects.
Edge detection and image segmentation. Image formation and fundamental princi-
pies of computer vision. Recovery of three-dimensional structure from shading or
stereo information. Analysis of motion and estimation of motion parameters. Geom-
etry and representation of three-dimensional objects. Offered in alternate years.—
(III.) Levy, Reed

209. Image Sequence Processing (3)
Lecture—3 hours. Prerequisite: course 106. Basic video concepts and image
sequences as spatiotemporal data; three-dimensional linear systems; perception of
visual motion; segmentation of image sequences; image sequence representa-
tion; resolution issues; the computation of motion; image sequence compression.
Offered in alternate years.—III. Reed

210. MOS Analog Circuit Design (3)
Lecture—3 hours. Prerequisite: courses 110B and 140B. Analysis and design of
MOS amplifiers, bias circuits, voltage references and other analog circuits. Stability
and compensation of feedback amplifiers. Introduction to noise analysis in MOS cir-
cuits.—I. (I.) Lewis, Current, Hurst, Spencer

211. Advanced Analog Circuit Design (3)
Lecture—3 hours. Prerequisite: course 210. Statistics 131A or the equivalent rec-
ommended. Noise in electronic circuits and systems. Distortion analysis; the tran-
slinear principle and its application to circuit analysis and synthesis; phase-
locked loops and their applications.—II. (II.) Spencer, Current, Hurst

212. Analog MOS IC Design for Signal Processing (3)
Lecture—3 hours. Prerequisite: course 210. Statistics 131A or the equivalent rec-
ommended. Noise in electronic circuits and systems. Distortion analysis; the tran-
slinear principle and its application to circuit analysis and synthesis; phase-
locked loops and their applications.—II. (II.) Spencer, Current, Hurst

213. Data-Conversion Techniques and Circuits (3)
Lecture—3 hours. Prerequisite: course 210. Digital-to-analog and analog-to-digital
conversion; component characteristics and matching; sample-and-hold, compara-
tor, amplifier, and reference circuits.—III. (III.) Lewis, Current, Hurst, Spencer

214. Computer-Aided Circuit Analysis and Design (3)
Lecture—3 hours. Prerequisite: courses 110A, 110B and knowledge of FORTRAN or
C/C++. Equations, simulations. Nonlinear DC, linear AC, time-domain (both linear
and nonlinear), steady-state (nonlinear) and harmonic analysis. DC, AC, and time-
domain sensitivities of linear and nonlinear circuits. Gradient-based design opti-
mization. Behavioral simulations. Extensive CAD project.—II. (II.) Current

218A. Introduction to VLSI Circuits (3)
Lecture—3 hours. Prerequisite: courses 110A and 110B. Theory and practice of
VLSI circuit and system design. Extensive use of VLSI computer-aided design aids
to undertake a VLSI design example.—I. (I.) Current, Hurst, Oklobdzija, Spencer

218B. Multiproject Chip Design (1)
Laboratory—3 hours. Prerequisite: course 218A. CMOS and NMOS multiproject
chip layout of projects begun in courses 218A, 212, and 219 are assembled and
submitted to the DARPA/NIST MOSIS program for fabrication.—II. (II.) Current, Hurst,
Oklobdzija, Spencer

218C. IC Testing and Evaluation (1)
Lecture—3 hours. Prerequisite: courses 218A and 218B. Chips submitted in
course 218B are tested and evaluated. Issues involving design of ICs for testability
are discussed.—III. (III.) Current, Hurst, Oklobdzija, Spencer

219. Advanced Digital Circuit Design (3)
Lecture—3 hours. Prerequisite: course 118 or 218B. Analysis and design of digital
circuits. Both bipolar and MOS circuits are covered. Dynamic and static RAM cells
and sense amplifiers. Advanced MOS families. Multi-valued logic.—III. (III.) Hurst,
Current, Spencer

221. Analog Filter Design (3)
Lecture—3 hours. Prerequisite: courses 100 and 150A. Design of active and pas-
sive filters. Includes filter specification and approximation theory. Passive LC filter
design will cover doubly-terminated reactance two-port synthesis. Active filter
design will include sensitivity, op-amp building blocks, cascade, multi-loop, ladder
and active-R filter design. Offered in alternate years.—I.

228. Advanced Microwave and Antenna Design Techniques (4)
Lecture—3 hours; laboratory—3 hours. Prerequisite: course 132B. Theory, design,
fabrication, analysis of advanced microwave devices, antennas. Includes wideband
transmission-line, tapered networks, stripline and microstrip broadband, couplers,
and hybrids. Lumpd and distributed filter synthesis. Broadband matching theory
applied to microwave devices. FET amplifiers. Antenna design, analysis of horns,
microstrip, log periodic, arrays, spirals, and reflectors. Offered in alternate years.—
III. Branner

230. Electromagnetics (3)
Lecture—3 hours. Prerequisite: course 130B. Maxwell’s equations, plane waves,
reflection and refraction, waveguides, waves in anisotropic media, propagation in
dispersive media, laser beam resonators.—I. (I.) Ford

232A. Advanced Applied Electromagnetics I (3)
Lecture—3 hours. Prerequisite: course 132B. The formal expression of applied elec-
 tromagnetic problems using Green’s functions. Applications of these techniques to
transmission circuits. Offered in alternate years.—II. (II.) Branner

232B. Advanced Applied Electromagnetics II (4)
Lecture—3 hours; laboratory—3 hours. Prerequisite: course 132B. Advanced treat-
ment of electromagnetics with applications to passive microwave devices and
antennas. Offered in alternate years.—III. Branner

235. Photonics (3)
Lecture—3 hours. Prerequisite: course 230. Introduction to optoelectronics. Wave
optics, propagation in dispersive and inhomogeneous media. Gaussian beam optics
and resonators. Coupled mode theory and coupling devices for dielectric wave-
guides and optical fibers. Numerical methods. Not open for credit to students who
have completed course 231. Offered in alternate years.—II. (II.) Knoesen, Heritage

236. Nonlinear Optical Applications (3)
Lecture—3 hours. Prerequisite: course 130B, course 230 (may be taken concur-
rently). Nonlinear optical interactions in optical communication, optical informa-
tion processing and integrated optics. Basic concepts underlying optical nonlinear
interactions in materials and guided media. Not open for credit to students who
have completed course 232. Offered in alternate years.—I. (I.) Knoesen, Heritage

237A. Lasers (3)
Lecture—3 hours. Prerequisite: course 130B or the equivalent and course 23B. The-
etorical and practical description of lasers. Theory of population inversion, amplifi-
cation and oscillation using semclassical oscillator modes and rate equations.
Description and design of real laser system (Not open for credit to students who
have completed course 226A.) Offered in alternate years.—I. (I.) Diens, Heritage, Sol-
guard

237B. Advanced Lasers (3)
Lecture—3 hours. Prerequisite: course 237A. Quantum mechanical description of
lasers and interactions of materials with laser light. Relationship to rate equation
approach. Optical Bloch equations and coherent effects. Theory and practice of
active and passive mode-locking of lasers. Injection locking. Not open for credit to
students who have completed course 226B. Offered in alternate years.—(I.) Heritage

238. Semiconductor Diode Lasers (3)
Lecture—3 hours. Prerequisite: course 245A. Understanding of fundamental optical
transitions in semiconductor and quantum-confined systems are applied to diode
lasers and selected photonic devices. The importance of radiative and non-radiative
recombination, simulated emission, excitons in quantum wells, and strained quan-
tum layers are considered. Offered in alternate years.—III. (III.) Heritage

239. Optical Communications and Networking (4)
Lecture—4 hours. Prerequisite: course 130B. Physical layer network elements found
in network architectures and protocols. Sources of physical layer impairments and
limitations in network scalability. Enabling technologies for wavelength-division-mul-
tiple and time-division-multiplexing networks. Optical amplifiers and their impact
in optical networks (signal-to-noise ratio, gain EQUALIZATION, and cascadability).
Offered in alternate years.—II. (II.) Yoo

240. Semiconductor Devices Physics (3)
Lecture—3 hours. Prerequisite: course 140B. Physical principles, characteristics
and models of fundamental semiconductor device types, including P-N and Schot-
tky diodes, MOSFETS and MESFETS Bipolar Junction Transistors, and light emit-
ters/photectors.—II. (II.) Bower, Colinge, Haley, Hunt, Smith

241. Advanced Silicon Devices (3)
Lecture—3 hours. Prerequisite: course 140B. course 240 recommended. Use of
modern electronics device design to enhance performance of basic device architec-
tures to satisfy specific requirements in circuits. High-performance field-effect, and
bipolar transistors, high-frequency devices, solid-state power devices and field-
emission triodes are considered. Offered in alternate years.—II. (II.) Bower, Colinge,
Hunt, Smith

242. Heterojunction Semiconductor Devices (3)
Lecture—3 hours. Prerequisite: course 140B. course 240 recommended. Use of
materials engineering and device design/fabrication techniques to emphasize par-
ticular performance issues in electron devices. Particular emphasis on compound
semiconductors and columnar elemental alloy heterostructures and their applica-
tions in quantum, microwave, and photonic devices. Offered in alternate years.—II.
(II.) Bower, Colinge, Hunt, Smith
243. Advanced Electronic Devices (3)
Lecture—3 hours. Prerequisite: course 140B; course 240 recommended. A detailed examination of novel device types being investigated in current electronics research. Students determine investigation of a specific device type as a term project. Not open for credit to students who have completed course 247. Offered in alternate years.—III. Bower, Colinge, Hunt, Smith

244A. Design of Microelectromechanical Systems (MEMS) (3)
Lecture—3 hours. Prerequisite: course 140A, 140B or consent of instructor. Theory and practice of MEMS design. Micromechanical fundamentals, CAD tools, and case studies. A MEMS design project is required. The designs will be fabricated in a commercial foundry and tested in course 244B. Offered in alternate years.—(I.)

244B. Design of Microelectromechanical Systems (MEMS) (1)
Lab—3 hours. Prerequisite: course 244A. Testing of surface micromachined MEMS devices including post-processing, design of test fixtures and test methodology, measurements, and data analysis. (S/U grading only.) Offered in alternate years.—(III.)

245A. Applied Solid-State Physics (3)
Lecture—3 hours. Prerequisite: course 140A, Physics 115A. Physics of solids relevant to solid-state applications. Topics include atomic structure of solids, quantum theory of electronic and vibrational states in crystals, electron dynamics, and transport theory.—II. (II.) Haley, Hunt

245B. Advanced Solid-State Physics (3)
Lecture—3 hours. Prerequisite: course 245A. Theory and application of semiconductors, heterostructures (SH), magnetism and superconductivity (SC). Topics include quantum wells, wires, and dots; quantum transport in electric and magnetic fields; paramagnetism, ferromagnetism, magnetic resonance; basic superconducting phenomena, Josephson junctions, SQUIDS, and SC microcircuits. Offered in alternate years.—III. Haley

246. Advanced Projects in IC Fabrication (3)
Discussion—1 hour; laboratory—6 hours. Prerequisite: course 146B. Individualized projects in the fabrication of analog or digital integrated circuits. Offered in alternate years.—III. Hunt, Spencer, Smith

247. Advanced Semiconductor Devices (3)
Lecture—3 hours. Prerequisite: course 240. Physics of various semiconductor devices, including metal-oxide-semiconductor field-effect transistors (MOSFETs), IMPATT and related transit-time devices, transferred-electron devices, light-emitting diodes, semiconductor lasers, photodetectors, and solar cells. Offered in alternate years.—I. Bower, Hunt

248. Microsensor Design and Fabrication (3)
Lecture—3 hours. Prerequisite: graduate standing in engineering, Design and fabrication of sensors using micromanufacturing techniques. Topics include transduction principles, fabrication technologies specific to microsensors, and design of microsensor systems, including packaging. Offered in alternate years. Same course as Bioengineering 249.—II. (II.) Smith, Bower

249. Microfabrication (3)
Lecture—3 hours. Prerequisite: course 140B. Theory and practices of several major technologies of microfabrication, used for producing integrated circuits, sensors, and microstructures. Major topics include sputtering, chemical vapor deposition, plasma etching, micromachining, and ion implantation. Offered in alternate years.—II. (II.) Hunt

250. Linear Systems and Signals (4)

251. Nonlinear Systems (3)
Lecture—3 hours. Prerequisite: course 250. Nonlinear differential equations, second-order systems, approximation methods, Lyapunov stability, absolute stability. Popov criterion, circle criterion, feedback linearization techniques. Offered in alternate years.—III. Gunders

252. Multivariable Control System Design (3)

253. Adaptive Systems (3)
Lecture—3 hours. Prerequisite: course 150B; course 250 (may be taken concurrently). Theory and practice of adaptive systems. Concepts of learning and adaptation. Structure of adaptive filters and the related parameter adaptive algorithms. Applications to system identification, adaptive signal processing and adaptive control.—I. (I.) Hauser

254. Optimization (3)
Lecture—3 hours. Prerequisite: Mathematics 22A, knowledge of FORTRAN or C. Modeling optimization problems in engineering design and other applications; optimization concepts; constrained optimization (gradient, Newton, conjugate gradient and quasi-Newton methods); duality and Lagrangian relaxation constrained optimization. (Primal method and an introduction to penalty and augmented Lagrangian methods.) Offered in alternate years.—II. (II.) Chang

255. Robotic Systems (3)
Lecture—3 hours. Prerequisite: course 157A. Introduction to robotic systems. Mechanical manipulators, kinematics, manipulator positioning and path planning. Dynamics of manipulators. Robot motion programming and control algorithm design.—I. (I.) Hsia, Wang

256. Multivariable Feedback Systems (3)
Lecture—3 hours. Prerequisite: course 250. Analysis and synthesis of feedback control systems using a factorization approach. Q-parametrization, all stabilizing controllers, all achievable input-output maps. Robustness, asymptotic tracking and disturbance rejection. Offered alternate years.—III. Gunders

257. Topics in Optimization (3)
Lecture—3 hours. Prerequisite: Computer Science Engineering 30 or 40 or the equivalent or familiarity with MATLAB as a programming language; Mathematics 22A; Mathematics 131 or course 150A. Advanced topics in the theoretical foundations of optimization and its applications, such as, semi-infinite and nondifferentiable optimization in engineering design, optimal control, global optimization, convex analysis and optimization, linear and integer programming, VLSI physical design automation. May be repeated for credit when topic differs. Offered in alternate years.—II. Chang

259. Fuzzy Systems and Control (3)
Lecture—3 hours. Prerequisite: course 157A. Fuzzy sets and relations, fuzzy logic and approximate reasoning. Fuzzy systems and properties. Design of fuzzy systems from input/output data. Fuzzy control systems. Fuzzy logic and soft computing. Offered in alternate years.—III. Wang

260. Random Signals and Noise (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: Statistics 120, course 150A; course 250 recommended. Random processes as probabilistic models for signals and noise. Review of probability, random variables, and expectation. Study of correlation function and spectral density, ergodicity and duality between time averages and ensemble-averaged values, filters and dynamical systems. Applications.—II. (II.) Gardner

261. Spectral Analysis (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 150A; course 150B recommended. Theory and methodology of empirical spectral analysis of random signals. Fundamentals of resolution, leakage, and reliability. Analog and digital methods. Parameter modeling and non-parametric methods. Cross-spectral analysis. Applications to detection and estimation. Offered in alternate years.—III. Gardner

263. Optimal and Adaptive Filtering (3)
Lecture—3 hours. Prerequisite: course 260. Geometric foundation for mean-square estimation problems. Theory and applications of optimum Wiener filtering, optimum Kalman filtering, and adaptive estimation. Offered in alternate years.—III. Gardner, Levy

264. Estimation and Detection of Signals in Noise (4)

265. Principles of Digital Communications (4)
Lecture—4 hours. Prerequisite: courses 165 and 260, or consent of instructor. Introduction to digital communications. Coding for analog sources. Characterization of signals and systems. Modulation and demodulation for the additive Gaussian channel. Sampling for signaling over bandwidth-limited channels and over fading multipath channels. Spread spectrum signals.—I. (I.) Gardner, Levy, Abdel-Ghaffar

266. Information Theory and Coding (3)
Lecture—3 hours. Prerequisite: Statistics 120. Information theory and coding. Measurement of information. Redundancy reduction encoding of an information source. Capacity of a communication channel, error-free communications. Offered in alternate years.—II. Abdel-Ghaffar

267. Cellular Digital Mobile Communications (3)

268. Digital Modulation Techniques (3)
Lecture—3 hours. Prerequisite: course 267. MODEM (modulator–demodulator) signal processing and complete radio transmitter/receiver analysis, design and application for digital cellular mobile radio satellite, microwave, and cable systems. Study of advanced signals using a factorization approach. QPSK, GMSK, coded QAM and of correlatively coded modulation. Computer-aided and hardware design of advanced communications and synchronization systems. Offered in alternate years.—II. Feher

269. Error Correcting Codes (3)
Lecture—3 hours. Introduction to coding theory, finite fields, linear codes, Hamming codes, cyclic codes, BCH and Reed-Solomon codes and their decoding algorithms, convolutional codes.—III. (III.) Abdel-Ghaffar

Quarter Offered: I=Fall; II=Winter; III=Spring; IV=Summer, 2001–2002 offering in parentheses.

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
270. Computer Architecture (3)
Lecture—3 hours. Prerequisite: course 170 or Computer Science Engineering 154B. Introduction to modern techniques for high-performance single and multiple processor systems. Topics include advanced pipeline design, advanced memory hierarchy design, optimizing pipeline and memory use, and memory sharing among multiprocessors. Case studies of recent single and multiprocessor systems.—II. (II.) Akella, Redinbo, Oklobdzija, Wiken

272. High-Performance Computer Architecture and Implementation (3)
Lecture—3 hours. Prerequisite: course 170 or Computer Science Engineering 154A, 154B and course 270 or Computer Science Engineering 250A. Architectural issues in achieving high-performance via concurrent execution of instructions and associated problems and limitations. Specialized architectures. Offered in alternate years.—III. (III.) Oklobdzija, Wiken

275. Advanced Object-Oriented Programming (3)
Lecture—3 hours. Prerequisite: course 73. Object-oriented analysis, design and implementation of complex software systems. Topics include fundamental concepts of object models, the notation and process of object-oriented analysis and design, creating graphical user interface, application of object-oriented development across different application domains.—III. (III.) Wang

276. Fault-Tolerant Computer Systems: Design and Analysis (3)
Lecture—3 hours. Prerequisite: courses 170, 180A. Introduces fault-tolerant digital system theory and practice. Covers recent and classic fault-tolerant techniques based on hardware redundancy, time redundancy, information redundancy, and software redundancy. Examines hardware and software reliability analysis, and example fault-tolerant designs. Not open for credit to students who have completed course 276A. Offered in alternate years.—III. Oklobdzija, Wiken

278. Computer Arithmetic for Digital Implementation (3)
Lecture—3 hours. Prerequisite: courses 170, 180A. The design and implementation of computer arithmetic logic units are studied with particular emphasis on high-performance requirements. Addition (subtraction), multiplication and division operations are covered, and fixed and floating-point representations are examined. Offered in alternate years.—III. Oklobdzija, Redinbo

280. Advanced Logic Design (3)
Lecture—3 hours. Prerequisite: course 180B. Logic design of complex and high-performance systems. Timing, clock generation and distribution, high performance latch design. Pipelining, pipeline conflicts and hazard resolution. Complex control unit design. Use of FPGAs. Design methodology and CAD tools.—I. (I.) Oklobdzija

282. Digital Systems Modeling and Design (3)
Lecture—3 hours. Prerequisite: Computer Science Engineering 40, courses 173, 180B or the equivalents, or consent of instructor. Modeling of digital systems using hardware description languages such as VHDL or Verilog. Introduction to application-specific integrated circuit (ASIC) design using commercial synthesis and simulation tools.—I. (I.) Oklobdzija

283. Advanced Design Verification of Digital Systems (4)
Lecture—3 hours. Project. Prerequisite: courses 170 and 180A. Design verification techniques for digital systems; simulation-based design verification techniques; formal verification techniques, including equivalence checking, model checking, and theorem proving; timing analysis and verification; application of design certification techniques to microprocessors. Offered in alternate years.—II. Al-Asaad

286. Introduction to Digital System Testing (3)
Lecture—3 hours. Prerequisite: course 180A; Statistics 120 or 131A. A review of several current techniques used to diagnose faults in both combinational and sequential circuits. Topics include path sensitization procedures, Boolean difference, D-algorithm random test generation, TC testing and an analysis of the effects of intermittent faults. Not open for credit to students who have completed course 276A. Offered in alternate years.—II. Redinbo

289A-U. Special Topics in Electrical Engineering and Computer Science (1-5)

290. Seminar in Electrical and Computer Engineering (1)
Seminar—1 hour. Discussion and presentation of current research and development in Electrical and Computer Engineering. May be repeated for credit. (SU grading only)—I, II, III. (I, II, III.)

290C. Graduate Research Group Conference in Electrical and Computer Engineering (1)
Discussion—1 hour. Prerequisite: consent of instructor. Research problems, progress, and techniques in electrical and computer engineering. May be repeated for credit. (SU grading only)—I, II, III. (I, II, III.)

291. Solid-State Circuit Research Laboratory Seminar (1)
Seminar—1 hour. Prerequisite: graduate standing. Lectures on solid-state circuit and system design by various visiting experts in the field. May be repeated for credit. (SU grading only)—II. (II.)
Environmental Horticulture and Urban Forestry

(College of Agricultural and Environmental Sciences)

Faculty. See under Department of Environmental Horticulture.

The Major Program

Students majoring in Environmental Horticulture and Urban Forestry learn how plants improve the environment and the quality of our lives. The major focuses on the biological and physical concepts and horticultural principles of plant production, management of plants and plant ecosystems in landscape settings and sociological aspects of plant/people interactions in the urban environment. Plants are used to revegetate and restore disturbed landscapes, control erosion and reduce energy and water consumption. The ornamental use of plants to improve the aesthetic quality of urban and rural landscapes, recreational areas, intercrops and commercial sites is an important aspect of this major. Students may select one of the following four areas of specialization: Urban Forestry, Floriculture/Nursery, Landscape Management/Turf, or Plant Biodiversity.

Internships and Career Opportunities. Students are encouraged to develop internships on or off campus to augment their activities in the classroom and laboratory. Internships are available with the department's greenhouse facility, UC Davis Arboretum, landscape designers, government agencies or regional nurseries. Career opportunities in this field include growing and/or managing plants in a variety of settings, consulting as an urban horticulturist, business ownership, working for public agencies or private landscape firms/corporations, park management and landscape contracting.

B.S. Major Requirements

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>English Composition Requirement</td>
<td>0-8</td>
</tr>
<tr>
<td>Preparatory Subject Matter</td>
<td></td>
</tr>
<tr>
<td>Environmental Horticulture 1 and 6</td>
<td>6</td>
</tr>
<tr>
<td>Landscape Architecture 30</td>
<td>4</td>
</tr>
<tr>
<td>Biological Sciences 1A, 1B, 1C</td>
<td>15</td>
</tr>
<tr>
<td>Environmental Science and Policy 1 or 10</td>
<td>4</td>
</tr>
<tr>
<td>Chemistry 2A-2B</td>
<td>10</td>
</tr>
<tr>
<td>Physics 1A-1B</td>
<td>6</td>
</tr>
<tr>
<td>Agricultural Systems and Environment 21 and either Mathematics 16A or</td>
<td>13</td>
</tr>
<tr>
<td>Statistics</td>
<td></td>
</tr>
<tr>
<td>Select two courses from Agricultural Systems and Environment 21 and either</td>
<td></td>
</tr>
<tr>
<td>Mathematics 16A or Statistics</td>
<td>6-7</td>
</tr>
<tr>
<td>Breadth/General Education</td>
<td>6-24</td>
</tr>
<tr>
<td>Depth Subject Matter</td>
<td>31-36</td>
</tr>
<tr>
<td>Environmental Horticulture 102</td>
<td>4</td>
</tr>
<tr>
<td>Soil Science 100</td>
<td>4</td>
</tr>
<tr>
<td>Plant Biology 171</td>
<td>4</td>
</tr>
<tr>
<td>Environmental Horticulture 105 or Plant Biology 102 or 108</td>
<td>4-5</td>
</tr>
<tr>
<td>Environmental Horticulture 192 (minimum of 3 units)</td>
<td>3</td>
</tr>
<tr>
<td>Select two upper division resource science courses and two upper division</td>
<td></td>
</tr>
<tr>
<td>social science/humanities courses in consultation with adviser</td>
<td>12-16</td>
</tr>
<tr>
<td>Areas of Specialization (Choose One)</td>
<td></td>
</tr>
<tr>
<td>No course may be used to satisfy more than one requirement.</td>
<td></td>
</tr>
<tr>
<td>Urban Forestry Option</td>
<td>28</td>
</tr>
<tr>
<td>Environmental Horticulture 100, 130, 133</td>
<td>11</td>
</tr>
<tr>
<td>Entomology 110</td>
<td>5</td>
</tr>
<tr>
<td>Evolution and Ecology 121</td>
<td>4</td>
</tr>
<tr>
<td>Geography 155</td>
<td>4</td>
</tr>
<tr>
<td>Plant Pathology 120</td>
<td>4</td>
</tr>
<tr>
<td>Floriculture/Nursery Option</td>
<td>27</td>
</tr>
<tr>
<td>Environmental Horticulture 120, 125</td>
<td>8</td>
</tr>
<tr>
<td>Applied Biological Systems Technology 165</td>
<td>2</td>
</tr>
<tr>
<td>Entomology 110, 135</td>
<td>9</td>
</tr>
<tr>
<td>Plant Biology 142</td>
<td>4</td>
</tr>
<tr>
<td>Plant Pathology 129</td>
<td>4</td>
</tr>
<tr>
<td>Landscape Management/Turf Option</td>
<td>27</td>
</tr>
<tr>
<td>Environmental Horticulture 129, 130, 133</td>
<td>12</td>
</tr>
<tr>
<td>Applied Biological Systems Technology 165</td>
<td>2</td>
</tr>
<tr>
<td>Entomology 110</td>
<td>5</td>
</tr>
<tr>
<td>Evolution and Ecology 117</td>
<td>4</td>
</tr>
<tr>
<td>Plant Pathology 120</td>
<td>4</td>
</tr>
</tbody>
</table>

Plant Biodiversity/Restoration Option

- Select two courses from Agricultural Systems and Environment 130, 150, Environmental Horticulture 160, Environmental Science and Policy 125C, 155L, Landscape Architecture 180F, Soil Science 112…...5-8
- Environmental Horticulture 149 or 150, or Evolution and Ecology 100, or Plant Biology 116….3-4
- Entomology 103 or 107 or 110, or Plant Pathology 12B, or Soil Science 112….3-5

Total Units for the Major…114-136

Major Adviser. J.A. Harding.

Quarter Offered: I—Fall; II—Winter; III—Spring; IV—Summer; 2001-2002 offering in parentheses.

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
Economy, Justice, and Society

Upper Division Course

100. Microeconomic Theory (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: Economics 1A or graduate standing. Basic concepts, modes of reasoning and fundamental results in modern microeconomics. Emphasis on, first, Utility Theory; second, the logic of the equilibrium method; third, welfare economics and public policy.

Graduate Courses

207. Interdisciplinary Social Analysis (3)
Lecture—2 hours; term paper. Prerequisite: graduate standing in Economics, Philosophy, or Political Science; course 100, Philosophy 117, or the equivalents. Analysis of practical and theoretical social problems with tools of economic theory, philosophy, and political theory, e.g., the welfare state, risk and public policy, equality of opportunity, individual rationality and cooperation.

209A. Economic Models of Distributive Justice (4)
Lecture—4 hours. Prerequisite: course 100 or the equivalent, and graduate standing. Introduction to social choice theory; envy-free allocations, axiomatic bargaining theory; axiomatic characterizations of resource allocation. Applications to modeling of the distributive theories of political philosophers. Offered in alternate years.

209B. Economic Models of Public Ownership (4)
Lecture—4 hours. Prerequisite: course 100 or the equivalent and graduate standing. Public ownership from the viewpoint of microeconomics, in particular, general equilibrium and welfare economics. Topics include returns to scale and firm ownership, common-pool resources, externalities, and solution concepts for economies with public and private ownership. Offered in alternate years.

209C. Foundations of Decision Theory (4)
Lecture—4 hours. Prerequisite: course 100 or the equivalent and graduate standing. Rigorous exposition of subjective expected utility theory; foundations, normative and empirical challenges. Topics include intertemporal decision; learning, incompletion and ambiguity; individual and social choice; game theory as interactive decision theory; bounded rationality. Offered in alternate years.

Minor Program Requirements:
A central concern of many citizens in modern societies is the inequality of income and life changes characteristic of them. In the United States, this concern has recently deepened, as income inequality has worsened substantially. The minor in Economy, Justice, and Society studies economic, political, sociological, and philosophical perspectives on such inequality.

UNITS

Economy, Justice, and Society ...24
Six upper division courses selected from Economics 116, 118, Political Science 124, 142, 174, Sociology 118, 138, 140.
No more than two courses from a single department may count toward satisfaction of the minor requirements.
When a listed course has prerequisites, they must be taken, although they do not count toward the six-course requirement.

Graduate Study
The Program on Economy, Justice, and Society offers a designated emphasis in Economy, Justice, and Society open to students pursuing a doctoral degree in philosophy, political science, or economics (see below).

Committee in Charge
Josephine Andrews, Ph.D. (Political Science)
Fred Block, Ph.D. (Sociology)
David Copp, Ph.D. (Philosophy)
Gerald Dworkin, Ph.D. (Philosophy)
Scott Gartan, Ph.D. (Political Science)
Robert Jackman, Ph.D. (Political Science)
Klaus Nehring, Ph.D. (Economics)
Marianne E. Page, Ph.D. (Economics)
Joaquim Silvestre, Ph.D. (Economics)

Programs of Study
Undergraduates may elect the minor in Economy, Justice, and Society. The Program on Economy, Justice, and Society also offers a designated emphasis in Economy, Justice, and Society open to students pursuing a doctoral degree in philosophy, political science, or economics (see below).

Program Office, 1135 Social Sciences and Humanities Building (530-752-0743)
Joaquim Silvestre, Ph.D.
Marianne E. Page, Ph.D.
Klaus Nehring, Ph.D.
Robert Jackman, Ph.D.
Fred Block, Ph.D.
David Copp, Ph.D.
Josephine Andrews, Ph.D.
Gerald Dworkin, Ph.D.
Scott Gartan, Ph.D.
Robert Jackman, Ph.D.

Graduate Adviser
Consult program office or a program graduate adviser in one of the three departments listed above.

Courses in Economy, Justice, and Society (EJS)

Upper Division Course

100. Microeconomic Theory (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: Economics 1A or graduate standing. Basic concepts, modes of reasoning and fundamental results in modern microeconomics. Emphasis on, first, Utility Theory; second, the logic of the equilibrium method; third, welfare economics and public policy.
Engineering: Mechanical and Aeronautical

(College of Engineering) Bahram Ravani, Ph.D., Chairperson of the Department
Ronald A. Hess, Ph.D., Vice Chairperson of the Department
Department Office, 2132 Bainer Hall (530-752-6568; Fax: 530-752-4158)
World Wide Web: http://www-mae.engr.ucdavis.edu

Faculty
Ralph C. Aldredge, III, Ph.D., Associate Professor
Abdul I. Barakat, Ph.D., Assistant Professor
James W. Baughn, Ph.D., Professor, Academic Senate Distinguished Teaching Award
Jean-Jacques Chattro, Ph.D., Professor
Harry H. Cheng, Ph.D., Associate Professor
Harry A. Dwyer, Ph.D., Professor (Aeronautical Science and Engineering)
Fidelis O. Eke, Ph.D., Associate Professor
Rida T. Farouki, Ph.D., Professor
Andrew A. Frank, Ph.D., Professor
Mohamed M. Hafez, Ph.D., Professor (Aeronautical Science and Engineering), Academic Senate Distinguished Teaching Award
Ronald A. Hess, Ph.D., Professor (Aeronautical Science and Engineering)
Michael R. Hill, Ph.D., Assistant Professor
Mont Hubbard, Ph.D., Professor
Maury L. Hull, Ph.D., Professor
Dean C. Karpoff, Ph.D., Professor
Ian M. Kennedy, Ph.D., Professor
Wolfgang Kollmann, Dr-Ing, Professor (Aeronautical Science and Engineering)
Donald L. Margolis, Ph.D., Professor
Bahram Ravani, Ph.D., Professor
Lawrence W. Rehfield, Ph.D. Professor (Aeronautical Science and Engineering)
Nesrin Sarigul-Klijn, Ph.D., Professor (Aeronautical Science and Engineering)
Benjamin D. Shaw, Ph.D., Associate Professor
Cornell P. van Dam, Ph.D., Professor (Aeronautical Science and Engineering)
Steven A. Veil, Ph.D., Professor Emeritus
Bruce R. White, Ph.D., Professor (Aeronautical Science and Engineering)
Kazuo Yamazaki, Ph.D., Professor
Emeritus Faculty
Charles W. Beadle, Ph.D., Professor Emeritus
Harry Brandt, Ph.D., Professor Emeritus
John W. Brewer, Ph.D., Professor Emeritus
Clyne F. Garland, M.S., Professor Emeritus
Warren H. Giedt, Ph.D., Professor Emeritus
Jerald M. Henderson, D.Engr., Professor Emeritus
Myron A. Hoffman, Sc.D., Professor Emeritus
John D. Kenner, Ph.D., Professor Emeritus
Allan A. McKillop, Ph.D., Professor Emeritus
An Tzu Yang, D.Sc., Professor Emeritus
Affiliated Faculty
Oleg Ryzhov, Ph.D., Visiting Professor
Billy Sanders, Ph.D., Lecturer
James Schaaf, Ph.D., Lecturer
Stanley Weiss, Lecturer/Visiting Professor

Division of Aeronautical Science and Engineering

Faculty
Jean-Jacques Chattro, Ph.D., Professor
Harry A. Dwyer, Ph.D., Professor (Mechanical Engineering)
Mohamed M. Hafez, Ph.D., Professor
Ronald A. Hess, Ph.D., Professor (Mechanical Engineering)
Wolfgang Kollmann, Dr-Ing, Professor (Mechanical Engineering)
Lawrence W. Rehfield, Ph.D., Professor
Nesrin Sarigul-Klijn, Ph.D., Professor
Cornell P. van Dam, Ph.D., Professor
Bruce R. White, Ph.D., Professor (Mechanical Engineering)

Mission. The Department of Mechanical and Aeronautical Engineering is committed to educating future engineers so they may contribute to the economic growth and well-being of both the state and the nation and to the advancement of knowledge in the mechanical and aeronautical sciences.

Objectives. We provide a background in the mathematical and physical sciences appropriate for the solution of engineering problems; engineering design experiences in a competitive environment that emphasizes written and oral communication skills and team decision making; an approach to the requisite engineering disciplines that allows and encourages life-long learning; the basic computational, experimental, and manufacturing skills necessary for the conduct and assessment of engineering tasks; and an awareness of the ethical and social responsibilities that accompany the practice of engineering.

The Aeronautical Science and Engineering Major Program

Aeronautical Science and Engineering is the branch of engineering that applies scientific knowledge to the design, manufacture and operation of aircraft. Our Bachelor of Science degree in Aeronautical Science and Engineering provides a broad background and fundamental education in mathematics, the physical sciences, and the engineering sciences. These fundamentals, when complemented by the required technical courses, prepare you for employment in government or industry, while simultaneously establishing an excellent foundation for graduate studies.

The fundamental disciplines of this branch of engineering apply to all bodies and vehicles whose applied loads are influenced by aerodynamic forces. Courses in fundamental engineering principles are supplemented with courses in aircraft propulsion, aerodynamics, performance, stability and control, aircraft preliminary design, aeronautical structures, and aeronastics.

Aeronautical Science and Engineering Curriculum

The Aeronautical Science and Engineering curriculum is accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology.

Lower Division Program

<table>
<thead>
<tr>
<th>Course</th>
<th>QUARTER</th>
<th>USUALLY TAKEN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>UNITS</td>
</tr>
</tbody>
</table>

Total Lower Division Units ...90

Upper Division Program

A broad range of technical elective courses is available. Some students choose these electives from one area of study in order to begin developing a specialty. Others choose from several areas in order to broaden their background in the sciences and engineering. Typical aeronautical science and engineering specialties include aerodynamics, propulsion systems, aircraft performance, stability and control, aeronautical structures, aerodynamics, flight testing, or component and mechanism design.

Suggested technical electives:
- Aeronautical Science and Engineering 131, 137, 139

<table>
<thead>
<tr>
<th>Subject Areas and Courses</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering 100, 102, 103, 104, 105, 107</td>
<td>23</td>
</tr>
<tr>
<td>Mechanical Engineering 165, 171, 172</td>
<td>12</td>
</tr>
<tr>
<td>Aeronautical Science and Engineering 126, 127, 128, 129, 130, 133, 135, 138</td>
<td>32</td>
</tr>
<tr>
<td>Select one course from Engineering 190 or Mathematics 128C</td>
<td>4</td>
</tr>
<tr>
<td>Engineering 190</td>
<td>3</td>
</tr>
<tr>
<td>Technical electives</td>
<td>11</td>
</tr>
</tbody>
</table>
A combined maximum of four units may be selected from project/independent study courses (184A, 184B, 186, 192, 199) not used in satisfaction of core degree requirements.

General Education electives

Total Upper Division Units ...8

Minimum Units Required for Major ..183

The Mechanical Engineering Major Programs

The mechanical engineer uses basic science in the design and manufacture of complex engineering systems requiring the application of physical and mechanical principles to the development of machines, energy conversion systems, materials, and equipment for guidance and control.

Work in this broad field of engineering requires a thorough knowledge of mathematics, physics, chemistry, fluid mechanics, thermodynamics, heat transfer, mass transfer, electricity, manufacturing processes, and economics.

Mechanical Engineering Curriculum

Lower Division Program

Requirements for Mechanical Engineering and the double major Mechanical Engineering/Materials Science.

<table>
<thead>
<tr>
<th>Course Sequence</th>
<th>QUARTER USUALLY TAKEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics 21A-21B-21C-21D</td>
<td>1-2-3-4</td>
</tr>
<tr>
<td>Mathematics 22A-22B</td>
<td>5-6</td>
</tr>
<tr>
<td>Physics 9A-9B-9C-9D</td>
<td>3-4-5-6</td>
</tr>
<tr>
<td>Chemistry 2A-2B or 2AH-2BH</td>
<td>2-3 or 4-5</td>
</tr>
<tr>
<td>Engineering 4</td>
<td>1 or 3</td>
</tr>
<tr>
<td>Engineering 6</td>
<td>2 or 5</td>
</tr>
<tr>
<td>Engineering 17</td>
<td>5 or 6</td>
</tr>
<tr>
<td>Engineering 35</td>
<td>4 or 5</td>
</tr>
<tr>
<td>Mechanical Engineering 50</td>
<td>4 or 6</td>
</tr>
</tbody>
</table>

Upper Division Programs

You spend your third year in further study of fundamental courses, and in the fourth year you may tailor your studies to your own interests by selecting courses in controls and systems analysis, fluid mechanics, heat transfer, mechanical design or thermodynamics. You can either prepare for graduate study in Mechanical Engineering or obtain a broad background for entering engineering practice at the bachelor's level.

You are encouraged to select elective courses from among the areas of specialization listed below.

Areas of Specialization

Mechanical Design

The creation and improvement of products, processes, or systems that are mechanical in nature are the primary activities of a professional mechanical engineer. The development of a product from concept generation to detailed design, manufacturing process selection and planning, quality control and assurance, and life cycle considerations are areas of study and specialization in the area of mechanical design.

Solutions to such major social problems as environmental pollution, the lack of mass transportation, the lack of raw materials, and energy shortages, will depend heavily on the engineer's ability to create new types of machinery and mechanical systems. The engineer-designer must have a solid and relatively broad background in the basic physical and engineering sciences and have the ability to synthesize the information from such a background in creative problem solving. In addition to having technical competence, the designer must be able to consider the socioeconomic consequences of a design and its possible impact on the environment. Product safety, reliability, and economics are other considerations.

Suggested technical electives:

- Aeronautical Science and Engineering 130, 133, 137, 139
- Biological Systems Engineering 165
- Applied Science Engineering 115
- Engineering 111, 122, 160 (only one unit of credit towards Technical Electives requirement)
- Materials Science and Engineering 140, 142, 155
- Mechanical Engineering 134, 150B, 151, 152, 161, 162, 184A with 184B (both courses must be taken), 185A with 185B (both courses must be taken)

Biomedical and Engineering Fluid Mechanics

This field of study is based on the fundamentals of fluid mechanics and their broad range of applications in the biomedical and engineering areas. Areas of current research include blood circulation and its potential role in the regulation of normal physiological function and in the development of disease; groundwater and atmospheric flows and their implications for pollutant transport and environmental concerns; aerodynamic flow around transportation vehicles and its impact on vehicle performance; and flow in combustion engines and other energy systems with considerations of efficiency and environmental impact. These areas are investigated both experimentally and computationally.

Suggested technical electives:

- Aeronautical Science and Engineering 138
- Engineering 160 (only one unit of credit towards technical requirements)

Combustion and the Environment

Combustion is widely used for energy generation, propulsion, heating, and waste disposal, as well as for many other applications. Mechanical engineers are often heavily involved with the design of combustion systems (internal combustion engines, gas turbines, furnaces, etc.) and deal with aspects of combustion ranging from increasing efficiencies to reducing pollutant emissions. This specialization is for those who would like to work in fields that use combustion, or that deal with pollution related to combustion. With the current increased emphasis on reducing pollutants while maintaining or increasing efficiency, the efforts of mechanical engineers in designing and improving combustion systems are becoming more important.

Suggested technical electives:

- Mechanical Engineering 161, 163, 184A with 184B (both courses must be taken)
- Civil and Environmental Engineering 149, 150

- Mechanical Engineering 161, 163, 184A with 184B (both courses must be taken)
- Civil and Environmental Engineering 149, 150

Heat Transfer, Thermodynamics, and Energy Systems

Manufacturing: Manufacturing is concerned with the conversion of raw materials into finished products by a variety of processes, such as machining, forming, casting, and molding. Modern manufacturing technology is increasingly dependent upon integration with computer-aided design systems and precision computer controls. State-of-the-art laboratories offer the opportunity for hands-on experience with a wide spectrum of manufacturing equipment. Manufacturing engineers must have expertise in design, materials, controls, statistical methods, computer software, and microprocessor applications.

Suggested technical electives:

- Electrical and Computer Engineering 160, 174
- Materials Science and Engineering 140, 155
- Mechanical Engineering 151, 154

Systems Dynamics and Control

electromechanical actuator design, electronically controlled steering, the analysis of fuel management systems, and the design of flight-control systems with humans in the loop.

An Automotive System Dynamics Laboratory is being used for testing components such as engines, transmissions, brakes, and steering systems as well as testing complete vehicles.

Suggested technical electives:
- Aeronautical Science and Engineering 128, 129, 131, 139
- Engineering 122
- Mechanical Engineering 134, 152, 184A with 184B (both courses must be taken)

Ground Vehicle Systems. An aspect of mechanical engineering is the design of more environmentally benign surface vehicles that provide transportation with fewer resources. Innovations in the field require competence in vehicle dynamics, propulsion, and engine concepts. Control of power transmission, construction of lightweight manufacturable structures and systems, and alternatively fueled power systems, including electric drives, are also studied.

Transportation Systems. As society recognizes the increasing importance of optimizing transportation systems to minimize environmental degradation and energy expenditure, engineers will need to consider major innovations in the way people and goods are moved. Such innovations will require competence in vehicle dynamics, propulsion, and control, and an understanding of the problems caused by present-day models of transportation. Concentration on alternative propulsion concepts, such as electric, hybrid, and fuel cell will be studied.

Suggested technical electives:
- Aeronautical Science and Engineering 127, 128, 129
- Civil and Environmental Engineering 131A, 149
- Engineering 122, 160 (only one unit of credit towards Technical Electives requirement)

Mechanical Engineering 134, 150B, 161, 162, 163

Mechanical Engineering Upper Division Requirements

<table>
<thead>
<tr>
<th>COURSE</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aeronautical Science and Engineering 128</td>
<td>3</td>
</tr>
<tr>
<td>Aeronautical Science and Engineering 129</td>
<td>3</td>
</tr>
<tr>
<td>Aeronautical Science and Engineering 130</td>
<td>3</td>
</tr>
<tr>
<td>Aeronautical Science and Engineering 150A</td>
<td>3</td>
</tr>
</tbody>
</table>

Lower Division Courses

1. **Mechanical Engineering (1)**
 - Lecture—1 hour. Description of the field of mechanical engineering with examples taken from industrial applications; discussion of the practice with respect to engineering principles, ethics and responsibilities. (P/NP grading only.)—I (I)

50. **Manufacturing Processes (4)**
 - Discussion—3 hours; laboratory—3 hours. Prerequisite: Engineering 4. Restricted to Mechanical, Aeronautical and Materials Science Engineering majors, consent of instructor. Introduction to and experience with modern manufacturing methods, manufacturing instructions and computer-aided manufacturing and their role in the engineering design and development process.—I, II (II) Yamazaki, Schauf

92. **Internship in Mechanical Engineering (1-5)**
 - Internship. Prerequisite: lower division standing; approval of project prior to period of internship. Supervised work experience in engineering. May be repeated for credit. (P/NP grading only.)

99. **Special Study for Undergraduates (1-5)**
 - Prerequisite: consent of instructor; lower division standing. (P/NP grading only.)

Upper Division Courses

134. **Vehicle Stability (4)**
 - Lecture—3 hours; laboratory—3 hours. Prerequisite: course 171. Introduction to the static and dynamic stability characteristics of transportation vehicles with examples drawn from aircraft, high-performance automobiles, rail cars and boats. Laboratory experiments illustrate the dynamic behavior of automobiles, race cars, bicycles, etc.—III (III) Hubbard

150A. **Mechanical Design (4)**
 - Lecture—3 hours; discussion—1 hour. Prerequisite: Engineering 45 and 104; course 50 (may be taken concurrently). The principles of engineering mechanics applied to the fundamentals of mechanical design. Theories of static and fatigue failures of metals. Design projects emphasizing the progression from conceptualization to hardware. Experimental stress analysis and mechanical measurements using strain gages.—I, II (II) Ravanii

150B. **Mechanical Design (4)**
 - Lecture—3 hours; discussion—1 hour. Prerequisite: course 150A. Restricted to Aeronautical and Mechanical Engineering and Materials Science majors. Principles of engineering mechanics, failure theories and fatigue theory applied to the design and selection of mechanical components. Design projects which concentrate on design, engineering analysis, methods of manufacture, material selection and cost. Introduction to computer-aided design.—II (II) Hill, Farouki

151. **Statistical Methods in Design and Manufacturing (3)**
 - Lecture—3 hours. Prerequisite: course 150A. Methods of statistical analysis with emphasis on applications in mechanical design and manufacturing quality control. Applications include product evaluation and decision making, probabilistic design, methods of sampling inspections and control charts.—II (II) Hull

152. **Computer-Aided Mechanism Design (3)**
 - Lecture—1 hour; discussion—1 hour. Prerequisite: Engineering 5 or 6, and 102. Principles of computer-aided mechanism design. Computer-aided kinematic, static, and dynamic analysis and design of planar mechanisms such as multiple-loop linkages and geared linkages. Introduction to kinematic synthesis of mechanisms.—II (II) Cheng

154. **Introduction to Mechatronics (3)**
 - Lecture—2 hours; laboratory—3 hours. Prerequisite: Engineering 102: Engineering 100 or Electrical and Computer Engineering 100; course 50 or consent of instructor. Mechatronics system concepts; academic subjects related to mechatronics, mechatronics system overview, control system design overview, control software architecture, control hardware architecture, microcontroller and interface technology for mechatronics control, sensor for mechatronics systems, actuator control technology, power electronics for actuator drives.—III (III) Yamazaki

General Education electives

- Arts and Humanities (ArtHum)
- Social Sciences (SocSci)
- Social-Cultural Diversity (Wrt)
161. Combustion and the Environment (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: Engineering 103 and 105. Introduction to combustion kinetics; the theory of premixed flames and diffusion flames; turbulent combustion; formation of air pollutants in combustion systems; examples of combustion devices which include internal combustion engines, gas turbines, furnaces and waste incinerators; alternative fuel sources.—I, II, III. (III.) Kennedy

162. Modern Power Plants (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: Engineering 103 and 105. Modern powerplants for electric power generation and cogeneration. Thermodynamic analysis of different concepts of powerplants using fossil fuels and nuclear fuels. Design studies of specific powerplants.—I, II, III. (II.) Hoffman

163. Internal Combustion Engines and Future Alternatives (4)
Lecture—3 hours; laboratory—3 hours. Prerequisite: Engineering 103 and 105. Fundamentals of internal combustion engine design and performance. Future needs to adapt to environmental concerns, and the feasibility of better alternatives in the future.—I, II, III. (II.) Deyer

185A. Mechanical Systems Design Project (2)
Lecture—1 hour. Engineering design projects which include one or more of the following: analysis, design and development of mechanism engineering systems. Response of linear systems. Digital computer simulation and physical experiments.—I, II, III. (II.) Hubbard, Karnopp, Margolis

176D. Wind-Tunnel Experimentation (4)
Lecture—2 hours; discussion—1 hour; laboratory—3 hours. Prerequisite: Engineering 104. Overview of important aspects of low-speed wind-tunnel testing for solving aeronautical and nonaeronautical problems including tunnel corrections, scale effects, force and moment measurements, and flow visualization. Offered in alternate years.—III. White

167A. Applied Gas Dynamics (4)
Lecture—3 hours; laboratory—3 hours. Prerequisite: Engineering 103, 105 and 107. One-dimensional steady and unsteady flows in ducts of constant and variable cross sections. Effects of compressibility, friction, heat transfer, mass addition and combustion. Unsteady effects. Shock waves, rarefaction waves, steady two dimensional supersonic flows, simulation models. Offered in alternate years.—I, III. Chattot

176B. Environmental Fluid Mechanics (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: Engineering 103. Introduction to fluid mechanics in nature and technology, fundamentals of turbulent flows in atmospheric motions, wind effects in urban area. Criteria for physical modeling of large-scale atmospheric flows, dispersion of pollution, wind-tunnel testing and extra-terrestrial fluid mechanics. Offered in alternate years.—III. White

176C. Biomedical Fluid Mechanics (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: Engineering 103 or Chemical Engineering 150B. Basic biofluid mechanics, circulation, respiration and specialized applications, including miscellaneous topics. Offered in alternate years.—I, II. Barakat

176D. Wind-Tunnel Experimentation (4)
Lecture—2 hours; discussion—1 hour; laboratory—3 hours. Prerequisite: Engineering 103 and 107. Provide overview of important aspects of low-speed wind-tunnel testing for solving aeronautical and nonaeronautical problems including tunnel corrections, scale effects, force and moment measurements, and flow visualization. Offered in alternate years.—III. van Dam

171. Analysis, Simulation and Design of Dynamic Systems (4)
Lecture—3 hours; laboratory—3 hours. Prerequisite: Engineering 102. Modeling of dynamic engineering systems in various energy domains. Analysis and design of dynamic systems. Response of linear systems. Digital computer simulation and physical experiments.—I, II, III. (II.) Hubbard, Karnopp, Margolis

172. Automatic Control of Engineering Systems (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 171. Classical feedback control: block diagrams, control systems performance specifications, steady state errors, rise and settling times, root locus, PID controllers, control design with Bode and Nyquist plots, stability, phase and gain margin, lead and lag compensators, state variable feedback controllers. Only 2 units of credit allowed to students who have taken course 176.—II, III, IV. (III, IV.) Hubbard, Eke

184A. Senior Design Project (2)
Laboratory—6 hours. Prerequisite: courses 150B, 165, and 172. Consent of instructor. Senior standing in Mechanical Engineering. Performance of practical mechanical engineering projects which include one or more of the following: analysis, design, development and evaluation of mechanism engineering system. (Deferred grading only, pending completion of sequence.)—I, II, III. (I, II, III.)

184B. Senior Design Project (2)
Laboratory—6 hours. Prerequisite: course 184A in a previous quarter from the same instructor; consent of instructor. Performance of practical mechanical engineering projects which include one or more of the following: analysis, design, development, and evaluation of a mechanical engineering system.—I, II, III. (I, II.)

185A. Mechanical Systems Design Project (2)
Lecture—1 hour; laboratory—3 hours. Prerequisite: course 150A and senior standing in Mechanical Engineering. Capstone mechanical engineering design course; the mechanical engineering process and its use in the design of engineering systems. Deferred grading only, pending completion of sequence.—I, II, III. (II.) Weiss

185B. Mechanical Systems Design Project (2)
Lecture—1 hour; laboratory—3 hours. Prerequisite: course 185A; senior standing in Mechanical Engineering. Enrollment preference to students who have not taken course 186 or 187. Capstone mechanical engineering design course; the mechanical engineering design process and its use in the design of engineering systems.—I, II, III. (I.) Weiss

186. Thermal Systems Design Project (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 165; senior standing in Mechanical Engineering or Physics (enrollment preference to students who have not taken any of course series, 184-188). Design of a thermal system such as a power plant or engine, including consideration of engineering and economic factors. Grading based on individual contributions to project. Limited enrollment.—III. (II.) Hoffman

189A-B. Selected Topics in Mechanical Engineering (1)
Lecture/discussion—1 hour biweekly; laboratory—3 hours biweekly. Prerequisite: consent of instructor. Directed group study of selected topics with separate sections in (A) Fluid Mechanics Laboratory; (B) Thermodynamics Laboratory.—II, III. (III.)

192. Internship in Engineering (1-5)
Internship. Prerequisite: upper division standing; approval of project prior to period of internship. Supervised work experience in mechanical engineering. May be repeated for credit. (P/NP grading only.)

198. Directed Group Study (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)

Courses in Aeronautical Science and Engineering (EAE)

126. Theoretical and Computational Aerodynamics (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: Engineering 103. Engineering 180 or Applied Science Engineering 115 or Mathematics 128C. Development of general equations of fluid motion. Study of flow field kinematics and dynamics. Flow about a body. Thin airfoil theory. Viscous effects. Applications of numerical methods to wing analysis and design.—II, III. Hazes

127. Applied Aircraft Aerodynamics (4)

128. Aircraft Performance (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 127. Aircraft propulsion systems and their performance characteristics. Methods for computing and presenting aircraft performance data. Modern techniques of numerical analysis and energy methods. Application of techniques to aircraft design.—II. (II.) van Dam

129. Aircraft Stability and Control (4)

130. Aircraft Preliminary Design (4)
Lecture—2 hours; discussion—1 hour; laboratory—3 hours. Prerequisite: courses 128 and 129. Aircraft preliminary design including estimation of weight/volume, aerodynamics, performance, stability and control. Design iteration and trade-off studies.—III. (I.) van Dam

131. Flight Test Engineering (4)
Lecture—2 hours, discussion—1 hour; laboratory—3 hours. Prerequisite: course 128. Flight testing of aircraft performance and flying qualities in flight and with flight simulator.—III. (III.)

133. Finite Element Methods in Structures (4)
Lecture—3 hours, laboratory—3 hours. Prerequisite: Engineering 104. Open to Engineering students only. An introduction to the aerospace structural design process. History of aircraft materials. Effects of loading beyond elastic limit. Deflections and stresses due to combined loading. Virtual work principles, and finite element methods. Applications to aerospace structures.—III. (III.) Sarigul-Kilgus

134. Aircraft Structures (4)
Lecture—4 hours. Prerequisite: course 133. Analysis and design methods used in aerospace structures. Shear flow in open, closed and multiecell beam cross-sections, buckling of flat and curved sheets, tension field beams, local buckling.—I. (I.) Sarigul-Kilgus

137. Structural Composites (4)
Lecture—3 hours, laboratory—1 hour. Prerequisite: Engineering 104. Overview of materials and technology for creating structures from fiber reinforced resin matrix composite material systems. Elementary design analysis and case studies emphasizing aeronautical applications.—II. (II.)/refield

Quarter Offered: I=Fall; II=Winter; III=Spring; IV=Summer; 2001–2002 offering in parentheses

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
Courses in Mechanical and Aeronautical Engineering (MAE)

(Formerly courses in Aeronautical Science and Engineering and Mechanical Engineering.)

Graduate Courses

207. Engineering Experimentation and Uncertainty Analysis (4)
Lecture—3 hours; term paper. Prerequisite: Engineering 107. Design and analysis of engineering experiments. Offered as an emphasis on measurement standards, data analysis, regressions and general and detailed uncertainty analysis, including statistical intervals, propagation of bias and precision errors, correlated bias approximations, and using jitter programs.—II. (II.) Baughn

208. Measurement Methods in Fluid Mechanics and Combustion (3)
Lecture—3 hours. Prerequisite: course 165 and Engineering 103. Application of shadow, schlieren and other flow visualization methods. Introduction to optics and lasers. Measurement of velocity and concentrations in reacting and non-reacting flows with laser diagnostic techniques including LDV. Rayleigh, Raman and fluorescence scattering and CARS. Offered in alternate years.—II. (II.) Kennedy

210A. Advanced Fluid Mechanics and Heat Transfer (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: Engineering 103, 105 and Mechanical Engineering 165. Development of differential equations governing conduction, momentum and energy transfer. Solutions in laminar flow for exact cases, low and high Reynolds numbers and lubrication theory. Dynamics of inviscid flow.—I. (I.) White

210B. Advanced Fluid Mechanics and Heat Transfer (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 210A. Study of stability and transition to turbulence. Introduction to the physics of turbulence. Modeling of turbulence for numerical determination of momentum and heat transfer.—II. (II.) Kollmann

211. Fluid Flow and Heat Transfer (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: Engineering 103, 105 and Mechanical Engineering 165 or the equivalent. Design aspects of selected topics; heat conduction, fins; heat transport in ducts, boundary layers and separated flows; heat exchangers.—I. (I.) Hoffman, Baughn

212. Biomedical Heat and Mass Transport Processes (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: Mechanical Engineering 165, Biological Systems Engineering 125, Chemical Engineering 153 or the equivalent. Application of principles of heat and mass transfer to biomedical systems related to heat exchange between the biomedical system and its environment; mass transfer across cell membranes and the design and analysis of artificial human organs. (Same course as Mechanical Engineering 212.) Offered in alternate years.—II. (II.) Kollmann

213. Advanced Turbulence Modeling (4)
Lecture—4 hours. Prerequisite: course 210B. Methods of analyzing turbulence; kinematics and dynamics of homogeneous turbulence; Reynolds stress and heat-flux equations; second order closures and their simplification; numerical methods; application to boundary layer-type flows; two-dimensional and three-dimensional hydraulic and environmental flows. Offered in alternate years.—III. (III.) Aldridge, Kollmann

215. Biomedical Fluid Mechanics and Transport Phenomena (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: Engineering 103 or Chemical Engineering 150B or Civil and Environmental Engineering 141. Application of fluid mechanics and transport to biomedical systems. Flow in normal physiological function and pathological conditions. Topics include circulatory and respiratory flows, effect of flow on cellular processes, transport in the arterial wall and in tumors, and tissue engineering. (Same course as Biomedical Engineering 215.)—II. (III.) Barakat

216. Advanced Thermodynamics (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: Engineering 105. Study of topics important to energy conversion systems, propulsion and other systems using high temperature gases. Classical thermodynamics and quantum statistical mechanics of nonreacting and chemically reacting gases, gas mixtures, and other substances. Offered in alternate years.—I. (I.) Shaw

217. Combustion (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: Engineering 103 and 105. Review of chemical thermodynamics and chemical kinetics. Discussions of reactivity of exhaust, their governing equations, and transport phenomena; detonations, laminar flame structure and turbulent combustion. Offered in alternate years.—II. Shaw

218. Advanced Energy Systems (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: Engineering 103 and 105, or the equivalent. Review of options available for advanced power generation. Detailed study of basic power balances, component efficiencies, and overall powerplant performance for one advanced concept such as a fusion, magnetohydrodynamic, or solar electric powerplant. Offered in alternate years.—I. (I.) Hoffman

219. Introduction to Scientific Computing in Solid and Fluid Dynamics (4)
Lecture—4 hours; laboratory—3 hours. Prerequisite: Engineering 103 and 104. Scientific calculations with finite element and finite difference methods for multi-dimensional problems in solid and fluid dynamics are performed with examples in C, C++, FORTRAN, and MATLAB script files. Derivation of the basic equations of motion in finite volume form with applications to elasticity, waves. Offered in alternate years.—III. (III.) Margolis

220. Mechanical Vibrations (4)
Lecture—4 hours. Prerequisite: Engineering 122. Multiple degrees of freedom; damping measures; Rayleigh's method; vibration absorbers; eigenvalues and eigenvectors; modal coordinates; forced vibrations; random processes and vibrations; autoregression; spectral density; first passage and fatigue failure; nonlinear systems; phase plane.—III. (III.) Margolis

222. Advanced Dynamics (4)
Lecture—4 hours. Prerequisite: Engineering 102. Dynamics of particles, rigid bodies and distributed systems with engineering applications; generalized coordinates; Hamilton's principle; Lagrange's equations; Hamilton-Jacobi theory; model dynamics; orthogonality; wave dynamics; dispersion.—II. (II.) Eke

223. Multibody Dynamics (4)
Lecture—4 hours. Prerequisite: Engineering 102. Coupled rigid-body kinematics/dynamics; reference frames; vector differentiation; configuration and motion constraints; holonomicity; generalized speeds; partial velocities; mass; inertia tensor/theorems; angular momentum; generalized forces; comparing Newtonian and Lagrange's, Kane's and energy-based methods; coordinate transformation; Euler; Rodrigues parameters. (Same course as Biomedical Engineering 223.)—II. (II.) Eke, Hubbard

225. Spatial Kinematics and Robotics (4)
Lecture—3 hours; laboratory—3 hours. Prerequisite: C Language and course 222. Spatial kinematics; screw theory; spatial mechanisms analysis and synthesis; robots and robotics and dynamics, robot workspace, path planning, robot programming, real-time architecture and software implementation. (Same course as Biomedical Engineering 225.) Offered in alternate years.—II. (II.) Ravanii

226. Acoustics and Noise Control (4)
Lecture—4 hours. Prerequisite: Engineering 122. Description of sound using normal modes and waves; interaction between vibrating solids and sound fields; sound absorption in enclosed spaces; sound transmission through barriers; applications in design, acoustic enclosures and sound walls, room acoustics, design of quiet machinery. Offered in alternate years.—III. Kornopp, Sariguel-Klijn

227. Research Techniques in Biomechanics (4)
Lecture—2 hours; laboratory—4 hours; term paper or discussion—1 hour. Prerequisite: Mathematics 22B and consent of instructor; Exercise Science 115 recommended. (Same course as Biomedical Engineering 224.)—II. (II.) Milano, Hawkins

231. Musculo-Skeletal System Biomechanics (4)
Lecture—4 hours. Prerequisite: Engineering 102. Mechanics of skeletal muscle and mechanical models of muscle, solution of the inverse dynamics problem, theoretical and experimental methods of kinematic and kinetic analysis, computation of intersegmental load and muscle forces, applications to gait analysis and sports biomechanics. (Same course as Biomedical Engineering 231.)—II. (III.) Hull

232. Skeletal Tissue Mechanics (3)
Lecture—3 hours; laboratory—1 hour. Prerequisite: Engineering 104B. Overview of the mechanical properties of the various tissues in the musculoskeletal system, the relationship of these properties to anatomic and histologic structure, and the changes in these properties caused by aging and disease. The tissues covered include bone, cartilage and tendon. (Same course as Biomedical Engineering 232.)—II. (III.) Martin

233. Introduction to Computational Aerodynamics and Fluid Dynamics (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: Engineering 103 or consent of instructor. Numerical methods of solution of fluid flow problems. Discretization techniques and solution algorithms. Finite difference solutions to classical model equations pertinent to wave phenomena, diffusion phenomena, or equilibrium. Application to incompressible Navier-Stokes equation.—I. (I.) Chatot, Hafez, Dwyer

234. Design and Dynamics of Road Vehicles (4)
Lecture—4 hours. Prerequisite: Mechanical Engineering 134. Analysis and numerical simulation of road vehicles with on design applications. Offered in alternate years.—III. Velinsky
236. Aerodynamics in Nature and Technology (4)
Lecture—4 hours. Prerequisite: Engineering 103. Introduction to aerodynamics in nature, fundamentals of turbulence in atmospheric flows, planetary boundary layer flow in the urban environment. Theory and laboratory modeling of atmospheric flows, wind-tunnel testing. Offered in alternate years.—(III.) White

237. Analysis and Design of Composite Structures (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: Aeronautical Science and Engineering 137. Modeling and analysis methodology for composite structures including response and failure. Laminated plate bending theory. Introduction to failure processes. Offered in alternate years.—(III.) Reifield

238. Advanced Aerodynamic Design and Optimization (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: consent of instructor. Application of aerodynamic tools to obtain optimum aerodynamic shapes. Both analytic and numerical solutions and solutions obtained with numerical optimization techniques will be examined. Includes introduction to the calculus of variations and numerical optimization techniques. Offered in alternate years.—I. van Dam

240. Computational Methods in Nonlinear Mechanics (4)
Lecture—4 hours. Prerequisite: Applied Science Engineering 115 or Mathematics 128B or Engineering 180. Deformation of solids and the motion of fluids treated with state-of-the-art computational methods. Numerical treatment of nonlinear dynamics; classification of coupled problems; applications of finite element methods to mechanical, aeronautical, and biological systems. Offered in alternate years. (Same course as Biomedical Engineering 240.)—(II.) Sarigul-KlIgn

241. Advanced Aerospace Structures (3)
Lecture—3 hours. Prerequisite: course 135. Classical methods applied to aero-elastic problems. Thin-walled structures. Stability of thin-walled members. Introduction to thermoelastic effects.—(II.) Sarigul-KlIgn

242. Stability of Thin-Walled Structures (4)
Lecture—4 hours. Prerequisite: Civil and Environmental Engineering 202 or consent of instructor. Stability of thin-walled aerospace structures treated from both theoretical and practical design perspectives. Both monolithic and composite construction considered. Buckling of stiffened panels, shells, and thin-walled beams, experimental methods and failure/crushing processes. Offered in alternate years.—(III.) Reifield

248. Advanced Turbomachinery (3)
Lecture—3 hours. Prerequisite: Engineering 103, 105. Preliminary aerodynamic design of axial and radial flow compressors and turbines. Design of diffusers. Selection of turbomachinery configurations and approximations to optimum dimensions and flow angles. Introduction to through flow analysis. Rotating stall and surge, and aeromechanical considerations.—I. (I.) Farouk

250A. Advanced Methods in Mechanical Design (4)
Lecture—4 hours. Prerequisite: Mechanical Engineering 150A and 150B or the equivalents, or consent of instructor. Applications of advanced techniques of solid mechanics to mechanical design problems. Coverage of advanced topics in stress analysis and static failure theories with emphasis in design of machine elements. Design projects emphasizing advanced analysis tools for life cycle evaluation.—I. (I.) Karpoff

250B. Advanced Methods in Mechanical Design (4)
Lecture—4 hours. Prerequisite: course 250A. Applications of advanced techniques of solid mechanics to mechanical design problems. Coverage of advanced topics in variational methods of mechanics with emphasis in design of machine elements. Design projects emphasizing advanced analysis tools.—II. (II.) Hill

250C. Mechanical Performance of Materials (4)
Lecture—4 hours. Prerequisite: undergraduate course in stress analysis and mechanical behavior of materials. Occurrence, mechanisms, and prediction of fatigue and fracture phenomenon. Use of stress and strain to predict crack initiation. Use of fracture mechanics to predict failure and crack propagation. Effects of stress concentration, manufacturing, load sequence, irregular loading, and multi-axial loading. Offered in alternate years.—III. (III.) Hill

251. Mechatronics (4)
Lecture—2 hours; discussion—1 hour; laboratory—3 hours. Prerequisite: course 50, 154, 172 and Engineering 100. Studies of techniques required for designing the electro-mechanical system which consists of the mechanism and the electronics-based sophisticated control. Methodologies for designing the microprocessor applied control hardware and dedicated software and applying electric actuators and sensors with its theoretical background. Offered in alternate years.—III. (III.) Cheng

254. Engineering Software Design (4)
Lecture—3 hours; laboratory—3 hours. Prerequisite: C Language, Engineering 180. Principle and design of engineering software. Advanced topics in engineering software that include object oriented programming, programming in very high-level languages, real-time multi-thread computing and sensor fusion, web-based network computing, graphic user interface and multimedia with applications in engineering. Offered in alternate years.—(III.) Cheng

255. Computer-Aided Design and Manufacturing (3)
Lecture—2 hours; discussion—1 hour. Prerequisite: Engineering 180 and course 150B. Proficiency in a high-level programming language such as FORTRAN, Pascal, or C. Studies of computational and computer graphic techniques in design and manufacturing. Use of numeric and non-numeric computations and geometric tools in design and manufacturing. Offered in alternate years.—III.

258. Hybrid Electric Vehicle System Theory and Design (4)
Lecture—3 hours; laboratory—3 hours. Prerequisite: Mechanical Engineering 150B, graduate standing in Mechanical and Aeronautical Engineering. Advanced vehicle dynamics and control including fuel economy, performance, and low emissions, considering regulations, societal demands and manufacturability. Analysis and verification of computer design and control of vehicle systems in real vehicle tests. Advanced engine concepts. Offered in alternate years.—(III.) Frank

261. Gas Dynamics (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: Engineering 103 or the equivalent. Flow of compressible fluids. Isentropic flow. Flow with friction, heat transfer, chemically reacting gas and particle mixture. Normal and oblique shock waves, compressible shock waves, blast expansion and explosion waves. Method of characteristics. Offered in alternate years.—(III.)

262. Advanced Aerodynamics (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: Aeronautical Engineering 126. Study of inviscid and viscous flows about aerodynamic shapes at subsonic, transonic and supersonic conditions. Application of aerodynamic theory to design for reduced drag and increased lift. Offered in alternate years.—(II.) van Dam, Hafez, Chattot, White

263. Introduction to Computational Aerodynamics and Fluid Dynamics (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: Engineering 103 or consent of instructor. Introduction to numerical methods for solution of fluid flow problems. Discretization techniques and solution algorithms. Finite difference solutions to classical model equations pertinent to wave phenomena, diffusion phenomena, or equilibrium. Application to the incompressible Navier-Stokes equation. Offered in alternate years.—(II.) Chattot

264. Computational Aerodynamics (4)

266. Advanced Wind-Tunnel Testing (4)
Lecture—2 hours; discussion—1 hour; laboratory—3 hours. Prerequisite: undergraduate course in fluid dynamics. Aspects of low-speed wind-tunnel testing for solving aeronautical and non-aeronautical problems including tunnel corrections, scale effects, force and moment measurements, and flow visualization. Offered in alternate years.—(III.) van Dam

271. Modeling and Simulation of Engineering Systems (4)
Lecture—3 hours; laboratory—3 hours. Prerequisite: Mechanical Engineering 172 or the equivalent. Multiprot models of mechanical, electrical, hydraulic, and thermal devices; bond graphs, block diagrams and state space equations; modeling of multiple energy domain systems; 3-dimensional mechanics; digital simulation laboratory.—I. (I.) Karnopp, Margolis

272. Theory and Design of Control Systems (4)
Lecture—4 hours. Prerequisite: Mechanical Engineering 172 or the equivalent. Multiprot models of mechanical, electrical, hydraulic, and thermal devices; bond graphs, block diagrams and state space equations; modeling of multiple energy domain systems; 3-dimensional mechanics; digital simulation laboratory.—I. (I.) Karnopp, Margolis

Lecture—3 hours; discussion—1 hour. Prerequisite: Mechanical Engineering 172. Discrete systems analysis; digital filtering; sample data systems; state space and transform design techniques; quantization effects; multi-input, multi-output systems.—III. (III.) Hess

275. Advanced Aircraft Stability and Control (4)

276. Data Acquisition and Analysis (4)
Lecture—3 hours; discussion—1 hour. Application of computers for data acquisition and control. Topics include computer architecture, characteristics of transducers, hardware for laboratory applications of computers, fundamentals of interfaces between computers and experimental equipment, programming techniques for data acquisition and control, basic data analysis. Offered in alternate years.—I.

290C. Graduate Research Conference (1)
Discussion—1 hour. Prerequisite: consent of instructor. Individual and/or group conference on problems, progress, and techniques in mechanical and aeronautical engineering research. May be repeated for credit. (SU grading only.)—I, II, III, IV, (II, III)

297. Seminar (1)
Discussion—1 hour. Prerequisite: consent of instructor. Current topics in engineering including developments in mechanical and aeronautical engineering with presentations by students, faculty, and visitors. May be repeated for credit. (SU grading only.)—I, II, III, (I, II, III, IV)

298. Group Study (1-5)

299. Research (1-12)
Prerequisite: consent of instructor. (SU grading only.)

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
Professional Course

390. The Teaching of Aeronautical Science and Engineering (1)
Discussion—1 hour. Prerequisite: meet qualifications for teaching assistant and/or associate-in in Aeronautical Science and Engineering. Methods of leading discussion groups or laboratory sections, writing and grading quizzes, use of laboratory equipment, and grading laboratory reports. May be repeated for credit. (S/U grading only.)—I, II, III. (I, II, III.)

396. Teaching Assistant Training Practicum (1-4)
Prerequisite: graduate standing. May be repeated for credit. (S/U grading only.)—I, II, III. (I, II, III.)
Engineering

(College of Engineering)
Alan J. Laub, Ph.D., Dean
Ian M. Kennedy, Ph.D., Associate Dean—Academic Personnel and Planning
Zuhair A. Munir, Ph.D., Associate Dean—Research and Graduate Studies
James F. Shackelford, Ph.D., Associate Dean—Undergraduate Studies
Billy Sanders, Ph.D., Assistant Dean—Academic Affairs
College Office, 1050 Engineering II (530-752-0553)
World Wide Web: http://www.engr.ucdavis.edu/

Undergraduate Study
The four-year undergraduate program is divided into two parts: the Lower Division Program and the Upper Division Program. If you enter the College of Engineering with fewer than 30 quarter units of credit, follow the lower division program specified for your major.

If you enter the College with 90 or more quarter units of credit, you must fulfill the requirements outlined in the Undergraduate Education chapter of this catalog, under “College of Engineering, Unit Requirements.”

Graduate Study
Graduate degrees are offered in the following engineering disciplines:

- Applied Science
- Biological and Agricultural Engineering
- Chemical Engineering
- Civil and Environmental Engineering
- Electrical and Computer Engineering
- Materials Science and Engineering
- Mechanical and Aeronautical Engineering

For additional information refer to the College of Engineering Bulletin, or phone the Graduate Study Office (530-752-0592). See also the Graduate Studies chapter of this catalog.

The Major Programs
The college has seven departments: Applied Science Engineering, Biological and Agricultural Engineering, Chemical and Materials Science Engineering, Civil and Environmental Engineering, Computer Science Engineering, Electrical and Computer Engineering, Mechanical and Aeronautical Engineering.

Eleven majors, leading to the B.S. degree, are open to students:

- Aeronautical Science and Engineering
- Biological Systems Engineering
- Chemical Engineering
- Chemical/Biochemical Engineering
- Civil Engineering
- Computer Engineering
- Computer Science and Engineering
- Electrical Engineering
- Food Engineering (not open to new students)
- Materials Science and Engineering
- Mechanical Engineering
- Optical Science and Engineering

Four double majors are offered leading to the B.S. degree:

- Chemical Engineering/Materials Science and Engineering
- Civil Engineering/Materials Science and Engineering
- Electrical Engineering/Materials Science and Engineering
- Mechanical Engineering/Materials Science and Engineering

Courses in Engineering (ENG)

Lower Division Courses
4. Engineering Graphics in Design (3)
Lecture—2 hours; laboratory—3 hours. Introduction to engineering design, descriptive geometry, pictorial sketching, computer-aided graphics, and their application in the solution of engineering problems.—I, II, III (I, II, III)

5. Applications of Computers (3)
Lecture—2 hours; discussion—1 hour. Prerequisite: Mathematics 16A or 21A. Digital computation and computer programming in FORTRAN. Algorithms and their description. Basic programming; debugging of programs; approximate computer-accuracy and significance; solving simple numerical and nonnumerical problems.—I, II, III (I, II, III)

6. Engineering Problem Solving (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: Mathematics 16B or 21B (may be taken concurrently). Methodology for solving engineering problems. Engineering computing and visualization based on MATLAB. Engineering examples and applications.—I, II, III (I, II, III)

11. Issues in Engineering (1)
Lecture—1 hour. Prerequisite: Participation in the MESA Engineering Program or consent of instructor. Designed to broaden student’s understanding of the engineering profession, its methods, principles, design and development process, career opportunities, and professional resources.—I (I) Shackelford

17. Circuits I (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: Mathematics 22B (may be taken concurrently); Physics 9C. Basic electric circuit analysis techniques, including electrical quantities and elements, resistive circuits, transient and steady-state responses of RC and RL circuits, sinusoidal excitation and phasors, and complex frequency and network functions.—I, II, III (I, II, III)

35. Statics (3)
Lecture—2 hours; laboratory—3 hours. Prerequisite: Mathematics 21D (may be taken concurrently); Physics 9A. Force systems and equilibrium conditions with emphasis on engineering problems.—I, II, III (I, II, III)

45. Properties of Materials (4)
Lecture—3 hours; laboratory—3 hours. Prerequisite: Mathematics 16C or 21C and Chemistry 2A. Introductory course on the properties of engineering materials and their relation to the internal structure of materials. GE credit: Wrt.—I, II, III (I, II, III)

Upper Division Courses
100. Electronic Circuits and Systems (3)
Laboratory—3 hours; lecture—1 hour; discussion—1 hour. Prerequisite: course 17. Introduction to analog and digital circuit and system design through hands-on laboratory design projects. Students who have completed Electrical and Computer Engineering 100 may receive only 1.5 units of credit.—I, II, III (I, II, III)

102. Dynamics (4)
Lecture—4 hours. Prerequisite: course 35, Mathematics 22B; open to College of Engineering students only. Kinematics and kinetics of particles, of systems of particles, and of rigid bodies applied to engineering problems. Only 2 units of credit allowed to students who have previously taken Engineering 36.—I, II, III (I, II, III)(I, II, III)

104. Mechanics of Materials (4)

104L. Mechanics of Materials Laboratory (1)
Laboratory—3 hours. Prerequisite: course 104. Experiments which illustrate the basic principles and verify the analysis procedures used in the mechanics of materials are performed using the basic tools and techniques of experimental stress analysis.—I, II, III (I, II, III)

105. Thermodynamics (4)
Lecture—4 hours. Prerequisite: Mathematics 21D, 22B and Physics 9B. Open to College of Engineering students only. Fundamentals of thermodynamics: heat energy and work, properties of pure substances, First and Second Law for closed and open systems, reversibility, entropy, thermodynamics temperature scales, power cycles, nonreacting ideal gas mixtures and psychrometrics and applications of thermodynamics to engineering systems.—I, II, III (I, II, III)(I, II, III)

106. Engineering Economics (3)
Lecture—4 hours. Prerequisite: upper division standing in Engineering. The analysis of problems in engineering economy; the selection of alternatives; replacement decisions. Compounding, tax, origins and cost of capital, economic life, and risk and uncertainty are applied to methods of selecting most economic alternatives.—I, II, III (I, II, III)(I, II, III)

107. Thermo Fluids Laboratory (4)
Lecture—3 hours; laboratory—3 hours. Prerequisite: courses 103 and 105. Experiments to illustrate the first and second laws of thermodynamics, thermodynamics cycles, combustion, fluids dynamic and compressible flows, and principles of thermal and flow measurements.—I, II, III (I, II, III)(I, II, III)

Quarter Offered: I=Fall; II=Winter; III=Spring; IV=Summer, 2001-2002 offering in parentheses
General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
111. Electric Power Equipment (3)
Lecture—2 hours; laboratory—3 hours. Prerequisite: course 17. Principles of AC and DC electric motors and generators, their control systems and power sources. Selection of electric power equipment components based on their construction features and performance characteristics.—I. (I.) Delwiche Hartsough

122. Introduction to Mechanical Vibrations (4)
Lecture—4 hours. Prerequisite: course 102. Free and forced vibrations in lumped-parameter systems with and without damping; vibrations in coupled systems; electromechanical analogs; use of energy conservation principles.—I. (I.) Frank

130. Introduction to Biomedical Engineering (3)
Lecture—3 hours. Prerequisite: course 45, 100, 102, or consent of instructor. Introduction to the primary fields of specialization in biomedical engineering. Fields include sensors, instrumentation, and signal processing, orthopaedic biomechanics, whole body biomechanics; imaging; biofluids and transport.—I. (I.) Hull

160. Environmental Physics and Society (3)
Lecture—3 hours. Prerequisite: Physics 9D, 5C, or 10 or 1B and Mathematics 16B or the equivalent. Impact of humankind on the environment will be discussed from the point of view of the physical sciences. Calculations based on physical principles will be made, and the resulting policy implications will be considered. (In the College of Engineering, students may receive only one unit of credit towards the Technical Electives requirement.) (Same course as Physics 160.)GE credit: SciEng or SocSci.—I. (I.) Jungerman, Craig

180. Engineering Analysis (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: Mathematics 21D, 22B, and course 5 or 6. Solutions of systems of linear and nonlinear algebraic equations; approximation methods; solutions of ordinary differential equations; initial and boundary value problems; solutions of partial differential equations of elliptic, parabolic and hyperbolic types; Eigen value problems.—I. (I.) Hafez

190. Professional Responsibilities of Engineers (3)
Lecture—3 hours; laboratory—1 hour. Prerequisite: upper division standing. Organization of the engineering profession; introduction to contracts, specifications, business law, patents, and liability; discussion of professional and ethical issues; oral presentations on the interactions between engineering and society.—II, III. (II, III.) Sanders

Graduate Courses

250. Technology Management (3)
Environmental Horticulture

(College of Agricultural and Environmental Sciences)
David W. Burger, Ph.D., Chairperson of the Department
Department Office, 140 Environmental Horticulture Building (530-752-0130)
World Wide Web: http://envhort.ucdavis.edu

Faculty
Michael G. Barbour, Ph.D., Professor. Academic Senate Distinguished Teaching Award
Allison M. Berry, Ph.D., Associate Professor
David W. Burger, Ph.D., Professor
Don J. Durzan, Ph.D., Professor
Richard Y. Evans, Ph.D., Lecturer
James A. Harding, Ph.D., Professor
J. Heinrich Lieth, Ph.D., Professor
James D. MacDonald, Ph.D., Professor (Plant Pathology)
Michael P. Parella, Ph.D., Professor (Entomology)
Michael S. Reid, Ph.D., Professor
Lin L. Wu, Ph.D., Professor
Truman P. Young, Ph.D., Assistant Professor

Emeriti Faculty
Thomas G. Byrne, M.S., Lecturer Emeritus
Seymour M. Gold, Ph.D., Professor Emeritus
Richard W. Harris, Ph.D., Professor Emeritus, Academic Senate Distinguished Teaching Award
Charles E. Hess, Ph.D., Professor Emeritus
Anton M. Kofranek, Ph.D., Professor Emeritus
Andrew T. Leiser, Ph.D., Professor Emeritus
John H. Madison, Jr., Ph.D., Professor Emeritus
Jack L. Paul, Ph.D., Professor Emeritus
Roy M. Sachs, Ph.D., Professor Emeritus

Affiliated Faculty
Thomas Ledig, Ph.D., Lecturer
Greg McPherson, Ph.D., Lecturer
David B. Neale, Ph.D., Lecturer

The Program. Students of Environmental Horticulture learn how plants improve the environment and the quality of life. They are used to revegetate and restore disturbed landscapes, control erosion, and reduce energy and water consumption. The ornamental use of plants to improve the aesthetic quality of urban and rural landscapes, recreational areas, and commercial sites is an important aspect of the study of environmental horticulture. Students interested in Environmental Horticulture can obtain a B.S. degree in Environmental Horticulture and Urban Forestry and may specialize in Floriculture/Nursery Management, Urban Forestry, Landscape Management/Turf or Plant Biology.

Students interested in Environmental Horticulture can obtain a B.S. degree in Environmental Horticulture and Urban Forestry and may specialize in Floriculture/Nursery Management, Urban Forestry, Landscape Management/Turf or Plant Biology.

General Education (GE) credit: Wrt = Social-Cultural Diversity; Div = Arts and Humanities; Div = Social-Cultural Diversity; Div = Social-Cultural Diversity; Div = Social-Cultural Diversity; Div = Social-Cultural Diversity.

Environmental Horticulture 110 or 134 ...4
Environmental Horticulture 171 ...4
Environmental Horticulture 6 ..3
Environmental Horticulture ...22-24

Minor Program Requirements:

<table>
<thead>
<tr>
<th>Course</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental Horticulture ...</td>
<td>22-24</td>
</tr>
<tr>
<td>Environmental Horticulture 6 ..</td>
<td></td>
</tr>
<tr>
<td>Plant Biology 171 ..</td>
<td>3</td>
</tr>
<tr>
<td>Environmental Horticulture 105, 107, or 149</td>
<td>4</td>
</tr>
<tr>
<td>Environmental Planning and Management 110 or 134</td>
<td>4</td>
</tr>
<tr>
<td>Minor Advisers: J.A. Harding or D.W. Burger.</td>
<td></td>
</tr>
</tbody>
</table>

Related Undergraduate Programs. See the undergraduate majors in Environmental Horticulture and Urban Forestry, Agricultural Systems and Environment, and Environmental Biology and Management.

Graduate Study. For graduate study, refer to the Graduate Studies chapter of this catalog.

Related Courses. See Plant Biology.

Courses in Environmental Horticulture (ENH)

Lower Division Courses

1. Introduction to Environmental Horticulture/Urban Forestry (3)
 Lecture—3 hours. Introduction to the use of plants to enhance the physical, visual and social environment. The use of ecological principles in developing sustainable, low maintenance landscape systems will be presented. Career opportunities will be discussed. GE credit: SciEng, Wrt—I. (I.) Burger

6. Introduction to Environmental Plants (4)
 Lecture—1 hour; discussion—2 hours; laboratory—3 hours. Classification, nomenclature and variation of environmental plants. The use of floral and vegetative characteristics and terminology to key unknown plants. Characteristics of plant groups and basics of climate, soils and plant selection. Identification of 150 common landscape plants.—I. (I.) Young

92. Internship in Environmental Horticulture (1-12)
 Internship—3-36 hours. Prerequisite: course 1 or 6 or Biological Sciences 1C or Agricultural Systems and Environment 2 and consent of instructor. Work experience in an area of Environmental Horticulture and Urban Forestry, including flower and nursery production and marketing, landscape management, arboriculture, turf management, and landscape restoration. Internships supervised by a member of the faculty. (P/NP grading only.)

99. Special Study for Lower Division Students (1-5)
 (P/NP grading only.)

Upper Division Courses

100. Urban Forestry (4)
 Lecture—2 hours, laboratory—3 hours; term paper. Prerequisite: Biological Sciences 1C or Agricultural Systems and Environment 2. Principles and practices of planning and managing urban vegetation. Basics of tree appraisal, natural resource inventory, and development of long term urban forest management plans.—I. (I.)

102. Physiological Principles in Environmental Horticulture (4)
 Lecture—3 hours; discussion—1 hour. Prerequisite: Biological Sciences 1C. Physiological principles and processes essential to floriculture, nursery crop production, turf culture and landscape horticulture. Emphasis on the control of vegetative and reproductive development for a broad species range in greenhouse and extensive landscape environments.—III. (III.) Burger

105. Taxonomy and Ecology of Environmental Plant Families (4)
 Lecture—2 hours; laboratory—6 hours. Prerequisite: course 6 or consent of instructor. Classification and identification of introduced and native species used in urban forests, with emphasis on floral and vegetative characteristics of the prominent families of angiosperms and gymnosperms, adaptations to environmental variations in western landscapes, and horticultural classification.—I. (I.) Harding

110. Urban and Regional Planning (4)
 Lecture—3 hours; discussion—1 hour. Prerequisite: upper division standing. Urban and regional planning principles, methods, and techniques; the planning process and the General Plan; historical perspective; urban design; policy issues, including land use and growth management. Not open for credit to students who have completed Environmental Planning and Management 110. (Former course Environmental Planning and Management 110.)—II. (II.)

112. Recreation Planning (4)
 Lecture—3 hours; discussion—1 hour. Prerequisite: course 110 or the equivalent recommended. Basic concepts, principles, techniques and methods used to prepare park, recreation, and open space plans for urban environments. Not open for credit to students who have completed Environmental Planning and Management 134. (Former course Environmental Planning and Management 134.)—III. (III.)

120. Management of Container Media (3)
 Lecture—2 hours; laboratory—3 hours. Prerequisite: Soil Science 10. Principles of soil science and practices related to management of container media are taught, emphasizing appropriate use of soils and amendments, irrigation, and fertilizers. Physical and chemical properties are tested and effects of management on crops are evaluated in the laboratory.—I. (I.)

125. Greenhouse and Nursery Crop Production (5)
 Lecture—3 hours; discussion—1 hour; laboratory—3 hours. Prerequisite: Agricultural Systems and Environment 2. Principles and techniques for the production of ornamental greenhouse and nursery crops. Hands-on experience producing greenhouse crops.—II. (II.) Leth

130. Turfgrass and Amenity Grassland Utilization and Management (4)
 Lecture—2 hours; discussion—1 hour; laboratory—3 hours. Prerequisite: Biological Sciences 1C or Agricultural Systems and Engineering 2. Utilization and management of amenity and landscape grassland systems. Emphasis on biology of grass species, ecology and culture practice of sports turf and landscape grassland systems, social and environmental benefits, environmental impacts, and integrated management systems.—III. (III.) Wu

Quarter Offered: I = Fall; II = Winter; III = Spring; IV = Summer, 2001-2002 offering in parentheses.

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
133. Woody Plants in the Landscape: Growth, Ecology and Management (4)
Lecture—3 hours; laboratory—2 hours; discussion—1 hour. Prerequisite: Biological Sciences 1C or the equivalent preparation in plant biology. Principles and practices of managing trees and shrubs in the urban landscape and other managed environments. Topics include woody plant form; growth response and adaptation; tree management in relation to soil, moisture, climate; plant problems.—I, II, III. (Berry)

144. Trees and Forests (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: Biological Sciences 1C. Biological structure and function of trees as organisms; understanding of forests as communities and as ecosystems; use of forests by humans; tree phenology, photosynthesis, respiration, soil processes, life histories, dormancy, forest biodiversity, and agroforestry. (Same course as Environmental and Resource Sciences 144 and Plant Biology 144.)—I. (Barbour, Berry, Bledsoe)

145. Tree Improvement and Utility (3)
Lecture—2 hours; discussion—1 hour. Prerequisite: course 102 and Biological Sciences 1C; Plant Biology 160 recommended. Life histories, adaptive plasticity, longevity, utility of trees and the uniqueness of biological materials. Applications of cloning, secondary products, wood science, and space biology in the context of academic, governmental and industrial viewpoints.—III. (Durzan)

149. Evolution and Diversity of Environmental Plants (4)
Lecture—2 hours; fieldwork—3 hours. Prerequisite: course 105, Plant Biology 102 or 108, or consent of instructor. Classification of environmental plants using primitive and advanced characteristics to develop a model for macro evolution. Use of the processes of mutation, inbreeding, hybridization, polyploidy, gene flow and natural selection in explanation of micro evolutionary changes. Not open for credit to students who have taken course 107.—III. (Harding)

150. Genetics and Plant Conservation: The Biodiversity Crisis (3)
Lecture/discussion—3 hours. Prerequisite: Biological Sciences 1C or the equivalent. Conservation of genic diversity, measurement of diversity, threats to diversity and reasons for protection, the process of extinction, distribution of diversity, determination of what to conserve and means of conservation. Examples drawn largely from forest tree species.—II. (Ledig)

160. Restoration Ecology (3)
Lecture—2 hours; fieldwork—3 hours. Prerequisite: Plant Biology/Evolution and Ecology 117 or Evolution and Ecology 121 or equivalent course in ecology or plant ecology. Conceptual bases of restoration ecology; tools used by restoration ecologists to solve practical problems; scope and success of actual restoration projects. Four required weekend field trips.—II. (Young)

192. Internship in Environmental Horticulture (1-12)
Internship—3-36 hours. Prerequisite: upper division standing, completion of at least 84 units, two upper division courses in Environmental Horticulture appropriate for the internship, and consent of instructor. Work experience in an area of Environmental Horticulture and Urban Forestry, including flower and nursery production and marketing, landscape management, arboriculture, turf management and landscape restoration. Internships supervised by a member of the faculty. (P/NP grading only.)

197T. Tutoring in Environmental Horticulture (1-4)
Lecture—2 hours; discussion—1 hour. Prerequisite: course 105, Plant Biology 102 or 108, or consent of instructor. Classification of environmental plants using primitive and advanced characteristics to develop a model for macro evolution. Use of the processes of mutation, inbreeding, hybridization, polyploidy, gene flow and natural selection in explanation of micro evolutionary changes. Not open for credit to students who have taken course 107.—III. (Harding)

198. Directed Group Study (1-5)
Prerequisite: 3 units of upper division work in environmental horticulture; consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5)
Prerequisite: 3 units of upper division work in environmental horticulture; consent of instructor. (P/NP grading only.)

Graduate Courses

229. Analysis of Horticultural Problems (5)
Lecture—1 hour; laboratory—8 hours; discussion—1 hour; project. Prerequisite: equivalent of B.S. degree in Environmental Horticulture and Urban Forestry. Plant Biology, Agricultural Systems and Environment, or related major, or consent of instructor. Methods of analysis of common plant disorders seen in the landscape, greenhouse, and nursery. Diagnosis of plant disorders caused by soil, water, insects, disease, chemical agents, climactic conditions or cultural practices. Approaches to diagnosis that emphasize acquisition and integration of information. Not open for credit to students who have completed course 241.—III. (III)

290. Seminar (1)
Seminar—1 hour. Prerequisite: graduate standing. Topics in environmental horticulture, including plant morphogenesis, floriculture, greenhouse production and modeling, landscape plant ecology, arboriculture, turf culture, post harvest, plant propagation and breeding, urban forestry, plant biodiversity and restoration. (S/U grading only.)—I, II, III. (I, II, III)

290C. Research Group Conference (1)
Discussion—1 hour. Prerequisite: students in a plant science graduate program. Research conference conducted by departmental faculty to discuss design, philosophy, and interpretation of ongoing specific research areas which includes plant morphogenesis, floriculture, greenhouse production, landscape plant ecology, arboriculture, turf culture, post harvest, and plant breeding related to environmental horticulture. (S/U grading only.)—I, II, III. (I, II, III)

297T. Tutoring in Environmental Horticulture (1-4)
Tutoring—4-8 hours; discussion—1 hour. Prerequisite: graduate student standing; completion of course to be tutored (or the equivalent) and/or consent of instructor. Leading discussion sections, conducting laboratory exercises, and lecturing in Environmental Horticulture classes under faculty guidance. Weekly conference on subject matter and instructional techniques. May be repeated for credit in different courses.

298. Group Study (1-5)
Prerequisite: graduate standing. Group study of advanced topics in Environmental Horticulture. (S/U grading only.)

299. Research (1-12)
Prerequisite: graduate standing. (S/U grading only.)

Professional Course

396. Teaching Assistant Training Practicum (1-4)
Prerequisite: graduate standing. May be repeated for credit. (S/U grading only.)—I, II, III. (I, II, III)

Courses in Environmental Planning and Management (ENP)

Questions pertaining to the following courses should be directed to the instructor.

Upper Division Courses

110. Urban and Regional Planning (4)
Lecture—3 hours; discussion—1 hour, one Saturday field trip. Prerequisite: upper division standing. The history, nature, scope and significance of planning in America, with emphasis on basic definitions and concepts, the planning process and comprehensive plan, significant problems and potentials, design alternatives, the future, innovation, and the profession.—II. (Gold) (Environmental Horticulture)

134. Recreation Planning (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 110 or the equivalent recommended. Basic concepts, principles, techniques and methods used to prepare park, recreation, and open space plans for urban environments.—III. (Gold)
English

(College of Letters and Science)
Linda A. Morris, Ph.D., Chairperson of the Department
Department Office, 176 Voorhies Hall, (530-752-2257)
World Wide Web: http://www.english.ucdavis.edu

Faculty
Don P. Abbott, Ph.D., Professor
Max Byrd, Ph.D., Professor
Peter A. Dale, Ph.D., Professor
Joanne F. Diehl, Ph.D., Professor
Margaret W. Ferguson, Ph.D., Professor
Elizabeth S. Freeman, Ph.D., Assistant Professor
Sandra M. Gilbert, Ph.D., Professor
Peter L. Hays, Ph.D., Professor
W. Jack Hicks, Ph.D., Senior Lecturer
Michael J. Hoffman, Ph.D., Professor
Alessa Johns, Ph.D., Assistant Professor
Elizabeth Langland, Ph.D., Professor
Richard A. Levin, Ph.D., Associate Professor, Academic Senate Distinguished Teaching Award
Kari F. Lokke, Ph.D., Associate Professor (Comparative Literature, English)
Clarence Major, Ph.D., Professor
Sandra J. McPherson, B.A., Professor
Patricia L. Moran, Ph.D., Associate Professor
Linda A. Morris, Ph.D., Professor
Marjorie Osborn, Ph.D., Professor
Riché D. Richardson, Ph.D., Assistant Professor
David A. Robertson, Ph.D., Professor, Academic Senate Distinguished Teaching Award
Catherine M. Robson, Ph.D., Assistant Professor
Winfrid Schiewer, Ph.D., Professor
David Simpson, Ph.D., Professor
Gary Snyder, B.A., Professor
David Van Leer, Ph.D., Professor
Raymond B. Waddington, Ph.D., Professor
Alan B. Williamson, Ph.D., Professor
Kari F. Zender, Ph.D., Professor

Emeriti Faculty
William E. Baker, Ph.D., Professor Emeritus
Everest Carter, Ph.D., Professor Emeritus
Thomas A. Hanzo, Ph.D., Professor Emeritus
Wayne Harsh, Ph.D., Professor Emeritus
John O. Hayden, Ph.D., Professor Emeritus
Robert H. Hopkins, Ph.D., Professor Emeritus
Arthur E. McGuinness, Ph.D., Professor Emeritus
James J. Murphy, Ph.D., Professor Emeritus
Gwendolyn Shreve, M.A., Senior Lecturer Emerita
Kari L. Shapiro, Professor Emeritus
Daniel Silvia, Ph.D., Professor Emeritus
James L. Woodress, Ph.D., Professor Emeritus

Affiliated Faculty
Cynthia J. Bates, M.A., Lecturer
Linda N. Bates, Ph.D., Lecturer
Mary E. Bly, M.A., Lecturer
John Boe, Ph.D., Lecturer, Academic Federation Excellence in Teaching Award
Marlene B. Clarke, Ph.D., Lecturer
Mardena E. Creek-Michelson, Ph.D., Lecturer
Elizabeth Davis, Ph.D., Lecturer
Pamela Denomy, Ph.D., Lecturer
Aliki Dragona, Ph.D., Lecturer
Margaret Eldred, Ph.D., Lecturer
Dale B. Flynn, Ph.D., Lecturer
Gary S. Goodman, Ph.D., Lecturer
Jared Haynes, M.A., Lecturer
Donald B. Johns, Ph.D., Lecturer
Pamela J. Major, Ph.D., Lecturer
James McElroy, Ph.D., Lecturer
Nancy V. Morrow, Ph.D., Lecturer
Susan E. Pale, Ph.D., Lecturer
Janel L. Papale, M.A., Lecturer, Academic Federation Excellence in Teaching Award
Sondra Reid, Ph.D., Lecturer
Raquel Scherer, Ph.D., Lecturer
Eric J. Schroeder, Ph.D., Lecturer, Academic Federation Excellence in Teaching Award
John Stenzel, Ph.D., Lecturer
Jaye L. Walker, Ph.D., Lecturer

The Major Program

The study of English develops skills in reading analytically and perceptively and in writing clearly and with effect.

The Program. The English department offers three kinds of courses: composition courses, undergraduate courses, and graduate courses. Composition courses develop skills in reading analytically and in writing persuasively. Undergraduate and graduate courses cover the entire range of English and American literature, as well as creative writing. Students majoring in English may elect a teaching emphasis, a creative writing emphasis, or a general literature emphasis. The teaching emphasis focuses on the study of composition and of language. The writing emphasis focuses on fiction, poetry, and article writing. Creative writing majors have an opportunity to work with distinguished professional writers of fiction and poetry. The general literature emphasis focuses on a series of related courses in various historical periods of English and American literature.

Career Alternatives. Graduates have found the major excellent pre-professional training for graduate study in English, as well as for careers in teaching, law, medicine, and literary work. Many graduates are employed in journalism, publishing, advertising, and public information. Others have worked in local, state, and federal government agencies, as well as in industry and agriculture. Some have established their own businesses.

A.B. Degree Requirements:

Preparatory Subject Matter: English 1 or 3...4
English 42, 43, 44, 45...16

Depth Subject Matter:

One course from each of the following six historical fields:.........................20
(a) Medieval: English 111, 113A, 113B
(b) Renaissance: English 115, 122
(c) British Literature—Restoration through Romantic period: English 123, 130, 155A
(d) British Literature—Victorian or Twentieth Century: English 133, 137, 155B, 155C
(e) American Literature pre-1865: English 142, 143, 158A
(f) American Literature post-1896: English 144, 146, 158B, 166, 167, 181B

One course from the following five upper division ethnic literature courses:.................20

Teaching Emphasis

Three upper division English electives...12

Creative Writing Emphasis

Three sections of English 108F, 100P and/or 100NF..12

Teaching Emphasis

Three upper division English electives...12

Total Units for the Major:...64

English Majors. Up to four upper division units in a national literature other than English or American, or in Comparative Literature, may count toward the requirements of the major.
5P. Introduction to Creative Writing: Poetry (4)
Lecture/discussion—4 hours. Prerequisite: completion of Subject A requirement. The elementary principles of writing poetry. Students will write both in prescribed forms and in experimental forms of their own choosing. No final examination.—I, II, III (I, II, III.)

18. Style in the Essay (4)
Lecture/discussion—4 hours. Prerequisite: course 1 or 3 or the equivalent. Style, language, and structure in the essay. Instruction in analyzing style, developing a written voice, revising sentences, developing effective paragraphs and arguments, and writing with force and clarity. GE credit: Wrt (cannot be used to satisfy a college or university composition requirement and GE writing experience simultaneously).—I, II, III (I, II, III.)

19. Writing Research Papers (4)
Lecture/discussion—4 hours. Prerequisite: course 1 or 3 or the equivalent. Development of skills in critical reading, analysis, documentation, and writing needed for research-based assignments. Instruction provided in formulating research topics and in developing effective arguments. Reading and writing assignments may focus on a single theme. GE credit: Wrt (cannot be used to satisfy a college or university composition requirement and GE writing experience simultaneously).—I, II, III (I, II, III.)

30A. Survey of American Literature (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 1 or 3. American literature from the seventeenth century to 1865. GE credit: ArtHum, Div, Wrt.

30B. Survey of American Literature (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 1 or 3. American literature from 1865 to the present. GE credit: ArtHum, Div, Wrt.

42. Approaches to Reading (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 1 or 3 or the equivalent. Course introduces students to critical reading. Close reading and interpretation of literature from a variety of traditional and contemporary approaches. Topics include textual and historical approaches; new criticism; formalism; psychological criticism; feminism and gender; reader-response; materialist approaches. Frequent written assignments. GE credit: Wrt.—I, II, III (I, II, III.)

43. Introduction to the Study of Drama (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 1 or 3 or the equivalent. Close reading of selected works of British and American drama from a range of historical periods. Introduction to critical terminology and dramatic genres. Frequent written assignments. GE credit: Wrt.—I, II, III (I, II, III.)

44. Introduction to the Study of Fiction (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 1 or 3 or the equivalent. Close reading of selected works of British and American fiction. GE credit: Wrt.—I, II, III (I, II, III.)

45. Introduction to the Study of Poetry (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 1 or 3 or the equivalent. Close reading of selections from English and American poetry. GE credit: Wrt.—I, II, III (I, II, III.)

46A. Masterpieces of English Literature (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 1 or 3. Selected works of principal writers from 1640 to 1843. History of literary conventions and backgrounds in religious thought, intellectual and social history, and related art forms. GE credit: Wrt.—I (I)

46B. Masterpieces of English Literature (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 1 or 3. Selected works of principal writers from 1843 to 1910. History of literary conventions and backgrounds in religious thought, intellectual and social history, and related art forms. GE credit: Wrt.—I, II, III (I, II, III.)

46C. Masterpieces of English Literature (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 1 or 3. Selected works of principal writers from 1910 to 1932. History of literary conventions and backgrounds in religious thought, intellectual and social history, and related art forms. GE credit: Wrt.—I, II, III (I, II, III.)

92. Internship in English (1-12)
Internship—3 to 36 hours. Prerequisite: course 1 or 3. Internships in fields where students can practice their skills. May be repeated for credit for a total of 12 units. (P/NP grading only.)

98. Directed Group Study (1-5)
Prerequisite: course 1 or 3. (P/NP grading only.)

99. Special Study for Undergraduates (1-5)
(P/NP grading only.)

Upper Division Courses

100F. Creative Writing: Fiction (4)
Discussion—4 hours; development and evaluation of written materials, and conferences with individual students. Prerequisite: course 5F or SP, or consent of instructor; priority given to English (Creative Writing) majors. Writing of fiction. May be repeated for credit with consent of instructor. No final examination.—I, II, III (I, II, III.)

100NF. Creative Writing: Non-Fiction (4)
Discussion—4 hours; development and evaluation of written materials, and conferences with individual students. Prerequisite: course 1 or 3, or consent of instructor; priority given to English (Creative Writing) majors. Writing of non-fiction. May be repeated for credit with consent of instructor. No final examination.—II, (II.)
100P. Creative Writing: Poetry (4)
Discussion—4 hours; development and evaluation of written materials, and conferences with individual students. Prerequisite: course 5P or 5R, or consent of instructor. Open to English Writing majors. Writing of poetry. May be repeated for credit with consent of instructor. No final examination.—I, II, III, (I, II, III.)

101. Advanced Composition (4)
Lecture/discussion—3 hours. Prerequisite: course 1 or 3 or the equivalent; concurrent enrollment in a specified course in a subject-matter discipline, acceptance into a specified major, or consent of instructor. Advanced instruction in the elements of expository writing, with special emphasis on their application to writing projects in a specified academic discipline. May be repeated once for credit if taken in conjunction with a different subject-matter course. GE credit: Wrt (cannot be used to satisfy a college or university composition requirement and GE writing experience simultaneously).—I, II, III, (I, II, III.)

102A. Writing in the Disciplines: Biological Sciences (4)
Lecture/discussion—3 hours; extensive writing. Prerequisite: course 1 or 3 or the equivalent; upper division standing. Open to majors in a biological science or to students concurrently enrolled in an upper division major in a science course. Advanced instruction in writing in the discipline of biology. GE credit: Div.—I, II, III, (I, II, III.)

102C. Writing in History (4)
Lecture/discussion—3 hours; extensive writing. Prerequisite: course 1 or 3 or the equivalent; upper division standing. Open to majors in history or to students concurrently enrolled in an upper division course accepted for the major. Advanced instruction in writing in the discipline of history. GE credit: Wrt (cannot be used to satisfy a college or university composition requirement and GE writing experience simultaneously).—I, II, III, (I, II, III.)

102D. Writing in International Relations (4)
Lecture/discussion—3 hours; extensive writing. Prerequisite: course 1 or 3 or the equivalent; upper division standing. Open to majors in international relations or to students concurrently enrolled in an upper division course accepted for the major. Advanced instruction in writing in the discipline of international relations. GE credit: Wrt (cannot be used to satisfy a college or university composition requirement and GE writing experience simultaneously).—II, III, (I, II, III.)

102E. Writing in Engineering (4)
Lecture/discussion—3 hours; extensive writing. Prerequisite: course 1 or 3 or the equivalent; upper division standing. Open to upper division students in the College of Engineering and to student enrolled in an upper division engineering or computer science course. Advanced instruction in writing in the discipline of engineering. GE credit: Wrt (cannot be used to satisfy a college or university composition requirement and GE writing experience simultaneously).—I, II, III, (I, II, III.)

102F. Writing in Food Science and Technology (4)
Lecture/discussion—3 hours; extensive writing. Prerequisite: course 1 or 3 or the equivalent; upper division standing. Open to majors in food science and technology or to students concurrently enrolled in an upper division course in food science and technology. Advanced instruction in writing in the discipline of food science and technology. GE credit: Wrt (cannot be used to satisfy a college or university composition requirement and GE writing experience simultaneously).—II, III, (I, II, III.)

102G. Writing: Bioregion (4)
Lecture/discussion—3 hours; extensive writing. Prerequisite: course 1 or 3 or the equivalent; upper division standing. Open to majors in Land, Air and Water Resources, Nature and Culture, Wildlife, Fish, and Conservation Biology or concurrently enrolled in an upper division course that focuses to some extent on the bioregion (e.g., biogeography, botany, geology, or literature of California). Advanced instruction in writing in those disciplines that focus on the intertwined human and non-human communities of the Putah and Cache Creek watersheds in which the university is located. GE credit: Wrt (cannot be used to satisfy a college or university composition requirement and GE writing experience simultaneously).—II, III, (I, II, III.)

104A. Writing in the Professions: Business Reports and Technical Communication (4)
Lecture/discussion—3 hours. Prerequisite: course 1 or 3 or the equivalent, and upper division standing. Instruction designing, writing, and documenting formal and informal reports directed toward a variety of pre-selected audiences. Instruction in presenting data graphically. Suitable for students planning careers in science, government, business, engineering, or industry. GE credit: Wrt (cannot be used to satisfy a college or university composition requirement and GE writing experience simultaneously).—I, II, III, (I, II, III.)

104B. Writing in the Professions: Law (4)
Lecture/discussion—3 hours. Prerequisite: course 1 or 3 or the equivalent and upper division standing. Instruction in advanced principles of critical thinking, argumentation, and research skills with special emphases on their application to situations in the legal profession. Suitable for students planning careers in law, business, administration, or management. GE credit: Wrt (cannot be used to satisfy a college or university composition requirement and GE writing experience simultaneously).—I, II, III, (I, II, III.)

104C. Writing in the Professions: Journalism (4)
Lecture/discussion—3 hours. Prerequisite: course 1 or 3 or the equivalent and upper division standing. Advanced instruction in writing non-fiction for magazines and newspapers, including problems of style and language. Special emphasis on conducting research, interviewing, analyzing markets, and writing query letters. GE credit: Wrt (cannot be used to satisfy a college or university composition requirement and GE writing experience simultaneously).—I, II, III, (I, II, III.)

104D. Writing in the Professions: Elementary and Secondary Education (4)
Lecture/discussion—3 hours. Prerequisite: course 1 or 3 or the equivalent and upper division standing. Advanced instruction in a variety of modes of expository writing, concentrating on topics related to teaching and issues in contemporary American education. Strongly recommended for teaching credential candidates. GE credit: Wrt (cannot be used to satisfy a college or university composition requirement and GE writing experience simultaneously).—I, II, III, (I, II, III.)

104E. Writing in the Professions: Science (4)
Lecture/discussion—3 hours. Prerequisite: course 1 or 3 or the equivalent and upper division or graduate science curriculum. Advanced instruction in writing abstracts, research proposals, scientific papers, other forms of scientific communication and in presenting data graphically. Primarily for students engaged in or planning careers in basic or applied research. GE credit: Wrt (cannot be used to satisfy a college or university composition requirement and GE writing experience simultaneously).—II, III, (I, II, III.)

104F. Writing in the Health Profession (4)
Lecture/discussion—3 hours; extensive writing. Prerequisite: course 1 or 3 or the equivalent; upper division standing. Advanced instruction in several forms of expository writing common in the health professions, focusing on topics related to health, disability, and disease and emphasizing effective communication between the writer and diverse audiences. Suitable for students planning careers in each health professions as medicine, dentistry, physical therapy, counseling, and optometry. GE credit: Wrt (cannot be used to satisfy a college or university composition requirement and GE writing experience simultaneously).—II, III, (I, II, III.)

105. History of the English Language (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3 or the equivalent; upper division standing. Advanced instruction in writing in the discipline of history. History of the English language. Examination of the language as recorded from Old English to present-day English. Relationship of English to other languages; development of vocabulary, phonology, and grammatical patterns. GE credit: ArtHum, Wrt —II, (I, II, III.)

107. Freedom of Expression (4)
Lecture—3 hours; term paper. Prerequisite: course 1 or 3 or the equivalent. Historiographical development of fundamental issues and contemporary controversies about freedom of expression, with emphasis on literary and artistic censorship. Not open for credit to students who have completed Rhetoric and Communication 125 or Communication 107. (Former course Rhetoric and Communication 125.) GE credit: ArtHum, Wrt.—II, (I, II, III.)

110A. Introduction to Principles of Criticism (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3. Essentials of literary criticism and its history from Aristotle to the modern era, with emphasis on the major critics. GE credit: Wrt.—I, (I.)

110B. Introduction to Principles of Criticism (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3. Historically and thematically focused intensive examination of topics in medieval literature. May be repeated for credit when content differs. GE credit: Wrt.—I, (I.)

113A. Chaucer: Troilus and the “Minor” Poems (4)
Lecture—3 hours; term paper. Prerequisite: course 1 or 3. Development of the poet’s artistry and the evolution of the poet’s ideas from his first work to his culminating masterpiece, Troilus and Criseyde. Courses 113A and 113B need not be taken in sequence. GE credit: Wrt.—III, (I, II, III.)

113B. Chaucer: The Canterbury Tales (4)
Lecture—3 hours; term paper. Prerequisite: course 1 or 3. The Canterbury Tales complete as a work of art. Courtly love, literary forms, medieval science and astrology, theology and dogma as they inform the reading of Chaucer. Courses 113A and 113B need not be taken in sequence. GE credit: Wrt.—I, (I.)

115. Renaissance Literature (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3. Historically or thematically focused study of works of the Renaissance. May be repeated for credit when content differs. GE credit: Wrt.—II, (I, II, III.)

117A. Shakespeare: The Early Works (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3. Selected major works from Shakespeare’s early period, up to 1599. Courses 117A-117B-117C need not be taken in sequence. GE credit: Wrt.—II, (I, II, III.)

117B. Shakespeare: The Middle Period (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3. Selected major works from Shakespeare’s middle period, up to 1604. Courses 117A-117B-117C need not be taken in sequence. GE credit: Wrt.—II, (I, II, III.)
117C. Shakespeare: The Later Works (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3. Selected major works from Shakespeare's later period. Courses 117A-117B-117C need not be taken in sequence. GE credit: Wrt.—II. (II.)

118. Shakespeare (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3. Selected major works by Shakespeare. Recommended for non-majors. May not be applied toward the English major. GE credit: ArtHum, Wrt.

122. Milton (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3. Selected major works, including Paradise Lost. GE credit: Wrt.—II. (III.)

123. 18th-Century British Literature (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3. Historically or thematically focused study of 18th-century English literature. May be repeated for credit when content differs. GE credit: Wrt.—II. (III.)

130. British Romantic Literature (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3. Historically or thematically focused study of works of Romantic English literature. May be repeated for credit when content differs. GE credit: Wrt.—III. (III.)

133. 19th-Century British Literature (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3. Historically or thematically focused study of works of 19th-century English literature. May be repeated for credit when content differs. GE credit: Wrt.—I. (I.)

137. 20th-Century British Literature (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3. Historically or thematically focused study of 20th-century English literature. Authors who might be taught are Conrad, Joyce, Lawrence, Eliot, Woolf, Larkin. May be repeated for credit when content differs. GE credit: Wrt.—III. (III.)

142. Early American Literature (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3. Historically or thematically focused study of works of 20th-century English literature. Authors who might be taught are Conrad, Joyce, Lawrence, Eliot, Woolf, Larkin. May be repeated for credit when content differs. GE credit: Wrt.—III. (III.)

143. 19th-Century American Literature to the Civil War (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3. Historically or thematically focused study of works of 19th-century American literature. May be repeated for credit when content differs. GE credit: Wrt.—I. (I.)

144. Post-Civil War American Literature (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3. Historically or thematically focused study of works of post-Civil War American literature. May be repeated for credit when content differs. GE credit: Wrt.—II. (II.)

146. 20th-Century American Literature (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3. Historically or thematically focused study of works of 20th-century American literature. May be repeated for credit when content differs. GE credit: Wrt.—II. (II.)

149. Topics in Literature (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3. Intensive examination of literature considered in topical terms, not necessarily historically. May be repeated for credit when content differs. GE credit: Wrt.—II. (II.)

150A. British Drama to 1800 (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3 or the equivalent. Historically or thematically focused study of works of English drama prior to 1800. May be repeated for credit when content differs. GE credit: Wrt.—I. (I.)

150B. British Drama from 1800 to the Present (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3 or the equivalent. Historically or thematically focused study of works of British drama from 1800 to the present. May be repeated for credit when topic differs. GE credit: Wrt.—I. (I.)

152. American Drama (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3. Study of American dramatic literature. Either a historical survey from 18th-century beginnings to the present or an in-depth analysis of fewer playwrights, such as O'Neill, Miller, Williams. May be repeated for credit when content differs. GE credit: Wrt.—III. (III.)

153. Topics in Drama (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3. Historical or thematic study of drama. May be repeated for credit when topic differs. GE credit: Wrt.—II. (II.)

155A. 18th-Century British Novel (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3 or the equivalent. Historically or thematically organized examination of the 18th-century British novel, with particular emphasis on its evolution, including the epistolary novel, the picaresque novel, and the Gothic novel. Richardson, Fielding, Sterne, Austen. GE credit: Wrt.—II. (II.)

155B. 19th-Century British Novel (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3 or the equivalent. Historically or thematically organized examination of 19th-century British novels, with emphasis on the historical novel, the social novel, and novels by women: Scott, Dickens, the Brontes, Eliot, Hardy. GE credit: Wrt.—II. (II.)

155C. 20th-Century British Novel (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3 or the equivalent. Historically or thematically organized examination of the 20th-century British novel, with emphasis on impressionism; the revolt against naturalism; the experimental novel; the anti-modernist reaction; Conrad, Joyce, Woolf, Lawrence, Drabble, Rhys. GE credit: Wrt.—III. (III.)

156. The Short Story (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3. The short story as a genre; its historical development, techniques, and formal character as a literary form. European as well as American writers. GE credit: ArtHum, Wrt.—II. (II.)

158A. The American Novel to 1900 (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3 or the equivalent. Historically or thematically organized examination of the American novel from its beginnings; Hawthorne, Melville, Twain, James, and others. GE credit: Wrt.—III. (III.)

158B. The American Novel from 1900 to the Present (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3 or the equivalent. Historically or thematically organized examination of American novelists of the twentieth century; Faulkner, Hemingway, Fitzgerald, Morrison, and others. GE credit: Wrt.—I. (I.)

159. Topics in the Novel (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3. Examination of major novels arranged thematically. Topics might include Bildungsroman, stream-of-consciousness novel, Gothic novel, historical novel. May be repeated for credit when topic differs. GE credit: Wrt.—I.

160. Film as Narrative (4)
Lecture/discussion—3 hours; lecture and film study—3 hours. Prerequisite: course 1 or 3. Study of modern film (1930 to the present) as a storytelling medium. GE credit: ArtHum, Wrt.

161A. Film History I: Origins to 1945 (4)
Lecture—3 hours; film viewing—3 hours. Prerequisite: course 1 or 3. Cultural and aesthetic history of filmmaking from its origins in the 1890's through 1945. (Courses 161A and 161B need not be taken in sequence.) Offered in alternate years. GE credit: ArtHum, Wrt.—I.

161B. Film History II: 1945 to present (4)
Lecture—3 hours; film viewing—3 hours. Prerequisite: course 1 or 3. Cultural and aesthetic history of filmmaking from 1945 through the present. (Courses 161A and 161B need not be taken in sequence.) Offered in alternate years. GE credit: ArtHum, Wrt.—II.

162. Film Theory and Criticism (4)
Lecture—1 hour; discussion—2 hours; laboratory—3 hours. Prerequisite: course 1 or 3. Film theory and criticism, with a study of ten major works of international film art. Offered in alternate years. GE credit: ArtHum, Wrt.

165. Topics in Poetry (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 and course 45. Intensive examination of various topics expressed in poetry from all periods of English and American literature. May be repeated for credit when topic covers different poets and poems. GE credit: Wrt.—III.

166. Love and Desire in Contemporary American Poetry (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3. Close reading of contemporary American poems on the theme of love and desire by poets of diverse ethnicities and of gay, lesbian, and heterosexual orientations. Offered in alternate years. GE credit: Div, Wrt.—II.

167. Twentieth-Century African American Poetry (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3 or the equivalent. Twentieth-century African American poetry, including oral and literary traditions. Authors covered may include Gwendolyn Brooks, Countee Cullen, Robert Hayden, and Langston Hughes. Offered in alternate years. GE credit: Div, Wrt.—II.

171A. The Bible as Literature: The Old Testament (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3. May be taken independently of course 171B. Selected readings from the Old Testament illustrating various literary forms. Emphasis on the Pentateuch, the Historical Books, and the Wisdom Books. Offered in alternate years. GE credit: ArtHum, Div, Wrt.—II.

171B. The Bible as Literature: Prophets and New Testament (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3. May be taken independently of course 171A. Selected readings from the Old Testament prophets and the New Testament. Offered in alternate years. GE credit: ArtHum, Div, Wrt.—II.

173. The Literature of Science Fiction (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3. Study of the literary modes and methods of science fiction. The course will analyze representative novels and short stories which exemplify major themes and styles in this genre—e.g., time travel; alternative universes; utopian, anthropological, sociological science fiction. GE credit: ArtHum, Wrt.—II. (II.)

175. American Literary Humor (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3, or standing above freshman level. American humorous vision of man, nature, and the supernatural. Includes one or more of the following: colonial humor; southwestern and New England humor; pre- and post-Civil War masters; local colorists; journalistic gadflies; anti-provincialists; modernist poets and prose writers; black humor. GE credit: ArtHum, Wrt.—II.
177. Study of an Individual Author (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3. Survey of the works of an individual author other than Chaucer, Shakespeare, or Milton. May be repeated for credit when a different author is studied. GE credit: Wrt.—II, III, (II.)

178. Special Topics in Ethnic Literature (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3. Intensive study of a topic drawn from multiethnic literature. Course may focus on particular ethnic backgrounds, historical periods, writers, genres, and/or themes. May be repeated once for credit when topic differs. GE credit: Div, Wrt.—III, (III.)

179. Multi-Ethnic Literature (4)
Lecture/discussion—3 hours; papers. Prerequisite: course 1 or 3, or standing above freshman level. Fiction, poetry, and other writings by Americans of ethnic minority backgrounds and (Native, Black, Hispanic, Jewish, Italian, etc.), or who reveal their immigrant experience, cultural diversity, and contributions to American literature. GE credit: Div, Wrt.—II, (II.)

180. Children's Literature (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3, or 3. Historical backgrounds and development of types of children's literature, folklore and oral traditions, levels of interest, criticism and evaluation, illustration and bibliography. GE credit: ArtHum, Wrt.—III, (III.)

181A. African American Literature to the Harlem Renaissance (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3 or the equivalent. African American literature from the slavery period to the end of the 1930s. Particular attention to the rapid development of the African American literary culture from a primarily oral tradition. Offered in alternate years. GE credit: Div, Wrt.—II, (II.)

181B. African American Literature from the Harlem Renaissance to the Present (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3 or the equivalent. Major African American writers in the context of cultural history from 1940 to the present. Writers may include Richard Wright, Ann Petry, James Baldwin, Ralph Ellison, Pauline Marshall, Toni Morrison, Alice Walker, Clarence Major. Offered in alternate years. GE credit: Div, Wrt.—II, (II.)

182. Literature of California (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3. California literature in the context of California's social, political, and intellectual history. Reading of poetry, fiction, and essays. Emphasis on nineteenth- and twentieth-century naturalists, turn of the century novelists, the Beats, and writers of the last two decades. Offered in alternate years. GE credit: ArtHum, Div, Wrt.—II, (II.)

184. Literature of the Wilderness (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3. Study of the theme of wilderness primarily in American Literature, with some consideration of Biblical and European antecedents. Major attention given to Thoreau, Muir, London, Austin, Faulkner, Snyder, and Abbey. Offered in alternate years. GE credit: ArtHum, Div, Wrt.—II, (II.)

185A. Literature of Women I (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3. English language literature by women from Bradstreet and Behn to the Brontes, Eliot, and Dickinson. The effects of social constraints upon women's art; the rise of feminism; new trends in literary criticism. GE credit: Div, Wrt.—III, (III.)

185B. Literature of Women II (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3; course 185A recommended. English language literature by women from Chopin and Woolf to Plath, Rich, and Morrison. The effects of social constraints upon women's art; the rise of feminism; new trends in literary criticism. GE credit: Div, Wrt.—II, (II.)

186. Literature, Sexuality, and Gender (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3. Historically or thematically focused intensive examinations of gender and sexuality in British and American literature. May be repeated for credit when content differs. GE credit: Div, Wrt.—II, (II.)

187. Literature and the Other Arts (4)
Seminar—3 hours; term paper. Prerequisite: junior or senior standing with a major in English or consent of instructor. Group study of the relationship between the forms of literature and the forms of the other arts, with detailed study of one of the crucial periods of artistic development in western culture. GE credit: Wrt.—I, II, III, (I, III.)

188. Special Topics in Literary Studies (4)
Seminar—3 hours; term paper. Prerequisite: junior or senior standing with a major in English or consent of instructor. Group study of a special topic drawn from English or American literature. Course will be offered in sections according to the topic studied, and papers will be assigned. Limited enrollment. GE credit: Wrt.—I, II, III, (II, II, III.)

189. Seminar in a Major Writer (4)
Seminar—3 hours; term paper. Prerequisite: junior or senior standing; a major in English or consent of instructor. One major writer's artistic development with attention to intellectual and literary milieu. Limited enrollment. GE credit: Wrt.—II, III, (II, II, III.)

192. Internship in English (1-12)
Internship—3-36 hours. Prerequisite: course 1 or 3. Internships in fields where students can practice their skills. A maximum of 4 units is allowed toward the major in English. May be repeated for credit for a total of 12 units. (P/NP grading only)

194H. Special Study for Honors Students (4)
Seminar—3 hours; term paper. Prerequisite: admission to English Department Senior Honors Program. Study of a special literary topic or of the works of a major writer, and preparation for writing an honors thesis in course 195H. May be repeated for credit when content differs. GE credit: Div, Wrt.—II, III, (II, II, III.)

195H. Honors Thesis (4)
Independent study—12 hours. Prerequisite: course 194H. Preparation of a thesis, under the supervision of an instructor. Students satisfying requirements for the general major must complete the teaching emphasis on a scholarly or critical subject; creative writing students submit a volume of poems or fiction.

197T. Community Tutoring in English (1-4)
Tutoring—1-4 hours. Prerequisite: upper division standing and a major in English; consent of Chairperson. Field experience, with individuals or in classroom in instruction of English language, literature, and composition. Does not fulfill requirement for major. May be repeated for credit. (P/NP grading only.)

198. Directed Group Study (1-5)
Prerequisite: one course from courses 1, 3, 5F, 5P. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5)
(P/NP grading only.)

Graduate Courses

202. Introduction to Graduate Studies in English (4)
Seminar—3 hours; term paper or discussion—1 hour. Prerequisite: graduate standing. Introduction to literary scholarship with special attention to the elements of professionalism and to different modes of literary investigation. (SU grading only) (II.)

205. Anglo-Saxon Language and Culture (4)
Lecture/discussion—3 hours; conference on term paper. The language and culture of Anglo-Saxon England; readings in Old English prose and poetry. Offered in alternate years. (II.)

206. Beowulf (4)
Discussion—3 hours; oral and written reports; conferences with students. Prerequisites: courses 205A or the equivalent. A study of the poem and the Heroic Age of Germanic literature. Offered in alternate years. (III.)

207. Middle English (4)
Discussion—3 hours; term paper. Study of the phonology, morphology, syntax, and lexicography between 1100 and 1500 with investigation of the regional dialects, pertinent facts on both the internal and external linguistic history. Intensive reading of texts. —I.

210. Readings in English and American Literature (4)
Seminar—3 hours; conference, —1 hour. Prerequisite: upper division English course in area to be studied. Offered in multiple sections each quarter. Content varies according to specialty of instructor. Course designed for students preparing for their comprehensive examinations. May be repeated for credit. (II.)

225. Topics in Irish Literature (4)
Seminar—3 hours; conference, —1 hour. Prerequisite: course 139. Course will vary from quarter to quarter and will include such topics as the nineteenth-century novel, contemporary Irish poetry, rise of the drama, or a study of a major author. —II.

230. Study of a Major Writer (4)
Seminar—3 hours; conferences with individual students—1 hour; research papers. Analysis of development of one writer; emphasis on his intellectual and literary milieu. May be repeated for credit when a different writer is studied.—(II.)

232. Problems in English Literature (4)
Seminar—3 hours; conferences with individual students—1 hour. Selected issues in the current study and critical assessment of a limited period or topic in English literature. May be repeated for credit when different period or topic is studied.

233. Problems in American Literature (4)
Seminar—3 hours; conferences with individual students—1 hour; research papers. Selected topics for intensive investigation. May be repeated for credit when different topic or period is studied.—I, II, III, (II, II, III.)

234. Dramatic Literature (4)
Seminar—3 hours; conference—1 hour. Historical introduction to dramatic theory; the genres of tragedy, comedy, and tragicomedy.—(II.)

235. Theory of Fiction (4)
Seminar—3 hours; conference—1 hour. Prerequisite: graduate standing. Theories of fiction as they relate to the professional writer's practice of the craft. For students in the creative writing program. May be repeated for credit when focus differs.—(II.)

236. Poetics (4)
Seminar—3 hours; conference—1 hour. Prerequisite: graduate standing. Theories of poetry as revealed in structure, prosody, and idiom of British and American poems, variably approached through intensive study of a single poet, historically, or theoretically—at the instructor's discretion. For students in the Creative Writing Program. May be repeated for credit when focus differs.—III, (III.)

238. Special Topics in Literary Theory (4)
Seminar—3 hours; term paper. Prerequisite: course 237 or the equivalent. Advanced topics in literary theory and criticism. Preparation and evaluation of research paper. May be repeated for credit when topic and/or reading list differs. Offered in alternate years.—(II.)
240. Medieval Literature (4)
Seminar—3 hours; conference—1 hour. Studies of medieval literature. Course materials to be selected by the instructor. Preparation and evaluation of research papers. May be repeated for credit when a different topic is studied.—II. (III.)

242. Sixteenth-Century Literature (4)
Seminar—3 hours; conference—1 hour. Studies in sixteenth-century literature. Course materials to be selected by the instructor. Preparation and evaluation of research papers. May be repeated for credit when a different topic is studied.—II. (III.)

244. Shakespeare (4)
Seminar—3 hours; conference—1 hour. Studies in Shakespeare. Course materials to be selected by the instructor. Preparation and evaluation of research papers. May be repeated for credit when a different topic is studied.—I. (I.)

246. Seventeenth-Century Literature (4)
Seminar—3 hours; conference—1 hour. Studies in seventeenth-century literature. Course materials to be selected by the instructor. Preparation and evaluation of research papers. May be repeated for credit when a different topic is studied.—III. (III.)

248. Eighteenth-Century Literature (4)
Seminar—3 hours; conference—1 hour. Studies in eighteenth-century literature. Course materials to be selected by the instructor. Preparation and evaluation of research papers. May be repeated for credit when a different topic is studied.—III. (III.)

250. Romantic Literature (4)
Seminar—3 hours; conference—1 hour. Studies in Romantic literature. Course materials to be selected by the instructor. Preparation and evaluation of research papers. May be repeated for credit when a different topic is studied.—I. (I.)

252. Victorian Literature (4)
Seminar—3 hours; conference—1 hour. Studies in Victorian literature. Course materials to be selected by the instructor. Preparation and evaluation of research papers. May be repeated for credit when a different topic is studied.—II. (II.)

254. Twentieth-Century British Literature (4)
Seminar—3 hours; conference—1 hour. Studies in twentieth-century British literature. Course materials to be selected by the instructor. Preparation and evaluation of research papers. May be repeated for credit when a different topic is studied.—II. (II.)

256. Early American Literature (4)
Seminar—3 hours; conference—1 hour. Studies in Early American literature. Course materials to be selected by the instructor. Preparation and evaluation of research papers. May be repeated for credit when a different topic is studied.—II. (II.)

258. American Literature: 1800 to the Civil War (4)
Seminar—3 hours; conference—1 hour. Studies in American literature from 1800 to the Civil War. Course materials to be selected by the instructor. Preparation and evaluation of research papers. May be repeated for credit when a different topic is studied.—I. (I.)

260. American Literature: Civil War to 1914 (4)
Seminar—3 hours; conference—1 hour. Studies in American literature from the Civil War to 1914. Course materials to be selected by the instructor. Preparation and evaluation of research papers. May be repeated for credit when a different topic is studied.—II. (II.)

262. American Literature after 1914 (4)
Seminar—3 hours; conference—1 hour. Studies in American literature after 1914. Course materials to be selected by the instructor. Preparation and evaluation of research papers. May be repeated for credit when a different topic is studied.—II. (II.)

264. Studies in Modern British and American Literature (4)
Seminar—3 hours; conference—1 hour. Studies in modern British and American literature. Course materials to be selected by the instructor. Preparation and evaluation of research papers. May be repeated for credit when a different topic is studied.—I. (I.)

270. Studies in Contemporary World Literature (4)
Seminar—3 hours; conference—1 hour. Prerequisite: graduate standing, consent of instructor, with preference given to those enrolled in the master’s program in Creative Writing. Emerging global, international or transnational techniques, theories, and individual works of contemporary world prose or poetry. Discussion, seminar reports, research papers. May be repeated for credit when topic differs.—I. (I.)

285. Literature by Women (4)
Seminar—3 hours; conference—1 hour. Studies in literature by women and the theoretical approaches to literature by women. Course materials to be selected by the instructor. Preparation and evaluation of research papers. May be repeated for credit when topic and/or reading list differs.—(II.)

290F. Seminar in Creative Writing of Fiction (4)
Seminar—3 hours; 1 additional hour of writing. Prerequisite: consent of instructor; graduate standing, with preference given to those enrolled in master’s program in Creative Writing. Writing of prose. Evaluation of written materials and individual student conferences. May be repeated for credit.—I, II, III. (I, II, III.)

290NF. Seminar in Creative Writing of Non-Fiction (4)
Seminar—3 hours; term paper. Prerequisite: consent of instructor; graduate standing, with preference given to those enrolled in the master's program in Creative Writing. A workshop in the writing of literary non-fiction, with emphasis—according to staff and student interest—on autobiography, biography, memoir, the occasional or nature essay, or other non-fiction prose narratives.
Entomology

(College of Agricultural and Environmental Sciences)
Robert E. Page, Jr., Ph.D., Chairperson of the Department
Diane E. Ulman, Ph.D., Vice Chairperson
Department Office, 367 Briggs Hall (530-752-0475)
World Wide Web: http://entomology.ucdavis.edu

Faculty
James R. Carey, Ph.D., Professor
Peter S. Cranston, Ph.D., Professor
Hugh Dingle, Ph.D., Professor
John D. Edman, Ph.D., Professor
Lester E. Ehr, Ph.D., Professor
Jeffrey Granett, Ph.D., Professor
Penelope J. Gullan, Ph.D., Professor
Bruce D. Hammock, Ph.D., Professor
Richard Karban, Ph.D., Professor
Harry K. Kaya, Ph.D., Professor (Entomology, Nematology)
Lynn S. Kimsey, Ph.D., Professor
Sharon P. Lawler, Assistant Professor
Walter S. Leal, Ph.D., Associate Professor
Fumio Matsushima, Ph.D., Professor (Entomology, Environmental Toxicology)
Robert E. Page, Jr., Ph.D., Professor
Michael P. Parella, Ph.D., Professor (Entomology, Environmental Horticulture)
Christine Y. S. Peng, Ph.D., Professor
Jay A. Rosenheim, Ph.D., Professor
Thomas W. Scott, Ph.D., Professor
Arthur Shapiro, Ph.D., Professor (Entomology, Evolution and Ecology)
Diane E. Ulman, Professor
Philip S. Ward, Ph.D., Professor

Emeriti Faculty
Oscar G. Bacon, Ph.D., Professor Emeritus
Richard M. Bohart, Ph.D., Professor Emeritus
Bruce F. Eldridge, Ph.D., Professor Emeritus
Norman E. Gary, Ph.D., Professor Emeritus
Albert A. Grigarick, Jr., Ph.D., Professor Emeritus
Charles L. Judson, Ph.D., Professor Emeritus
Harry H. Laidlaw, Jr., Ph.D., Professor Emeritus
W. Harry Lange, Jr., Ph.D., Professor Emeritus
G. A. H. McClelland, Ph.D., Senior Lecturer Emeritus
Donald L. McLean, Ph.D., Professor Emeritus
Timothy Prout, Ph.D., Professor Emeritus
Robbin W. Thorp, Ph.D., Professor Emeritus
Robert K. Washino, Ph.D., Professor Emeritus

Affiliated Faculty
Anton Cornel, Ph.D., Lecturer
Mary L. Flint, Ph.D., Lecturer
Larry Godfrey, Ph.D., Lecturer
Eric C. Mussen, Ph.D., Lecturer
Richard E. Rice, Ph.D., Lecturer
Charles G. Summers, Ph.D., Lecturer
Frank G. Zalom, Ph.D., Lecturer

The Major Program

The Entomology major is a general biological science program. The curriculum is designed to develop an understanding of fundamental biological concepts by studying insects. Insects offer unique opportunities to study biological systems and are model experimental animals. Many insects are also pests. Students may focus on specific areas of interest including agricultural entomology, insect systematics and evolution, behavior and ecology, medical entomology, and insect molecular science, physiology and toxicology.

The Program. Students begin their study in entomology with selected insect biology courses. After completing these courses, students may enroll in courses in their particular area of interest. A student interested in arthropod pest management, for example, could enroll in courses such as economic entomology, biological control of insects, and apiculture.

Career Alternatives. Entomology graduates find careers in many different areas of applied or basic biology. Graduates have the opportunity to continue in professional graduate programs such as veterinary or human medicine, or get advanced degrees leading to careers in biotechnology, conservation biology, or academic teaching and research.

Other graduates have worked in agriculture in the area of insect pest management. Graduates are prepared for managerial and technical positions with state and federal agencies and in agricultural production and supporting industries. Some entomology graduates pursue careers in primary and secondary science education.

B.S. Major Requirements:

English Composition Requirement...0-8
See College Requirement

Preparatory Subject Matter...46-47
Biological Sciences 1A, 1B, 1C ...15
Chemistry 2A, 2B, 8A, 8B ...16
Mathematics 16A...3
Physics 1A, 1B ...6
Statistics 13, 32, or Agricultural Systems and Environment 1204-4
Agricultural Systems and Environment 21, Engineering 5, or Mathematics 16B ...3

Breadth Subject Matter ...6-24
Satisfaction of General Education requirement

Depth Subject Matter..32-36
Microbiology 102, Plant Biology 118, 148, or Plant Pathology 1204-5
Biological Sciences 101 ..4
Environmental Science and Policy 100 or Evolution and Ecology 101 ..4
Evolution and Ecology 100 ..8
Biological Sciences 102 and 103 ..6
Entomology 100, 100L ..5
At least 7 units from Entomology 101, 102, 103, 104, 107, 109, or 116. 7

Restricted Electives ..34
Upper division entomology courses

Upper division electives related to student’s interest with approval of adviser ...20

Note: No more than a total of 6 units from Entomology 192, 197T and 199 may count toward fulfilling depth subject matter or restricted elective units.

Restricted Electives ..32-60

Total Units for the Major...180

Minor Adviser. L. Ehler.

Minor Program Requirements:
The Department of Entomology has five minor programs open to students in other disciplines who are interested in rounding out their academic study with a concentration in the area of entomology.

UNITS

Entomology..18-24
Entomology 100, 100L ..5
At least two courses from Entomology 101, 102, 103, 104, 107 ..7-8
At least two additional upper division Entomology courses (except courses 192, 198, 199) ...6-11

Agricultural Entomology...18
Entomology 100, 100L, 110 ..14
At least four additional upper division Entomology units4

Apiculture..17-22
Entomology 100, 100L, 119 ...8
Entomology 104 or 110 ..3-5
Choose two from Evolution and Ecology 121, Plant Biology 102, 173, 174 ..6-9

Insect Ecology..19
Entomology 100, 100L, 104 ..3
Select units from Entomology 103, 107, 1097
Evolution and Ecology 149 or Environmental Science and Policy 121 4

Medical-Veterinary Entomology..18
Entomology 100, 100L, 104, 153, 156 ..15
At least three units from Entomology 156L, Pathology, Microbiology and Immunology 128, 128L, 128 ..3

Minor Adviser. L. Ehler.
Courses in Entomology (ENT)

Lower Division Courses

1. Art, Science and the World of Insects (3)
Lecture—3 hours; laboratory—3 hours. Fusion of entomology and art to create an appreciation of insect biology, ecology, interactions with humans and importance in human culture. Multidisciplinary approaches in education and career paths in entomology and art. GE credit: ArtHum or SciEng.—I. (I.) Ullman 10. Natural History of Insects (3)
Lecture—3 hours. Designed for students not specializing in entomology. Not open for credit to students who have had course 100, but students who have taken this course may take course 100 credit for credit. An introduction to the insects detailing their great variety, structures and functions, habitats, and their significance in relation to plants and animals including man. GE credit: SciEng.—II. (II.) Kaya, Ullman 90X. Special Topics in Entomology (2)
Seminar—2 hours. Freshman seminar for in-depth examination of a special topic in entomology. 99. Special Study for Undergraduates (1-5)
(P/NP grading only)

Upper Division Courses

100. General Entomology (4)
Lecture—3 hours; term paper. Prerequisite: Biological Sciences 1B. Biology, anatomy, physiology, development, classification, ecology and relation of insects to human welfare. GE credit: SciEng. —I. (I.) Kimsey 100L. General Entomology Laboratory (2)
Laboratory—6 hours. Prerequisite: course 100 (may be taken concurrently). Anatomy, development, population ecology, methods of collecting, classification and identification of insects of all orders and of major families. GE credit with concurrent enrollment in course 100: Wrt.—I. (I.) Kimsey 101. Functional Insect Morphology (3)
Lecture—2 hours; laboratory—3 hours. Prerequisite: course 100. Study of the basic external and internal structures, organs and tissues of insects, with emphasis on functional systems. Functional anatomy; histology and fine structures of important organs and tissues will be discussed. GE credit: SciEng.—II. (II.) Peng 102. Insect Physiology (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 100 or course in physiology or invertebrate zoology. Processes by which insects maintain themselves, reproduce, and adapt to environment. Insects as models for basic/applied research through detailed analysis of metabolic, physiological, and behavioral processes. Emphasis on analysis of methodology, fact, and theory. GE credit: SciEng.—III. (III.) Hammock, Leal 103. Insect Systematics (3)
Lecture—2 hours; discussion—1 hour. Prerequisite: introductory course in entomology or zoology. Principles and methods of systematics, with particular reference to insects. Emphasis on different theories of classification, and analysis of phylegetic relationships. GE credit: SciEng.—II. (II.) Kimsey 104. Behavioral Ecology of Insects (3)
Lecture—1 hour. laboratory—6 hours; fieldwork—6 hours. Prerequisite: an introductory course in entomology. Survey of the diversity of insects from selected ecological zones in California with emphasis on collection, identification, and natural history. Offered in alternate years. GE credit: SciEng. Wrt.—III. (III.) Page 107. California Insect Diversity (5)
Lecture—2 hours; laboratory—4 hours. Five-week course. Prerequisite: an introductory course in entomology. Study of the insects in their natural habitats; their identification and ecology. Offered in alternate years. GE credit: SciEng. Wrt.—(Summ.) Ward 110. Arthropod Pest Management (5)
Lecture—3 hours; laboratory—6 hours. Prerequisite: Biological Science 1B. Development of the ecological basis for the integrated pest management paradigm with emphasis on agriculture. Ecological and practical aspects of control tactics. Laboratory emphasizes identification of pests and beneficials of agriculture and urban settings. GE credit: SciEng. Wrt.—II. (II.) Granett 116. Biology of Aquatic Insects (3-5)
Lecture—2 hours and laboratory (Saturday field trips); optional laboratory on identification and/or aquatic insect collection. Prerequisite: course 100 or consent of instructor. A study of the life history, ecology, and identification of insects associated with streams, ponds, and lakes. GE credit: SciEng.—III. (III.) Lawler

Graduate Study. The Department of Entomology offers a program of study and research leading to the M.S. and Ph.D. degrees. See the Graduate Studies section and the Graduate Announcement for further details.

Graduate Advisers. See Class Schedule and Registration Guide.

Related Courses. See courses in Hematology.

Courses in Entomology (ENT)

206. Ecology of Insect Parasitoids (4)
Lecture—3 hours; seminar—1 hour. Prerequisite: introductory animal ecology or behavior. Insect parasitoids will be investigated as model systems to address current topics in behavior, population, and evolutionary ecology. Theory will be synthesized and critical empirical tests of ecological hypotheses emphasized. Offered in alternate years. (Same course as Population Biology 206.)—(III.) Rosenberg 212. Molecular Biology of Insects and Insect Viruses (3)
Lecture—3 hours. Prerequisite: consent of instructor. A molecular biological analysis of insect systems, physiology, and defense mechanisms. Molecular biology of insect viruses. Baculovirus expression vectors and post-translation modification of expressed polyepitopes. Biological control of using neuropeptides and toxin genes in insect viruses.—II. (II.) 225. Terrestrial Field Ecology (4)
Seminar—1 hour; field work—12 hours. Prerequisite: introductory ecology and introductory statistics or consent of instructor. A field course conducted over spring break and four weekends at Bodega Bay, emphasizing student projects. Ecological hypothesis testing, data gathering, analysis and written and oral presentation of results. (Same course as Ecology 225/Population Biology 225.)—III. (III.) Karban
230. Advanced Biological Control (4)
Lecture—2 hours; laboratory—6 hours. Prerequisite: graduate or upper division standing in biological science or consent of instructor. Principles and current issues in biological control of arthropod pests and weeds, laboratory devoted to identification and life history of the major groups of parasitic and predaceous arthropods. Offered in alternate years.—III. Ehler

253. Advanced Medical Entomology (3)
Lecture—2 hours; discussion—1 hour. Prerequisite: one upper division course in entomology (other than course 153) and one course in microbiology; course 153 strongly recommended. An analysis of several arthropod-borne human diseases with emphasis on the relationships of the biology of the vector to the ecology of the disease. Discussion includes demonstration of vectors and techniques. Offered in alternate years.—III.

290. Special Topics in Entomology (1-4)
Seminar—1-4 hours. Prerequisite: consent of instructor.—I, II, III. (I, II, III.)

291. Seminar in Medical Entomology (2)
Seminar—2 hours. Prerequisite: course 153. Discussions of parasitology, ecology and epidemiology related to vectors of pathogens causing disease in humans and animals. May be repeated for credit.—I. (I.) Eldridge, Scott, Kimsey

292. Seminar in Insect Physiology (2)
Seminar—2 hours. Prerequisite: course 102. Critical examination of areas of current interest to insect physiology and biochemistry. May be repeated for credit.—I. (I.) Hammock

293. Seminar in Systematic Entomology (2)
Seminar—2 hours. Prerequisite: course 103. Selected topics in systematics and evolution are presented and discussed. Some topics may be illustrated by laboratory sessions. May be repeated for credit.—III. (III.) Ward, Kimsey

294. Seminar in Insect Ecology (2)
Seminar—2 hours. Prerequisite: a general ecology course. Discussions of advanced topics in ecology with emphasis on analysis of factors influencing the distribution and abundance of insects. Includes consideration of applications of basic theory as in biological control and related approaches. May be repeated for credit.—III. (III.) Carey, Ehler, Karban, Dingle, Rosenehim

295. Seminar in Agricultural Entomology (2)
Seminar—2 hours. Prerequisite: course 110. Discussion of advanced topics relating to the principles of pest insect population management. May be repeated for credit.—II. (II.) Ehler, Granett, Parrella, Rosenehim

296. Seminar in Bee Biology (2)
Seminar—2 hours. Prerequisite: course 119 or the equivalent. Discussions of behavior, ecology, management, and general biology of bees (Apoidea) with emphasis on the honeybee. May be repeated for credit.—I. (I.) Page, Peng

297. Seminar in Insect Behavior (2)
Seminar—2 hours. Prerequisite: a course in animal behavior. Analysis of contemporary advances in insect behavior, interpretation and description of observations, physiological mechanisms, functional kinds of behavior, application of general principles to the solution of problems in the laboratory and field. May be repeated for credit.—III. (III.) Dingle, Page

298. Group Study (1-5)
(S/U grading only.)

299. Research (1-12)
(S/U grading only.)
Environmental Geology

(College of Letters and Science)

The minor in Environmental Geology examines the multidisciplinary factors of geology and related earth science fields, and planning and resources oriented programs. Students in the minor are encouraged to participate in internship programs that assist them in solidifying the Environmental Geology minor with their Geology major or other major field areas that include geologic components.

The minor is sponsored by the Department of Geology, 174 Physics/Geology Building.

Minor Program Requirements:

<table>
<thead>
<tr>
<th>Course Description</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental geology</td>
<td>22-24</td>
</tr>
<tr>
<td>Geology 130, 134, and Environmental and Resource Sciences 186</td>
<td>9</td>
</tr>
<tr>
<td>Soil Science 118</td>
<td>4</td>
</tr>
<tr>
<td>Hydrologic Science 141 or Civil and Environmental Engineering 142</td>
<td>3</td>
</tr>
<tr>
<td>Two courses chosen from Environmental Science and Policy 160, 171, 179, Geology 135, Hydrologic Science 144, 146</td>
<td>6-8</td>
</tr>
</tbody>
</table>

Minor adviser: K. Versosub, Department of Geology, 378 Physics/Geology Building, 752-6911.
Environmental Policy Analysis and Planning

(College of Agricultural and Environmental Sciences)

The Major Program

The major in environmental policy analysis and planning develops an understanding of governmental policy-making and skills for analyzing policy in fields related to environmental quality.

Any student in good standing is eligible to transfer to the EPAP major; to do so, please see the major adviser, S.I. Schwartz (2140 Wickson Hall) or staff adviser, D. DuPont (2134 Wickson Hall).

The Program. This major provides students with a general background in the natural sciences relevant to environmental policy. It also provides sufficient training in mathematics, statistics, and research methodology to quantitatively analyze environmental problems and policy options. A strong background in policy analysis, including the evaluation of policy alternatives and the study of factors affecting policy formulation and implementation is included. In addition, students are encouraged to develop substantive knowledge in a specific field of environmental policy, such as urban and regional planning, water pollution control, or energy.

Course Alternatives. Environmental policy analysis and planning graduates are prepared for employment in public agencies, consulting firms, and businesses concerned with environmental affairs. The major is also excellent preparation for students who want to go on to graduate work in law, planning, public policy, or management.

B.S. Major Requirements:

UNITS

<table>
<thead>
<tr>
<th>Requirement</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>English Composition Requirement</td>
<td>10-11</td>
</tr>
<tr>
<td>See College requirement.</td>
<td></td>
</tr>
<tr>
<td>English 102A, 102B, 102C, 102D, 102E, 102F, or 102G concurrently with</td>
<td></td>
</tr>
<tr>
<td>Environmental Science and Policy 1</td>
<td>3</td>
</tr>
<tr>
<td>Communication 1 or Dramatic Art 10</td>
<td>3-4</td>
</tr>
<tr>
<td>Preparatory Subject Matter</td>
<td>50-57</td>
</tr>
<tr>
<td>Biological Sciences 1A or 10</td>
<td></td>
</tr>
<tr>
<td>Chemistry 2A, 2B</td>
<td>4-5</td>
</tr>
<tr>
<td>Agricultural Systems and Environment 21, Engineering 5, Computer Science</td>
<td></td>
</tr>
<tr>
<td>Engineering 10, 30</td>
<td>3-4</td>
</tr>
<tr>
<td>Economics 1A, 1B</td>
<td></td>
</tr>
<tr>
<td>Animal Science 1, Biological Sciences 1B, Geology 1, Hydrologic Science</td>
<td></td>
</tr>
<tr>
<td>100, 124, Plant Biology 12, Soil Science 100</td>
<td>3-5</td>
</tr>
<tr>
<td>Environmental Science and Policy 1</td>
<td></td>
</tr>
<tr>
<td>Mathematics 16A-16B or 21A-21B</td>
<td></td>
</tr>
<tr>
<td>Physical Science 1</td>
<td></td>
</tr>
<tr>
<td>Statistics 13, 32, 102</td>
<td></td>
</tr>
<tr>
<td>Breadth/Gender Education requirement</td>
<td>6-24</td>
</tr>
<tr>
<td>Satisfaction of General Education requirement</td>
<td></td>
</tr>
<tr>
<td>Depth Subject Matter</td>
<td>42-44</td>
</tr>
<tr>
<td>(Students must take these units on a letter grade basis, and must attain an</td>
<td></td>
</tr>
<tr>
<td>overall grade point average of 2.0 or higher in the Depth Subject Matter</td>
<td></td>
</tr>
<tr>
<td>courses.)</td>
<td></td>
</tr>
<tr>
<td>Environmental Science and Policy 110, 160, 164, 168A</td>
<td></td>
</tr>
<tr>
<td>Environmental Science and Policy 166 or Political Science 187</td>
<td></td>
</tr>
<tr>
<td>Environmental Science and Policy 161 or 173</td>
<td></td>
</tr>
<tr>
<td>Environmental Science and Policy 171 or 179</td>
<td></td>
</tr>
<tr>
<td>Environmental Science and Policy 178 and Regional Community Development</td>
<td></td>
</tr>
<tr>
<td>160, 171</td>
<td>3-4</td>
</tr>
<tr>
<td>Select one from Sociology 106, Statistics 100, 103, 108, Economics 140</td>
<td>8</td>
</tr>
<tr>
<td>Economics 100 or Agricultural and Resource Economics 100A</td>
<td></td>
</tr>
<tr>
<td>Agricultural and Resource Economics 175 or 176</td>
<td>4-5</td>
</tr>
</tbody>
</table>

*Students in the City and Regional Planning area of specialization should enroll in Environmental Science and Policy 173; all others enroll in Environmental Science and Policy 161.

Areas of Specialization (choose one)..17-20

Advanced Policy Analysis Option

<table>
<thead>
<tr>
<th>Requirement</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Political Science 102, 105, 108, or 155</td>
<td></td>
</tr>
<tr>
<td>Political Science 164, 165, or 170</td>
<td></td>
</tr>
<tr>
<td>Environmental Science and Policy 165, Political Science 175</td>
<td></td>
</tr>
<tr>
<td>Environmental Science and Policy 168B</td>
<td></td>
</tr>
<tr>
<td>Civil and Environmental Engineering 153, Agricultural and Resource Economics 106, Agricultural Systems and Environment 121, or Economics 130</td>
<td></td>
</tr>
</tbody>
</table>

City and Regional Planning Option

<table>
<thead>
<tr>
<th>Requirement</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applied Biological Systems Technology 180, Agricultural Systems and</td>
<td></td>
</tr>
<tr>
<td>Environment 132</td>
<td></td>
</tr>
<tr>
<td>Civil and Environmental Engineering 165, Environmental Science and Policy</td>
<td>3-4</td>
</tr>
<tr>
<td>163</td>
<td></td>
</tr>
<tr>
<td>Soil Science 118 or Environmental Science and Policy 179</td>
<td>3-4</td>
</tr>
<tr>
<td>Environmental Science and Policy 172</td>
<td></td>
</tr>
<tr>
<td>Political Science 100, 102, Community and Regional Development 152, 156, 157, 171</td>
<td>4</td>
</tr>
</tbody>
</table>

(Enroll for Environmental Science and Policy 173 under Depth Subject Matter above.)

Energy Policy Option

<table>
<thead>
<tr>
<th>Requirement</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental Science and Policy 126 or Environmental Toxicology 101</td>
<td>4</td>
</tr>
<tr>
<td>Engineering 160</td>
<td></td>
</tr>
<tr>
<td>Geology 130</td>
<td></td>
</tr>
<tr>
<td>Environmental Science and Policy 175</td>
<td></td>
</tr>
<tr>
<td>Environmental Science and Policy 163, 167</td>
<td>4</td>
</tr>
</tbody>
</table>

Environmental Science Option

<table>
<thead>
<tr>
<th>Requirement</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students choosing the Environmental Science area of specialization must</td>
<td>4</td>
</tr>
<tr>
<td>consult with a faculty adviser to identify an emphasis within this</td>
<td></td>
</tr>
<tr>
<td>specialization and to select suitable courses. Possible areas of emphasis</td>
<td></td>
</tr>
<tr>
<td>are: biological conservation, pollutants in the environment, ecology,</td>
<td></td>
</tr>
<tr>
<td>planning in the presence of environmental hazards. If you are considering</td>
<td></td>
</tr>
<tr>
<td>this area of specialization, please contact the major adviser as soon as</td>
<td></td>
</tr>
<tr>
<td>possible.</td>
<td></td>
</tr>
</tbody>
</table>

Transportation Planning Option

<table>
<thead>
<tr>
<th>Requirement</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Civil and Environmental Engineering 165</td>
<td>3</td>
</tr>
<tr>
<td>Environmental Science and Policy 167, 168B, 172, 175, Agricultural Systems</td>
<td></td>
</tr>
<tr>
<td>and Environment 121, 132, Applied Biological Systems Technology 180</td>
<td></td>
</tr>
<tr>
<td>180</td>
<td></td>
</tr>
<tr>
<td>Environmental and Resource Sciences 131</td>
<td>3</td>
</tr>
<tr>
<td>Environmental Science and Policy 163</td>
<td>4</td>
</tr>
</tbody>
</table>

Water Quality Option

<table>
<thead>
<tr>
<th>Requirement</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental Science and Policy 172</td>
<td>4</td>
</tr>
<tr>
<td>Environmental Science and Policy 121, Geology 135</td>
<td></td>
</tr>
<tr>
<td>Hydrologic Sciences 141, 143, Geology 134, Soil Sciences 118</td>
<td>3-4</td>
</tr>
<tr>
<td>Environmental Science and Policy 151, 155, Environmental Science and</td>
<td></td>
</tr>
<tr>
<td>Policy 171, 172, 175, Agricultural Systems and Environment 121, 132</td>
<td></td>
</tr>
<tr>
<td>Applied Biological Systems Technology 180, Agricultural Systems and</td>
<td></td>
</tr>
<tr>
<td>Environment 121, 132</td>
<td></td>
</tr>
<tr>
<td>Hydrologic Sciences 100, Hydrologic Sciences 122, Wildlife, Fish, and</td>
<td></td>
</tr>
<tr>
<td>Conservation Biology 120</td>
<td></td>
</tr>
<tr>
<td>Environmental Science and Policy 168B, 175, Applied Biological Systems</td>
<td></td>
</tr>
<tr>
<td>Technology 180, Agricultural Systems and Environment 121, 132</td>
<td></td>
</tr>
<tr>
<td>180</td>
<td></td>
</tr>
<tr>
<td>Environmental and Resource Sciences 131</td>
<td>3</td>
</tr>
</tbody>
</table>

Unrestricted Electives..24-59

Total Units for the Degree..180

Minor Program Requirements

The faculty for environmental policy analysis and planning offers the following two minors. The Energy Policy minor is for students from any major seeking basic training in energy technology, impacts and policy analysis methods applied to energy systems. The Environmental Policy Analysis minor is for natural and social science students desiring basic training in policy analysis theory and methods.

UNITS

Environmental Policy Analysis ..23-24

Preparation: Economics 1A, basic course in political science.

Environmental Science and Policy 1..4

Environmental Science and Policy 160, 161, 168A..13

Environmental Science and Policy 163, 170, 171, 172, 179.............................6-8

Epidemiology (A Graduate Group)

Wesley O. Johnson, Ph.D., Chairperson of the Group
Group Office, 2108 Tupper Hall (Department of Medicine and Epidemiology) (530-752-2450; Fax: 530-752-0414)

Faculty
Robert BonDurant, D.V.M., Professor (Population Health and Reproduction)
Walter Boyce, D.V.M., Ph.D., Professor (Pathology, Microbiology, and Immunology)
Ken Brown, M.D., Professor (Nutrition)
Tim E. Carpenter, Ph.D., Professor (Medicine and Epidemiology)
James Case, D.V.M., Ph.D., Professor of Clinical Diagnostic Medicine (Medicine and Epidemiology)
Bruno Chomel, D.V.M., Ph.D., Professor (Population Health and Reproduction)
Stuart Cohen, M.D., Professor (Internal Medicine)
Patricia Conrad, D.V.M., Ph.D., Professor (Pathology, Microbiology, and Immunology)
Kathryn Dewey, Ph.D., Professor (Nutrition)
Christiana Drake, Ph.D., Associate Professor (Statistics)
Juanjuan Fan, Ph.D., Assistant Professor (Statistics)
Thomas B. Farver, Ph.D., Professor (Population Health and Reproduction)
Neil Flynn, M.D., Professor (Internal Medicine)
Ian A. Gardner, M.P.V.M., Ph.D., Professor (Medicine and Epidemiology)
David R. Gibson, Ph.D., Associate Professor
Eilen Gold, Ph.D., Professor (Epidemiology and Preventive Medicine)
Mary Haan, Ph.D., Associate Professor (Epidemiology and Preventive Medicine)
Sharon Hietala, Ph.D., Associate Professor of Clinical Diagnostic Medicine (Medicine and Epidemiology)
David W. Hird, M.V.M., D.V.M., Ph.D., Professor (Medicine and Epidemiology)
Wes Johnson, Ph.D., Professor (Statistics)
Philip Kass, M.P.V.M., D.V.M., Ph.D., Associate Professor (Population Health and Reproduction)
Richard L. Kravitz, M.D., Professor (General Medicine)
Bruce Lestikow, M.D., Associate Professor (Epidemiology and Preventive Medicine)
Richard Levine, Ph.D., Assistant Professor (Statistics)
Stephen McCurdy, M.D., Associate Professor (Epidemiology and Preventive Medicine)
Hans-Georg Muller, M.D., Ph.D., Professor (Statistics)
John Robbins, M.D., Associate Professor (Internal Medicine)
David M. Rocke, Ph.D., Professor (Management)
Patrick Romano, M.D., Associate Professor (Internal Medicine)
Joan Dean Rowe, M.P.V.M., D.V.M., Ph.D., Associate Professor (Population Health and Reproduction)
Marc Schenker, M.D., Professor (Epidemiology and Preventive Medicine)
Thomas Scott, Ph.D., Professor (Entomology)
Robert Shumway, Ph.D., Professor (Statistics)
Robert Szabo, M.D., Professor (Orthopaedic Surgery)
Jerald Theis, D.V.M., Ph.D., Professor (Pathology, Microbiology, and Immunology)
Mark Thurmond, D.V.M., M.P.V.M., Ph.D., Professor (Medicine and Epidemiology)
Jessica Utts, Ph.D., Professor (Statistics)

Emeriti Faculty
Nancy East, M.P.V.M., D.V.M., Professor Emeritus
Bruce Eldridge, Ph.D., Professor Emeritus
Alvin Wiggins, Ph.D., Professor Emeritus

Affiliated Faculty
Robert Atwill, D.V.M., Ph.D., Associate Professor Agronomist/Assistant Cooperative Extension Specialist (Population Health and Reproduction)
Rahman Azari, Ph.D., Lecturer (Statistics)
Nicholas Lerche, Ph.D., Associate Adjunct Professor, (Population Health and Reproduction)
Jonna Mazet, M.P.V.M., D.V.M., Ph.D., Assistant Clinical Professor (Wildlife Health Center)
Steven Samuels, Ph.D., Assistant Clinical Professor (Epidemiology and Preventive Medicine)

Graduate Study. The Graduate Group in Epidemiology offers programs of study and research leading to the M.S. and Ph.D. degrees. Areas of emphasis include environmental/occupational epidemiology; infectious disease epidemiology; epidemiologic methods and biostatistics; health services and economics; zoonotic and vector-borne epidemiology; and nutritional, wildlife epidemiology. For detailed information regarding the program, address the chairperson of the group.

Graduate Advisers. E. Gold (Epidemiology and Preventive Medicine), I. Gardner (Medicine and Epidemiology), J. Utts (Statistics).

Required Courses for the Program
Prerequisite Courses. Prerequisites may be taken concurrently with required courses below.
Mathematics: 16A–16B or 21A–21B
Statistics: 102, 106, and 108, or Preventive Veterinary Medicine 402, 403

Required Courses. These courses are required of all students in the program (M.S. and Ph.D. degrees). These requirements cannot be waived and must be met before a student’s Qualifying Examination.
Epidemiology 205A, 205B, 206, 207, 210A, 210B, and 290
Statistics 130A–130B
One course from Population Health and Reproduction 202 or Statistics 144

Related Courses. For additional coursework in Epidemiology, please see Medicine and Epidemiology, Preventive Veterinary Medicine, Population Health and Reproduction, Epidemiology and Preventive Medicine, and Statistics.

Courses in Epidemiology (EPI)

Graduate Courses
205A. Principles of Epidemiology (4)
Lecture—4 hours. Prerequisite: Preventive Veterinary Medicine 402 or consent of instructor. Basic epidemiologic concepts and approaches to epidemiologic research, with examples from veterinary and human medicine, including outbreak investigation, infectious disease epidemiology, properties of tests, and an introduction to epidemiologic study design and surveillance. (Same course as Preventive Veterinary Medicine 405)—I. (I.)

205B. Integration of Epidemiologic Concepts (2)
Discussion—2 hours. Prerequisite: Preventive Veterinary Medicine 405/course 205A can be taken concurrently. In-depth analysis and integration of basic epidemiologic concepts and approaches to epidemiologic research presented in Preventive Veterinary Medicine 405/course 205A, with more mathematical and theoretical basis and examples from veterinary and human medicine, including outbreak investigation, infectious disease epidemiology, properties of diagnostic tests, study design, and surveillance.—I. (I.)

206. Epidemiologic Study Design (3)
Lecture—1.5 hours; discussion—0.9 hours; laboratory—1.8 hours. Prerequisite: Preventive Veterinary Medicine 405/course 205A, course 205B. Builds on concepts presented in course 205A. Concepts of epidemiologic study design—clinical trials, observational cohort studies, case control studies—introduced in course 205A are covered in more depth, using a problem-based format. Discussion of published epidemiologic studies. (Same course as Preventive Veterinary Medicine 406A)—II. (II.)

207. Advanced Concepts in Epidemiologic Study Design (3)
Lecture/discussion—3 hours. Prerequisites: course 206, course 205A/Preventive Veterinary Medicine 405 and course 206/Preventive Veterinary Medicine 406A or the equivalent. In-depth integration of advanced concepts in study design, with theory and examples, including confounding, effect modification under additive and multiplicative models, internal and external validity, bias, misclassification, alternate designs, source populations, statistical power and sample size, causation, and genetic epidemiology.—III. (III.)

210A. Analytic Epidemiology I: Case-Control Studies (3)
Lecture—2 hours; laboratory/discussion—3 hours. Prerequisite: Statistics 130B and Preventive Veterinary Medicine 406 (or the equivalent), or consent of instructor. Theory and practice of epidemiologic data analysis. Topics include confounding, stratification, matching, interaction, and logistic regression. (Same course as Population Health and Reproduction 210A)—I. (I.)

210B. Analytic Epidemiology II: Cohort Studies (3)
Lecture—3 hours. Prerequisite: course 210A, Theory and practice of epidemiologic data analysis. Topics include rates, rate standardization, cohort analysis, Poisson regression, and survivor/failure-time methods. (Same course as Population Health and Reproduction 210B)—II. (II.)

220. Problems in Epidemiologic Study Design (4)
Lecture—3 hours; term paper. Prerequisite: Preventive Veterinary Medicine 405 and 406 or the equivalent; Population Health and Reproduction 207 concurrently. Statistics 102 and 106 or the equivalent. Design and development of research protocols and funding applications for peer review. Application of research methods data collection and management and statistical analysis in research proposals. Methods of evaluating research proposals, mechanisms of funding, specifying human subjects considerations.—III. (III.)

222. Epidemiological Modeling (3)
Lecture—2 hours; laboratory—3 hours. Prerequisite: Preventive Veterinary Medicine 405. Techniques of model building and simulation of infectious diseases will be explored. Epidemiologic modeling philosophy, construction and validation will be emphasized. Offered in alternate years.—II. Carpenter
223. Spatial Epidemiology (3)
Lecture—2 hours; laboratory—3 hours. Prerequisite: Preventive Veterinary Medicine 405 or Environmental Studies 126 or Veterinary Medicine 409. Geographic Information Systems (GIS) and spatial statistics. Students are expected to complete a term project based on their graduate research. Offered in alternate years.—II. Carpenter

224. Health and Ecological Risk Analysis (3)
Lecture—2 hours; laboratory—3 hours. Prerequisite: Preventive Veterinary Medicine 406 or consent of instructor; background in statistics, including multivariable techniques; a course in differential equations. A methodological approach to risk analysis for human and animal-related health and ecological issues. Basic principles of risk analysis, including perception, communication, assessment and management. Emphasis on the assessment of risk.—III. (III.) Carpenter

240. Principles of Injury Epidemiology (3)
Lecture/discussion—3 hours. Overview of the epidemiology of human injury, including general principles, surveillance methods, behavioral factors, environmental factors, treatment issues and engineering and legal interventions related to vehicular injuries, drownings, falls, fires and burns, poisonings, firearm injuries, and other intentional injuries.—I. (I.) Romano

250. Introduction to Clinical Research Design and Epidemiology (1)
Lecture—1 hour. Prerequisite: graduate standing or medical/nursing personnel. For medical personnel who are or will be involved in medical research. Review of basics of clinical study design and analysis of clinical data. (S/U grading only.)—I. (I.) McCurdy, Romano

251. Environmental Epidemiology (3)
Lecture—3 hours. Prerequisite: Preventive Veterinary Medicine 405 (may be taken concurrently); upper division undergraduates who have completed Environmental Studies 126; or the equivalent. Examination of the human health effects and the risk of disease from community, occupational, and personal exposure to toxic substances. Offered in alternate years.—II. (II.) Haan

260. Epidemiology of Chronic Diseases and Aging (3)
Lecture/discussion—3 hours. Overview of the epidemiology of chronic disease in old age. Topics include biology of aging, epidemiology of cardiovascular disease, neoplasms, osteoporosis and fractures, psychosocial factors and health in old age, dementias, functional status and prevention of disease.—II. (II.) Haan

270. Research Methods in Occupational Epidemiology (3)
Laboratory/discussion—3 hours. Prerequisite: Preventive Veterinary Medicine 405; and Statistics 102 or Epidemiology and Preventive Medicine 402. Methods used in epidemiologic research on occupational hazards. Topics include design and analysis of cohort and case-control studies, sample size, measuring dose, choosing a control group, validation of employment and health data, interpreting negative studies, and analysis software. Offered in alternate years.—III. Beaumont

279. Seminars in Epidemiology (1)
Seminar—1 hour. Students will actively participate in presentation and discussion of ongoing or published research projects in epidemiology. (S/U grading only.)—I, II, III. (I, II, III.)

280. Seminars in Human Health Services Research and Clinical Epidemiology (1)
Seminar—1 hour. Critical review, evaluation, and discussion of research in health services and clinical epidemiology. Presentation of statistical, epidemiologic, and econometric methods. Students present their own research and critique the work of others. May be repeated for credit. (Same course as General Medicine 291.) (S/U grading only.)—I, II, III. (I, II, III.)

288. Group Study (1-5)
Seminar—1-5 hours. Group study in selected areas of epidemiology.

299. Research (1-12)
Research in selected areas of epidemiology. (S/U grading only.)
Environmental and Resource Sciences

(College of Agricultural and Environmental Sciences)

Faculty. See under departments of Agricultural and Resource Economics, Agronomy and Range Science, and Land, Air, and Water Resources.

The Major Program

The environmental and resource sciences major is a program for study of the biological, chemical, and physical features of environmental resources, and the economical and social considerations associated with their use, conservation, protection, and management and restoration. Students who choose this major include those with an interest in careers associated with environmental resource utilization and management, as well as those pursuing post-baccalaureate, academic, or professional training.

The Program. The curriculum for the major provides flexibility in meeting individual needs, interests, and objectives. At the same time, certain courses are required in the basic physical and biological sciences areas. Upper division general environment resource sciences courses, a resource economics course, and a specified number of units of environmental and resource-oriented courses are required for all students in the major. Students select environmental and resource-oriented courses in consultation with and approval of the student's adviser. Considerable care should be taken to ensure effective utilization of the flexibility of the major, and to meet individual academic and career objectives. Students may specialize their study by selecting one of the options within the major or, in consultation with their adviser, pursuing other specializations.

Internships and Career Alternatives. Positions now held by graduates in environmental and resource sciences are quite varied, but many are employed as resource analysts and planners as well as technical and environmental specialists with government agencies, municipalities, and private firms. A significant proportion of graduates undertake further studies leading to advanced degrees in resources, the environment, and related fields.

B.S. Major Requirements:

UNITS

Written/Oral Expression .. 0-8

See College requirement

Preparatory Subject Matter ... 53-68

Biological Sciences 1A-1B-1C ... 15
Chemistry 2A-2B .. 10
Economics 1A ... 5
Environmental Toxicology 10 ... 3
Geology 1 or 50 ... 3-4
Environmental and Resource Sciences 60 ... 3
Mathematics 16A-16B or 21A-21B ... 6-8
Agricultural Systems and Environment 21, 121, Engineering 5, Computer Science Engineering 10, 15 ... 3-4
Physics 1A-1B or 7A-7B-7C or 9A-9B-9C—see option requirements 5-12
Statistics 13 or 100 or 102 .. 4

Breadth/General Education ... 18-24

Satisfaction of General Education requirements; additional units in social sciences and humanities to total 24 units.

Depth Subject Matter ... 24-27

Written expression (in addition to college requirement), English 101, 104A, 104B, 104C, 104D, 104E, or 104F ... 4
Agricultural and Resource Economics 147 or 148 3-4
Atmospheric Science 60 or Environmental and Resource Sciences 131 .. 3-4
Soil Science 100 ... 4
Agricultural and Resource Sciences 100 or 121 3-4
Agricultural Systems and Environment 101, Environmental Science and Policy 161, 179, Environmental Toxicology 138, Nature and Culture, Political Science 17, 1 or Wildlife, Fish, and Conservation Biology 154 .. 3-4
Agricultural Systems and Environment 130, Entomology 104, Environmental and Resource Sciences 144, Environmental Science and Policy 100, Evolution and Ecology 101, or Plant Biology 117 or 142 ... 3-4
Atmospheric Science 192 ... 3

Areas of Specialization (choose one)

Air Resource Option.. 26-28
Directed towards a general understanding of the atmosphere as a finite resource and of environmental problems currently faced by humankind. The option provides a broad understanding of the physical and chemical properties of the atmosphere, including the impacts of air pollution and global climate change. Employment opportunities include positions within federal, state, and county agencies concerned with environmental quality and with private companies.

Environmental Science and Policy 110 ... 4
Choose two from Atmospheric Science 115, 149, 160; Environmental and Resource Sciences 131, 173, 185, 186; or Environmental Science and Policy 116 ... 6-8

Unrestricted electives (to total 180) ... 25-52

Environmental Resources Option... 18-26
For the general study of the physical, chemical and biological features of renewable natural resources, and the economic and social considerations associated with their use, protection and management. For those who plan careers associated with resource utilization and management, and those pursuing post-baccalaureate, academic, or professional training.

Choose at least two from Soil Science 102, 111, 112, 118; Geology 130, 134 ... 6-9
Choose at least two from Atmospheric Science 116, 124, 133, 160; Environmental Toxicology 131, 138 ... 6-7
Choose at least two from Agricultural Systems and Environment 132; Environmental and Resource Sciences 136, 144, 173, 185, 186; Geology 135; Hydrologic Science 134, 141, 145 ... 6-10

Unrestricted electives (to total 180) .. 25-60

GIS and Remote Sensing Option... 26
Conceptual and practical training in the application of remote sensing technology and geographical information systems to natural resource assessment and to monitoring human impacts on the environment. Appropriate training for those seeking employment as GIS specialists with natural resource management agencies or environmental consulting firms.

Environmental and Resource Sciences 105, 185, 186; Applied Biological Systems Technology 180, 181, 182 ... 26

Unrestricted Electives (to total 180) .. 25-52

Hydrobiology Option... 32-35
Training in the biological aspects of water resources focusing on the understanding and protection of polluted and unpolluted water systems; the structure, function, and principles of aquatic systems. Graduates may seek employment with state and federal agencies such as Water Resources Control Board, Department of Fish and Game, Department of Water Resources, or consulting firms concerned with environmental impacts.

Choose 26-35 units from Entomology 116; Environmental and Resource Sciences 136; Environmental Science and Policy 123, 124, 151, 155; Environmental Toxicology 110; Geology 116, 135, 139; Hydrologic Science 134, 141; Plant Biology 118, 178; Soil Science 102; Wildlife, Fish, and Conservation Biology 120, 120L, 123, 153 ... 26-35

Unrestricted Electives (to total 180) .. 16-50

Land and Water Management Option... 17-29
A broad background in management of soil and water resources in both natural and agricultural ecosystems. Emphasis on analysis of soils and plants for estimating crop nutrient requirements and principles of irrigation and drainage of agricultural land. Appropriate for those seeking employment with state and federal agencies or with agroindustry.

Choose at least two from Soil Science 102, 105, 109, 111, 118, 1208-13
Choose at least two from Hydrology 110, 124, 134, 141, 143, 144, 6-12
Choose at least one from Agricultural Systems and Environment 132; Environmental and Resource Sciences 144, 173, Geology 134, 135 3-4

Unrestricted Electives (to total 180) .. 22-61
Unrestricted Electives (to total 180) .. 23-55

Total Units for the Major .. 180

Major Adviser. J. Stasulat (South Hall).

Advising Center for the major is located in 148 Hoagland Hall (530-752-1669).

Courses in Environmental and Resource Sciences (ERS)

Questions pertaining to the following courses should be directed to the instructor or to the Resource Sciences Teaching Center, 148 Hoagland Hall (530-752-1669).

Lower Division Courses

10. California: The State (3)
Lecture—2 hours; discussion—1 hour. Prerequisite: introductory geography or a regional science. Introduction to the state’s physical and cultural geography; major resources; interrelationships of the natural environment and society; environmental issues; economic development; historical background; cultural diversity. GE credit: SciEng.—II. (II.) Stasulat

10G. California: The State (Survey) (1)
Discussion—1 hour; brief essays. Prerequisite: course 10 concurrently. Small group discussion of topics assigned for course 10. Preparation and discussion of essays. GE credit with concurrent enrollment in course 10: Wrt.—II. (II.) Stasulat

10L. Global Environmental Interactions (3)
Lecture—2 hours; discussion—1 hour. Prerequisite: high school algebra and biology or chemistry. Relationships among climate, hydrology, biogeochemical cycles, and vegetation distribution in diverse landscapes. Emphasis on physical, chemical, and biological processes affecting ecosystems from the poles to the equator. GE credit: SciEng.—II. (II.) Grismer

92. Resource Sciences Internship (1-12)
Internship—3-36 hours. Prerequisite: lower division standing and consent of instructor. Work experience off and on campus in resource sciences. Internship supervised by a member of the faculty. (P/NP grading only.)

98. Directed Group Study (1-5)
Prerequisite: consent of instructor. Primarily for lower division students. (P/NP grading only.)

99. Special Study for Undergraduates (1-5)
(P/NP grading only.)

Upper Division Courses

100. Principles of Hydrologic Science (4)
Lecture—4 hours. Prerequisite: Chemistry 2B, Mathematics 16B, and Physics 7A or 9A. Topics include hydrology (surface and ground water), hydraulic flow through porous media, water in the soil-plant-atmosphere continuum, water quality, flow through open channels, and representative water-resource problems. GE credit: SciEng.—I. (I.) Grismer

100L. Principles of Hydrologic Science Laboratory (2)
Laboratory—3 hours; discussion—1 hour. Prerequisite: course 100 concurrently. Principles governing water transport in pipes, soil, and rainfall runoff. Water quality concerns associated with salinity and contamination. GE credit with concurrent enrollment in course 100: Wrt.—II. (II.) Grismer

105. Principles of Cartography for GIS (4)
Lecture—2 hours; laboratory—6 hours. Properties and components of maps. Compilation and generalization of base-map data; projections; coordinate systems; reference ellipsoids; symbolization and processing of map data; cartographic design; typography; map production; and cartographic and photographic equipment utilized in producing maps. GE credit to students who have taken Hydrologic Science 186. (Former course Hydrologic Science 136.)—III. (III.) Bahre

121. Water and Society (3)
Lecture—2 hours; discussion—1 hour. Prerequisite: Physics 10 or Geology 1. The role of water as an essential natural resource in contemporary society. Aspects of the scientific method, including descriptions of natural phenomena, measurement techniques, and predictive models. Supply and use of water for municipalities, agriculture, industry, wildlife and recreation. GE credit: SciEng, Wrt.—I. (I.) Silk

131. Air as a Resource (3)
Lecture—2 hours; discussion—1 hour. Prerequisite: Chemistry 10. Degradation of the atmospheric resource, historical aspects and effects of air pollution examined. Evaluation of primary gaseous and particulate pollutants and discussion of their impact. GE credit: SciEng, Wrt.—II. (II.) Flocchini

136. Chemistry of the Hydrosphere (3)
Lecture—3 hours. Prerequisite: Chemistry 2B and an upper division course in soil science, hydrologic science, geology, or limnology. Chemical characteristics of water in the hydrologic cycle. Understanding processes and conditions regulating chemical composition of natural waters with particular emphasis on dissolved mineral constituents. Not open for credit to students who have completed Water Science 180 or Hydrologic Science 136. (Former course Hydrologic Science 136.)—III. (III.) Tanji

144. Trees and Forests (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: Biological Sciences 1C. Biological structure and function of trees as organisms; understanding of forests as communities and as ecosystems; use of forests by humans; tree phenology, photosynthesis, respiration, soil processes, life histories, dormancy, forest biodiversity, and agroforestry. (Same course as Environmental Horticulture 144 and Plant Biology 144.)—I. (I.) Barbour, Berry, Bledsoe

173. Humans and Vegetation Change (4)
Lecture—3 hours; term paper. Prerequisite: course 60, Geography 1, Environmental Science and Policy 123, 155; Hydrologic Science 124; Plant Biology 111, 111D, 111L, 112, 112D, 117, 142, 157, 158; Soil Science 109, 111, 112, 113, 231, 238, 239—II. (II.) Ustin

185L. Environmental Remote Sensing Lab (2)
Laboratory—4 hours. Prerequisite: course 186 with grade of C or better. Computer based analysis and visualization of digital images and image processing techniques. Continuation of course 186 providing theory and direct experience in digital image processing.—III. (III.) Ustin

198L. Directed Group Study (1-5)
(P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)
Environmental Science and Policy

(College of Agricultural and Environmental Sciences)
Paul Sabatier, Ph.D., Interim Chairperson of the Department
Department Office, 2132 Wickson Hall (530-752-3026)

Faculty
Charles R. Goldman, Ph.D., Professor
Edwin D. Grosholz, Ph.D., Assistant Specialist, Cooperative Extension
Susan P. Harrison, Ph.D., Professor
Alan M. Hastings, Ph.D., Professor
Robert A. Johnston, M.S., Professor
David F. Layton, Ph.D., Assistant Professor
Stephen G. Morgan, Ph.D., Associate Professor
Benjamin S. Oriole, Ph.D., Professor
James F. Quinn, Ph.D., Professor
Elitsa Rejmankova, Ph.D., Associate Professor
Peter J. Richeron, Ph.D., Professor
Paul A. Sabatier, Ph.D., Professor
Thomas W. Schoener, Ph.D., Professor (Evolution and Ecology)
Mark W. Schwartz, Ph.D., Associate Professor
Seymour I. Schwartz, Ph.D., Professor, Academic Senate Distinguished Teaching Award
Daniel Sperling, Ph.D., Professor (Environmental Science and Policy, Civil and Environmental Engineering)
Geoffrey A. Wandesforde-Smith, Ph.D., Associate Professor (Environmental Science and Policy, Political Science), Academic Senate Distinguished Teaching Award
Susan Williams, Ph.D., Professor

Emeriti Faculty
William J. Hamilton III, Ph.D., Professor Emeritus
Jack D. Ives, Ph.D., Professor Emeritus

The Program of Study
Environmental Science and Policy is a teaching and research department offering courses, workshops, and directed group study classes that focus on the complex problems of human-environment relations. The department offers Bachelor of Science degrees in Environmental Biology and Management and in Environmental Policy Analysis and Planning. Courses in Environmental Science and Policy also supplement major programs in a wide variety of established disciplines, although highly motivated undergraduates who find existing majors unsuited to their educational objectives are encouraged to contact the chairperson and faculty of the department regarding individual majors in the College of Agricultural and Environmental Sciences (see Individual Major).

Current Information. Through its continuing contacts with many other departments and teaching divisions on the campus, the department develops each year a variety of special courses and workshops that cannot be listed here. Check with the department office and with the expanded course description handbook of the College of Agricultural and Environmental Sciences for up-to-date information about courses.

Graduate Study. The faculty of the department offers the M.S. and Ph.D. degree programs of the Graduate Group in Ecology, as well as instruction through the graduate programs of the disciplines with which they are associated, such as agricultural and resource economics, evolution and ecology, sociology, political science, civil engineering, and anthropology. Further information about graduate programs in ecology should be obtained from the chairperson of the Graduate Group in Ecology.

Graduate Adviser. K. J. Rice (Ecology).

Courses in Environmental Science and Policy (ESP)
(Formerly courses in Environmental Studies.)

Lower Division Courses
1. Environmental Analysis (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: English 1; English 102, Economics 1A, 1B, Biological Sciences 1A, and Political Science 1 recommended. Analysis of the biological, physical, and social interactions which constitute environmental problems, such as food production, energy development and conservation, pollution, and the conservation of natural environments. Emphasis on analysis of problems and the consequences of proposed solutions.—II. (III.) M. Schwartz

10. Introduction to Environmental Studies (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: elementary biology recommended. Survey of the importance of ecology and systems behavior for man-environment relationships and management problems. Resources, environmental quality, urban dynamics, environmental perception, and conservation are covered. Includes several integrative case studies, and features individual reading in environmental problems. Not open for credit to students who have taken course 1. GE credit: SciEng, Wrt.—I. I. (III.) M. Schwartz

30. The Global Ecosystem (3)
Lecture—3 hours; 1 one-day field trip. Prerequisite: Biological Sciences 10 or Geography 1 or Anthropology 2. The interaction of climate and biotic adaptation and the production of ecological systems. The limits and opportunities for human use of different natural environments, and human utilization of the earth’s biotic resources. GE credit: SciEng.—III. (III.)

30G. The Global Ecosystem: Laboratory/Discussion (2)
Lecture/discussion—3 hours. Prerequisite: course 30 concurrently. Presents natural history skills in plant and animal identification, soils, and geology. Emphasis on the diverse organisms and habitats of Northern California. GE credit with concurrent enrollment in course 30. Wrt.—III. (III.)

92. Internship (1-12)
Internship—3-36 hours. Prerequisite: lower division standing and consent of instructor. Work experience off and on campus in all subject areas offered in the College of Agricultural and Environmental Sciences. Internship supervised by member of the faculty. (P/NP grading only.)

98. Directed Group Study (1-5)
Prerequisite: consent of instructor. Primarily for lower division students. (P/NP grading only.)

Upper Division Courses
100. General Ecology (4)
Lecture—3 hours; discussion—1 hour. Prerequisites: Biological Sciences 1A, 1B, 1C, Mathematics 16A, 16B, Statistics 13 recommended. Theoretical and experimental analysis of the distribution, growth and regulation of species populations, predator-prey and competitive interactions; and the organization of natural communities. Application of evolutionary and ecological principles to selected environmental problems.—I. (I.) Harrison

101. Human Ecology (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: one course from course 30, Anthropology 1, 2, Genetics 10, or the equivalent. Critical variables in the processes that relate humans and their environment. Emphasis on the biological, cultural, social, and psychological forces which encourage stability or change in human ecological relationships. (Same course as Anthropology 101.) GE credit: SocSci, Div.—II. (II.) Richerson, Mulder

(a) Environmental Science

110. Principles of Environmental Science (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: Physics 1A or 7A, Mathematics 16B or 21B, and Biological Sciences 1A. Application of physical and chemical principles, ecological concepts, and systems approach to policy analysis of atmospheric environments, freshwater and marine environments, land use, energy supplies and technology, and other resources.—III. (III.) Richerson

116. The Oceans (3)
Lecture—3 hours. Introductory survey of the marine environment; oceanic physical phenomena, chemical constituents, geological history, the sea’s biota, and utilization of marine resources. (Same course as Geology 116.) GE credit: SciEng.—I. II. (I. II.) Spero, Cowen

116G. The Oceans: Discussion (2)
Discussion—2 hours. Prerequisite: course 116Geology 116 concurrently. Scientific method applied to the discovery of the processes, biota, and history of the oceans. Group discussion and preparation of papers on related topics. (Same course as Geology 116G.) GE credit with concurrent enrollment in course 116Wrt.—II. II. I. (I. II.) Spero, Cowen

(b) Ecological Analysis

121. Population Ecology (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: Biological Sciences 1B, 1C, Mathematics 16A-16B. Development of exponential and logistic growth models for plant and animal populations, analysis of age structure and genetic structure, analysis of competition and predator-prey systems. Emphasis is on developing models and using them to make predictions and solve problems. Offered in alternate years. GE credit: SciEng, Wrt.—II. II. Hastings
123. Introduction to Field and Laboratory Methods in Ecology (4)
Lecture—2 hours; laboratory—6 hours. Prerequisite: course 100 or the equivalent. Statistics 102 or the equivalent. Introduces students to methods used for collecting ecological data and for field and laboratory situations. Methods used by population ecologists and community ecologists; emphasis on experimental design, scientific writing and data analysis.—III. (III.) Quinn; M. Schwartz

124. Marine and Coastal Field Ecology (10)
Lecture—6 hours; discussion—4 hours; seminar—1 hour; laboratory—18 hours (Summer Session I). Prerequisite: Biological Sciences 1A; Statistics 13; course 100. Full-time study at Bodega Marine Laboratory. Intensive lecture-laboratory-field study of current ecological theory and problems with emphasis on marine populations and communities; techniques and evaluation of quantitative field research summer. Chow

125A. Field Ecology (4)
Lecture—15 hours; discussion—10 hours; field work—15 hours (for two-week period). Prerequisite: consent of instructor. Designed to instruct and demonstrate to students the value and approaches of experimental research using the hypothetico-deductive experimental approach. May be taken only as part of the White Mountain Research Supersect.—III. (III.) Quinn

125B. Physiological Ecology (4)
Lecture—15 hours; discussion—10 hours; laboratory—15 hours (for two-week period). Prerequisite: consent of instructor. Designed to introduce students to the concepts, methods, and realities of natural resource exploitation and preservation, emphasizing the trade-offs between economic benefits and ecosystem stability and sustainability. May be taken only as part of the White Mountain Research Supersect.—III. (III.) Quinn

126. Environmental and Occupational Epidemiology (4)
Lecture—6 hours; discussion—1 hour. Prerequisite: introductory course in statistics and upper division standing. Methods and contemporary issues in environmental and occupational epidemiology. Effects of carcinogens, reproductive hazards, lifestyle factors, air and water pollution, infectious agents, and other hazards on human populations. Discussion of epidemiologic study designs, biases, and risk assessment.—I. (I.)

(c) Cultural Ecology

133. Cultural Ecology (4)
Lecture—3 hours; discussion—1 hour. Comparative survey of the interaction between diverse human cultural systems and the environment. Primary emphasis given to people in rural and relatively undeveloped environments as a basis for interpreting human populations. Discussion of epidemiologic study designs, biases, and risk assessment.—I. (I.)

(d) Aquatic Ecosystems Analysis

150A. Physical and Chemical Oceanography (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: Environmental Science and Policy/Geology 116, Physics 9B, Mathematics 22C, Chemistry 1C; or upper division standing in a natural science and consent of instructor. Physical and chemical properties of seawater, fluid dynamics, air-sea interaction, currents, waves, tides, mixing, major ocean geo-chemical cycles. (Same course as Geology 150A.)—I. (I.) McClain, Spero

150B. Geologic Oceanography (3)
Lecture—3 hours. Prerequisite: Geology 50 or 116. Introduction to the origin and geologic evolution of ocean basins. Composition and structure of oceanic crust; marine volcanism; and deposition of marine sediments. Interpretation of geologic history of the ocean floor in terms of sea-floor spreading theory. (Same course as Geology 150B.)—II. (II.) McCain

150C. Biological Oceanography (4)
Lecture—3 hours; discussion—1 hour; fieldwork—one weekend field trip required. Prerequisite: Biological Sciences 1A and a course in general ecology or consent of instructor. Ecology of major marine habitats, including intertidal, shelf benthic, deep-sea and plankton communities. Existing knowledge and contemporary issues in research. Segment devoted to human use. (Same course as Geology 150C.)—II. (II.)

151. Limnology (4)
Lecture—3 hours; discussion—1 hour; special project. Prerequisite: Biological Sciences 1A and junior standing. The biology and productivity of inland waters with emphasis on the physical and chemical environment.—III. (III.) C. Goldman

151L. Limnology Laboratory (3)
Laboratory—6 hours; two weekend field trips. Prerequisite: course 151 (may be taken concurrently); junior, senior, or graduate standing. Limnological studies of lakes, streams, and reservoirs with interpretation of aquatic ecology.—III. (III.) C. Goldman

155. Wetland Ecology (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 100 or Plant Biology 117 required; course 110 or 151 recommended. Introduction to wetland ecology. The structure and function of major wetland types and principles that are common to wetlands and that distinguish them from terrestrial and aquatic ecosystems.—I. (I.) Rejmankova

155L. Wetland Ecology Laboratory (3)
Lecture—1 hour; laboratory—3 hours. Fieldwork—two 1-day weekend field trips. Prerequisite: course 155 required (may be taken concurrently). Modern and classic techniques in wetland field ecology. Emphasis on sampling procedures, vegetation analysis, laboratory analytical procedures, and examples of successful wetland restoration technologies.—I. (I.) Rejmankova

(e) Environmental Policy Analysis

160. Environmental Decision Making (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: Political Science 1, Economics 1A, intermediate statistics, course 1 and course 166 or Political Science 182; upper division standing or consent of instructor. Alternative models of environmental policymaking, and application to case studies of decision making in the U.S. and California.—II. (II.) Sabater

161. Environmental Law (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: upper division standing and one course in environmental science (course 110, 110, Biological Sciences 1A Environmental Toxicology 10, or Resource Sciences 100). English 1 and Political Science 1 recommended. Introduction for non-Law School students to some of the principal issues in environmental law and the judicial interpretation of some important environmental statutes, e.g., NEPA. GE credit: SocSci, Wrt.—II. (II.) Wandesforde-Smith

163. Energy and Environmental Aspects of Transportation (4)
Lecture—3 hours; extensive writing. Prerequisite: Economics 1A and Civil and Environmental Engineering 162. Engineering, economic, and systems planning concepts. Analysis and evaluation of energy, air quality and selected environmental attributes of transportation technologies. Strategies for reducing pollution and petroleum consumption in light of institutional and political constraints. Evaluation of vehicle emission models. (Same course as Civil and Environmental Engineering 163.) Offered in alternate years. GE credit: Wrt.—I. (I.) Sperling

164. Ethical Issues in Environmental Policy (3)
Lecture—3 hours. Prerequisite: courses 160, 169A; seniors only in Environmental Policy Analysis and Planning or by consent of instructor. Basic modes of ethical reasoning and criteria of distributive justice applied to selected topics in environmental policy-making.—II. (II.) Sabater

165. Science, Experts and Public Policy (4)
Lecture—4 hours. Prerequisite: upper division standing in the social or biological sciences; course 160 or Political Science 108 recommended. Analysis of factors affecting the influence of scientists, planners, and other experts in policymaking. Several cases will be used for discussion. (Same course as Political Science 187.)—II. (II.)

166. Policy Making in Natural Resource Agencies (4)
Lecture—3 hours; laboratory/discussion—2 hours. Prerequisite: Political Science 1. Analysis of factors that shape the behavior and performance of public agencies responsible for natural resource management and environmental protection. Internet research and field work used to design and execute a research and writing project on a selected agency or inter-agency program. GE Credit: Wrt.—I. (I.) Wandesforde-Smith

167. Energy Policy (4)
Lecture—4 hours. Prerequisite: Resource Sciences 3 or Engineering 160; course 168 or Political Science 101, 107, or 109. Overview of U.S. energy policy; policy analysis, philosophy and methods; major policy issues, such as renewable vs. non-renewable, and applied studies of power plants, solar residential, and state policy options. Offered in alternate years.—I.

168A. Methods of Environmental Policy Evaluation (5)
Lecture—3 hours; discussion—1 hour; term paper. Prerequisite: Statistics 13, Economics 100 or Agricultural and Resource Economics 100A; Mathematics 16B or 21B; course 1; upper division standing. Evaluation of alternatives for solution of complex environmental problems; impact analysis, benefit-cost analysis, distributional analysis, decision making under uncertainty, and multi-objective evaluation.—I. (I.) S. Schwartz

168B. Methods of Environmental Policy Analysis (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 168A. Continuation of course 168A, with emphasis on the examination of the literature for applications of research and evaluation techniques to problems of transportation, air and water pollution, land use, and energy policy. Students will apply the methods and concepts by means of a major project.—II. (III.) S. Schwartz

(f) Environmental Planning

170. Conservation Biology Policy (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 1 and Economics 1A; Environmental Science 100 or Agricultural and Resource Economics 100A recommended. Analysis of policies designed to conserve species and their habitats. Emphasis on how individual incentives affect the success of conservation policies. Valuation of endangered species and biodiversity. Criteria for deciding conservation priorities.—III. (III.) Layton
171. Environmental Planning (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 1; a course in social science and a course in environmental science. Laws, institutions, design and analysis methods, and means of implementation of plans for land use, air and water quality, transportation, and energy are examined. Theoretical and practical readings are used. Political and technical problems common to all planning processes emphasized.—II. (II.) Johnston

172. Public Lands Management (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: Economics 1A. Investigation of alternative approaches to public lands management by Federal and state agencies. The role each agency's legislation plays in determining the range of resource allocations. GE credit: SocSci.—II. (II.)

173. Land Use and Growth Controls (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: Political Science 1, Economics 1A, intermediate statistics (Sociology 106 or Statistics 102 or the equivalent), and local government (Applied Behavioral Science 157, 158 or Political Science 100, 102 or 104.) Exposes students to the economic, political, and legal factors affecting land use and growth controls, and helps students critically evaluate written materials in terms of their arguments and supporting data.—III. (III.) Johnston

175. Natural Resource Economics (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: Agricultural and Rural Economics 109B or Economics 100 or the equivalent. Economic concepts and policy issues associated with natural resources, renewable resources (ground water, forests, fisheries, and wildlife populations) and non-renewable resources (minerals and energy resources). (Same course as Agricultural and Rural Economics 175.) GE credit: SocSci.—II. (II.) Farzin

178. Applied Research Methods (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: Statistics 103 or Sociology 106 or the equivalent. Research methods for analysis of urban and regional land use, transportation, and environmental problems. Survey research and other data collection techniques; demographic analysis; basic forecasting, air quality, and transportation models. Collection, interpretation, and critical evaluation of data.—II. (II.)

179. Environmental Impact Reporting (3)
Lecture—2 hours; discussion—1 hour. Prerequisite: upper division standing; Biological Sciences 1A; one from the following course 1, 10, 110, Environmental Toxicology 10, or Environmental Resource Sciences 100. Methods of analysis used in environmental impact reporting. Emphasis on effective writing; review and management of impact reports in the context of rational democratic planning systems.—I. (I.) Johnston

(g) Other Courses

190. Workshops on Environmental Problems (1-8)
Laboratory—2-16 hours. Prerequisite: consent of instructor. Workshops featuring empirical analyses of contemporary environmental problems by multidisciplinary student teams. Guided by faculty and lay professionals, the teams seek to develop an integrated view of a problem and outline a series of alternative solutions. Open to all upper division and graduate students on application. (P/NP grading only.)—I, II, III. (I, II, III.)

192. Internship (1-12)
Internship—3-36 hours. Prerequisite: completion of 84 units and consent of instructor. Work experience off and on campus in all subject areas offered in the College of Agricultural and Environmental Sciences. Internships supervised by a member of the faculty. (P/NP grading only.)

198. Directed Group Study (1-5)
(P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)

Graduate Courses

212A. Environmental Policy Process (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course in public policy (e.g., Environmental Science and Policy 160); environmental law (e.g., Environmental Science and Policy 161); course in bureaucratic theory (e.g., Political Science 187 or Environmental Science and Policy 166); course in statistics (e.g., Sociology 106 or Agricultural and Resource Economics 106). Introduction to selected topics in the policy process, applications to the field of environmental policy. Develops critical reading skills, understanding of frameworks of the policy process and political behavior, and an ability to apply multiple frameworks to the same phenomena. Offered in alternate years. (Same course as Ecology 212A.)—III. (III.) Sabatier

212B. Environmental Policy Evaluation (4)
Lecture—1 hour; discussion—1 hour; seminar—2 hours. Prerequisite: intermediate microeconomics (e.g., Economics 100); Statistics 108 or Agricultural and Resource Economics 106; policy analysis (e.g., Environmental Science and Policy 168A or the equivalent); Agricultural and Resource Economics 176. Methods and practices of policy analysis; philosophical and intellectual bases of policy analysis and the political role of policy analysis. (Same course as Ecology 212B.) Offered in alternate years.—II. (II.) Schwartz

220. Tropical Ecology (3)
Lecture—2 hours; discussion—1 hour. Prerequisite: advanced introductory ecology course—course 100, Evolution and Ecology 101, 117, Evolution and Ecology 138 recommended. Open to graduate and undergraduate students who meet requirement subject to consent of instructor. An overview of present status of knowledge on structure and processes of major tropical ecosystems. Differences and similarities among tropical and temperate systems stressed. Offered in alternate years.—II. (II.) Rejmankova

228. Advanced Simulation Modeling (3)
Lecture—2 hours; discussion—1 hour. Prerequisite: courses 128-128L; Statistics 108 or Agricultural and Resource Economics 106. Advanced techniques in simulation modeling; optimization and simulation, dynamic parameter estimation, linear models, error propagation, and sensitivity testing. Latter half of course will introduce model evaluation in ecological and social system models.—III. (III.)

252. Sustainable Transportation Technology and Policy (3)
Lecture—2 hours; discussion—1 hour. Prerequisite: course 160 or the equivalent. Role of technical fixes and demand management in creating a sustainable transportation system. Emphasis on technology options, including alternative fuels, electric propulsion, and IVHS. Analysis of market demand and travel behavior, environmental impacts, economics and politics. (Same course as Civil and Environmental Engineering 252.)—III. (III.)

275. Economic Analysis of Resource and Environmental Policies (4)
Lecture/discussion—4 hours. Prerequisite: Agricultural and Resource Economics 204/Economics 204. Development of externality theory, market failure concepts, welfare economics, theory of renewable and non-renewable resource use, and political economic models. Applications to policy issues regarding the agricultural/environment interface and managing resources in the public domain. (Same course as Agricultural and Resource Economics 275.)—II. (II.)

276. Research Methods in Environmental Policy (3)
Lecture/discussion—3 hours. Prerequisite: Agricultural and Resource Economics 106 or the equivalent. Introduction to scientific research in environmental policy. Major issues in the philosophy of the social sciences. How to design research that acknowledges theoretical assumptions and that is likely to produce evidence in an intersubjectively reliable fashion with explicit recognition of its uncertainties. Offered in alternate years.—II. (II.) Sabatier

298. Directed Group Study (1-5)

299. Research (1-12)
Prerequisite: graduate standing. (S/U grading only.)
Environmental Toxicology

(College of Agricultural and Environmental Sciences)
Marion G. Miller, Ph.D., Chairperson of the Department
Department Office, 4138 Meyer Hall (530-752-1142)
World Wide Web: http://www.envtox.ucdavis.edu

Faculty
M. Judith Charles, Ph.D., Assistant Professor
Michael S. Denison, Ph.D., Professor
Fumio Matsumura, Ph.D., Professor
Marion G. Miller, Ph.D., Professor
Robert H. Rice, Ph.D., Professor
Takayuki Shibamoto, Ph.D., Professor
Richard S. Tjeerdema, Ph.D., Professor
Barry W. Wilson, Ph.D., Professor (Environmental Toxicology, Avian Sciences)
Dorothy E. Wooley, Ph.D., Professor (Environmental Toxicology, Neurobiology, Physiology, and Behavior)

Emeriti Faculty
Richard G. Burau, Ph.D., Professor Emeritus
Donald G. Crosby, Ph.D., Professor Emeritus
Dennis P. H. Hsieh, Sc.D., Professor Emeritus
Ming-yu Li, Ph.D., Lecturer Emeritus
James N. Seiber, Ph.D., Professor Emeritus
Wray W. Winterlin, M.S., Lecturer Emeritus

Affiliated Faculty
Gary N. Cherr, Ph.D., Lecturer
Norman Kado, Ph.D., Associate Adjunct Professor
Michael W. Stirmann, Cooperative Extension Specialist

The Major Program
Toxic agents found in the environment include pesticides, food additives, industrial waste, metals and chemicals produced by animals, plants, fungi and bacteria. Students in the Environmental Toxicology major learn about the potential for toxicants to produce adverse effects by understanding both the environmental fate and biological activity of compounds. They learn about monitoring concentrations and the distribution and persistence of agents found in water, soil, air and foods. Toxicity testing methods and exposure assessment are used to help signal potential for harm to humans and other species. By understanding the cellular targets and bio-chemical mechanisms perturbed by toxicants, toxicologists can better estimate adverse effects. Overall, the program teaches students how knowledge of the origin, fate and action of toxic agents helps toxicologists evaluate the risk of adverse effects and balance risks against the benefits of use.

The Program. Preparatory courses in biology, chemistry, mathematics, and physics are required to provide the chemical and biological principles which underlie toxicology. Students in the major are expected to understand the environmental fate and biological activity of different classes of toxic substances, and the legislative issues which arise from chemical use. Opportunities are available to develop in-depth understanding in areas of emphasis through selection of electives.

Internships and Career Alternatives. Occupations that use environmental toxicology include industrial hygiene, environmental health and safety, monitoring and field sampling, residue or forensic analysis, pest control, pharmaceutical or food additive toxicity testing and research, risk assessment and managing regulatory compliance. A substantial proportion of graduates elect to pursue advanced training in graduate or professional schools. Others with the B.S. degree have gone on to law or medical school, as well as to degrees in pharmacology, toxicology, agricultural and environmental chemistry, or public health. During undergraduate study, optional work experience off and on campus in all subject areas offered in the College of Agricultural and Environmental Sciences. Internships supervised by a member of the academic Program Adviser. See also the Graduate Studies chapter of this catalog.

Programs of study leading to M.S. and Ph.D. degrees are available. Contact the Graduate Advisers. See also the Graduate Studies chapter of this catalog.

Programs of study leading to M.S. and Ph.D. degrees are available. Contact the Graduate Advisers. See also the Graduate Studies chapter of this catalog.

Course Requirements

Environmental Toxicology ..18
Elective courses 6 units minimum, selected from Environmental Toxicology 10, 128, 131, 135, 146, 190, 198 and 199 (4 units combined maximum of 190, 198 and 199 with adviser approval)6

Minor Program Requirements:

Environmental Toxicology ..18

Electives selected for area of specialization with adviser's approval.

Lower Division Courses

10. Introduction to Toxicology (3)
Lecture—3 hours. Open to science and non-science majors. Study of some natural and man-made toxic substances in personal, occupational, community, and global environments. Emphasis placed upon occurrence, properties, and effects of toxic substances. Biological and physical factors which alter fate of substances are described. GE credit: SciEng.—III. (II.) Tjeerdema

99. Special Study for Undergraduates (1-5)
Prerequisite: consent of instructor. (P/NP grading only)

Upper Division Courses

101. Principles of Environmental Toxicology (3)
Lecture—3 hours. Prerequisite: Chemistry 8B, 112B, or 122B, and Biological Sciences 1A. Principles of toxicology with a focus on environmental and industrial chemicals. Topics include fate and effects of chemicals in organisms and the environment, air pollutants, insecticides, aquatic toxicology, endocrine disruptors, biomarkers and bioassays and risk assessment. GE credit: SciEng.—. (I.) Charles, Tjeerdema

Quarter Offered: I=Fall; II=Winter; III=Spring; IV=Summer; 2001-2002 offering in parentheses

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
112B. Toxicants in the Environment (4)
Lecture—3 hours; laboratory—3 hours. Prerequisite: Chemistry 2C; course 112A; consent of instructor. Continuation of 112A. Toxic chemicals—primarily pollutants in the environment; concepts and techniques of sampling, detecting, and measuring toxicants of current concern; collection, interpretation, and use of analytical data. Limited enrollment. Environmental Toxicology majors will be given preference for enrollment. GE credit: SciEng.—III. (I.III.) Shibamoto

114A. Biological Effects of Toxicants (3)
Lecture—3 hours. Prerequisite: Biological Sciences 102; course 101 and Neurobiology, Psychology, and Behavior 101 recommended. Biological effects of toxic substances in living organisms. Metabolism, cellular and tissue targets, mechanisms of action, and pathological effects. GE credit: SciEng.—II. (II.) Rice

114B. Biological Effects of Toxicants: Experimental Approaches (4)
Lecture/discussion—2 hours; discussion/laboratory—4 hours. Prerequisite: course 114A and consent of instructor if non-major. Illustrates basic principles of toxicology and acquaints students with laboratory techniques for evaluating potential toxicity of chemicals. Continuation of course 114A. Limited enrollment. Environmental Toxicology majors will be given preference for enrollment. GE credit: SciEng.—III. (I.III.) Miller

128. Food Toxicology (3)
Lecture—3 hours. Prerequisite: Biological Sciences 102 and 103. Chemistry and biochemistry of toxins occurring in foods, including plant and animal toxins, intentional and unintentional food additives. The assessment of food safety and toxic hazards. (Same course as Food Science and Technology 128.) GE credit: SciEng.—III. (I.III.) Shibamoto, Russell

131. Air Pollutants and Inhalation Toxicology (3)
Lecture—3 hours. Prerequisite: Chemistry 8B (may be taken concurrently) or the equivalent; Biological Sciences 102 recommended. Toxicology of air pollutants in the ambient and occupational environments. Environmental fate, biological effects, air-quality criteria and standards, and pulmonary responses to these pollutants. GE credit: SciEng.—I. (I.) Kado

135. Health Risk Assessment of Toxicants (3)
Lecture—3 hours. Prerequisite: course 101; course 114A recommended. Current practices of health risk assessment of environmental chemicals using toxicological principles and an application to regulatory control of these chemicals. GE credit: SciEng.—I. (I.) Reed

138. Legal Aspects of Environmental Toxicology (3)
Lecture—3 hours. Prerequisite: consent of instructor; courses 10 and 101 recommended. Federal and California legislation concerning air and water pollution, pesticide use, food and feed additives, consumer protection, and occupational exposure to toxic substances; roles of Federal regulatory agencies; alternatives to governmental control. GE credit: SocSci.—II. (I.II.) Stimmann

146. Exposure and Dose Assessment (3)
Lecture—3 hours. Prerequisite: course 112A, course 135 recommended. The exposure component of risk assessment; specifically, the presence and/or formation of toxic substances in environmental media, their movement within and between contaminated media, and the contacts of human populations with those media. GE credit: SciEng.—III. (I.III.) Wong

190. Seminar (1)
Seminar—1 hour. Prerequisite: consent of instructor. Selected topics presented by students, faculty, or outside speakers covering current research and instructional activities within environmental toxicology. Reports and discussion concerning oral and written presentations, literature sources, and career opportunities. (P/NP grading only.)—I, II, III. (I, II, III)

190C. Research Group Conference (1)
Discussion—1 hour. Prerequisite: consent of instructor. Weekly conference of advanced research methods and the interpretation of research results. (P/NP grading only.)—I, II, III. (I, II, III)

192. Internship (1-12)
Internship—36 hours. Prerequisite: completion of 84 units and consent of instructor. Work experience off and on campus in all subject areas offered in the College of Agricultural and Environmental Sciences. Internships supervised by a member of the faculty. (P/NP grading only.)

194A-194HB. Honors Research (3-3)
Discussion—1 hour; laboratory—6 hours. Prerequisite: senior standing, minimum GPA of 3.25, consent of instructor. Specific research project conducted under the supervision of a faculty sponsor. Experience to include experimental design, learning new techniques, data analysis and interpretation of findings. (P/NP grading only; deferred grading pending completion of sequence.)

194HC. Honors Research (3)
Laboratory—6-9 hours; discussion—1 hour. Prerequisite: senior standing; minimum GPA of 3.5, and consent of instructor. Continuation of course 194A-194HB. (P/NP grading only.)

197T. Tutoring in Environmental Toxicology (1-5)
Hours and duties will vary depending upon course being tutored. Prerequisite: advanced standing in Environmental Toxicology, a related major, or the equivalent experience and consent of instructor. Teaching toxicology including conducting discussion groups for regular departmental courses under direct guidance of staff. May be repeated for credit up to a total of 5 units. (P/NP grading only.)

198. Directed Group Study (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5)
(P/NP grading only.)

Graduate Courses

203. Environmental Toxicants (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: Chemistry 128C (or the equivalent), or Chemistry 88 and consent of instructor. Toxic chemicals: selected topics illustrating their occurrence, structure, and the reactions underlying detection, toxicity, fate, and ecological importance. Offered in alternate years.—II.

214. Mechanisms of Toxic Action (3)
Lecture—3 hours. Prerequisite: Biological Sciences 102, 103, and consent of instructor. Chemical, biochemical, and molecular mechanisms underlying the adverse effects of toxic chemicals. Students are required to write a grant proposal and participate in a grant review panel. Offered in alternate years.—(III.) Denison, Hammock

220. Analysis of Toxicants (3)
Lecture—3 hours. Prerequisite: course 101 and consent of instructor; course 203 recommended. Principles of the microanalysis of toxicants. Theoretical considerations regarding separation, detection, and quantitative determination of toxicants using chemical and instrumental techniques.—I. (I.) Charles

220L. Analysis of Toxicants Laboratory (2)
Laboratory—6 hours. Prerequisite: course 220 (may be taken concurrently) and consent of instructor. Laboratory techniques for microanalysis of toxicants. Separation, detection, and qualitative determination of toxicants using chemical and instrumental methods.—I. (I.)

228. Gas Chromatography/Mass Spectrometry of Toxic Chemicals (3)
Lecture—1 hour; discussion—1 hour; laboratory—3 hours. Prerequisite: course 220 and Chemistry 129C, or consent of instructor. Application of GC/MS techniques to investigate toxic chemicals. Mass spectral fragmentations and their application to the structural elucidation. Practical application of GC/MS in current research. Preference given to environmental toxicology graduate students.—II. (II.) Shibamoto

234. Neurophysiological Basis of Neurotoxicology (3)
Lecture—3 hours. Prerequisite: Neurobiology, Physiology and Behavior 101 or the equivalent; basic understanding of neurophysiology. Mechanisms of action of the cellular and systemic level of a number of different neurotoxins and toxicants. Examples of ways toxins may act on the nervous system and techniques for study of neurotoxicology. (Same course as Physiology 234.)—I. (I.) Woolley

240. Ecotoxicology (3)
Lecture—3 hours. Prerequisite: elementary course in toxicology and ecology or the equivalent, or consent of instructor. Principles of toxicology as applied to chemical action on natural populations, communities, and ecosystems. Physical, chemical, and biological characteristics which influence ecotoxic effects, modeling, and field research. Selected case histories are analyzed and presented in class.—III. (III.) Matsumura

250. Reproductive Toxicology (3)
Lecture—1.5 hours; lecture/discussion—1.5 hours. Prerequisite: Physiology 220 or Pharmacology 203. Application of toxicological principles in reproductive studies. Effects of toxicants on the male, female, and developing embryo/foetus. Critical evaluation of reproductive toxicity studies and development of mechanistic approaches to understanding how chemical exposure can adversely affect reproduction. Offered in alternate years.—(II.) Miller, Golub

290. Seminar (1)
Seminar—1 hour. Current topics in environmental toxicology. (S/U grading only.)—I, II, III. (I, II, III)

290C. Advanced Research Conference (1)
Lecture/discussion—1 hour. Prerequisite: consent of instructor. Presentation and critical discussion of advanced research methods and interpretation of research results. Designed primarily for graduate students. (S/U grading only.)—I, II, III. (I, II, III)

297T. Tutoring in Environmental Toxicology (1-5)
Hours and duties will vary depending upon course being tutored. Prerequisite: graduate standing in Environmental Toxicology, a related major, or the equivalent experience, and consent of instructor. Teaching toxicology including conducting discussion groups for regular departmental courses under direct guidance of staff. May be repeated for credit up to a total of 5 units. (S/U grading only.)

298. Group Study (1-5)
(S/U grading only.)

Professional Course

396. Teaching Assistant Training Practicum (1-4)
Prerequisite: graduate standing. May be repeated for credit. (S/U grading only.)—I, II, III. (I, II, III)

Quarter Offered: I=Fall; II=Winter; III=Spring; IV=Summer, 2001-2002 offering in parentheses.

General Education (GE) credit: ArHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.

Biological Sciences: Evolution and Ecology

Michael Turelli, Ph.D., Chairperson of the Section
Section Office, 2320 Storer Hall (530-752-1272)
World Wide Web: http://www-evolve.ucdavis.edu

Faculty

Primary Section Members
David J. Begun, Ph.D., Assistant Professor
Peter L. Chesson, Ph.D., Professor
James A. Doyle, Ph.D., Professor
John H. Gillespie, Ph.D., Professor
Leslie D. Gottlieb, Ph.D., Professor
Richard K. Grosberg, Ph.D., Professor
Charles H. Langley, Ph.D., Professor
Sergey V. Nuzhdin, Ph.D, Assistant Professor
Robert W. Pearcy, Ph.D., Professor
Marcel Rejmanek, Ph.D., Professor
Michael J. Sanderson, Ph.D., Associate Professor
Thomas W. Schoener, Ph.D., Professor
H. Bradley Shaffer, Ph.D., Professor
Arthur M. Shapiro, Ph.D., Professor, Academic Senate Distinguished Teaching Award
John J. Stachowicz, Ph.D., Assistant Professor
Judy A. Stamps, Ph.D., Professor
Maureen L. Stanton, Ph.D., Professor
Sharon Y. Strauss, Ph.D., Associate Professor
Donald R. Strong, Ph.D., Professor
Catherine A. Toft, Ph.D., Professor
Michael Turelli, Ph.D., Professor
Peter C. Wainwright, Ph.D., Associate Professor

Emeriti Faculty
Milton Hildebrand, Ph.D., Professor Emeritus, Academic Senate Distinguished Teaching Award
Everett W. Jameson, Ph.D., Professor Emeritus
Jack Major, Ph.D., Professor Emeritus
Peter R. Marler, Ph.D., Professor Emeritus
Milton A. Miller, Ph.D., Professor Emeritus
Timothy Prout, Ph.D., Professor Emeritus
Robert L. Rudd, Ph.D., Professor Emeritus
Kenneth E. W. Watt, Ph.D., LL.D, Professor Emeritus
Grady L. Webster, Ph.D., Professor Emeritus

Affiliated Faculty
Susan L. Keen, Ph.D., Lecturer

Courses in Evolution and Ecology (EVE)

Lower Division Courses

92. Internship (1-12)
Internship—3-36 hours. Prerequisite: lower division standing and consent of instructor. Work experience off and on campus in all subject areas offered in the Section of Evolution and Ecology. Internships supervised by a member of the faculty. (P/NP grading only.)

99. Special Study for Lower Division Students (1-5)
(P/NP grading only)

Upper Division Courses

100. Introduction to Evolution (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: Biological Sciences 1A, 1B, 1C, 101; Mathematics 16A, 16B, 16C or the equivalent; Statistics 13 or 100 (Statistics 100 recommended). A general survey of the origins of biological diversity and evolutionary mechanisms.—II. (II, III.) Nuzhdin, Langley, Begun, Stanton

101. Introduction to Ecology (4)
Lecture—3 hours; lecture/discussion—1 hour. Prerequisite: Biological Sciences 1A, 1B, 1C, Mathematics 16A, 16B, 16C or the equivalent. A general survey of the principles of ecology.—II. (II, III.) Schoener, Toft, Strong

102. Population and Quantitative Genetics (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: Biological Sciences 101, and Statistics 100 or 102, and course 100. Evolution as caused by random mating, genetic drift, natural selection, inbreeding, migration, and mutation in theory and actuality. The resemblance between relatives and consequences of selection for quantitative traits. Application of these ideas to topics such as the evolution of sex.—II. (II) Gillespie

103. Phylogeny and Macroevolution (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 100. Patterns and processes of evolution above the species level. Homology, homoplasy, and character evolution. Adaptive radiation; modes of rates of diversification. Evolution of complexity, and macroevolution of the genome. Principles of phylogeny reconstruction and their application to macroevolutionary studies.—II. Sanderson

104. Community Ecology (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 101 or Environmental Science and Policy 100. Population growth and density dependence; predation; exploitative, interference and apparent competition; coexistence mechanisms; niches, spatial and temporal variation; stability, diversity, and productivity of food webs; applications to conservation and biological control. Emphasis on quantitative understanding through models, concepts, and empirical evidence.—(II) Chesson

105. Phylogenetic Analysis of Vertebrate Structure (4)
Lecture—2 hours; laboratory—6 hours. Prerequisite: Biological Sciences 1A, 1B. The structure of the classes and subclasses of vertebrates is described and interpreted in terms of phylogeny.—I. Wainwright

106. Systematics and Evolution of Angiosperms (5)
Lecture—3 hours; laboratory—6 hours. Prerequisite: Biological Sciences 1A, 1B and 1C. Diversity and classification of angiosperms (flowering plants) on a world scale, and current understanding of the origin of angiosperms and evolutionary relationships and trends within them based on morphological and molecular evidence. (Same course as Plant Biology 108.) GE credit: SciEng.—III. (III.) Barbour

112. Invertebrate Zoology (4)
Lecture—4 hours. Prerequisite: Biological Sciences 1A, 1B, course 112L (concurrent), courses in systematics, ecology, and evolution recommended. Survey of the invertebrate phyla emphasizing aquatic forms and focusing on morphology, development, natural history, and phylogenetic relationships.—II. (II.) Grosberg, Stachowicz

119. Population Biology of Weeds (3)
Lecture—2 hours; laboratory—3 hours. Prerequisite: Biological Sciences 1A, 1B, 1C. An introduction to plant population dynamics and ecology, with emphasis on tropical systems. Special emphasis on California. Prerequisites: course 101 and Plant Biology 102 or 108 recommended. The study of interactions between plant populations or vegetation types and their environment. Special emphasis on California. Students taking course 107 cannot receive credit for Plant Biology 101. (Same course as Plant Biology 117.)—I. (I.) Pearcy

121. Survey of Plant Communities of California (4)
Lecture—2 hours; fieldwork—1 hour; term paper. Prerequisite: Biological Sciences 1C recommended; consent of instructor required. Structure of selected plant communities and the relationship of their component species to the environment. Especially recommended for non-majors. GE credit: SciEng, Wrt.—III. (III.) Barbour, Jackson, Ronald

134. Herpetology (3)
Lecture—2 hours; term paper. Prerequisite: Biological Sciences 1A, 1B; Evolution and Ecology 100 recommended. The wide-world diversity of amphibians and reptiles with emphasis on behavior, ecology, functional morphology, and evolutionary history. Offered in alternate years.—III. Shaffer

134L. Herpetology Laboratory (2)
Laboratory—6 hours; two weekend field trips. Prerequisite: Biological Sciences 1A, 1B; course 134 concurrently. Diagnostic characteristics and functional attributes of amphibians and reptiles, emphasizing ecological, biogeographic and phylogenetic patterns. Field trips will acquaint students with techniques for identifying and studying amphibians and reptiles under natural conditions. Offered in alternate years.—III. Shaffer

Quarter Offered: I—Fall; II—Winter; III—Spring; IV—Summer. 2001-2002 offering in parentheses.

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
138. Ecology of Tropical Latitudes (5)
Lecture—3 hours; discussion—1 hour; extensive writing. Prerequisite: course in Biological Sciences, Entomology, Wildlife, Fish and Conservation Biology, Geophysics, or tropical experience; consent of instructor. Biological, physical, and human-related aspects of the ecology of low latitudes. Distribution, numbers, and relationships of tropical organisms. Problems of development and conservation in the context of ecological and evolutionary theory. Offered in alternate years. GE credit: SciEng, Wrt.—III. Shapiro

140. Paleobotany (4)
Lecture—3 hours; laboratory—3 hours. Prerequisite: Biological Sciences 1A, 1B, 1C. Introduction to plant fossil record, beginning with invasion of land in the Silurian, emphasizing origin and evolution of major groups and adaptations and changing composition and distribution of floras in relation to plate tectonics and climatic change.—I. (I.) Doyle

141. Principles of Systematics (3)
Lecture—2 hours; biweekly research projects. Prerequisite: Biological Sciences 1B or 1C, course 100 recommended. Historical background, philosophical rationale, contemporary approaches, and working rules of biosystematics, including International Code of Zoological Nomenclature. Offered in alternate years. GE credit: SciEng, Wrt.—III. Shapiro

147. Biogeography (4)
Lecture—3 hours; term paper. Prerequisite: Biological Sciences 1A, 1B. Movements of terrestrial organisms. The role of geologic, climatic, and biologic changes in the geographic distribution of organisms. Offered in alternate years.—I. Shapiro

149. Evolution of Ecological Systems (4)
Lecture—3 hours; term paper. Prerequisite: course 101 or Environmental Studies 100 (or the equivalent), and course 100 (or the equivalent). Evolution as an organizing force in natural communities. Coadaptation in trophic and competitive relationships. Ecology of polymorphisms, clines, and speciation. Offered in alternate years.—I. Shapiro

180A-180B. Experimental Ecology and Evolution in the Field (4-4)
Lecture/lab—3 hours; fieldwork—3 hours. Prerequisite: course 100; course 101 or Environmental Science and Policy 100. Experimental design in field ecology. Students will critique primary literature, design project, gather and analyze data. Students required to write original research paper based on field experiments. Offered in alternate years. (Deferred grading only pending completion of sequence.)—I—II. Strauss, Stanton

189. Introduction to Biological Research (1)
Discussion—1 hour. Prerequisite: upper division standing in Evolution and Ecology or related biological science; consent of instructor. Introduction to research methods in biology. Presentation and discussion of research by faculty, graduate, and undergraduate students. May be repeated for credit up to a total of 3 units. (P/NP grading only.)—I, II, III. (I, II, III.)

190. Undergraduate Seminar (2)
Seminar—2 hours. Prerequisite: upper division standing in the biological sciences or a related discipline. Student reports on current topics with emphasis on integration of concepts, synthesis, and state-of-the-art research approaches. Reviews of literature and reports of undergraduate research may be included. May be repeated for credit. (P/NP grading only.)—I, II, III. (I, II, III.) Shapiro

192. Internship (1-12)
Internship—3-36 hours. Prerequisite: completion of 84 units and consent of instructor. Work experience off and on campus in all subject areas offered in the Section of Evolution and Ecology. Internships supervised by a member of the faculty. (P/NP grading only.)

194HA-194HB-194HC. Research Honors
Laboratory—6 hours. Prerequisite: Students who have completed 135 units and qualify for the honors program (as defined by the current catalog). Students pursue intensive research under the guidance of a faculty advisor. Students are expected to complete the full three-quarter sequence culminating in the writing of an honors thesis. (Deferred grading only, pending completion of sequence.)

197T. Tutoring (1-5)
(Term Paper) 1-5 hours. Prerequisite: upper division standing. Experience in teaching under guidance of the staff. (P/NP grading only.)

198. Directed Group Study (1-5)
(P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5)
(P/NP grading only.)

Graduate Courses
221. Behavioral Ecology (3)
Lecture—3 hours. Prerequisite: course 101 or Neurobiology, Physiology and Behavior 102 or the equivalent, and graduate standing. Introduction to the major issues treated in modern behavioral ecology, the main experimental techniques used to treat these issues and the major theoretical methods used to develop predictive models.—I. (I.) Stamps

240. Paleobotany and Angiosperm Evolution (4)
Lecture—3 hours; laboratory—3 hours. Prerequisite: Plant Biology 108, 116, or course 140. Critical analysis of the plant fossil record as a source of evidence on origin, evolution, and phylogeny of the angiosperms, Cretaceous and Tertiary climates, geographic history of modern taxa, and origin of modern vegetation types. Offered in alternate years.—II. (III.) Doyle

287. Seminar in Animal Behavior (2)
Seminar—2 hours. Prerequisite: consent of instructor. Reports and discussion on the principles and recent developments in invertebrate and vertebrate animal behavior.—II. (III.) Stamps

290C. Research Conference (1)
Discussion—1 hour. Prerequisite: graduate standing and consent of instructor. Presentation and discussion of faculty and graduate student research in biology. May be repeated for credit. (S/U grading only.)—I, II, III. (I, II, III.)

298. Group Study (1-5)
(S/U grading only.)

299. Research (1-12)
(S/U grading only.)

Professional Course
390. Methods of Teaching (2)
Lecture—1 hour; discussion—1 hour. Prerequisite: graduate standing and consent of instructor. Practical experience in the methods and problems of teaching. Includes analyses of texts and supporting material, discussion of teaching techniques and preparing and conducting of laboratory and discussion sections. May be repeated for credit for a maximum of 8 units. (S/U grading only.)—I, II, III. (I, II, III.)
Biological Sciences: Exercise Science

(College of Letters and Science)
Charles A. Fuller, Ph.D., Chairperson of the Department
Department Office, 264 Hickey Gymnasium (530-752-0511)

Faculty
David Hawkins, Ph.D., Associate Professor
Robert G. Holly, Ph.D., Senior Lecturer
Paul A. Molé, Ph.D., Professor
Melvin R. Ramey, Ph.D., Professor (Civil and Environmental Engineering)
Keith R. Williams, Ph.D., Associate Professor

Emeriti Faculty
William C. Adams, Ph.D., Professor Emeritus
Edmund M. Bernauer, Ph.D., Professor Emeritus
Willard S. Lotter, Ed.D., Senior Lecturer Emeritus
E. Dean Ryan, Ed.D., Professor Emeritus

Affiliated Faculty
Paul B. Saltsky, Ph.D., Lecturer
James D. Shaffrath, M.D., Lecturer

Courses in Exercise Science (EXS)

Lower Division Courses

45. Foundations of Physical Education and Exercise Science (3)
Lecture—3 hours. An introduction to historical, biomechanical, physiological, psychological and sociological foundations of physical education and exercise science. Not open for credit to students who have taken Physical Education 45—II.

90X. Lower Division Seminar (1-2)
Lecture—1-2 hours. Prerequisite: lower division standing and consent of instructor. Offered to students who have taken Physical Education 90X.

92. Exercise Science Internship (1-5)
Internship—3-15 hours. Prerequisite: consent of instructor; enrollment dependent on availability of intern positions, with priority given to Exercise Science majors. Work experience in the application of physical activity programs to teaching, recreational, clinical or research situations under department faculty supervision. May be repeated for credit once but no internship units will be counted toward Exercise Science major. (P/NP grading only.)

97T. Tutoring in Exercise Science (1-5)
Tutorial—2-14 hours; discussion—1 hour. Prerequisite: lower division standing and consent of Department Chairperson. Tutoring of students in exercise science course-related projects. Regular meetings with instructor in charge and written report required. May be repeated for credit. (P/NP grading only.)

97TC. Tutoring Exercise Science in the Community (1-5)
Tutorial—3-15 hours; discussion—1 hour. Prerequisite: lower division standing and consent of Department Chairperson. Tutoring in the community in exercise science related projects under the guidance of the Exercise Science faculty. Regular meetings with instructor in charge and written report required. May be repeated once for credit. (P/NP grading only.)

98. Directed Group Study
Prerequisite: consent of instructor and Department Chairperson. (P/NP grading only.)

99. Special Study for Undergraduates (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)

Upper Division Courses

101. Physiological Regulation During Exercise (3)
Lecture—3 hours. Prerequisite: Neurobiology, Physiology and Behavior 101. Review of physiological mechanisms underlying acute exercise response. Focus is on physiological regulation and control in response to metabolic demand. Metabolism, fluid composition, acid-base, and temperature regulation are studied in relation to control by the cardiovascular, respiratory, and renal systems. Not open for credit to students who have taken Physical Education 101. GE credit: SciEng.—I (I). Holly

101L. Exercise Physiology Laboratory (1)
Laboratory—3 hours; discussion—2.5 hours. Prerequisite: course 101 (may be taken concurrently). Neuromuscular, Physiological, and Behavioral 101. Series of laboratory experiments demonstrating the principles of physiological regulation to standardized exercise regimens. The assessment of physiological, environmental and anthropological factors influencing exercise capacities performed on quantitatively controlled ergometric devices, while monitoring physiological variables by noninvasive methods. Not open for credit to students who have taken Physical Education 101L.—I (I). Bernauer

102. Physiological Adaptations to Exercise (2)
Lecture—2 hours. Prerequisite: course 101 or consent of instructor. Study of physiological capacities with reference to genotypic and adaptive aspects. Analysis of physiological adaptations to chronic physical activity and selected environmental stressors. Not open for credit to students who have taken Physical Education 102.—II. (II)

103. Analysis of Human Movement (4)
Lecture—3 hours; laboratory—3 hours to alternate weekly with discussion—1 hour. Prerequisite: Cell Biology and Human Anatomy 101 and Physics 1A; Physics 7A recommended. Anatomical and mechanical fundamentals of human motion. Qualitative and quantitative application of kinesthetic and geometric principles to a variety of human movement situations. Not open for credit to students who have taken Physical Education 103. GE credit: SciEng.—III. (III). Williams, Hawkins

104. Introduction to Motor Control and Skill Acquisition (3)
Lecture—2 hours; discussion—1 hour to alternate weekly with laboratory—3 hours. Prerequisite: upper division standing, Psychology 1, and course 45. Analysis of variables affecting the ability to produce, learn, and retain movement skills. Basic neurophysiological and behavioral accounts of motor control processes are examined. Theories of movement retention and motor learning are covered. Not open for credit to students who have taken Physical Education 104.—I (I). Saltsky

105. Psychosocial Factors in Motor Performance (3)
Lecture—3 hours. Prerequisite: Psychology 1. Survey of theories and experimental findings from social psychology and human motivation and their application to motor performance, including gender differences, success and failure, expectations, anxiety, competition, and aggression. Not open for credit to students who have taken Physical Education 105. GE credit: SciEng.—II. (II). Saltsky

110. Exercise Metabolism (3)
Lecture—2 hours; laboratory—five 4-hour sessions. Prerequisite: courses 101, 102; Chemistry 2A; Focus on energy metabolic pathways and fuels used during different modes of exercise. Also, exercise-induced adaptations which affect metabolism and performance will be discussed. Experiments in laboratory will utilize a variety of techniques to characterize the metabolic responses to exercise. Not open for credit to students who have taken Physical Education 110. GE credit: SciEng, Writ.—II. (II). Molé

111. Environmental Effects on Physical Performance (3)
Lecture—2 hours; laboratory—3 hours, with discussion—1 hour (alternate weeks). Prerequisite: courses 101 and 102, or consent of instructor. The effects of thermal, barometric and gravitational conditions on physiological function and physical performance of humans. Acute and chronic effects, emphasizing physiological adaptations and limitations, will be studied. Not open for credit to students who have taken Physical Education 111.—III. (III)

112. Clinical Exercise Physiology (4)
Lecture—3 hours; laboratory—3 hours to alternate weekly with discussion—1 hour. Prerequisite: courses 101 and 102, or consent of instructor. Physical activity as a therapeutic modality is examined in normal and diseased populations (cardiovascular, pulmonary, diabetic). Assessment (graded exercise testing), exercise prescription and effects of exercise conditioning are examined in detail. Not open for credit to students who have taken Physical Education 112.—III. (III). Holly

113. Growth and Development in Human Performance (3)
Lecture—3 hours. Prerequisite: Cell Biology and Human Anatomy 101, and Neurobiology, Physiology and Behavior 101. Development of human performance potential from conception to old age, including influence of exercise, athletic participation, and preventive medicine. Alterations in motor skill patterns, morphology, and body composition, and physiological capacities with aging. Not open for credit to students who have taken Physical Education 113. GE credit: SciEng.—II. (II). Adams, Molé

115. Biomechanical Bases of Movement (3)
Lecture—2 hours; laboratory—3 hours to alternate weekly with discussion—1 hour. Prerequisite: course 103 or consent of instructor. Biomechanical bases of human movement investigated; topics include musculo-skeletal mechanics, tissue mechanics, electromyography, and measurement and analysis techniques. Application made to sport, clinical, and work environments, including extensive analysis of locomotion. Not open for credit to students who have taken Physical Education 115. GE credit: SciEng.—II. (II). Williams

116. Nutrition for Physically Active Persons (3)
Lecture—3 hours. Prerequisite: course 101. Nutrition, Physiology, and Behavior 101. The role of nutrition and exercise in modifying metabolism, body composition, performance and health of humans. Not open for credit to students who have taken Physical Education 116.—III. (III). Molé
117. Exercise and Aging in Health and Disease (3)
Lecture—2 hours, discussion—1 hour. Prerequisite: course 101 or 102 (concur- rently) or 113 (concurrently). Etiology of and standard therapy for various diseases associated with aging, e.g., cardiovascular, pulmonary diseases, diabetes, obesity, lipemias, etc.). Exercise will then be considered as a protective and/or therapeutic modality. Not open for credit to students who have taken Physical Education 117. GE credit: SciEng.—II, III. (III.) Holly

118. Biomechanics of Work: Physical Performance and Standards in the Workplace (3)
Lecture—2 hours, discussion—1 hour. Explores principles and practices of physical performance in the workplace. Established assessment procedures including valid- ity and reliability standards are presented. Cost of medical benefits are examined with respect to on-site and off-site programs of fitness maintenance and remediation. Not open for credit to students who have taken Physical Education 118. GE credit: SciEng.—II, III, (III.) Bernsauer

120. Sports in American Society (4)
Lecture—3 hours, discussion—1 hour. Historical development of sport in American society. Relationship and interaction of sport and politics, economics, religion, art, sexism, racism, and education; current trends and problems. Not open for credit to students who have taken Physical Education 120. GE credit: SciEng.—II, III, (III.) Saltisky

121. Sport Psychology (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 105 and Psychology 145. Consideration of major theories, research findings and methods of data collect- ing in sport psychology through a critical examination of relevant experimental, clin- ical, and field observations. Not open for credit to students who have taken Physical Education 121—III. (III.) Saltisky

122. Psychological Effects of Physical Activity (3)
Lecture—3 hours. Prerequisite: Psychology 1 or 15, and upper division standing. Psychological effects of physical activity evaluated in terms of its ability to enhance the quality of life. Topics studied include: individual factors (self-concept, type A); special populations (elderly, cardiovascular); and mental health changes (depression, anxiety). Not open for credit to students who have taken Physical Education 122—II, III. (II, III.) Saltisky

125. Neuromuscular and Behavioral Aspects of Motor Control (3)
Lecture—1 hour; discussion—2 hours, laboratory—3 hours. Prerequisite: course 104. Factors which affect control of movement from neuropsy- chological, physiological, behavioral, and mechanical viewpoints. Topics include central vs. peripheral control mechanisms, open and closed loop theories, motor programming, cognitive learning strategies, and the effects of biochemical and biomechanical influences. Not open for credit to students who have taken Physical Education 125.

126. Tissue Mechanics (3)
Lecture—2 hours, laboratory/discussion—3 hours. Prerequisite: course 103 or Engi- neering 45 or consent of instructor. Structural and mechanical properties of biologi- cal tissues including bone, cartilage, ligaments, tendons, nerves, and skeletal muscle. (Same course as Biomedical Engineering 126.) Not open for credit to students who have taken Physical Education 126. GE credit: SciEng.—II, (II.) Hawkins

131. The Teaching of Physical Activity to Special Populations (4)
Lecture—3 hours, laboratory—3 hours. Prerequisite: course 103. The diverse and complex nature of the atypical individual, their disabilities, what caused those dis- abilities, how they adapt to their disability in daily living, and how physical activity/ recreation programs play a role in their daily living—II, I. J. Vochter

133. Prevention and Care of Sports Injuries (3)
Lecture—1 hour, laboratory—4 hours. Prerequisite: upper division standing. Cell Biology and Human Anatomy 101 (may be taken concurrently). Management of the prevention, care, and rehabilitation of injuries incurred by athletes. Laboratory on anatomy, emergency care, physical therapy methods, and taping techniques. Not open for credit to students who have taken Physical Education 133—II, (II.)

135. Advanced Procedures in Evaluation and Management of Athletic Injuries (3)
Lecture—3 hours. Prerequisite: course 133. Cell Biology and Human Anatomy 101, and consent of instructor. Advanced study of evaluation of management of athletic injuries, including mechanism of injury, biomechanics and pathophysi- ology. In-depth study of selected current topics in athletic training. Not open for credit to students who have taken Physical Education 135—II, III, (III.)

146. Theory and Practice of Exercise Training (1)
Lecture/discussion—1 hour. Prerequisite: course 2 or 45 or 102. Physiological adap- tations, exercise programming and behavioral techniques focusing on young and middle-aged adults. Topics include exercise prescription, nutrition, psychological influences, exercise adherence techniques. Not open for credit to students who have taken Physical Education 146. (PNP grading only.)

146L. Shape-Up Testing and Training Laboratory (1)
Laboratory—3 hours. Prerequisite: course 146 (may be taken concurrently). Primary activity: lab. Measuring shape-up class, attending workshops, testing sessions, and completing final reports. May be repeated once for credit. (Former course 146L.) (PNP grading only.)

147L. Adult Fitness Training Laboratory (1)
Laboratory—3 hours. Prerequisite: courses 146, 146L, and 102 (may be taken con-currently). Current CPR. Involves attending and assisting with aerobic training ses- sions for older adults, and assisting with physiological testing sessions. Not open for credit to students who have taken Physical Education 147L. (PNP grading only.)

148. Theory and Practice of Exercise Testing (1)
Lecture/discussion—1 hour. Prerequisite: courses 101, 102, 112 (may be taken con-currently), and 146; current CPR. Theory and practice of exercise testing applied to clinical, recreational, and research situations. Cardiorespiratory responses to exercise testing. Application of exercise testing and training to healthy and diseased popu- lations. Not open for credit to students who have taken Physical Education 148. (PNP grading only)—II, III, (II, III). Holly Shaffrath

148L. Adult Fitness Testing Laboratory (1)
Laboratory—3 hours. Prerequisite: courses 146, 148 (concurrently); current CPR. Testing symptomatic and asymptomatic older adults for functional aerobic capacity, body composition, blood lipids, pulmonary function, and cardiovascular disease risk. Counseling adults in appropriate exercise programs and lifestyle modifications. Two quarters minimum; third quarter permitted. (Former course Physical Education 148L.) (PNP grading only)—II, III, (II, III.) Holly Shaffrath

149L. Cardiopulmonary Rehabilitation Laboratory (1)
Laboratory—3 hours. Prerequisite: courses 148 and 148L; current CPR certification. Testing and training of cardiac patients or individuals at high risk of developing heart disease. Present mini-lectures to program participants, maintain patient records, and present patients’ cases in rounds. Two quarters minimum; third quarter permitted. (Former course Physical Education 149L.) (PNP grading only.)

192. Exercise Science Internship (1-12)
Internship—3-36 hours. Prerequisite: upper division standing and consent of instructor; enrollment dependent on availability of intern positions, with priority given to Exercise Science majors. Work experience in the application of physical activity programs to teaching, recreational, clinical or research situations under direction of the faculty supervisor. May be repeated for credit for total of 12 units (including course 92), but no internship units will be counted toward Exercise Sci- ence major. (PNP grading only.)

197T. Tutoring in Exercise Science (1-5)
Tutoring—2-5 hours. Prerequisite: upper division standing and consent of chairperson. Tutoring of students in exercise science course-related projects. Regular meetings with instructor in charge and written report required. May be repeated once for credit. (PNP grading only.)

198. Directed Group Study (1-5)
Prerequisite: consent of instructor and Department Chairperson. (PNP grading only.)

199. Special Study for Advanced Undergraduates (1-5)
Prerequisite: consent of Department Chairperson. (PNP grading only.)

Graduate Courses

200A. Introduction to Research: History and Philosophy in Physical Education (2)
Discussion—1 hour; seminar—1 hour. Prerequisite: consent of instructor. Funda- mental tenets of science and their application to current research in human perfor- mance. Benchmark studies in the evolution of the field. Not open for credit to students who have taken Physical Education 200A.—I, (I.) Molé

200B. Problem Solving and Research Design in Physical Education (2)
Discussion—1 hour; seminar—1 hour. Prerequisite: course 200A. Conventional approaches to problem solving; processes in research design and analysis; written and oral presentation of findings. Not open for credit to students who have taken Physical Education 200B.—III, (III.) Molé

201A. Sports Medicine: Medical Aspects of Sports Injuries (3)
Lecture—2 hours; laboratory—1 hour. Prerequisite: graduate students with upper division course in systemic physiology or anatomy, and medical students. Multidiscip- linary course introducing student to the pathophysiology of sports injuries, phys- ical examination of the injured athlete, and management of sports injuries. Specific injuries, taping, and use of physical modalities will be discussed. Not open for credit to students who have taken Physical Education 201A.

220. Research Topics in Exercise Science (3)
Lecture—2 hours, seminar—1 hour. Prerequisite: graduate standing and consent of instructor; course 115 recommended. Survey of current research into diverse areas of the biomechanics of human movement. Topics will include locomotion, sports mechanics, electromyography, musculoskeletal and tissue mechanics, advances in measurement technology, clinical biomechanics. (Same course as Bio- mechanical Engineering 220.) Offered in alternate years. Not open for credit to students who have taken Physical Education 220.—II, (II.) K. Williams

221. Anthropometry in Physical Activity (3)
Lecture—2 hours; laboratory—five 3-hour sessions to alternate weekly with five 1- hour discussion sessions. Prerequisite: courses 101 and 102. Consideration of physical constitution, body proportions, and body composition in man as they affect physical performance, and of body and structural and compositional changes accom- panying prolonged, systematic conditioning. Offered in alternate years. Not open for credit to students who have taken Physical Education 221.
222. Metabolic Functions in Exercise (4)
Lecture—2 hours; discussion—1 hour; laboratory—3 hours. Prerequisite: course 102, Neurobiology, Physiology and Behavior 101. Review of the current research literature on the metabolic responses to exercise in man; a laboratory survey of respiratory response, metabolic and water balances, blood gas adjustments and acid-base balance with particular reference to the effect of environmental conditions. Not open for credit to students who have taken Physical Education 222.—Ill. (Ill.) Moté

223. Physiological Basis of Physical Fitness (2)
Seminar—2 hours. Prerequisite: graduate standing. Review and critical discussion of current research topics concerned with the physiological aspects of physical training and adaptation. Offered in alternate years. Not open for credit to students who have taken Physical Education 223.—(II.) Bernauer

224. Exercise Electrocardiography (2)
Lecture—2 hours. Prerequisite: course 112 or consent of instructor. Physiological bases and clinical implications of normal and abnormal exercise electrocardiograms (ECG) are treated in detail. Exercise prescription is considered as is the predictive significance of normal and abnormal ECG. Offered in alternate years. Not open for credit to students who have taken Physical Education 224.—I. Holly

225. Seminar in Cardiac Rehabilitation (2)
Seminar—2 hours. Prerequisite: course 112 or graduate standing and consent of instructor. Critical examination of literature dealing with the causes, prevention and treatment of cardiovascular disease with particular emphasis on intervention through cardiac rehabilitation. Both the theoretical bases and practical approaches to cardiac rehabilitation will be examined. Offered in alternate years. Not open for credit to students who have taken Physical Education 225.——I. (I.) Holly

226. Measurement of the Biological Aspects of Human Performance (3)
Lecture—2 hours; laboratory—3 hours. Prerequisite: course 101; consent of instructor. Introduction to primary measurement strategies used to investigate the biological bases of human performance. Emphasis placed on the critical selection of the most valid tests and on obtaining the most accurate and reliable results. Not open for credit to students who have taken Physical Education 226.—I. (I.)

227. Research Techniques in Biomechanics (4)
Lecture—2 hours; laboratory—4 hours; term paper/discussion—1 hours. Prerequisite: consent of instructor, Mathematics 22B, course 115 recommended. Experimental techniques for biomechanical analysis of human movement are examined. Techniques evaluated include data acquisition and analysis by computer, force platform analysis, strength assessment, planar and three-dimensional videography, data reduction and smoothing, body segment parameter determination, electromyography, and biomechanical modeling. Not open for credit to students who have taken Physical Education 227. (Same course as Biomedical Engineering 227/Mechanical and Aeronautical Engineering 227.)—II. (II.) K. Williams

228. Skeletal Muscle Mechanics: Form, Function, Adaptability (4)
Lecture—4 hours. Prerequisite: basic background in biology, physiology, and engineering; Engineering 35 and 45, Mathematics 21D; and Neurobiology, Physiology and Behavior 101 recommended. Basic structure and function of skeletal muscle examined at the microscopic and macroscopic level. Muscle adaptation in response to aging, disease, injury, exercise, and disuse. Analytic models of muscle function. (Same course as Biomedical Engineering 228.) Not open for credit to students who have taken Physical Education 228.—Ill. (III.) Hawkins

230. Human Performance: Psychological Aspects (3)
Seminar—3 hours. Prerequisite: course 105 or consent of instructor. Critical review of current literature on learning with emphasis on social learning theory and its application to clinical problems related to exercise and sport. Not open for credit to students who have taken Physical Education 230.

232. Health Psychology: Effects of Physical Activity (3)
Seminar—3 hours. Prerequisite: course 122 or consent of instructor. Analysis of research on the role of physical activity in developing, maintaining, or changing personality and effective states. Special attention will be paid to the potential effect of exercise on mental health. Not open for credit to students who have taken Physical Education 232.

396. Teaching Assistant Training Practicum (1-4)
Prerequisite: graduate standing. May be repeated for credit. (S/U grading only.)
Food Science (A Graduate Group)

David M. Ogrydziak, Ph.D., Chairperson of the Group
Group Office, 111 Cruess Hall (530-752-1466;
Fax: 530-752-4759)
World Wide Web: http://www-foodsci.ucdavis.edu
Faculty, Includes members from twelve departments in the Colleges of Agricultural
and Environmental Sciences and Engineering, and the Schools of Medicine and Vet-
ernary Medicine.
Graduate Study, The interdepartmental Graduate Group in Food Science offers
programs of study leading to the M.S. degree and to the Ph.D. degree. Graduate
studies stress the application of the biological, chemical, physical, and behavioral
sciences to the processing, preservation, quality evaluation, public health aspects,
and utilization of foods. For the M.S. degree there are five areas of specialization:
chemistry-biochemistry, microbiology, engineering-technology, sensory science,
and enology. Individually designed programs are also acceptable. For the Ph.D.,
there are four areas of emphasis: biochemistry, chemistry, microbiology/fermenta-
tion, and sensory science. Detailed information regarding graduate study is avail-
able through the Group Chairperson or the Group Office.
Graduate Advisers, Contact the Food Science Graduate Group Office at
jhunter@ucdavis.edu.
Feminist Theory and Research

Judith Newton, Ph.D., Program Director
Program Office, 2222 Hart Hall (530-752-4686)

Graduate Study. The program in Women and Gender Studies offers courses leading to a designated emphasis in Feminist Theory and Research. The courses provide theoretical and interdisciplinary perspectives to students already preparing for the Ph.D. in one of 12 participating departments (Anthropology, Comparative Literature, Dramatic Art, Education, English, French, German, History, Italian, Psychology, Spanish, and Sociology). Students complete all requirements for the Ph.D., including the dissertation, in one of the participating departments. The additional requirements leading to the designated emphasis consist of two core courses (Women's Studies 200A and 200B) and two courses on gender, one of which must be in the student's home department. It is expected that an analysis of gender will be a central component of the student's doctoral examination and dissertation.

Graduate Adviser. Consult the Women and Gender Studies office (530-752-4686).

Quarter Offered: I=Fall; II=Winter; III=Spring; IV=Summer; 2001-2002 offering in parentheses.

General Education (GE) credit: **ArtHum** = Arts and Humanities; **SciEng** = Science and Engineering; **SocSci** = Social Sciences; **Div** = Social-Cultural Diversity; **Wrt** = Writing Experience.
Fermentation Science

(The College of Agricultural and Environmental Sciences)

The Major Program
The Fermentation Science major is a program of study of the fundamental and applied sciences related to the use of microorganisms as production and processing agents. A broad, interdisciplinary food-related education is offered that may be combined with specializations in enology (wine studies), brewing science, and fermentation of other foods and beverages. Industrial fermentations and waste treatments in the production of microbial cells, drugs, enzymes, hormones, solvents, acids, and vitamins are further opportunities for study.

The Program. The major in fermentation science leads to a Bachelor of Science degree. Most of the instruction for the major is done in the Department of Viticulture and Enology and in the Department of Food Science and Technology. Students also take courses in chemistry, microbiology, molecular and cellular biology, genetics, and computer science. Electives often include additional courses in sensory science, management and viticulture.

Preparatory Requirements. Before transferring into the Fermentation Science major, students must complete the following courses with a grade of C− or better and with a combined grade point average of at least 2.5 at the University of California (at least 3.0 for similar courses taken at community college) for these and all other preparatory courses. In addition, students’ overall GPAs must be 2.25 or higher. All courses must be taken for a letter grade.

Biological Sciences 1A .. 5 units
Chemistry 2A, 2B, 2C, 8A .. 17 units
Mathematics 16A .. 3 units
Physics 7A .. 4 units

Recommendations. Completion of UC Davis equivalents of the following preparatory courses for the major are not required for entry but are highly recommended. Failure to complete these will delay entry into required upper division courses and may thus delay graduation. Some courses may be available at UC Davis during Summer Session.

Chemistry 8B ... 4 units
Mathematics 16B .. 3 units
Physics 7B .. 4 units
Biological Sciences 102 ... 3 units

Career Alternatives. Graduates qualify for supervisory, technical, production, product development, quality control, research, sales, or executive positions in the food, beverage, and allied industries, in the fermentation industries, and in governmental agencies. Students who choose to continue in graduate study have done so in such areas as food science-enology, microbiology, agricultural and environmental chemistry, and biochemical engineering.

B.S. Major Requirements:

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>English Composition Requirement</td>
<td>0-8</td>
</tr>
<tr>
<td>Preparatory Subject Matter</td>
<td>56-63</td>
</tr>
<tr>
<td>Biological Sciences 1A</td>
<td>5</td>
</tr>
<tr>
<td>Biological Sciences 102, 103</td>
<td>6</td>
</tr>
<tr>
<td>Chemistry 2A-2B-2C</td>
<td>15</td>
</tr>
<tr>
<td>Chemistry 8A-8B or 118A-118B or 128A-128B, 129A</td>
<td>6-8</td>
</tr>
<tr>
<td>Agricultural Systems and Enology 21 or the equivalent with advisor approval</td>
<td>3</td>
</tr>
<tr>
<td>Mathematics 16A-16B or 21A-21B</td>
<td>6-8</td>
</tr>
<tr>
<td>Microbiology 102-102L</td>
<td>6</td>
</tr>
<tr>
<td>Physics 7A and 7B</td>
<td>8</td>
</tr>
<tr>
<td>Agricultural Systems and Enology 120 or Food Science and Technology 117 or Statistics 106 or 100</td>
<td>3-4</td>
</tr>
<tr>
<td>Breadth/General Education</td>
<td>0-24</td>
</tr>
<tr>
<td>See General Education requirement</td>
<td></td>
</tr>
<tr>
<td>Depth Subject Matter</td>
<td>40</td>
</tr>
<tr>
<td>Restricted Electives</td>
<td>28</td>
</tr>
<tr>
<td>Selected according to student’s educational goals and upon approval by adviser. Only 6 units of 192 or 6 units of 190, 198, 199, 290, or 298 may be counted; or a total of 8 units of these courses combined. A list of approved courses is available from advisers.</td>
<td></td>
</tr>
<tr>
<td>Unrestricted Electives</td>
<td>17-22</td>
</tr>
<tr>
<td>Total Units for the Degree</td>
<td>180</td>
</tr>
</tbody>
</table>

Quarter Offered: I−Fall; II−Winter; III−Spring; IV−Summer. 2001–2002 offering in parentheses.

General Education (GE) credit: ArHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.

A.C. Noble

Graduate Study. Refer to the Graduate Studies degree programs in Agricultural and Environmental Chemistry, Biochemistry, Chemical Engineering, Food Science, Genetics, Microbiology.

The Program. The major in fermentation science leads to a Bachelor of Science degree. Most of the instruction for the major is done in the Department of Viticulture and Enology and in the Department of Food Science and Technology. Students also take courses in chemistry, microbiology, molecular and cellular biology, genetics, and computer science. Electives often include additional courses in sensory science, management and viticulture.

Preparatory Requirements. Before transferring into the Fermentation Science major, students must complete the following courses with a grade of C− or better and with a combined grade point average of at least 2.5 at the University of California (at least 3.0 for similar courses taken at community college) for these and all other preparatory courses. In addition, students’ overall GPAs must be 2.25 or higher. All courses must be taken for a letter grade.

Biological Sciences 1A .. 5 units
Chemistry 2A, 2B, 2C, 8A .. 17 units
Mathematics 16A .. 3 units
Physics 7A .. 4 units

Recommendations. Completion of UC Davis equivalents of the following preparatory courses for the major are not required for entry but are highly recommended. Failure to complete these will delay entry into required upper division courses and may thus delay graduation. Some courses may be available at UC Davis during Summer Session.

Chemistry 8B ... 4 units
Mathematics 16B .. 3 units
Physics 7B .. 4 units
Biological Sciences 102 ... 3 units

Career Alternatives. Graduates qualify for supervisory, technical, production, product development, quality control, research, sales, or executive positions in the food, beverage, and allied industries, in the fermentation industries, and in governmental agencies. Students who choose to continue in graduate study have done so in such areas as food science-enology, microbiology, agricultural and environmental chemistry, and biochemical engineering.

B.S. Major Requirements:

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>English Composition Requirement</td>
<td>0-8</td>
</tr>
<tr>
<td>Preparatory Subject Matter</td>
<td>56-63</td>
</tr>
<tr>
<td>Biological Sciences 1A</td>
<td>5</td>
</tr>
<tr>
<td>Biological Sciences 102, 103</td>
<td>6</td>
</tr>
<tr>
<td>Chemistry 2A-2B-2C</td>
<td>15</td>
</tr>
<tr>
<td>Chemistry 8A-8B or 118A-118B or 128A-128B, 129A</td>
<td>6-8</td>
</tr>
<tr>
<td>Agricultural Systems and Enology 21 or the equivalent with advisor approval</td>
<td>3</td>
</tr>
<tr>
<td>Mathematics 16A-16B or 21A-21B</td>
<td>6-8</td>
</tr>
<tr>
<td>Microbiology 102-102L</td>
<td>6</td>
</tr>
<tr>
<td>Physics 7A and 7B</td>
<td>8</td>
</tr>
<tr>
<td>Agricultural Systems and Enology 120 or Food Science and Technology 117 or Statistics 106 or 100</td>
<td>3-4</td>
</tr>
<tr>
<td>Breadth/General Education</td>
<td>0-24</td>
</tr>
<tr>
<td>See General Education requirement</td>
<td></td>
</tr>
<tr>
<td>Depth Subject Matter</td>
<td>40</td>
</tr>
<tr>
<td>Restricted Electives</td>
<td>28</td>
</tr>
<tr>
<td>Selected according to student’s educational goals and upon approval by adviser. Only 6 units of 192 or 6 units of 190, 198, 199, 290, or 298 may be counted; or a total of 8 units of these courses combined. A list of approved courses is available from advisers.</td>
<td></td>
</tr>
<tr>
<td>Unrestricted Electives</td>
<td>17-22</td>
</tr>
<tr>
<td>Total Units for the Degree</td>
<td>180</td>
</tr>
</tbody>
</table>

Quarter Offered: I−Fall; II−Winter; III−Spring; IV−Summer. 2001–2002 offering in parentheses.

General Education (GE) credit: ArHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.

A.C. Noble

Graduate Study. Refer to the Graduate Studies degree programs in Agricultural and Environmental Chemistry, Biochemistry, Chemical Engineering, Food Science, Genetics, Microbiology.
The interdisciplinary minor in Film Studies provides insight into and critical perspectives on the role of film in culture. The minor emphasizes connections between visual media and other forms of representation, and between Film Studies and other academic disciplines. Students will gain an understanding of the history of film, an awareness of genres, national traditions and representational conventions, and an ability to "read" films aesthetically, culturally, ideologically, and historically. The minor is sponsored by the Humanities Program.

Minor Program Requirements:

<table>
<thead>
<tr>
<th>Course Category</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Film Studies</td>
<td>24</td>
</tr>
<tr>
<td>Humanities 10</td>
<td>4</td>
</tr>
<tr>
<td>Upper division courses selected from the following list, with no more than two courses from any one category</td>
<td>20</td>
</tr>
<tr>
<td>(a) Problems and Themes in Cinema:</td>
<td></td>
</tr>
<tr>
<td>Anthropology 136, Classics 102, Dramatic Art 115, English 160, 161A, 161B, 162, Humanities 124, 125, Women’s Studies 162</td>
<td></td>
</tr>
<tr>
<td>(b) Cinema, Nation and Nationality:</td>
<td></td>
</tr>
<tr>
<td>German 119, 142C, Italian 150, Japanese 106, Russian 129, Spanish 148</td>
<td></td>
</tr>
<tr>
<td>(c) Film and Social Identities:</td>
<td></td>
</tr>
<tr>
<td>African American and African Studies 170, 171, Humanities 120, 122, Women's Studies 160, 164</td>
<td></td>
</tr>
<tr>
<td>(d) Film/Video Production:</td>
<td></td>
</tr>
<tr>
<td>Art Studio 115, 116, 117</td>
<td></td>
</tr>
<tr>
<td>(e) Popular and Visual Culture:</td>
<td></td>
</tr>
<tr>
<td>American Studies 130, 133, 139, Art Studio 150, Communication 140, Textiles and Clothing 107, Women's Studies 139</td>
<td></td>
</tr>
</tbody>
</table>

Restrictions: No more than two courses from a single department or program may be offered in satisfaction of the minor requirements.

Note: With a minor adviser’s prior approval, up to four units of internship (e.g., American Studies 192, Communication 192, or Women’s Studies 192) in television/video/film production may be offered toward satisfying the requirements of the minor. Such courses will be considered part of the “Film/Video Production” category.

Advising. Humanities Program, 530-752-0431.
Food Biochemistry

(College of Agricultural and Environmental Sciences)

The Major Program

The major in food biochemistry stresses the principles of chemistry and biochemistry as related to constituents of foods and the changes which occur in the constituents before and during processing and during storage. Particular emphasis is placed on the role of and changes in the carbohydrates, lipids, proteins, enzymes, and nucleic acids and their effect on the quality attributes of foods.

The Program. The food biochemistry curriculum stresses a strong background in chemistry, physics, mathematics, and biology at the lower division level. At the upper division level, students take specialized courses in food science and technology and advanced biochemistry and nutrition. Through the appropriate choice of electives, students may emphasize certain research areas such as nutrition, food processing, or toxicology.

Career Alternatives. The main employment options for a food biochemistry graduate are in research and development at large food industry units; in laboratory-related employment in quality assurance, new food technology, and food analysis; or in any position requiring knowledge of biochemical techniques, such as in clinical laboratories. The major offers excellent preparation for graduate study in areas such as food science, nutrition, biochemistry, and environmental toxicology. Food biochemistry has also been chosen as a pre-professional major by students interested in medical, veterinary, optometry, pharmacy, or dental school.

B.S. Major Requirements:

UNITS

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>English Composition Requirement</td>
<td>0-8</td>
</tr>
<tr>
<td>Preparatory Subject Matter</td>
<td>77-79</td>
</tr>
<tr>
<td>Biological Sciences 102, 103</td>
<td>6</td>
</tr>
<tr>
<td>Biological Sciences 1A-1B-1C</td>
<td>15</td>
</tr>
<tr>
<td>Mathematics 16A-16B-16C or 21A-21B-21C</td>
<td>9</td>
</tr>
<tr>
<td>Physics 7A-7B-7C or 9A-9B-9C</td>
<td>12</td>
</tr>
<tr>
<td>One course from Computer Science Engineering 10, 30, Engineering 5, Mathematics 22A, 22B, 22C, Statistics 13, Agricultural Systems and Environment 120</td>
<td>3-4</td>
</tr>
<tr>
<td>Breadth/General Education</td>
<td>24</td>
</tr>
<tr>
<td>Satisfaction of General Education requirement</td>
<td></td>
</tr>
<tr>
<td>Depth Subject Matter</td>
<td>30</td>
</tr>
<tr>
<td>Food Science and Technology (to include Food Science and Technology 103, 104, 104L, 119A)</td>
<td>25</td>
</tr>
<tr>
<td>Food Science and Technology 123, 123L</td>
<td>5</td>
</tr>
<tr>
<td>Restricted Electives</td>
<td>24</td>
</tr>
<tr>
<td>At least one additional upper division biochemistry course, other than Molecular and Cellular Biology 120L. One upper division Microbiology course. One nutrition course other than Nutrition 10. Remaining courses can be selected from biochemistry, physiology, environmental toxicology, genetics, public health, microbiology or other subjects related to Food Science</td>
<td></td>
</tr>
<tr>
<td>Unrestricted Electives</td>
<td>15-25</td>
</tr>
<tr>
<td>Total Units for the Degree</td>
<td>180</td>
</tr>
</tbody>
</table>

Major Adviser. G.M. Smith (Food Science and Technology).

Graduate Study. Refer to the Graduate Studies chapter of this catalog.
Food Science

(College of Agricultural and Environmental Sciences)

The Major Program

Food science applies chemical, physical, biological, engineering, and social sciences to processing, preservation, development, packaging, storage, evaluation, identification, and utilization of foods.

The Program. Students majoring in food science spend the first two years of study developing the scientific and general background necessary for upper division study. The science courses include chemistry, biology, physics, and mathematics. General background is provided by courses in the social science/humanities area and by optional courses in introductory food science. At the upper division level, students take courses in nutrition, food microbiology, food chemistry, food analysis, food commodities, food processing, and food engineering, and may choose to specialize in one of five career-oriented options. Students enrolled in the program are eligible for various scholarships, including scholarships from the Institute of Food Technologists.

Career Alternatives. Opportunities for employment include positions in the food and allied industries, local, state, and federal government agencies, and educational and research institutions. Graduate study for the food science student may lead to the M.S. or Ph.D. degree in food science, or in related fields such as agricultural chemistry, biochemistry, engineering, microbiology, and nutrition.

B.S. Major Requirements:

UNITS

English Composition Requirement..4-8

See College requirement (one course of which must be English 102A, 102B, 102C, 102D, 102E, 102F, or 102G with food science or related area, or English 104A, 104B, 104C, 104D, 104E, or 104F)...........4-8

Preparatory Subject Matter..53-59

Mathematics 16A-16B-16C ...9

Biological Sciences 1A, 1C ..10

Chemistry 2A-2B-2C ...15

Organic chemistry course or option (requirement)......................12

Physics 7A-7B-7C ..12

Food Science and Technology 1 and/or 2; both recommended, but not required..3-6

Food Science and Technology 50 ..4

Nutrition 10 or approved substitute)...2

Breadth/General Education...24

Satisfaction of General Education requirement plus social science and humanities electives to total 24 units

Depth Subject Matter...49-50

Biological Sciences 102-103 ..6

Agricultural Systems and Environment 1204

Food Science and Technology 100A, 100B, 100C, 101A, 103, 104, 104L, 160, 190 ...28

Food Science and Technology 110A-110B, Applied Biological Systems Technology 110L ...8

Food Science and Technology 127 or 107A ..3 or 4

Select one of the following five options:

Food Technology Option
The Food Technology option provides a broad exposure to food chemistry, food microbiology, food engineering and food processing. Students find positions in quality assurance, product development, and food processing in the food industry.

Specific course requirements..12

Chemistry 8A-8B ...6

Food Science and Technology 108, 109 ...6

Selected additional courses ...15

Select courses from a master list available from the department Advising Center.

Food Business and Management Option
The Food Business and Management option allows students to integrate study of the science and technology of food with that of business and economics in a unique program. Students prepare for positions of management in small food companies, and research-and-development oriented marketing or technical sales opportunities in corporate food industries.

Specific course requirements..25

Chemistry 8A-8B ...6

Economics 1A ...5

Agricultural and Resource Economics 112, 1138

Management 100 ..3

Food Science and Technology 108 ..3

Selected additional courses ...10

Select courses from a master list available from the department Advising Center.

Consumer Food Science Option
The Consumer Food Science option prepares students for jobs in food product formulation, research-and-development oriented marketing and sensory analysis, quality assurance, extension service, creative writing, and community service. Students who fulfill the requirements for the teaching credential teach elementary or secondary school home economics.

Specific course requirements..20

Chemistry 8A-8B ...6

Food Science and Technology 47, 101B, 107B (107A is required prerequisite), 109, 159 ...11

Consumer Science 100 ..3

Selected additional courses ...10

Select courses from a master list available from the department Advising Center.

Food Biology/Microbiology Option
The Food Biology/Microbiology option is for students interested in research and development careers with food companies or government laboratories in teaching and research at academic institutions, or in professional (medical, veterinary, pharmacy, optometry or dental) school. This option prepares students for graduate study and research in several areas, including food science, biochemistry, biotechnology, microbiology, and post-harvest biology.

Specific course requirements..17-23

Biological Sciences 1B ..5

Chemistry 8A-8B or 118A-118B-118C6-12

Microbiology 102, 102L ..6

Selected additional courses ...10

Select courses from a master list available from the department Advising Center.

Food Chemistry Option
The Food Chemistry option prepares students for graduate study and research in such areas as flavor chemistry, food additive chemistry, biotechnology, biochemistry and toxicology. This option is for students interested in research and development careers with food companies or government laboratories, in teaching and research at academic institutions, or in professional (medical, veterinary, or dental) school.

Specific course requirements..20-21

Chemistry 118A-118B-118C or 128A-128B-128C-129A-129B-129C-129D ...11-12

Chemistry 107A-107B, 124A ..9

Selected additional courses ...10

Select courses from a master list available from the department Advising Center.

Unrestricted Electives ...4-23

Total Units for the Degree ...180

Major Adviser. E. Bandman (Food Science and Technology).

Advising Center for the major is located in 111 Cruesa Hall.

Graduate Study. A program of study and research leading to the M.S. and Ph.D. degrees in Food Science is available (see below). For further information on graduate study, contact the graduate adviser.
Fiber and Polymer Science

(College of Agricultural and Environmental Sciences)

Faculty. See under Textiles and Clothing.

The Major Program

The fiber and polymer science major is concerned with the physical, chemical, and structural properties of fibers and polymers and how these relate to fiber and polymer performance and end-use.

The Program. All students in this major take a common core of course work in chemistry, physics, and mathematics, and depth subject matter in fiber and polymer science, organic and physical chemistry, and technical writing. In the restricted electives, students select courses from areas such as computer science and mathematics, chemistry, marketing and management, material and advanced fiber and polymer science, and textiles.

Career Alternatives. The major prepares the student for a career in a wide range of industries in the areas of research and development, technical marketing and management, production, quality control, and science teaching (on completion of an additional year in the teaching credential program). The companies employing Fiber and Polymer Science graduates are in the fiber, polymer, absorbent product, textile and/or chemical business. Graduates are prepared to enter the graduate program in textiles or environmental chemistry with a specialization in fiber and polymer science, and fiber and polymer science programs at other universities.

B.S. Major Requirements:

<table>
<thead>
<tr>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>English Composition Requirement .. 7-12</td>
</tr>
<tr>
<td>Communication .. 4</td>
</tr>
<tr>
<td>Preparatory Subject Matter ... 52-55</td>
</tr>
<tr>
<td>Computer Science Engineering 15 or 30 ... 15</td>
</tr>
<tr>
<td>Mathematics 16A-16B-16C or 21A-21B-21C .. 9-12</td>
</tr>
<tr>
<td>Physics 5A-5B-5C or 9A-9B-9C .. 12</td>
</tr>
<tr>
<td>Statistics 13 or Agricultural Systems and Environment 120 8</td>
</tr>
<tr>
<td>Textiles and Clothing 6 and 8 or Engineering 45 8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breadth/General Education ... 6-24</td>
</tr>
</tbody>
</table>

Satisfaction of General Education requirement; See advising office for breadth requirement.

**Depth Subject Matter .. 37 |

<table>
<thead>
<tr>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Textiles and Clothing 163, 163L .. 4</td>
</tr>
<tr>
<td>Fiber and Polymer Science 100, 150, 161, 161L, 180A, 180B 14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restricted Electives ... 30</td>
</tr>
</tbody>
</table>

Select courses from the following:

- **Computer Science and Mathematics:** Agricultural Systems and Environment 21; Engineering 5; Applied Science Engineering 115, 116; Food Science and Technology 156; Mathematics 22A, 22B
- **Chemistry:** Chemistry 108, 111, 115, 120, 121, 124A, 124B, 124C, 130, 131, 140
- **Marketing/Management:** Agricultural and Resource Economics 100A, 100B, 113, 136, 157; Economics 1A, 1B, Statistics 103
- **Material and Advanced Fiber/Polymers Science:** Aeronautical Science Engineering 137, Engineering 104A, 104B, Textiles and Clothing 250A-F; 290, 293
- **Textiles:** Textiles and Clothing 162, 162L, 164, 165, 173, 174

<table>
<thead>
<tr>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unrestricted Electives .. 23-40</td>
</tr>
</tbody>
</table>

**Total Units for the Degree .. 180 |

Minor Adviser. Y.-L. Hsieh (Textiles and Clothing).

Advising Center for the major is located in 231 Everson Hall (530-752-4417).

Minor Program Requirements:

<table>
<thead>
<tr>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiber and Polymer Science .. 18</td>
</tr>
<tr>
<td>Textiles and Clothing 6 or Engineering 45 ... 4</td>
</tr>
</tbody>
</table>

Courses selected from the following:

- Fiber and Polymer Science 100, 150, 161, 161L, 180A and 180B;
- and Textiles and Clothing 163 and 163L

Quarter Offered: I=Fall; II=Winter; III=Spring; IV=Summer; 2001-2002 offering in parentheses.

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
French

Recommended

French 101, 102, 103, 104, 107, and 160 plus other upper division courses for a total of 45 units for students interested in obtaining a “single subject” teaching credential in California.

Major Adviser. M. Kusch.

Minor Program Requirements:

French

Three elective courses in French language, literature, or civilization one of which must be either French 107 or 108

Honors Program

Candidates for high or highest honors in French must write a senior thesis under the direction of a faculty member. For this purpose, honors candidates must enroll in French 194H (3 units) and French 195H (3 units). Normally, a student will undertake the honors project during the first two quarters of the senior year; other arrangements must be authorized by the department chair. Only students who, at the end of the junior year (135 units), have attained a cumulative grade-point average of 3.5 in courses required for the major will be eligible for the honors program. The requirements for earning high and highest honors in French are in addition to the regular requirements for the major in French.

Teaching Credential Subject Representative. S. Clay. See also under the Teacher Education Program.

Graduate Study

The Department offers programs of study and research leading to the M.A. and Ph.D. degrees in French. Candidates for the Ph.D. have the option of enriching their degree program by preparing a designated emphasis in either Critical Theory or Feminist Theory and Research, which are offered by the Program in Critical Theory and The Women’s Studies Program, respectively. Detailed information may be obtained from the graduate advisers or the department chairperson.

Graduate Advisers. M.I. Manoliu (M.A., Ph.D. degrees—French Linguistics); M. Blanchard (M.A., Ph.D. degrees—French Literature).

Prerequisite Credit. Credit will not normally be given for a course if it is the prerequisite of a course already successfully completed. Exceptions can be made by the Department Chairperson only.

Courses in French (FRE)

Students offering high school language preparation as a prerequisite must take a placement test.

Course Placement. Students with two years of high school French normally take French 2, those with three years take French 3 and those with four years take French 21.

Lower Division Courses

1. Elementary French (5)

Discussion—5 hours; laboratory—1 hour. Students who have successfully completed French 2 or 3 in the 10th or higher grade in high school may receive unit credit for this course on a P/NP grading basis only. Although a passing grade will be charged to the student’s P/NP option, no petition is required. All other students will receive a letter grade unless a P/NP petition is filed.—I, II, III. (I, II, III.)

10. French for Graduate Students (5)

Lecture/discussion—5 hours. A course designed to prepare students for the graduate reading examination in French. (P/NP grading only.)—III. (III.)

2. Elementary French (5)

Discussion—5 hours; laboratory—1 hour. Prerequisite: course 1. Continuation of course 1.—I, II, III. (I, II, III.)

3. Elementary French (5)

Discussion—5 hours; laboratory—1 hour. Prerequisite: course 2. Continuation of course 1—II, III. (I, II, III.)

8. French Conversation (2)

Recitation—3 hours. Prerequisite: course 3 or the equivalent. Practice in initiating and maintaining conversation. Oral presentations, oral quizzes, and oral final exam. May be repeated once for credit. Not open to native speakers.—I, II, III. (I, II, III.)

21. Intermediate French (5)

22. Intermediate French (5)

23. Intermediate French (5)

38. Intermediate French Conversation (2)
Recitation—3 hours. Prerequisite: course 8 or the equivalent. Continued practice in initiating and maintaining conversation. Oral presentations, oral quizzes, and oral final exam. May be repeated once for credit. Not open to native speakers.—II, III.

50. French Film (4)
Lecture—1 hour; discussion—2 hours; term paper. Introduction to the tradition of French cinema from its invention by Méliès and the Lumière brothers through New Wave (especially the works of Truffaut and Godard) and more recent developments in French and Francophone film. Taught in English. Offered in alternate years. GE credit: ArtHum.—(II.) Van Den Abbeele

96. Directed Group Study (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)

99. Special Study for Undergraduates (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)

Upper Division Courses

100. Composition in French (4)
Lecture—3 hours; term paper. Prerequisite: course 23; course 20 strongly recommended. Instruction and practice in expository writing in French, with emphasis on organization, correct syntax, and vocabulary building.—II, III, (I, II, III) Clay

101. Introduction to French Poetry (4)
Lecture—3 hours; short papers. Prerequisite: course 100 or consent of instructor. Analysis and evaluation of plays representing the main types of French poetry. Study of French poetic conventions and versification. GE credit: ArtHum.—I. (I.) Blanchard

102. Introduction to French Drama (4)
Lecture—3 hours; short papers. Prerequisite: course 100 or consent of instructor. Analysis and evaluation of plays representing the main types of French prose, with emphasis on narrative structure and techniques. GE credit: ArtHum.—II. (II.) Guynn

103. Introduction to French Prose (4)
Lecture—3 hours; short papers. Prerequisite: course 100 or consent of instructor. Analysis and evaluation of works representing the main types of French prose, with emphasis on narrative structure and techniques. GE credit: ArtHum.—III. (III.) Kusch

104. Translation (4)
Lecture—3 hours; numerous short in-class translations; frequent supplementary outside reading. Prerequisite: course 100 or the equivalent. Practice in English-to-French translation using a variety of non-literary materials, illustrating different problems and styles. Not open to students who have spent an academic year as an EAP student in a Francophone country or who have completed course 138.—II, (II.) Clay

105. French in Business and the Professions (4)
Lecture—1 hour; discussion—2 hours; frequent written assignments. Prerequisite: course 100 or consent of instructor. The French language as used in the commercial sphere. Emphasis on proper style and form in letter-writing, and in non-literary composition. Technical terminology in such diverse fields as government and world business.—I. (I.) Clay

107. The Making of Modern France (4)
Lecture—3 hours; term paper. Prerequisite: course 100 or consent of instructor. Introduction to French culture through a historical approach to topics such as the citizenship of the state, justice, social cohesion; the rise of public education, colonization, class and social relationships. Offered in alternate years. GE credit: ArtHum.—(I.) Constable

108. Topics in Contemporary French Culture (4)
Lecture—3 hours; extensive writing. Prerequisite: course 100 or consent of instructor. Contemporary French culture through specific topics such as women and French culture, decolonization and modernization, the politics of education, immigration in France, Francophone cultures. May be repeated once for credit when topic differs. Offered in alternate years. GE credit: ArtHum.—(II.) Praeger

110. Stylistics and Creative Composition (4)
Lecture—3 hours; frequent papers. Prerequisite: course 100 or consent of instructor. Intensive course in creative composition using a variety of techniques and literary styles, patterned on Queuene's Exercices de style. Practice in such stylistic modifications as inversion, antithesis, changes in tense, mood, tonality, etc. The writing of poetry.—II. (II.) Manouli

115. Medieval French Literature and Society (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 101, 102, or 103. The social and cultural life of medieval France as studied through its representation in such literate works as La Chanson de Roland, courtly love lyric, the Arthurian romances of Chrétien de Troyes, Aquasain and Nicolette, selected fabliaux and farces. Offered in alternate years. GE credit: ArtHum.—I. (I.) Guynn

116. The French Renaissance (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 101, 102, or 103. Overview of major writers and writers with particular attention to the historical context of the turbulent 16th century. Writers to be read may include Rabelais, Marot, Ronsard, Du Bellay, Labe, Marguerite de Navarre, Montaigne, and Daubigné. May be repeated once for credit when topic differs. Offered in alternate years. GE credit: ArtHum.—II. (II.) Van Den Abbeele

117A. Baroque and Preclassicism (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 101, 102, or 103. The literature and intellectual culture of the period between the Renaissance and French classicism. Offered in alternate years. GE credit: ArtHum.—(II.) Van Den Abbeele

117B. The Classical Moment (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 101, 102, or 103. Literature, culture, and politics in the "Age of Louis XIV." May be repeated once for credit when topic differs. Offered in alternate years. GE credit: ArtHum.—(III.) Van Den Abbeele

118A. The Age of Reason and Revolution (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 101, 102, or 103. Literature and philosophy of the French Enlightenment. Readings from such authors as Bayle, Fontenelle, Montesquieu, Voltaire, Rousseau and Diderot. Offered in alternate years. GE credit: ArtHum.—(II.) Kusch

118B. Private Lives and Public Secrets: The Early French Novel (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 103. History of the French novel from the Middle Ages to the Revolution with particular emphasis on the novels of the 18th century. Offered in alternate years. GE credit: ArtHum.—I. (I.) Constable

119A. The Romantic Imaginary (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 101, 102, or 103. Major concepts and themes of French Romanticism, such as dream and the supernatural, impossible love, exocism, revolution, individualism, nature, the mal du siècle, Romantic irony, the creative imagination, the cult of ruin. Offered in alternate years. GE credit: ArtHum.—I. Constable

119B. Realism, History and the Novel (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 101, 102, or 103. Investigation of the narrative and historical codes of French realistic fiction, with emphasis on the representation of history in the novel's text, its depiction of social "reality," and its role in defining the experience and art of modernity. Offered in alternate years. GE credit: ArtHum.—II. (II.) Kusch

119C. From Baudelaire to Surrealism (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 101. Study of the main poets and poetic movements from the mid-19th to the early 20th century, including Baudelaire, the Symbolists, and the Surrealists. Offered in alternate years. GE credit: ArtHum.—(II.) Constable

120. Modern French Thought (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 101, 102, or 103. Overview of post-Second World War French intellectual currents from existentialism to structuralism and poststructuralism. Readings will include Sartre and de Beauvoir, Camus, Lévi-Strauss, Lacan, Barthes, Foucault, Derrida, Kristeva, Sollers, Cixous, and Irigaray. Offered in alternate years. GE credit: ArtHum.—I. (I.) Blanchard

121. Twentieth Century French Novel (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 103. Novels and theories of the novel, from Proust to the Nouveau Roman and beyond. Readings from among Gide, Sartre, de Beauvoir, Camus, Breton, Beckett, Robbe-Grillet, Sarraute, Simon, Barthes, Duras, Tourrion, Perec, Modiano, Guibert, Toussaint. Offered in alternate years. GE credit: ArtHum.—(I.) Adejumobi

122. Post-Colonialist and Francophone Literature (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 101, 102, or 103. Introduction to Post-Independence Black African and/or Caribbean and/or North African literatures written in French. Selected topics include: identity and subjectivity, the role of the intellectual, women's voices, languages and oral literatures, cultural syncretism, theories of postcolonialism. May be repeated once for credit when topic differs. Offered in alternate years. GE credit: ArtHum.—(II.) Guynn

127. Paris: Modernity and Metropolitan Culture (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 101, 102, or 103. Study of the representation of Paris in 19th and 20th century texts and its importance in defining the experience and art of modernity. Offered in alternate years. GE credit: ArtHum.—(III.) Guynn

128. French Literature and Other Arts (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 101, 102, or 103. The relationship between French literature and other arts—painting, music, cinema, architecture, opera—from different periods. May be repeated once for credit when topic differs. Offered in alternate years. GE credit: ArtHum.—I. Guynn

130. From Page to Stage: Theatre and Theatricality (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 102. French theater as literature and performance. May be repeated once for credit when topic differs. Offered in alternate years. GE credit: ArtHum.—I. Guynn

133. Gender and Politics in French Literature and Culture (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 101, 102, or 103. Examination of the thematic, theoretical and political tendencies in contemporary French fiction. Barthes, Foucault, Duras, Guibert, considered in terms of their writing on identity and gender. Offered in alternate years. GE credit: ArtHum.—(II.) Praeger

140. Study of a Major Writer (4)
Lecture—3 hours; term paper. Prerequisite: course 100 and course 101, 102 or 103 as appropriate to selected topic, or consent of instructor. Concentrated study of works of a single author. May be repeated once for credit as author-subject changes.—II. (II.)
141. Selected Topics in French Literature (4)
Lecture—3 hours; term paper or short papers. Prerequisite: courses 100 and 101 or 102 or 103 as appropriate to the selected topic or consent of instructor. Subjects and themes such as satire and didactic poetry of the Middle Ages, poetry of the Pèiade, theater in the eighteenth century, pre-romantic poetry, etc. may be repeated twice for credit when topic differs.—II. (II.)

160. Topics in French Morphosemantics (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 100 and Linguistics 1. Analysis of controversial grammatical phenomena with emphasis on the semantic content and the pragmatic function of such categories as tense, mood and gender. Offered in alternate years.—III. Manilou

161. Modern French Syntax (4)
Lecture—3 hours; short papers. Prerequisite: course 160. Presentation of basic concepts of contemporary approaches to French syntax. Consideration of new explanations of so-called “irregular” phenomena in current language models.—II. (III.) Manilou

162. History of French Language (4)
Lecture—3 hours; term paper. Prerequisite: course 160. Main periods in development of the French language, from Latin to contemporary popular aspects, with emphasis on relationship between socio-cultural patterns and evolution of the language. GE credit. ArHum.—II. (II.) Manilou

192. Internship (1-12)
Internship—3-36 hours; term paper. Prerequisite: upper division standing and consent of instructor. Practical application of the French language through work experience in government and/or business, culminating in an analytical term paper on a topic approved by the sponsoring instructor. (P/NP grading only.)

194H. Special Study for Honors Students (4)
Independent study—4 hours. Prerequisite: open only to French majors of senior standing who qualify for honors program. Guided research, under the direction of a faculty member, leading to a senior honors thesis on a topic in French literature, civilization, or literary studies. (P/NP grading only.)

195H. Honors Thesis (4)
Independent study—4 hours. Prerequisite: course 194H. Writing of an honors thesis on a topic in French literature, civilization, or language studies under the direction of a faculty member. (P/NP grading only.)—II, III. (II, III.)

197T. Tutoring in French (1-4)
Seminar—1-12 hours; laboratory—1-12 hours. Prerequisite: upper division standing and consent of Chairperson. Tutoring in undergraduate courses including leadership in small voluntary discussion groups affiliated with departmental courses. May be repeated for credit for a total of 6 units. (P/NP grading only.)

199. Directed Group Study (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5)
(P/NP grading only.)

Graduate Courses

200. Literary Analysis (4)
Seminar—3 hours; term paper. Prerequisite: graduate standing. Basic principles of applied literary theory. Concepts and methods of the critical analysis of literature and literary texts. Basic principles of bibliographic research will be covered at the beginning of the course.—I. (I.)

201. History of French: Phonology and Morphosyntax (4)
Seminar—3 hours; term paper. Prerequisite: courses 159, 160, 250A, or consent of instructor. Presentation of the main changes in the phonematic and grammatical structures of French, from Latin to contemporary spoken aspects.—III. (III.) Manilou

204. Topics in Medieval Literature (4)
Seminar—3 hours; term paper. Study of Medieval French literature, focusing on a particular period, milieu, literary movement, genre, or theoretical approach. May be repeated for credit when topic differs.—I. (I.) Van Den Abbeele

205A. Sixteenth-Century Literature: The Humanists (4)
Seminar—3 hours. French humanism in its most varied forms. Although at different times Rabelais and Montaigne will be primarily studied, other leading intellectuals and religious writers will also receive attention. May be repeated for credit when different topic is studied.—I. (I.) Van Den Abbeele

206A. Seventeenth-Century Literature: Theater (4)
Seminar—3 hours. Works of Corneille, Racine, Molière, and minor dramatists. One or more authors may be covered. May be repeated for credit with consent of instructor when different topics are studied.—II. (II.) Van Den Abbeele

206B. Seventeenth-Century Literature: Prose (4)
Seminar—3 hours; term paper and/or exposure. Works of authors such as Pascal, Descartes, Mme de Lafayette. One or more authors may be covered. May be repeated for credit with consent of instructor when different topics are studied from quarter to quarter.—I. (I.) Van Den Abbeele

206C. Seventeenth-Century Literature: Poetry (4)
Seminar—3 hours; term paper and/or exposure. Studies of the works of one or more poets of the period. May be repeated for credit with consent of instructor.—II. (III.) Van Den Abbeele

207A. Eighteenth-Century Literature: Philosophies (4)
Seminar—3 hours; term paper and/or exposure. Not a course in philosophy, but an examination of the role of philosophy in the design and context of literary works. Study of one or more authors. May be repeated for credit.—II. (III.) Kusch

207B. Eighteenth-Century Literature: Novel (4)
Seminar—3 hours. Rise of the novel. Study of narrative experiments in the context of the philosophical climate and new literary values. Course may treat one or more novelists of the period. May be repeated for credit when different topics are studied.—II. (III.) Kusch

208A. Nineteenth-Century Literature: Fiction (4)
Seminar—3 hours. Study of the works of one or several novelists and/or short-story writers of the period. May be repeated for credit with consent of instructor when different topics are studied.—I. (I.) Constable

208B. Nineteenth-Century Literature: Poetry (4)
Seminar—3 hours. Study of the works of one or several poets of the period. May be repeated for credit with consent of instructor when different topics are studied.—II. (III.) Blanchard

209A. Twentieth-Century: Prose (4)
Seminar—3 hours; term paper and/or exposure. Study of the works of one or several writers of the period.—II. (II.) Praeger

209B. Twentieth-Century: Theater (4)
Seminar—3 hours; term paper and/or exposure. Study of the works of one or several dramatists of the period. May be repeated for credit with consent of instructor.—II. (II.)

209C. Twentieth-Century: Poetry (4)
Seminar—3 hours; term paper and/or exposure. Study of the works of one or several poets of the period. May be repeated for credit with consent of instructor.—II. (III.) Blanchard

210. Studies in Narrative Fiction (4)
Seminar—3 hours. May be repeated for credit with consent of instructor when different topic is studied.—I. (I.)

211. Studies in Criticism (4)
Seminar—3 hours. May be repeated for credit with consent of instructor when different topic is studied.—II. (II.)

212. Studies in the Theater (4)
Seminar—3 hours. May be repeated for credit with consent of instructor when different topic is studied.—I. (I.)

213. Studies in Poetry (4)
Seminar—3 hours. May be repeated for credit with consent of instructor when different topic is studied.—II. (II.)

214. Study of a Literary Movement (4)
Seminar—3 hours. May be repeated for credit with consent of instructor when different topic is studied.—II. (III.)

250A. French Linguistics: Morphematics (4)
Seminar—4 hours. Prerequisite: courses 159, 160, or consent of instructor. Theoretical approach to French grammar, with emphasis on morphematics, i.e., a semantic analysis of grammatical categories, as well as of their paradigmatic and syntactic relations.—I. (I.) Manolou

250B. French Linguistics: Transformational Syntax (4)
Seminar—4 hours. Prerequisite: course 250A or consent of instructor. Presentation of French syntax exemplified by a core of transformational rules (such as subjectivization, passivization, relativization) focusing on the most recent developments in the field (i.e., case grammars, generative semantics, trace theory).—I. (I.) Manolou

251. Trends in French Contemporary Linguistics (4)
Seminar—3 hours; term paper. Prerequisite: course 250A or 250B or consent of instructor. Issues in contemporary French linguistic thought and their relationship to the development of theoretical linguistics. Topics such as pragmatics, semantics, symbolic logic, speech acts, etc. Intended for students in French linguistics or those interested in applying linguistic models to literature. May be repeated once for credit with consent of instructor when topic differs.—I. (I.) Manolou

251. Current Issues in Modern French Syntax (4)
Seminar—3 hours; term paper. Prerequisite: course 161. Presentation of contemporary approaches to French syntax. Explanations of various less regular phenomena, with reference to on-going changes in modern spoken French. May be repeated for credit with consent of instructor when topic differs. Offered in alternate years.—II. Manolou

257. Individual Study (1-5)
(S/U grading only.)

258. Group Study (1-5)
Seminar—1-5 hours. May be repeated for credit with consent of instructor.

299. Research (1-12)
(S/U grading only.)

299. Dissertation Research (1-12)
(S/U grading only.)
Professional Courses

300. Teaching of a Modern Foreign Language (3)
Lecture/discussion—3 hours. Prerequisite: senior or graduate standing; a major or minor in a modern foreign language.—III. (III.)

390A. The Teaching of French in College (2)
Lecture/discussion—2 hours. Prerequisite: graduate standing or consent of instructor. Course designed for graduate teaching assistants with emphasis on problems and procedures encountered by teachers of lower division classes at the university. May be repeated for credit with consent of instructor. (S/U grading only.)—I. (I.) Wagnild

390B. The Teaching of French in College (2)
Lecture/discussion—2 hours. Prerequisite: graduate standing or consent of instructor. Course designed for graduate teaching assistants with emphasis on problems and procedures encountered by teachers of lower division classes at the university. (S/U grading only.)—II. (II.) Wagnild

390C. The Teaching of French in College (2)
Lecture/discussion—2 hours. Prerequisite: graduate standing or consent of instructor. Course designed for graduate teaching assistants with emphasis on problems and procedures encountered by teachers of lower division classes at the university. (S/U grading only.)—II. (II.) Wagnild

390D. Teaching Intermediate French (2)
Lecture/discussion—2 hours. Prerequisite: course 390A, 390B, 390C. Focus on how to teach intermediate French grammar, literature, and composition. (S/U grading only.)—I. (I.) Clay

396. Teaching Assistant Training Practicum (1-4)
Prerequisite: graduate standing. May be repeated for credit. (S/U grading only.)—I, II, III. (I, II, III.)

Freshman Seminar Program

John L. Vohs, M.A., Program Director
Program Office, 17 Wellman (Teaching Resources Center) (530-752-6050)
World Wide Web: http://trc.ucdavis.edu/TRC

Committee in Charge
James Baughn, Ph.D. (College of Engineering)
John Boe (College of Letters and Science)
Connie Bowe, M.D. (School of Medicine)
William Horof, D.V.M., Ph.D. (School of Veterinary Medicine)
Annie King, Ph.D. (College of Agricultural and Environmental Sciences)
Nora McGuinness, Ph.D. (Integrated Studies, Davis Honors Challenge)
Barbara A. Sommer, Ph.D. (Teaching Resources Center)

Course in Freshman Seminar (FRS)
(Questions pertaining to the following course should be directed to the instructor or to the Teaching Resources Center.)

Lower Division Course
1A-Z. Freshman Seminar (2)
Seminar—2 hours. Prerequisite: open only to students who have completed fewer than 45 quarter units. Investigation of a special topic (A-Z) through shared readings, discussions, written assignments, and special activities (such as fieldwork, site visits, laboratory work, etc.). Emphasis upon student participation in learning.—I, II, III. (I, II, III.)
Food Service Management

(College of Agricultural and Environmental Sciences)

Faculty. See under the Department of Nutrition.

The Major Program and Graduate Study. Food Service Management is incorporated within the major of Clinical Nutrition. If you are interested in preparing for a career in commercial organizations such as hotels, restaurants, industrial cafeterias, or contract food services, as well as in public or private institutions such as hospitals, correctional institutions, schools, or colleges, consult the Department of Nutrition.

Related Courses. See Food Science and Technology, and Nutrition.

Courses in Food Service Management (FSM)

Questions pertaining to the following courses should be directed to the instructor or to the Nutrition Department Advising Office, 1202E Meyer Hall (530-752-2512).

Upper Division Courses

120. Principles of Quantity Food Production (3)
Lecture—3 hours. Prerequisite: Food Science and Technology 100B and 101B. Fundamental principles of food service management including quantity food preparation, institutional equipment, receiving and storage, service, menu planning, merchandising, and safety.—III. (III.) Prophet

120L. Quantity Food Production Laboratory (2)
Laboratory—6 hours. Prerequisite: course 120. Laboratory experience in quantity food production and service.—I, II. (I, II.) Prophet

122. Food Service Systems Management (3)
Lecture—3 hours. Prerequisite: Agricultural and Resource Economics 112, courses 120, 120L, 121. Principles of quantity food production management: production schedules, portion control, financial management, layout and equipment planning, evaluation of alternative systems, and computer applications.—II. (II.) Prophet

152. Internship (1-12)
Internship—3-36 hours. Prerequisite: one upper division course in Food Service Management and consent of instructor. Work experience on or off campus in practical aspects of food service management, supervised by a faculty member. (P/NP grading only)—Steinberg

197T. Tutoring in Food Service Management (1-2)
Discussion/laboratory—3 or 6 hours. Prerequisite: Dietetics or related major; completion of the Food Service Management course in which tutoring is done. Tutoring of students in food service management, assistance with discussion groups or laboratory sections; weekly conference with instructor in charge of course; written evaluations. May be repeated if tutoring a different course. (P/NP grading only.)—Steinberg

198. Directed Group Study (1-5)
(P/NP grading only.)—Steinberg

199. Special Study for Advanced Undergraduates (1-5)
(P/NP grading only.)—Steinberg

Quarter Offered: I=Fall; II=Winter; III=Spring; IV=Summer; 2001-2002 offering in parentheses.

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
Food Science and Technology

(College of Agricultural and Environmental Sciences)
Charles F. Shoemaker, Ph.D., Chairperson of the Department
Department Office, 126 Cuess Hall (530-752-1465)
World Wide Web: http://www-foodsci.ucdavis.edu

Faculty
Charles W. Bamforth, Ph.D., Professor
Everett Bandman, Ph.D., Professor
Stephanie R. Dungan, Ph.D., Associate Professor (Food Science and Technology; Chemical Engineering)
J. Bruce German, Ph.D., Professor
Jean-Xavier Guinard, Ph.D., Associate Professor
Norman P. Haard, Ph.D., Professor
John M. Krochta, Ph.D., Professor (Food Science and Technology, Biological and Agricultural Engineering)
Kathryn L. McCarthy, Ph.D., Associate Professor (Food Science and Technology, Biological and Agricultural Engineering)
Michael J. McCarthy, Ph.D., Professor (Food Science and Technology, Biological and Agricultural Engineering)
David M. Ognydziel, Ph.D., Professor
Michael A. O'Mahony, Ph.D., Professor
Chester W. Price, Ph.D., Professor
David S. Reid, Ph.D., Professor
Gerald F. Russell, Ph.D., Professor
J. Bruce German, Ph.D., Professor
Barbara G. Schneeman, Ph.D., Professor (Food Science and Technology, Internal Medicine, Nutrition)
Jean-Xavier Guinard, Ph.D., Associate Professor (Food Science and Technology, Biological and Agricultural Engineering)
R. Paul Singh, Ph.D., Professor (Food Science and Technology, Biological and Agricultural Engineering)
Gary M. Smith, Ph.D., Professor
Glenn M. Young, Ph.D., Assistant Professor

Emeriti Faculty
Ernka L. Barrett, Ph.D., Professor Emerita
Richard A. Bernhard, Ph.D., Professor Emeritus
Walter L. Dunkley, Ph.D., Professor Emeritus
Robert E. Feeney, Ph.D., Professor Emeritus
Dieter W. Gruenwedel, Ph.D., Professor Emeritus
Jerald M. Henderson, D.Engr., Professor Emeritus
Martin W. Miller, Ph.D., Professor Emeritus
Gerald F. Russell, Ph.D., Professor Emeritus
Robert E. Feeney, Ph.D., Professor Emeritus
Dieter W. Gruenwedel, Ph.D., Professor Emeritus

Affiliated Faculty
Diane M. Barnett, Ph.D., Associate Specialist
Christine M. Bruhn, Ph.D., Specialist
John C. Bruhn, Ph.D., Specialist
Edwin N. Frankel, Ph.D., Adjunct Professor
Linda J. Harris, Ph.D., Assistant Specialist
Robert J. Price, Ph.D., Specialist
Moshe Rosenberg, Ph.D., Associate Specialist
Carl K. Winter, Ph.D., Associate Specialist

Major Program and Graduate Study. See the majors in Food Science and Food Biochemistry, and for graduate study, refer to the Graduate Studies chapter of this catalog.

Related Courses. See courses in Consumer Science, Engineering, Molecular and Cellular Biology, Nutrition, and Viticulture and Enology; Environmental Toxicology 101, Population Health and Reproduction 150, Plant Biology 172 and 172L.

Courses in Food Science and Technology (FST)

Lower Division Courses

1. Food Science and Society (3)
 Lecture—2 hours; discussion—1 hour. Nature and scope of world food problems; food composition; scientific and technological aspects of converting animal and plant products into a variety of prepared foods; improvement and evaluation of acceptability and nutritional value of foods. Not open for credit to students who have received credit for course 100A, 100B.—II. (I.) Bandman

2. Introductory Food Science (3)
 Lecture—3 hours; one industrial visit to a food factory (optional). Processes by which raw agricultural commodities are preserved and converted into edible foods; regulation of food manufacture and the chemistry and microbiology of food that control its qualities and safety. Not open for credit to students who have received credit for any other Food Science and Technology course. GE credit: SciEng or SocSci.—I, II, III (I, III) Russell

47. Food Product Development Field Study (1)
 Discussion—6 hours; fieldwork—2 days (course given between winter and spring quarters). Prerequisite: advance enrollment required in winter quarter with instructor; background knowledge in foods from such courses as Food Science and Technology 1. Commercial aspects of the large-scale development, distribution, and evaluation of food products intended for human consumption. (Former course Consumer Science 47.) (P/NP grading only)—III. (III) Shoemaker

50. Introduction to Food Preservation (4)
 Lecture—3 hours; laboratory—3 hours. Prerequisite: Chemistry 2A, Biological Sciences 1A. Introduction to fruit, vegetable, cereal, dairy, seafood, and meat commodity groups. Overview of processes used for preservation of food quality. Laboratory exercises include canning, refrigeration, freezing, fermentation and dehydration preservation operations.—II, (II) Krochta

99. Special Study for Undergraduates (1-5)
 (P/NP grading only)

Upper Division Courses

100A. Food Chemistry (4)
 Lecture—6 hours; discussion—1 hour. Prerequisite: Chemistry 8B; Biological Sciences 1A recommended. Chemical aspects of food composition. Emphasis on the functional properties and chemical reactions of the major components of foods: carbohydrates, lipids, proteins, and water.—I. (I.) Dungan

100B. Food Properties (4)
 Lecture—3 hours; discussion—1 hour. Prerequisite: course 100A or consent of instructor. Sensory quality, chemical and microbial safety, and nutritional properties of foods. Effects of food processing and preparation on these properties. Selected properties of food commodities.—II. (II) Guinard

101A. Food Chemistry Laboratory (2)
 Lecture/laboratory—1 hour/3 hours. Prerequisite: course 100A (may be taken concurrently). Chemical aspects of food composition described in course 100A.—II. (I.) Shoemaker

101B. Food Properties Laboratory (2)
 Lecture/laboratory—1 hour/3 hours. Prerequisite: course 100B (may be taken concurrently). Study of properties of food described in course 100B.—II. (II) Russell

102A. Malting and Brewing Science (4)
 Lecture—4 hours. Prerequisite: Biological Sciences 102, 103; senior standing recommended. The technology of the malting, brewing and fermentation processes is integrated with the chemistry, biochemistry and microbiology that determine industrial practices and product quality. Not open for credit to students who have taken courses 102B.—II. (I.) Bamforth

102B. Practical Malting and Brewing (4)
 Lecture/discussion—2 hours; laboratory—6 hours. Prerequisite: course 102A and analytical experience beyond Chemistry 2C, such as Viticulture and Enology 123, Food Science and Technology 103, 123L, Molecular and Cellular Biology 120L. Open to seniors only in Fermentation Science or Food Science and Technology. Provides practical working knowledge of analytical methods used in malting and brewing and experience with brewing materials and processes, by analysis of samples that illustrate the range of values experienced in practice and pilot scale brewing.—II, (II) Bamforth

103. Physical and Chemical Methods for Food Analysis (5)
 Lecture—3 hours; laboratory—6 hours. Prerequisite: Chemistry 2C, 8B. Biological Sciences 103 (may be taken concurrently). An introduction to the theory and application of physical and chemical methods for determining the constituents of foods. Modern separation and instrumental analysis techniques are stressed.—I. (I.)
104. Food Microbiology (3)
Lecture—3 hours. Prerequisite: Biological Sciences 1A, 102. Microorganisms in food safety, spoilage, and production. Food-borne disease agents and their control. Growth patterns of food spoilage agents. Destruction of microbes in food. Food fermentations. The development of microbes as a resource for the food industry.—II. (II.) C. Price

104L. Food Microbiology Laboratory (4)
Laboratory—1 hour; laboratory—6 hours. Prerequisite: Biological Sciences 1A, course 104. Cultural and morphological characteristics of microorganisms involved in food spoilage, in food-borne disease, and food fermentation. Analysis of microbiological quality of foods.—II. (II.) (II.)

107A. Food Sensory Science (4)
Lecture—3 hours, laboratory—3 hours. Prerequisite: Agricultural Systems and Environment 120 or course 117 (may be taken concurrently) or consent of instructor. Critical examination of techniques and theories of sensory measurement of food as analytical tools and as measures of consumer acceptance and acceptability. Sensory and cognitive systems associated with the perception of food.—I. (I.) O’Mahony

107B. Food Sensory Science (3)
Lecture—2 hours; laboratory—3 hours. Prerequisite: course 107A. A critical examination of techniques and theories of sensory measurement applied to a range of food systems. Methods for analyzing the sensory attributes of food in relation to quality assurance, product development and optimization.—II. (II.)

108. Food Processing Plant Sanitation (3)
Lecture—3 hours. Prerequisite: Chemistry 8B, Biological Sciences 1A. Discussion of factors relating to sanitary control of food processing including water treatment, chemical and physical sanitizing agents, principles of cleaning and hard surface degreasing, metal corrosion, concepts in the disposal of wastes and the pertinence of government control agencies.—I. (I.)

109. Principles of Quality Assurance in Food Processing (3)
Lecture—2 hours; discussion—1 hour. Prerequisite: Statistics 13 or Agricultural Systems and Environment 120. Quality assurance measurement techniques applied to selected food processed products emphasized. Rationale for establishing valid quality assurance programs including selection of samples at critical points. Statistical problems in quality assurance programs used by the food industry.—III. (III.) K. McCarthy

110A. Physical Principles in Food Processing (3)
Lecture—2 hours; laboratory—2 hours. Prerequisite: Physics 5A and 5B or 7A-B7C or the equivalent; calculus recommended. Not open for credit to students enrolled in College of Engineering. Applications of the conservation of mass and energy to food processing. Elements of engineering thermodynamics, fluid mechanics, and problem solving.—I. (I.) M. McCarthy

110B. Heat and Mass Transfer in Food Processing (3)
Lecture—2 hours; laboratory—2 hours. Prerequisite: course 110A or the equivalent; Applied Biological Systems Technology 110L recommended (may be taken concurrently). Rate processes: conduction, convection, and radiation heat transfer; microwave heating, refrigeration, freezing, psychrometrics; mass transfer during drying and storage.—II. (II.) Singh

117. Design and Analysis for Sensory Food Science (3)
Lecture—2 hours; discussion—1 hour. Prerequisite: Statistics 13 or consent of instructor. Methods of design and analysis for sensory food science. Relative merits and limitations of parametric and nonparametric approaches. Use of human judges. Data analysis and computation. Modifications for quality assurance.—I. (I.) O’Mahoney

119. Chemistry and Technology of Milk and Dairy Products (4)
Lecture—4 hours, demonstrations and a field trip. Prerequisite: Biological Sciences 1A and 102, or consent of instructor. Composition, structure and properties of milk and products derived from milk. Relates chemical, microbiological, and technological principles to commercial practices in processing of milk and its products.—III. (III.) Rosenberg

120. Principles of Meat Science (3)
Lecture—3 hours. Prerequisite: Biological Sciences 1A. Anatomical, physiological, developmental and biochemical aspects of muscle underlying the conversion of muscle to meat. Includes meat processing, preservation, microbiology and public health issues associated with meat products. (Same course as Animal Science 120.) GE credit: SciEng.—III. (III.) Brandman, Lee

120L. Meat Science Laboratory (2)
Discussion—1 hour; laboratory—3 hours. Prerequisite: Biological Sciences 1A, course 120 (may be taken concurrently). Laboratory exercises and student participation in transformation of live animal to carcass and meat, structural and biochemical changes related to meat quality, chemical and sensory evaluation of meat, and field trips to packing plant and processing plants. (Same course as Animal Science 120L.)—III. (III.) Lee

121. Principles of Poultry Product Technology (3)
Lecture—3 hours. Prerequisite: Biological Sciences 103 (may be taken concurrently). Quality, preservation, and processing of avian products. Topics include quality control, nutrition, chemistry, biochemistry, microbiology, and functional properties.—I. (I.) King

123. Introduction to Enzymology (3)
Lecture—3 hours. Prerequisite: Biological Sciences 103. Principles of physical, chemical and catalytic properties of enzymes and their importance. Purification, characterization, and quantitative evaluation of reaction conditions on activity are stressed. Specificity and mechanism of action illustrated by use of selected enzymes. (Former course Biochemistry and Biophysics 123.—III. (III.) G. Smith

123L. Enzymology Laboratory (2)
Lecture—1 hour; laboratory—3 hours. Prerequisite: Biological Sciences 103, course 123 (concurrently). Laboratory procedures involved in detection, purification and characterization of enzymes. (Former course Biochemistry and Biophysics 123L.—III. (III.) G. Smith

127. Introduction to the Sensory Characteristics of Food (3)
Lecture—2 hours; laboratory—3 hours. Prerequisite: Agricultural Systems and Environment 120. Critical examination of techniques and theory of sensory measurement of food along with correlations with instrumental measures. For students not intending to specialize in food science sense.—III. (III.) Shibamoto

128. Food Toxicology (3)
Lecture—3 hours. Prerequisite: Biological Sciences 102, 103. Chemistry and biochemistry of toxins occurring in foods, including plant and animal toxins, intentional and unintentional food additives. The assessment of food safety and toxic hazards. (Same course as Environmental Toxicology 128.) GE credit: SciEng.—III. (III.)

131. Food Packaging (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: Chemistry 8B, Biological Sciences 1A, Physics 7C. Principles of food packaging. Functions of packaging, Properties of plastic, glass, paper, and paper products, and applications of packaging. Packaging of fresh and processed foods, including fruits and vegetables, dairy foods, beer and wine. Offered in alternate years.—I. (I.) Krochta

159. New Food Product Ideas (2)
Lecture—2 hours; discussion—1 hour. Prerequisite: upper division standing with background course work in food science (course 50 or 100A), biological sciences (Biological Sciences 1A, 1B, 1C), or the physical sciences (Physics 5A, 5B, 5C or Chemistry 2A, 2B, 2C). Course will familiarize students with initial stages of food product development, including definition and articulation of a problem, generation of ideas to solve the problem, screening of ideas, and the formal presentation of a new product concept.—I. (I.)}

160. Food Product Development (4)
Lecture—1 hour; discussion—1 hour; laboratory—6 hours. Prerequisite: upper division standing with background course work in food science (course 50 or 100A), biological sciences (Biological Sciences 1A, 1B, 1C), or the physical sciences (Physics 5A, 5B, 5C or Chemistry 2A, 2B, 2C). Food product development including preliminary product description, prototype development, product testing, and formal presentation of a new product development.—II. (II.) Haard

190. Senior Seminar (1)
Seminar—1 hour. Prerequisite: senior standing or consent of instructor. Selected topics from recent advances in food science and technology. Reports and discussions concerning oral and written presentations, literature sources and current opportunities.—I. (I.) German

192. Internship for Advanced Undergraduates (1-12)
Internship—3-36 hours. Prerequisite: consent of instructor. Work experience on or off campus in the practical application of food science. (P/NP grading only.)

198. Directed Group Study (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5)
(P/NP grading only)

Graduate Courses

201. Food Chemistry and Biochemistry (3)
Lecture—3 hours. Prerequisite: Biological Sciences 103. Topics on enzymes, proteins, pigments, lipids, and vitamins. Biochemical principles and methods related to food composition, preservation, and processing. Research proposals and group problem solving.—I. (I.) Shoemaker, Frankel

202. Chemical and Physical Changes in Food (4)
Lecture—3 hours; term paper. Prerequisite: Biological Sciences 103, Chemistry 100B. Fundamental principles of chemistry and physics are applied to a study of changes in water binding properties and activity, changes in proteins, nutrients, toxic constituents, and other compounds during storage, heating, freezing, dehydrating, and concentrating of food materials.

203. Food Processing (3)
Lecture—3 hours. Prerequisite: course 110A, Physics 5C or 7C. Chemistry 107B, and one undergraduate food processing course. Principles of food engineering applied to food processing. Relationship of Newtonian and non-Newtonian fluid properties to heat and momentum transfer. Application of mass transfer in controlling kinetics and quality changes of foods.—II. (II.) K. McCarthy

Quarter Offered: I—Fall, II—Winter, III—Spring, IV—Summer. 2001-2002 offering in parentheses.
204. Advanced Food Microbiology (3) Lecture—3 hours. Prerequisite: Biological Sciences 1C, 103, course 104 or a course in microbiology. Principles of and recent developments in food microbiology, including food pathogen virulence and detection, parameters of microbial growth in food, and the microbiology of food and beverage fermentations.—III. (Ill.) Prince, Ogrydziak

205. Industrial Microbiology (3) Lecture—3 hours. Prerequisite: Biological Sciences 1A, 102, 103, Microbiology 130A-130B or Biological Sciences 101 recommended. Use of microorganisms for producing substances such as amino acids, peptides, enzymes, antibiotics and organic acids. Emphasis on metabolic regulation of pathways leading to fermentation products, on yeast fermentations, and on genetic manipulations (including recombinant DNA techniques) of industrial microorganisms. Offered in alternate years.—III. Ogrydziak

207. Advanced Sensory-Instrumental Analyses (3) Lecture—2 hours; laboratory—3 hours. Prerequisite: course 107 and consent of instructor. Basic principles of measurement of color, texture, and flavor of foods by sensory and instrumental methods. Advanced statistical analysis of relation of colorimetry, texturometry, and chemistry of volatile compounds to perception of appearance, texture, flavor. Offered in alternate years.—III. Noble

210. Proteins: Functional Activities and Interactions (3) Lecture—3 hours. Prerequisite: Biological Sciences 103. The relationships of structure of proteins to their biological functions. Structural proteins, complexing proteins, and catalytic proteins in plant and animal materials and products.—II. (II.) G. Smith

211. Lipids: Chemistry and Nutrition (3) Lecture—3 hours. Prerequisite: Biological Sciences 103, Chemistry 107B, 128B. Chemistry of lipids as it pertains to research in food and nutrition. Relations between lipid structure and their physical properties in tissues and foods. Regulation of absorption, transport, and metabolism of lipids. Implications of dietary fats and health.—I. (I.) German

217. Advanced Food Sensory Science (2) Lecture—2 hours. Prerequisite: course 107A (may be taken concurrently). Advanced study of the techniques and theory of the sensory measurement of food as an analytical tool and as a measure of consumer perception and acceptance. Advanced examination of the sensory and cognitive systems associated with the perception of food.—I. (I.) O'Mahoney

227. Food Perception and the Chemical Senses (2) Lecture—2 hours. Prerequisite: course 107B (may be taken concurrently), or consent of instructor. Examination of the anatomy and physiology of the chemical senses (taste, smell, and the trigeminal senses) and how they are involved in the perception of food and food intake.—II. (II.) Guinard

250. Chromatographic and Electrophoretic Methods (4) Lecture—3 hours; discussion—1 hour. Prerequisite: Chemistry 2A-2B-2C, 8A-8B, 107A-107B. Biological Sciences 102 and 103 or consent of instructor. Theory and practice of gas and liquid chromatography and electrophoresis for analytical and preparative applications. Choice and optimization of separation methods, detection systems and recovery of purified sample components.—III. (III.)

250L. Chromatographic and Electrophoretic Methods Laboratory (1) Laboratory—3 hours. Prerequisite: course 250 concurrently. Practice of gas and liquid chromatography and electrophoresis for analytical and preparative applications. Choice and optimization of separation methods, detection systems, and recovery of purified sample components.—III. (III.)

290. Seminar (1) Seminar—1 hour. May be repeated for credit. (S/U grading only.)—I, II, III. (I, II, III.) Ogrydziak, Shoemaker

290C. Advanced Research Conference (1) Discussion—1 hour. Prerequisite: graduate standing and consent of instructor. Critical presentation and evaluation of original research by graduate students. Planning of research programs and proposals. Discussion led by individual major instructors for their research group. (S/U grading only.)—I, II, III. (I, II, III.)

291. Advanced Food Science Seminar (1) Seminar—1 hour. Prerequisite: completion of at least one quarter of course 290. Oral presentation of student's original research, discussion, and critical evaluation. (S/U grading only.)—III. (III.)

298. Group Study (1-5)

299. Research (1-12) Prerequisite: graduate standing. (S/U grading only.)

Professional Course

396. Teaching Assistant Training Practicum (1-4) Prerequisite: graduate standing. May be repeated for credit. (S/U grading only.)—I, II, III. (I, II, III.)
The minor in Fungal Biology and Ecology is open to all students interested in a concentrated exposure to and knowledge of the fungi and allied organisms. The minor is sponsored by the Plant Pathology Department.

Minor Program Requirements

<table>
<thead>
<tr>
<th>Course Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fungal Biology and Ecology</td>
<td>18-20</td>
</tr>
<tr>
<td>Plant Pathology 130, 148, 150</td>
<td>11</td>
</tr>
<tr>
<td>Select 7-9 units from: Food Science and Technology 104, Medical Microbiology and Immunology 130, Plant Biology 146, Plant Pathology 40, 135, 151, Science and Society 30, Soil Science 111, 112; Plant Pathology 224 (available to advanced students with consent of instructor)</td>
<td>7-9</td>
</tr>
</tbody>
</table>

Minor Adviser. J. D. MacDonald.
Geology

(Conference of Letters and Science)
Louise H. Kellogg, Ph.D., Chair of the Department
Department Office, 174 Physics/Geology Building (530-752-0350)
World Wide Web: http://www.geology.ucdavis.edu

Faculty
Sandra J. Carlson, Ph.D., Associate Professor
William H. Casey, Ph.D., Professor (Land, Air and Water Resources)
Richard Cowen, Ph.D., Senior Lecturer, Academic Senate Distinguished Teaching Award
Howard W. Day, Ph.D., Professor
James A. Doyle, Ph.D., Professor (Evolution and Ecology)
Graham E. Fogg, Ph.D., Professor (Land, Air and Water Resources)
Garrett T. Ito, Ph.D., Assistant Professor
Louise H. Kellogg, Ph.D., Professor
Charles E. Lesher, Ph.D., Associate Professor
James S. McClain, Ph.D., Associate Professor
Isabel P. Montañez, Ph.D., Associate Professor
 Eldridge M. Moore, Ph.D., Professor
Jeffrey F. Mount, Ph.D., Professor
Alexandra Navrotsky, Ph.D., Professor (Thermochemistry Facility, Chemistry)
Peter Schiffman, Ph.D., Professor
Howard J. Spero, Ph.D., Professor
Sandra J. Carlson, Ph.D., Associate Professor
Sandra J. Carlson, Ph.D., Associate Professor
Dawn Y. Sumner, Ph.D., Assistant Professor
Howard J. Spero, Ph.D., Professor
Peter Schiffman, Ph.D., Professor
Robert J. Twiss, Ph.D., Professor
Kenneth L. Verosub, Ph.D., Professor, Academic Senate Distinguished Teaching Award
Robert A. Zierenberg, Ph.D., Professor
Emeritus Faculty
Charles G. Higgins, Ph.D., Professor Emeritus
Robert A. Matthews, Ph.D., Senior Lecturer Emeritus

The Major Programs

“Civilization exists by geological consent—subject to change without notice.”

Will Durant

Geology is the study of the Earth, and in particular the history, the structure, the evolution of life, and the processes that have molded the Earth and its inhabitants. The coming of the space age has also extended the field to include the solid planets of the solar system. Although often attracted to the study of geology by an aesthetic appreciation and enjoyment of the earth, geologists commonly approach their studies from an interest either in the academic or the applied aspects of the science. The academic aspects include the study of the history of life, the Earth, and the planets, and of the processes that drive the historical evolution. The study of historical evolution through “deep time” is what fundamentally distinguishes geology from most of the other physical sciences. The study of the processes that drive this evolution can involve the application of any of the physical or life sciences to understanding the Earth. In this sense, geology is truly an interdisciplinary science. The applied aspects of the science generally involve the interaction between humans and the earth. Applied studies include the study of mineral resources including oil and water; identification and mitigation of Earth hazards such as earthquakes, landslides, and volcanic eruptions; identification and mitigation of polluted ground water; and land use planning.

The Program. Students interested in becoming professional geologists or continuing their geological studies at the graduate level should elect the Bachelor of Science degree program. The Bachelor of Arts program is for students interested in an interdisciplinary program of study, or who plan to go into pre-college teaching. Both programs allow students to emphasize an aspect of the field of particular interest to them. The upper division electives are not restricted to geology courses but must be chosen to provide a relevant, coherent, and in-depth program of study. Transfer students should have completed as much as possible of the preparatory subject matter listed below. High school preparation for either program should include high school chemistry and four years of mathematics or the equivalent.

Internships and Career Alternatives. The largest employer of geologists has traditionally been the oil industry, although recently more opportunities have been available in environmental geology with consulting firms and government agencies. Government organizations and research laboratories also employ geologists in a variety of other capacities. There is a growing need for Earth science teachers at all pre-college levels, and colleges and universities provide opportunities in teaching and research. Entry level positions are available with a Bachelor’s degree. A Master’s degree is the usual professional level degree, and a Ph.D. is generally required for research and academic positions. Internships during undergraduate training are a means of exploring potential career opportunities and can lead to positions after graduation. UC Davis students have interned at the California Division of Mines and Geology, the State Department of Water Resources, and various consulting firms.

A.B. Major Requirements:

Preparatory Subject Matter ...40-43

Mathematics 16A-16B or 21A-21B ..6-8
Chemistry 2A-2B ..10
Physics 7A-7B ...6
Statistics 13 or 13AT or 32 or 102 ...3-4

Depth Subject Matter ..36

Geology 100, 100L, 101, 101L, 103, 107, 107L, 108N, 109, 109L ..24
Additional upper division electives chosen from upper division courses in geology. Upper division courses in related fields may satisfy this requirement if approved in advance by the major adviser. 12

Total Units for the Major ...76-79

Recommended

Chemistry 2C or Hydrologic Science 134, Physics 7C

B.S. Major Requirements:

Preparatory Subject Matter ..57-59

Mathematics 3, 3L, 50, 50L, 60, 62 ..12
Physics 9A-9B-9C ...12
Chemistry 2A-2B ...10
Select one of the following three options:

General Geology option:

Hydrologic Science 134 or Chemistry 2C ..5-6
Statistics 32 or 102 ...3-4
Physics 7A-7B-7C or 9A-9B-9C ..12

Geochmec/Petrology option:

Hydrologic Science 134 or Chemistry 2C ..5-6
Statistics 32 or 102 ...3-4
Mathematics 21D ...4
Physics 9A-9B ..4

Quantitative/Geophysics option:

Mathematics 21D and 22A ...7
Physics 9A-9B-9C ...12

Depth Subject Matter ...52

Additional upper division electives chosen from Geology 130–190 courses, Hydrologic Science 144, 146 and related fields approved in advance by major adviser. No more than 3 units upper division elective credit for Geology 115-129 courses. Maximum of 6 units upper division elective credit for Geology 192 or 194A-194B or 194A-194H ...12

Total Units for the Major ...109-111

English Composition Requirement

It is recommended that all majors complete the English composition requirement (English 101 or 102 or 104 or the equivalent) before or concurrently with the following courses: Geology 100, 101, 105N, 106N, 108N, 109L, 110.

Recommended

For those who are intending to pursue a career in geology or who are planning to apply to graduate programs in the earth sciences, one or more of the following courses are recommended for any of the options or specifically to supplement the options as listed. Note that Mathematics 22A is not a necessary prerequisite to Physics 9C:

Geochmec/Petrology option: Mathematics 22A, Physics 9C, Hydrology 134 and Chemistry 2C, Chemistry 110A.

Quantitative/Geophysics option: Mathematics 22B, Statistics 32 or 102, Hydrology 134 or Chemistry 2C.

Minor Program Requirements:

Students in other disciplines may elect to complete a minor in Geology by choosing a geological subject emphasis listed below. On transcripts the minor will appear as a minor in Geology.

<table>
<thead>
<tr>
<th>Course</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 (or 1) and 50L</td>
<td>5-6</td>
</tr>
<tr>
<td>Geology 100, 101, 109 and either 107 or 108N</td>
<td>11</td>
</tr>
<tr>
<td>Geology 116 or 134, 139</td>
<td>3</td>
</tr>
</tbody>
</table>

Minor Advisers: R. Cowen, R. J. Twiss.

Geology 50 (or 1) and 50L

Select one of the five emphases below.

Geology

Geology 36

Biological Sciences 1A-1B-1C

Atmospheric Science 60 or 100

Emphasis

Graduate Study.

Students are advised to take the following courses as upper division electives in the Geology Department. All courses are 3-4 UNITS unless otherwise noted. Preceding courses must be completed by students majoring in any discipline, including Geology. Programs for these minors are listed separately in this catalog in alphabetical order. For Geology majors, one course at most from these minor programs can be counted toward satisfaction of the Geology degree requirements.

Integrated Science Teaching Credential. Students wishing to prepare for the teaching credential in Integrated Science with a concentration in Geoscience may do so by satisfying the requirements for the A.B. degree in Geology (77-79 units) and 36-37 additional units of science as outlined below. Students may also prepare for the science credential by taking the B.S. degree in Geology (108-111 units) and an additional 30-32 units as indicated by the asterisk below.

Biological Sciences 1A-1B-1C

Chemistry 2C

Geology 108N, 116, 150A, 150B, 150C

Geology 109, 151, 152N, Hydrologic Science 134, Soil Science 102

Chemistry majors may substitute one of the elective courses for Chemistry 110B.

Two elective courses chosen from Chemistry 110C, Geology 108, 146N, 148, Hydrologic Science 134, Soil Science 102

Two courses chosen from Environmental Science and Policy 100, 151, Geology 109, 151, 152N, Hydrologic Science 136

Oceanography emphasis

Geology 107 and 107L, 108N

Geology 151 or 152N

Two elective courses chosen from the following: Anthropology 151 or 152, Evolution and Ecology 100, 101, 102, 105, 112-112L, 140, 149, Geology 109, 150C

Minor Adviser: R. A. Zierenberg.

Paleobiology emphasis

Geology 107 and 107L, 108N

Geology 151 or 152N

Biological Sciences 1A-1B-1C

Atmospheric Science 60 or 100

Students are advised to take the following courses as upper division electives in the A.B. program.

Geology 105, 106N, and 134 or 135

Teaching Credential Subject Representative. H.W. Day. See also under Education—Teacher Education.

Graduate Study. The Department of Geology offers a program of study and research leading to the M.S. and Ph.D. degrees. For information regarding graduate study in geology, address the Graduate Adviser, Department of Geology.

Courses in Geology (GEL)

Lower Division Courses

1. The Earth (4)

Lecture—3 hours; discussion—1 hour. Introduction to study of the Earth for those not majoring in geology or associated sciences. Not open for credit to students who have taken course 50. GE credit: SciEng.—I, II, III, (I, II, III) Cowen, Veresyp

3. History of Life (3)

Lecture—3 hours. Prerequisite: course 1 recommended. The history of life during the three and one-half billion years from its origin to the present day. Origin of life and processes of evolution; how to visualize and understand living organisms from their fossil remains. GE credit: SciEng.—II, (II) Cowen

3G. History of Life: Discussion (1)

Discussion—1 hour. Prerequisite: course 3 concurrently. Small group discussion and preparation of short papers for course 3. GE credit with concurrent enrollment in course 3. Wrt.—II, (II) Cowen

3L. History of Life Laboratory (1)

Laboratory—3 hours. Prerequisite: course 3 concurrently. Exercises in understanding fossils as the clues to interpreting ancient life, including their functional morphology, paleoecology, and evolution. GE credit: SciEng.—I, (I, III) Cowen

4. Evolution: Science and World View (3)

Lecture—2 hours. Discussion—1 hour. Introduction to biological evolution. Emphasis on historical development, major lines of evidence and causes of evolution; relationships between evolution and Earth history; the impact of evolutionary thought on other disciplines. GE credit: SciEng.—II, (II) Cowen

10. Modern and Ancient Global Environmental Change (3)

Lecture—3 hours. Fundamental scientific concepts underlying issues such as global warming, pollution, and the future of nonsustainable resources presented in the context of anthropogenic processes as well as natural forcing of paleoenvironmental change throughout Earth's history. GE credit: SciEng.—II, (II) Cowen

12. Evolution and Paleobiology of Dinosaurs (2)

Lecture—2 hours. Introduction to evolutionary biology, paleobiology, ecology and paleoecology, using dinosaurs as case studies. GE credit: SciEng.—II, (II) Cowen

Environmental Geology emphasis

Geology 50 and 50L

Civil Engineering 171, 171L

Three courses chosen from Geology 134, 161, 162N, 163, 170, Hydrologic Science 103, 144, 146, Soil Science 118, 120

Minor Advisers: R. J. Twiss.

Geology 109, 150C

Geology 108, 146N, 148, Hydrologic Science 134, Soil Science 102

Chemistry majors may substitute one of the elective courses for Chemistry 110B.

Two elective courses chosen from Chemistry 110C, Geology 108, 146N, 148, Hydrologic Science 134, Soil Science 102

Two courses chosen from Environmental Science and Policy 100, 151, Geology 109, 151, 152N, Hydrologic Science 136

Oceanography emphasis

Geology 108N, 116, 150A, 150B, 150C

Biological Sciences 1A-1B-1C

Atmospheric Science 60 or 100

Students are advised to take the following courses as upper division electives in the Geology Department.

Biological Sciences 1A-1B-1C

Chemistry 2C

Geology 36

Geology 116-116G

Atmospheric Science 60 or 100

Students are advised to take the following courses as upper division electives in the A.B. program.

Geology 105, 106N, and 134 or 135

Teaching Credential Subject Representative. H.W. Day. See also under Education—Teacher Education.

Graduate Study. The Department of Geology offers a program of study and research leading to the M.S. and Ph.D. degrees. For information regarding graduate study in geology, address the Graduate Adviser, Department of Geology.

Courses in Geology (GEL)

Lower Division Courses

1. The Earth (4)

Lecture—3 hours; discussion—1 hour. Introduction to study of the Earth for those not majoring in geology or associated sciences. Not open for credit to students who have taken course 50. GE credit: SciEng.—I, II, III, (I, II, III) Cowen, Veresyp
Upper Division Courses

100. Earth Dynamics I: Extensional and Translational Processes (3)
Lecture—3 hours. Prerequisite: course 50, 50L, Physics 7A or 9A (may be taken concurrently), or consent of instructor. Structural features of, and geophysical constraints on, extensional and translational tectonics. Observation, formation, and tectonic environments of joints, fractures, normal faults, and strike-slip faults. Not open for credit to students who have completed course 105. GE credit: SciEng, Wrt.—I. (I.) Moores, Twiss

100L. Earth Dynamics I: Structure/Tectonics Laboratory (1)
Laboratory—2 hours; two-one-day field trips required. Prerequisite: course 50L and course 100 (may be taken concurrently), or consent of instructor. Introduction to three-dimensional analysis of geologic structures; introduction to field techniques; interpretation of topographic and geologic maps; tectonic analysis of extensional and strike-slip tectonics. Not open for credit to students who have completed course 105L. —I. (I.) Twiss

101. Earth Dynamics II: Convergent and Collsional Processes (3)
Lecture—3 hours. Prerequisite: courses 50-50L, 100, Mathematics 21B or 16B (may be taken concurrently), Physics 5A or 7A or 9A (may be taken concurrently), or consent of instructor. Geophysical and structural signatures of convergent tectonics, subduction zones, plate collisions and mountain belts. Topics include ductile deformation, folds, seismic Benioff zones, gravity and isotasy. Examples of collisions and resulting mountain belts. Examples drawn from western North America. GE credit: SciEng, Wrt.—II. (II.) Moores, Twiss

101L. Earth Dynamics II: Structure/Tectonics Laboratory (2)
Laboratory and fieldwork—6 hours; six days of field trips on four separate weekends required. Prerequisite: courses 50L, 100L, and 101 (may be taken concurrently), or consent of instructor. Field mapping and review of literature in preparation for field work. Not open for credit to students who have completed course 50L. —II. (II.) Mttns

102. Field Geology (3)
Fieldwork and laboratory—9 hours; 7-8 days on weekends during quarter. Prerequisite: course 101L or consent of instructor. Field mapping projects and writing geological reports. Weekly classroom meetings devoted to preparation of maps, cross sections, stratigraphic sections, rock descriptions, and reports. Not open for credit to students who have completed course 102—III. (III.) Lesher

105N. Earth Materials: Igneous Rocks (4)
Lecture—2 hours; laboratory—6 hours. Prerequisite: courses 60, 62; Mathematics 16A or 21A; Chemistry 2B (may be taken concurrently). Origin and occurrence of igneous rocks. Laboratory exercises emphasize the study of these rocks in hand specimen and thin section. Not open for credit to students who have completed course 123. GE credit: SciEng, Wrt.—II. (II.) Lesher

106N. Earth Materials: Metamorphic Rocks (4)
Lecture—2 hours; laboratory—6 hours. Prerequisite: course 105N, Chemistry 2B, Mathematics 16A or 21A. Physical and chemical properties of metamorphic rocks; interpretation of metamorphic environments. Laboratory exercises emphasize the study of these rocks in hand specimen and thin section. Not open for credit to students who have completed course 125. GE credit: SciEng, Wrt.—III. (III.) Schiffman, Day

107. Earth History: Paleobiology (3)
Lecture—3 hours. Prerequisite: courses 3-3L or Biological Sciences 1B. The evolution and ecological structure of the biosphere from the origin of life to the present. —III. (III.) Vermeij

107L. Earth History: Paleobiology Laboratory (2)
Laboratory—6 hours. Prerequisite: courses 3-3L or Biological Sciences 1B; course 107 (may be taken concurrently). Exercises in determining the ecological functions and evolution of individuals, populations, and communities of fossil organisms in field and laboratory. —III. (III.) Vermeij

108N. Earth History: Paleoclimates (3)
Lecture—3 hours. Prerequisite: course 1 or Geology/Environmental Science and Policy 116; and Chemistry 2A, or consent of instructor. Geological and environmental factors controlling climate change, the greenhouse effect with a detailed analysis of the history of Earth's climate fluctuations over the last 600 million years. Past and present climate records are used to examine potential future climatic scenarios. Not open for credit to students who have completed course 114. GE credit: SciEng, Wrt.—I. (I.) Spero

109. Earth History: Sediments and Strata (2)
Lecture—2 hours. Prerequisite: courses 50-50L. Principles of stratigraphic and sedimentologic analysis. Evaluation of historical and modern global changes in sedimentation within terrestrial and marine environments. Examination of the plate tectonic, climate and oceanographic factors controlling the distribution and exploitation of economic fluids within sedimentary rocks. Not open for credit to students who have completed course 106. GE credit with concurrent enrollment in course 109L. —II. (II.) Summer

109L. Earth History: Sediments and Strata Laboratory (2)
Laboratory—2 hours; four 1-day field trips. Prerequisite: course 109 (may be taken concurrently). Methods of stratigraphic and sedimentologic analysis of modern and ancient sediments. Identification of major sediment and sedimentary rock types. Outcrop and subsurface analysis of sedimentary basins. Not open for credit to students who have completed course 109. GE credit with concurrent enrollment in course 109W. —II. (II.) Summer

110. Summer Field Geology (8)
Fieldwork—8 hours/day; 6 days/week for six weeks. Prerequisite: courses 103, 109; course 105N recommended. Advanced application of geologic and geophysical field techniques to the study of rocks. Includes development and interpretation of geologic maps and cross sections; gravity, magnetic, electrical resistivity and seismic surveys; and field analysis of plutonic and volcanic rock suites. Not open for credit to students who have completed course 118. GE credit: SciEng, Wrt.—Summer

110N. Earth Science, History, and People (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: upper division standing; course 1. Study of interplay between the Earth and its human inhabitants through history, including consideration of acute events such as earthquakes and eruptions as well as the geology of resources, topography, and water. (Former course 131.) GE credit: SciEng or SocSci, Wrt.—III. (III.) Cowen

116. The Oceans (3)
Lecture—3 hours. Prerequisite: upper division standing or consent of instructor. Introductory survey of the marine environment. Oceanic physical phenomena, chemical constituents, geological history, and the sea's biota; and utilization of marine resources. (Same course as Environmental Science and Policy 116.) GE credit: SciEng—I. (I, II.) Cowen, Spero

116G. The Oceans: Discussion (2)
Discussion—2 hours. Prerequisite: course 116/Environmental Science and Policy 116 concurrently. Scientific method applied to discovery of the processes, biota and history of the oceans. Group discussion and preparation of papers. (Same course as Environmental Science and Policy 116.) GE credit with concurrent enrollment in course 116W. —II. (II.) Cowen

129. Preparation and Techniques for Petrology (1)
Laboratory—3 hours. Prerequisite: courses 60-60L. Introduction to petrographic laboratory techniques for petrograpers. Topics covered may include thin and polished section preparation, rock crushing/grinding, mineral separation, staining, and petrography. (Former course 165.) (P/NP grading only). —II. (II.) Winter

130. Non-Renewable Natural Resources (3)
Lecture—3 hours. Prerequisite: course 1. Origin, occurrence, and distribution of non-renewable resources, including metallic, nonmetallic, and energy-producing materials. Problems of discovery, production, and management. Estimations and limitations of reserves, and their sociological, political, and economic effects. —II. Zierenberg

134. Environmental Geology and Land Use Planning (3)
Lecture—3 hours. Prerequisite: one course in Geology, preferably course 50 or 1, or consent of instructor. Geologic aspects of land use and development planning. Geologic problems concerning volcanic and earthquake hazards, land stability, floods, erosion, coastal hazards, non-renewable resource extraction, waste disposal, water resources. GE credit: SciEng, Wrt.—III. (III.)

135. Rivers of California (3)

138. Introductory Volcanology (4)
Lecture—2 hours; fieldwork—6 hours. Prerequisite: upper division standing course 60 and 109 or the equivalents, or consent of instructor. Principles of physical and chemical volcanology. Taught in a volcanically active setting (e.g., Hawaii) with a strong field component. GE credit: SciEng.—summer (summer) Schiffman

139. Fluvial Geomorphology (5)
Lecture—3 hours; laboratory—3 hours; fieldwork—3 hours. Prerequisite: courses 50, 50L, Mathematics 21B or 16B recommended. Advanced analysis of fluvial processes, including geomorphic evolution of rivers, floodplains and watersheds at various spatial and temporal scales, and in response to changing land use. Laboratory exercises examine methods of geomorphic analysis of rivers. Includes three weekend field trips. —II. (II.) Mount

142. Basin Analysis (5)
Lecture—3 hours; laboratory—6 hours; two required one-day field trips. Prerequisite: course 50 or 50L, Mathematics 16C or 21C. Physical and chemical properties of magnatic environments and processes of igneous rock formation. Laboratory study of representative igneous rocks. Not open for credit to students who have completed course 123. GE credit: SciEng, Wrt.—II. (II.) Lesher

143. Advanced Igneous Petrology (5)
Lecture—3 hours; laboratory—6 hours. Prerequisite: course 105N, Mathematics 16C or 21C. Basic principles of the composition of rocks, controls on sedimentary fill, subsidence and thermal evolution, fluid flow, rock alteration due to fluid flow, and applications to petroleum exploration and hydrology.—I. (I.) Summer

144. Historical Ecology (3)
Lecture—3 hours. Prerequisite: upper division course in environmental science or ecology, or an introductory course in paleoecology. Ancient ecosystems and the factors that caused them to change. Species, ecosystems, evolution of new modes of life, geologically induced variations in resource supply, and extinction provide historical perspective on the biosphere of future.—II. (II.) Vermeij
145N. Advanced Metamorphic Petrology (5)
Lecture—3 hours; laboratory—6 hours. Prerequisite: course 106N, Hydrogeologic Science 124 or Chemistry 2C, Mathematics 16C or 21C. Metamorphic processes and the origin of metamorphic rocks. Laboratory study of representative rock suites. Offered in alternate years. Not open for credit to students who have completed course 125. GE credit: SciEng, Wrt.

146N. Isotope Geochemistry (3)
Lecture—3 hours. Prerequisite: Chemistry 2C or consent of instructor. Principles and applications of nuclear chemistry to geology. Methods of determining geologic ages using K-Ar, Rb-Sr, Nd-Sm, and U-Pb isotopes. The interpretation of apparent ages determined by isotopic methods. The age and origin of the earth. Offered in alternate years.—III. Zierenberg

148. Stable Isotopes and Geochronal Tracers (3)
Lecture—3 hours. Prerequisite: Chemistry 2C or Hydrologic Science 134; courses 50, 50L, 60. Use of oxygen and hydrogen isotopes in defining hydrologic processes; carbon, nitrogen, and sulfur isotopes as indicators of exchange between the lithosphere, hydrosphere, atmosphere and biosphere. Radiogenic, cosmogenic, and noble gas isotope tracers. Offered in alternate years.—III. Zierenberg

150A. Physical and Chemical Oceanography (4)
Lecture—1 hour. Prerequisite: course 116/Environmental Science and Policy 116; Physics 9B; Mathematics 21D; Chemistry 2C; or upper division standing in a natural science and consent of instructor. Physical and chemical properties of seawater, fluid dynamics, air-sea interactions, waves, tides, mixing, marine ecological and chemical cycles. Offered in alternate years. (Same course as Environmental Science and Policy 150A.)—I. (II.) McClain, Spero

150B. Geological Oceanography (3)
Lecture—3 hours. Prerequisite: course 50 or 116. Introduction to the origin and geo- logic evolution of ocean basins. Composition and structure of oceanic crust; marine volcanism and deposition of marine sediments. Interpretation of geologic history of the ocean floor in terms of sea-floor spreading theory. (Same course as Environmental Science and Policy 150B.)—II. (III.) McClain

150C. Biological Oceanography (4)
Lecture—3 hours; discussion—1 hour; fieldwork—one weekend field trip required. Prerequisite: Biological Sciences 1A and a course in general ecology or consent of instructor. Ecology of major marine habitats, including intertidal, shelf benthic, deep-sea and planktonic communities. Existing knowledge and contemporary issues in research. Segment devoted to human use. (Same course as Environmental Science and Policy 150C.)—II. (III.) McClain

152N. Paleobiology of Protrista (4)
Lecture—2 hours; laboratory—6 hours. Prerequisite: courses 107 or Biological Sciences 1A or consent of instructor. Morphology, systematics, evolution, and ecology of single-celled organisms that are preserved in the fossil record. Offered in alternate years. Not open for credit to students who have completed course 111B.

161. Exploration Geophysics and Seismology (3)
Lecture—3 hours. Prerequisite: Mathematics 21C, Physics 5C or 7C or 9C; or consent of instructor. Principles of exploration geophysics and seismology. Use of gravity, magnetics, and seismic methods. Laboratory will include field exercises. (Same course as Exploration Geophysics and Seismology 261.)—II. (III.) McClain

162N. Geophysics of the Solid Earth (3)
Lecture—3 hours. Prerequisite: Mathematics 21C, Physics 5C or 7C or 9C; or consent of instructor. Theory and use of physics in the study of the solid earth. Gravity, magnetism, paleomagnetism, and heat flow. Application to the interpretation of the regional and large-scale structure of the earth and to plate tectonics. Not open for credit to students who have completed course 117A—I. (II.) Spero

175. Advanced Field Geology (1-6)
Fieldwork—3-18 hours. Prerequisite: course 110 or graduate standing in Geology. Advanced problems and methods in geologic field studies. Preparation of a geologic map. May be repeated up to a total of six units when topic differs, including units received for course 185—II. (III.) Kellogg

182. Field Studies in Marine Geochemistry (2-8)
Lecture—3 hours; laboratory—1-3 hours; fieldwork—6-40 hours. Prerequisite: consent of instructor. Marine geochemistry with the opportunity of going out to sea or into the laboratory. Techniques of seawater sampling and interpretation of data. Laboratory work emphasizes analysis of data/samples collected.

190. Seminar in Geology (1-2)
Discussion—1 hour; seminar—1 hour; written abstracts. Prerequisite: major in Geology. Preparation and discussion of current topics in geology by visiting lecturers, staff, and students. May be repeated for credit. (P/NP grading only.)—I, II, III. (I, II, III.) Montanez

192. Internship in Geology (1-12)
Internship. Prerequisite: upper division standing, project approval prior to internship. Supervised work experience in geology may be repeated for credit for a total of 10 units. (P/NP grading only.)

194A-194B. Senior Thesis (3-3)
Prerequisite: open to Geology majors who have completed 135 units and who do not qualify for the honors program. Guided independent study of a selected topic, leading to the writing of a senior thesis. (Deferred grading only, pending completion of course sequence.)

194A-194HB. Senior Honors Project (3-3)
Independent study—9 hours. Prerequisite: open to Geology majors who have completed 135 units and who qualify for the honors program. Guided independent study of a selected topic, leading to the writing of an honors thesis. (Deferred grading only, pending completion of sequence.)

198. Directed Group Study (1-5)
Prerequisite: senior standing in Geology or consent of instructor.

199. Special Study for Advanced Undergraduates (1-5)
(P/NP grading only)

Graduate Courses

205. Advanced Field Stratigraphy (3)
Lecture—1 hour; fieldwork—2 hours. Prerequisite: courses 109 and 110 or consent of instructor; course 206 recommended. Fieldwork over spring break. Application of stratigraphic techniques to research problems. Collection, compilation, and interpretation of field data. Integration of data with models for deposition and interpretations of Earth history. Topics will vary. May be repeated for credit.—(III.) Summer

206. Stratigraphic Analysis (3)
Lecture—3 hours. Prerequisite: courses 109, 109L or consent of instructor; course 143 recommended. Directed study of various ancient stratigraphic successions. Emphasis will be on understanding methodologies and evolution of stratigraphic analysis and sedimentology. May be repeated for credit when topic differs. Offered in alternate years.—(I.) Montanez

214. Active Tectonics (3)
Lecture/discussion—3 hours. Prerequisite: graduate standing or consent of instructor. Active deformation associated with faults, landslides, and volcanoes. Geodetic measurement techniques such as triangulation, trilateration, leveling, Global Positioning System (GPS), and radar interferometry. GPS data acquisition and analysis. Inversion of geodetic data and mechanical models of crustal deformation.

216. Tectonics (3)
Lecture/discussion—3 hours. Prerequisite: course 101 or consent of instructor. Nature and evolution of tectonic features of the Earth. Causes, consequences, and evolution of plate motion, with selected examples from the Earth's deformed belts. Offered in alternate years.—(I.) Moores

217. Topics in Geophysics (3)
Lecture—1 hour; seminar—2 hours. Prerequisite: consent of instructor. Discussion and evaluation of current research in a given area of geophysics. Topic will change from year to year. May be repeated for credit.—(II.)

218N. Analysis of Structures in Deformed Rocks (3)
Seminar—3 hours. Prerequisite: courses 100, 100L, 101, 101L, 170; or consent of instructor. Recent advances in the understanding and analysis of structures in brittle and ductile deformed rocks. Detailed investigation of the characteristics of the structures, models for their formation, and applications to inferring the kinematics of larger scale tectonics. Offered in alternate years.—(III.) Twiss

219. Fracture and Flow of Rocks (3)
Lecture—3 hours. Prerequisite: courses 100, 101, Mathematics 21 or 16, Physics 7 or 9, or consent of instructor. Origins of those structures in rocks associated with brittle and ductile deformation. Theoretical analysis, using continuum mechanics, and experimental evidence for the origin of the structures with emphasis on deformational processes in the earth. Offered in alternate years.—(III.) Twiss

220. Mechanics of Geologic Structures (3)
Lecture—3 hours. Prerequisite: course 170, Mathematics 21C, Physics 9A or 5A, or consent of instructor. Mathematics 21D and 22A recommended. Development in tensor notation of the balance laws of continuum mechanics, and constitutive theories of elasticity, viscosity, and plasticity and their application to understanding development of geologic structures such as fractures, faults, dikes, folds, foliations, and boudinage. Offered in alternate years.—(III.) Twiss

226. Advanced Sedimentary Petrology (3)
Lecture—2 hours; laboratory—3 hours. Prerequisite: course 144 or consent of instructor. Advanced petrographic and geochemistry of sediments and sedimentary rocks. Geochemical, textural and mineralogical evolution of sedimentary rocks reflecting depositional or burial processes. Laboratory work emphasizes thin section study of rocks. May be repeated for credit when topic differs.—(II.) Summer

227. Stable Isotope Biogeochory (4)
Lecture—2 hours; laboratory—6 hours. Prerequisite: graduate standing and consent of instructor. Discussion and application of stable isotope techniques for scientific research problems. Course emphasizes carbon, oxygen, nitrogen, hydrogen and sulfur isotopes. Laboratory will develop basic skills of cryogenic gas extraction and specific techniques for individual research using stable isotopes.—(III.) Spero

228. Topics in Paleoceanography (3)
Lecture—3 hours. Prerequisite: courses 108N, 150A or consent of instructor. Critical discussion and review of selected topics in paleoceanography and paleoclimatology relating to the history of the processes controlling and affecting climate change and ocean circulation throughout the geologic record. Topics vary. May be repeated for credit.—(III.) Spero
235. Surface Processes (3) Lecture—3 hours. Prerequisite: courses 50, 50L, 139; Mathematics 218 or 168 recommended. Recent advances in the analysis of landforms and their evolution. Detailed investigation of the tools used to document surface processes. Evaluation of concepts and processes that govern landscape evolution. May be repeated for credit when topic differs.—(I.) Mount

236. Inverse Theory in Geology and Geophysics (3) Lecture—3 hours. Prerequisite: consent of instructor. Inversion of data for model parameters. Evaluation of parameter uncertainties. Linear and nonlinear problems for discrete and continuous models. Bakus-Gilbert inversion. Offered in alternate years.—(II.) McClain

238. Theoretical Seismology (3) Lecture—3 hours. Prerequisite: consent of instructor. Elastodynamic wave equation. Greens functions and source representations. Ray theory. Plane and spherical waves and boundary conditions. Elastic wave propagation in stratified media. Offered in alternate years. (P/NP grading only.)—III. McClain

246. Physical Chemistry of Metamorphic Processes (3) Lecture—3 hours. Prerequisite: course 145, Chemistry 110A, or consent of instructor. Physical and chemical principles of metamorphic mineral assemblages and methods of interpreting the paragenesis of metamorphic rocks. Offered in alternate years.

247. Metamorphic Petrology Seminar (3) Seminar—3 hours. Prerequisite: course 145 or consent of instructor; course 246 recommended. Selected topics in metamorphic petrology (e.g., mass transport processes, tectonic settings, geothermometry, thermal structure of metamorphic belts, regional studies). May be repeated for credit when topic differs. Offered in alternate years. (SU grading only.)

250. Advanced Geochemistry Seminar (3) Seminar—3 hours. Prerequisite: course 146N or consent of instructor. Critical review of selected topics in geochemistry including: ore genesis, hydrothermal and geothermal fluids, recent and ancient sediments, isotope geology, origin and chemistry of the oceans. Subject varies yearly depending on student interest. May be repeated for credit. Offered in alternate years.—II. Zierenberg

253. Current Topics in Igneous Petrology (3) Seminar—3 hours. Prerequisite: graduate standing in Geology; course 143 or consent of instructor. Topical seminar designed to help graduate students develop and maintain familiarity with current and past literature related to igneous rock petrology. May be repeated for credit when topic differs. Offered in alternate years. (SU grading only.)—I. Lesher

254. Physical Chemistry of Igneous Processes (3) Lecture—3 hours. Prerequisite: course 143 or consent of instructor; Chemistry 110A required; Chemistry 110B and 110C recommended. Introduction of modern concepts in chemical thermodynamics and kinetics, and fluid dynamics of magmatic systems for graduate students in petrology. Offered in alternate years.—III. Lesher

255. Experimental Petrology (3) Lecture—2 hours; laboratory—3 hours. Prerequisite: course 143 or consent of instructor. Introduction to techniques and methods of design and executing experiments on Earth-forming minerals and rocks. Principles and examples from igneous and metamorphic petrology will be utilized. Offered in alternate years.—(I.) Lesher

260. Paleontology (3) Seminar—3 hours. Prerequisite: graduate standing in geology or a biological science. Selected problems in paleontology. Subject to be studied will be decided at an organizational meeting. May be repeated for credit when topic differs.—I, II, III, (I, II, III.) Vermeij, Carlson

282. Geological X-Ray Spectrometric Analysis (4) Lecture—3 hours; laboratory—3-4 hours. Prerequisite: course 60-60L, Chemistry 2C, Physics 9C, and graduate standing in Geology. Theory of generation and detection of X-rays as applied to analytical chemistry of rocks and minerals. Laboratory sessions on use of the X-ray fluorescence spectrometer, electron microprobe, and X-ray diffractometer.—(III.) Schiffman

285. Field Studies in Marine Geochemistry (2-8) Lecture—3 hours; laboratory—1-3 hours; fieldwork—4-40 hours. Prerequisite: consent of instructor. Marine geochemistry with the opportunity of going to sea or into the field on land. Techniques of sea-floor mapping using bottom photography, marine geochemical sampling, and method of data reduction and sample analysis. Analysis of data/samples collected.
Courses in Geography (GEO)

Lower Division Courses

1. Physical Geography (4)
Lecture—3 hours; laboratory—2 hours. Basic physical elements of the human habitat, especially climate, landforms, soils, and natural vegetation.—II. (II.)

2. Introduction to Cultural Geography (3)

2G. Introduction to Cultural Geography: Discussion (1)
Discussion—1 hour; short papers. Prerequisite: course 2 concurrently. Small group discussion of topics and readings assigned for course 2. Preparation and discussion of short papers. GE credit with concurrent enrollment in course 2: Wrt.—III. (III.) Allan

10. The World’s Regions (3)
Lecture—3 hours. The major geographic regions of the world; their origins, physical environments, cultures and economies; their interactions and global roles. Designed for non-majors.—I, II, III. (II, III.) Dingemans, Allan

98. Directed Group Study (1-5)
Prerequisite: consent of instructor; primarily for lower division students. (P/NP grading only.)

99. Independent Study (1-5)
Prerequisite: consent of instructor, primarily for lower division students. (P/NP grading only.)

Upper Division Courses

121. North America (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 1 and 2 or consent of instructor. Landscapes and lifeways in the United States and Canada, and the ways in which physical and human forces have contributed to their variety. Regional stresses within and between the two countries.—(III.)

123. Western Europe (3)
Lecture—3 hours. Prerequisite: courses 1 and 2 or consent of instructor. Geographic conditions and their relation to the economic, social, and political problems of the countries of Western Europe.—I. (II.) Dingemans

126. Southern Asia (3)
Lecture—3 hours. Prerequisite: courses 1 and 2, or consent of instructor. Physical, cultural, and historical geography of Southern Asia.—III. (II.) Allan

131. California (4)
Lecture—3 hours; discussion—1 hour. The regional nature and variety of California: landforms, climates, vegetation, and soils; water, agriculture, and the cities. Ecological problems caused by increasing population and technological pressures on these environments.—III. (III.) Dingemans

143. Political Geography (4)
Lecture—3 hours; term paper. Areal differentiation of major natural and cultural phenomena affecting the world’s political organization.—I. (I.) Dingemans

151. History of Geographic Thought (4)
Lecture—3 hours; term paper. Prerequisite: three upper division courses in geography. The literature of geography: objectives, subdivisions, and development of the subject.—III.

155. Urban Geography (4)
Lecture—3 hours; term paper. Prerequisite: course 5 or consent of instructor. Geography of land use within cities. The processes of change, and theories of economic and social organization of urban space. The urban landscape as a product of history, planning policy, transportation systems, and residential structure.—(III.) Dingemans

161. Conservation of Resources and Environment (4)
Lecture—4 hours. Principles of natural-resource and environmental-quality conservation. Land use conflicts between forestry, agricultural, mining, municipal, and recreational interests. Roles of industry, government, and society in creating and resolving resource and environmental problems.—(I.)

170. Cultural Ecology (4)
Lecture—3 hours; term paper. Prerequisite: course 2 or Anthropology 2. Geographic theories of environment-man relations. Ecologic relations of gatherers, fishermen, hunters, cultivators, and urbanites; their environmental impacts; their domestic plants and animals.—(III.)

171. Cultural Geography (4)
Lecture—3 hours; term paper. Prerequisite: course 2 or consent of instructor. Consideration of principal concepts and approaches in cultural geography in modern times, and links with, and parallels in, other disciplines.—(III.)

192. Student Internship in Geography (2-4)
Internship—5-15 hours at employing agency; term paper. Prerequisite: consent of undergraduate Geography major adviser and consent of instructor. Supervised program of student internships with public agencies dealing with geographical problems. The application and evaluation of theoretical concepts through work experience with a variety of assignments and work schedules. (P/NP grading only.)

198. Directed Group Study (1-5) (P/NP grading only.)

199. Special Study for Advanced Undergraduates. (1-5) (P/NP grading only.)
Faculty

Nigel Allan, Ph.D., Professor (Geography)
Michael Barbour, Ph.D., Professor (Environmental Horticulture)
David Boyd, Ph.D., Associate Professor (Anthropology)
Cynthia Brantley, Ph.D., Professor (History)
Kenneth H. Brown, M.D., Professor (Nutrition)
Stephen Brush, Ph.D., Professor (Human and Community Development)
Dennis Dingemans, Ph.D., Associate Professor (Geography)
Deborah L. Elliott-Fisk, Ph.D., Professor (Wildlife, Fish, and Conservation Biology)
Richard Falk, Ph.D., Professor (Plant Biology)
Mark Francis, M.L.A., Professor (Landscape Architecture)
Charles Goldman, Ph.D., Professor (Environmental Science and Policy)
Louis Griweti, Ph.D., Professor (Nutrition)
Lynette Hart, Ph.D., Associate Professor (Population Health and Reproduction)
David Hird, D.V.M., Ph.D., Professor (Veterinary Medicine)
Frank Hirtz, L.L.D., Ph.D., Associate Professor (Human and Community Development)
Lovell (Tu) Jarvis, Ph.D., Professor (Agricultural and Resource Economics)
Robert Johnston, M.S., Professor (Environmental Science and Policy)
Suad Joseph, Ph.D., Professor (Anthropology, Women and Gender Studies)
Cari Keen, Ph.D., Professor (Nutrition)
Martin Kenney, Ph.D., Professor (Human and Community Development)
Nguyen Kien, Ph.D., Professor (Anesthesiology)
F. Thomas Leidig, Ph.D., Associate Professor (Environmental Horticulture)
Lyn Lofland, Ph.D., Professor (Sociology)
Bo Lonerdal, Ph.D., Professor (Nutrition)
Jay R. Lund, Ph.D., Professor (Civil and Environmental Engineering)
Dean MacCannell, Ph.D., Professor (Landscape Architecture)
Roger McDonald, Ph.D., Professor (Nutrition)
Janet Molsen, Ph.D., Professor (Human and Community Development)
Debbie Niemeier, Ph.D., Associate Professor (Civil and Environmental Engineering)
Ben Orlove, Ph.D., Professor (Environmental Science and Policy)
Richard Plant, Ph.D., Professor (Agriculture and Range Science)
James Quinn, Ph.D., Professor (Environmental Science and Policy)
David Robertson, Ph.D., Professor (English)
Lynn Rolier, Ph.D., Professor (Classics, Art History)
Margaret Rucker, Ph.D., Professor (Textiles and Clothing)
Heath Schenker, M.A., Associate Professor (Landscape Architecture)
Art Shapiro, Ph.D., Professor (Evolution and Ecology)
Michael P. Smith, Ph.D., Professor (Human and Community Development)
Margaret Swain, Ph.D., Assistant Adjunct Professor (Anthropology)
Robert L. Thayer, Jr., M.A., Professor, (Landscape Architecture)
Susan Ustin, Ph.D., Associate Professor (Land, Air and Water Resources)
Stefano Varese, Ph.D., Professor (Native American Studies)
Wesley W. Wallender, Ph.D., Professor (Land, Air and Water Resources)
Geoffrey Wandersforde-Smith, Ph.D., Associate Professor (Political Science)
Diane Wolf, Ph.D., Associate Professor (Sociology)
Truman Young, Ph.D., Assistant Professor (Environmental Horticulture)

Emeriti Faculty

Thomas Cahill, Ph.D., Professor Emeritus
Seymour Gold, Ph.D., Professor Emeritus
Howard Gregor, Ph.D., Professor Emeritus
Jack Ives, Ph.D., Professor Emeritus
Stephen Jett, Ph.D., Professor Emeritus

Affiliated Faculty

M. Kat Anderson, Ph.D., Researcher (Environmental Horticulture)
James Griishop, Ph.D., Specialist, Cooperative Extension (Human and Community Development)
Greg McPherson, Ph.D., Researcher (Western Center for Urban Forest Research and Education)
Sheri Zidenberg-Cherr, Ph.D., Specialist (Cooperative Extension Specialist in Nutrition)

Graduate study. The Graduate Group in Geography offers programs of study and research leading to the M.A. and Ph.D. degrees. Faculty and students share a common interest and research areas of thematic emphasis include biogeography, cultural-human geography, medical-nutritional geography, and physical-environmental geography. Current research projects include the Caribbean, eastern Europe, southeast Asia, Africa, and the United States (especially California).

Preparation. Most students considered for admission will have an undergraduate major in geography or in a closely related field. They normally will have taken a course in any of the following areas: field methods in geography, cartography, remote sensing, statistics, GIS, geographic theory. They also should have completed one course each in human geography, physical geography, and a geographic region.

Graduate adviser. J. Momsen (Human and Community Development), S. Brush (Human and Community Development).

Courses in Geography (GEO)

Graduate Courses

200A. Research Trends in Geography (1)
Seminar—1 hour. Major current research themes and trends in geography. (S/U grading only.)

200B. Geographical Concepts (4)
Lecture—3 hours; term paper. Prerequisite: undergraduate course work in geography or consent of instructor; graduate standing. Survey of key concepts and thematic content of the discipline of geography, including the role of science and humanism, the classical context of the discipline, and process, structure and scale. —I, (I.) Dingemans

200C. Theory and Practice of Geography (4)
Lecture—3 hours; term paper. Prerequisite: graduate standing. Development of geographical theory; key concepts and theories; their chronology, and application to the practice of geography. Analytical background to geographical theory; application of theory to geographical practice and research projects. —II, (II.) Momsen

200D. Research Methods in Geography (4)
Lecture—3 hours; term paper. Prerequisite: graduate standing, courses 200B and 200C, or consent of instructor. Survey of research methods in geography, including the use of logic, theory and paradigms, research design, and analytical techniques, including statistics and modeling. —III, (III.) Young, Wandersforde-Smith

201. Sources and General Literature of Geography (4)
Discussion—4 hours. Prerequisite: graduate standing in geography; consent of instructor. Designed for students preparing for higher degrees in geography. May be repeated for credit in one or more of the following subfields: physical, cultural, economic, urban, historical, political, conservation, and regional geography. —I, II, III, (I, II, III.)

290. Seminar: Selected Regions (4)
Seminar—3 hours. Region to be announced annually. —I, II, III, (I, II, III.)

291. Seminar in Cultural Geography (4)
Seminar—3 hours. —I, II, III, (I, II, III.)

292. Seminar in Plant Geography (4)
Seminar—3 hours; seminar paper. Prerequisite: graduate standing. Examination of that aspect of cultural plant geography dealing with human impacts and vegetation change on the earth’s major biomes. Particular emphasis on the New World’s savannas, deserts, and grasslands. Offered in alternate years. —I.

295. Seminar in Urban Geography (4)
Seminar—3 hours.—II, (II.)

297. Graduate Group in Geography Seminar (2)
Lecture/discussion—1 hour; term paper. Prerequisite: graduate standing. Seminars by UC Davis faculty and prominent national and international scholars; research presentations by Graduate Group in Geography Ph.D. candidates. May be repeated for credit. (S/U grading only.)

298. Group Study (1-5)
Prerequisite: consent of instructor. (S/U grading only.)

299. Research (1-12)
(S/U grading only.)

299D. Individual Study (1-12)
Prerequisite: graduate student status in Geography and consent of instructor. (S/U grading only.)

Professional Course

391. Teaching Assistant Training Practicum (1-4)
Prerequisite: graduate standing. May be repeated for credit. (S/U grading only.)—I, II, III, (I, II, III.)
The Department of Biological and Agricultural Engineering offers a minor in Geographic Information Systems with an emphasis on spatial analysis. This minor is ideal for students interested in information processing of spatial data related to remote sensing, land information systems, marine cartography, thematic mapping, surface modeling, environmental modeling, resources management, public utility planning, emergency response, geomarketing, geotechnics, archaeology, military exercises, and computer-aided design. Prerequisites include Mathematics 16A-16B, Statistics 13 or Agricultural Systems and Environment 120 or Civil and Environmental Engineering 114, and Agricultural Systems and Environment 21 or Computer Science Engineering 15.

Minor Program Requirements:

<table>
<thead>
<tr>
<th>Course</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geographic Information Systems</td>
<td>18</td>
</tr>
<tr>
<td>Applied Biological Systems Technology 180, 181</td>
<td>10</td>
</tr>
</tbody>
</table>
| Select 8 or more units from Agricultural Systems and Environment 121,
 Applied Biological Systems Technology 175, Applied Biological Systems
 Technology/Hydrologic Science 182, Environmental and Resource Sciences
 105, 185, 186, or 186L | 8 |

Minor Advisers: R. Plant, W. Wallender.
Geographic Studies

(College of Agricultural and Environmental Sciences)
The interdepartmental minor in Geographic Studies is defined by its concern with place. Geographers strive to answer spatial questions regarding the earth’s surface; to describe and explain the character of regions; to ascertain the ways in which historical and contemporary humans have used and shaped the earth’s surface; and to understand the interactions of physical, biotic, and human systems within our global environment. The minor is compatible with a variety of environmental majors in the college and also with graduate programs in geography.
The minor is sponsored by the Department of Environmental Design.

Minor Program Requirements:

<table>
<thead>
<tr>
<th>Units</th>
<th>Geographic Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>Geography 10</td>
</tr>
</tbody>
</table>

Select at least one course from three of the following areas:

(a) Human geography:
- Human and Community Development 141, 142; International Agricultural Development 104; Environmental and Resource Sciences 173; or other courses approved by the adviser.

(b) Methods in geography:
- Environmental and Resource Sciences 105, 185, 186; or other courses approved by the adviser.

(c) Regional ecosystems:
- Landscape Architecture 168; Wildlife, Fish, and Conservation Biology 156, 157; Environmental and Resource Science 144; Evolution and Ecology 121; Geography 123, 131; or other courses approved by the adviser.

(d) Individual study:
- Select a maximum of 4 units of 192 (Internship) or 199 (Research) in any appropriate department.

Minor Adviser: D.J. Dingemans.
(College of Letters and Science)

Geophysics is study of the physical properties and processes within and surrounding the Earth. Many problems in the Earth Sciences require geophysical techniques for study. The interdisciplinary minor in geophysics is for students with backgrounds in the physical sciences, engineering and other fields who are interested in pursuing a graduate or professional career in geophysics, or who require a significant knowledge in the field. The curriculum reflects the need for such students to have a firm foundation of geophysics classes, as well as courses from the vast diversity of subdisciplines from many departments that are included in geophysics.

The minor is sponsored by the Department of Geology, 174 Physics/Geology Building.

Minor Program Requirements:

<table>
<thead>
<tr>
<th>COURSE</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geophysics</td>
<td>21-24</td>
</tr>
<tr>
<td>Engineering 5</td>
<td>3</td>
</tr>
<tr>
<td>Geology 161, 162N</td>
<td>6</td>
</tr>
<tr>
<td>Applied Science Engineering 115</td>
<td>3</td>
</tr>
<tr>
<td>One course sequence chosen from the following:</td>
<td>9-12</td>
</tr>
<tr>
<td>a. Atmospheric Science 120, 121A, 121B</td>
<td></td>
</tr>
<tr>
<td>b. Geology 100, 100L, 101, 101L</td>
<td></td>
</tr>
<tr>
<td>c. Mathematics 118A, 118B, 118C</td>
<td></td>
</tr>
<tr>
<td>d. Physics 104A, 104B, 105C</td>
<td></td>
</tr>
</tbody>
</table>

Minor adviser. J.S. McClain, Department of Geology, 275A Physics/Geology, 752-7093.
German

The Major Program

The German major explores in depth the literature and language, the culture and commerce of the German-speaking world. Whereas the General Program accommodates specifically those students whose interest lies in literary studies, German Area Studies as well as the Culture and Commerce emphasis are two options that combine advanced language study with courses featuring the contributions of the German-speaking world to fields such as music, art, philosophy, history, and economics.

The Program. Two of the three major emphases reflect the department’s primary emphasis on literary figures, movements and themes, and thus they share a common core of upper division literature electives. The Culture and Commerce emphasis has as its goal functional language competency to enable students to live and work in a German-speaking environment. A key feature of this track is a work/study experience abroad. Regardless of emphasis, students will find maximum practice in spoken and written German as well as in listening comprehension in all upper division courses offered in German.

Career Alternatives. Completion of the major prepares students for graduate study in German or for career opportunities in international fields ranging from employment in business and government to careers in the fine arts and sciences. Also, it permits admission to professional schools such as law and medicine.

A.B. Major Requirements:

<table>
<thead>
<tr>
<th>Department Adm.</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparatory Subject Matter</td>
<td>16-27</td>
</tr>
<tr>
<td>German 1-2-3 (or the equivalent)</td>
<td>0-15</td>
</tr>
<tr>
<td>German 20, 21, 22</td>
<td>12</td>
</tr>
<tr>
<td>Depth Subject Matter</td>
<td>44</td>
</tr>
<tr>
<td>General Program</td>
<td></td>
</tr>
<tr>
<td>German 101A, 101B, 103</td>
<td>12</td>
</tr>
<tr>
<td>German 120</td>
<td>4</td>
</tr>
<tr>
<td>Three courses chosen from upper division literature offerings taught in German</td>
<td>12</td>
</tr>
<tr>
<td>Four additional upper division courses selected from 104–109 and 121–198, upon the explicit advance approval of the undergraduate major adviser</td>
<td>16</td>
</tr>
</tbody>
</table>

The above category may be satisfied in part by one or more courses in Comparative Literature, in another national literature, or from German literature-in-translation offerings (111–119, 140–142) upon consultation with, and advance approval of, the undergraduate major adviser.

German Culture and Commerce Emphasis

German 103, 104, 109A, 109B | 16 |
German 118E or 120	4
German 143, 192	12
Three elective courses from at least two of the following subjects	12
History 144A, 144B, Political Science 123, 137	16

Recommended: International Relations 1, German 101A, 101B

German Area Studies Emphasis

German 101A, 101B, 103 | 12 |
German 120	4
Two courses chosen from upper division literature courses that are taught in German	8
History 144A or 144B	4
Four elective courses in accordance with the student’s interest chosen from at least two of the following three areas after consultation with and approval of the adviser	16

Humanities:

History 143, Philosophy 170, 175.

Social Sciences:

Geography 123, Political Science 117, 137.

Fine Arts:

Art 176C, 177A, 177B, Music 110A, 110C, 110D, 110F.

Special consideration is also given to such courses in Comparative Literature as the 164 series, where pan-European movements influential upon German literature are at issue.

Total Units for the Major | 60-71

Minor Program Requirements:

The Department offers a German Language and Literature minor. In addition, individual minor programs may be designed upon consultation with the undergraduate adviser.

Students are particularly encouraged to consider a minor that combines a coherent group of courses to emphasize area studies in German (i.e., German philosophy, the arts, history, political science, as well as literature). The purpose of the minor is to provide students with the opportunity to augment their training in other fields by acquiring proficiency in the German language and exposure to German literature and culture.

UNITS

German Language and/or Literature | 20-24 |

Choose courses numbered from German 101A through 109B and literature courses that are taught in German | 20-24 |

Major Adviser. C. Bernd.

Honors and Honors Program. The honors program comprises two quarters of study under course 194A-194B, which will include a research paper. See also the University and College requirements.

Teaching Credential Subject Representative. I. Henderson. See also under the Teacher Education Program.

Graduate Study. The Department offers programs of study and research leading to the M.A. degree and to the Ph.D. degree in German Literature. Additional degree options for a designated emphasis are available through departmental affiliations with the programs in Social Theory and Comparative History, Critical Theory, Feminist Theory, and second language acquisition. Detailed information may be obtained by writing to the Department Chairperson or the Graduate Adviser.

Graduate Adviser. K.R. Menges.

Prerequisite Credit. Credit normally will not be given on the lower division level for a course that is the prerequisite of a course already successfully completed.

Courses in German (GER)

Lower Division Courses

Course Placement. Students with two years of high school German normally continue in German 2; those with three years, German 3; those with four years, German 20.

1. Elementary German (5)

Discussion—5 hours; laboratory—two 1/2-hour sessions. Introduction to German grammar and development of all language skills in a cultural context with special emphasis on communication. (Students who have successfully completed German 2 or 3 in the 10th or higher grade in high school may receive unit credit for this course on a P/NP grading basis only. Although a passing grade will be charged to the student’s P/NP option, no petition is required. All other students will receive a letter grade unless a P/NP petition is filed.)—I, II, III (I, II, III).

2. Elementary German (5)

Discussion—5 hours; laboratory—1 hour. Prerequisite: course 1. Continuation of course 1 in areas of grammar and basic language skills.—I, II, III (I, II, III)

3. Elementary German (5)

Discussion—5 hours; laboratory—1 hour. Prerequisite: course 2. Completion of grammar sequence and continuing practice of all language skills through cultural texts.—I, II, III (I, II, III)
6. Conversational German (3)
Lecture—3 hours. Prerequisite: course 3. Designed to develop intermediate language skills with special emphasis on communication and grammatical accuracy in conversation. Course 6 may be taken concurrently with course 20.—I, II, III, (I, II, III.) Henderson

20. Intermediate German (4)
Lecture/discussion—3 hours; laboratory—1 hour. Prerequisite: course 3. May be taken concurrently with course 6. Review of grammatical principles by means of written exercises; expanding of vocabulary through readings of modern texts. Not open for credit to students who have completed course 4. (Former course 4.)—I, II.

21. Composition and Conversation (4)
Discussion—3 hours; extensive writing. Prerequisite: course 20 or consent of instructor. Practice in short essay writing. Discussion based on readings from a variety of German texts.—I, II, III, (I, II, III.)

22. Composition and Conversation (4)
Discussion—3 hours; extensive writing. Prerequisite: course 21 or consent of instructor. Practice in short essay writing with an aim toward refinement and expansion of vocabulary. Discussion based on readings in a variety of German.—I, II, III, (I, II, III.)

47. Erasmus and Christian Humanism (4)
Lecture/discussion—3 hours; term paper. Erasmus is studied as a protagonist of contemporary ideas such as the equality of men and women, individual human dignity, peace and disarmament, pluralistic society and tolerance, in the context of Renaissance Europe, and his influence in the following centuries. Offered in alternate years. GE credit: ArtHum, Div, Wrt.—I. (I.)

48. Myth and Saga in the Germanic Cultures (4)
Lecture—3 hours; term paper. Knowledge of German not required. Reading in English translation from the Norse Eddas, the Volsung and Sigurd-Siegfried cycles, and the Gudrun lays; literary mythology in German Romanticism culminating in Wagner’s “total art-work” concept and The Ring of the Nibelung cycle. May not be counted toward major in German. GE credit: ArtHum, Wrt.—I. (I.)

98. Directed Group Study (1-5)
Prerequisite: consent of instructor. Primarily for lower division students. (P/NP grading only.)

99. Special Study for Undergraduates (1-5)
(P/NP grading only.)

Upper Division Courses

101A. Survey of German Literature, 800–1800 (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 21. German literature from the Middle Ages to Romanticism (800-1800) with an emphasis on providing an overview of major “movements” and authors. GE credit: ArtHum.—I. (I.)

101B. Survey of German Literature, 1800–Present (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 21. German literature from the Romanticism (1800) to the present with an emphasis on providing an overview of major “movements” and authors. GE credit: ArtHum.—II. (III.)

103. Writing Skills in German (3)
Lecture—3 hours; extensive writing. Prerequisite: course 21. Practice in different kinds of writing, such as abstracts, definition, lecture, summaries, analysis of or response to short literary texts.—I. (I.) Bernd

104. Translation (4)
Lecture/discussion—3 hours; extensive writing. Prerequisite: course 21 or the equivalent or consent of instructor. Exercises in German-to-English, English-to-German translation using texts from the areas of culture and commerce. Not open for credit to students who have completed course 104A. Offered in alternate years.—I. McConnell

105. The Modern German Language (4)
Lecture/discussion—3 hours; laboratory—1 hour. Prerequisite: course 20; Linguistics 1 recommended. Introduction to the linguistic analysis of contemporary German, including its phonology, morphology, syntax and semantics, as well as sociolinguistic considerations.—I. (I.) Benware

106. History of the German Language (4)
Discussion—3 hours; laboratory—3 hours. Prerequisite: course 21; course 105 or Linguistics 1 recommended or consent of instructor. Survey of the development of the German language and the study of its structure in historical perspective.—II. (II.) Benware

108. Varieties of Contemporary German (4)
Lecture—3 hours; laboratory and/or individual group consultation on projects. Prerequisite: courses 22, 105. Study of relations between the standard language, Umgangssprachen, and dialects. Approach is both descriptive and sociolinguistic. Class or individual projects on regional differences, including all of the contiguous German-speaking area of Europe.—I. (I.) Benware

109A. Business German (4)
Lecture/discussion—4 hours. Prerequisite: course 22 or consent of instructor. Specialized advanced language course using business-oriented information and publications as the basis for discussions, role-play, reports, compositions and translations.—II. (III.) Henderson

109B. Advanced Business German (4)
Lecture/discussion—3 hours; laboratory/discussion—1 hour. Prerequisite: course 109A or consent of instructor. Specialized advanced language course designed as a sequel to German 109A. Expands on previously introduced materials and features new topics such as the EU, the European Currency System, German company forms and the stock market.—III. (III.) Henderson

111. Major Writers in Translation (4)
Lecture—3 hours; extensive writing. Prerequisite: upper division standing or consent of instructor. Examination (in English) of representative works by a major writer in the German-speaking sphere, set in the broader cultural context of the relevant period or movement in each case. May be repeated for credit when topic differs. Offered in alternate years. GE credit: ArtHum, Wrt.—I, II, III, (I, II, III.) McConnell

112. Topics in German Literature (4)
Lecture/discussion—3 hours; extensive writing. Prerequisite: upper division standing or consent of instructor. Investigation of significant themes and issues within their European context. May be repeated for credit when topic differs. GE credit: ArtHum, Wrt.—I, II, III, (I, II, III.) McConnell

113. Goethe’s Faust (4)
Discussion—3 hours; term paper. Intensive study of one of the great works of world literature: Parts I and II. Discussions and readings in English; reading the text in the original is encouraged. GE credit: ArtHum, Wrt.—II. (II.) Schaeffer

115. German Literature Since 1945 (4)
Lecture—3 hours, extensive writing. Knowledge of German not required. Major writers of the post-war generation of Austria, Switzerland and Germany: novelists, such as Böll, Grass, Johnson, Walser, Handke; playwrights such as Frisch, Dürrenmatt, Oldenburger, and Aichinger. May be repeated for credit in different topic area. GE credit: ArtHum, Wrt.—I. (I.) Menges

117. The Nibelungen Tradition: Medieval, Musical, and Modern (4)
Lecture—3 hours, extensive writing. Knowledge of German not required. Three modes of the Nibelungen legend: the Medieval epic poem Nibelungenlied, the Scandinavian Volsunga Saga, Wagner’s music drama Ring of the Nibelungs, and Thomas Mann’s Blood of the Walsungs in their intellectual environment and interrelationship. GE credit: ArtHum, Wrt.—II. (II.) McConnell

118A. Fin-de-siècle Vienna (The Classical Song of the Habsburg Empire) (4)
Lecture—1 hour; discussion—2 hours; term paper. Cultural ferment in Vienna, capital of the multinational Habsburg empire, at the turn of the century, with consideration of innovations in literature, music, graphic arts, architecture, philosophy, and psychology, heralding European modernism. Offered in alternate years. GE credit: ArtHum, Wrt.—I. (I.) Menges

118B. Weimar Culture: Defeat, the Roaring Twenties, the Rise of Nazism (4)
Lecture—1 hour; discussion—2 hours; term paper. Expressionism in graphic arts, literature, film, New Objectivity, Brecht, and Bauhaus considered in the context of the failure of the German experiment in democracy, the Weimar Republic of 1919–33. Offered in alternate years. GE credit: ArtHum, Wrt.—III. Menges

118C. Germany Under the Third Reich (4)
Lecture—1 hour; discussion—2 hours; term paper. Background in European history helps interdisciplinary study of German politics, society, and culture during the Third Reich (1933-45). Historical, literary, psychological, philosophical readings; study of architecture, graphic arts, cinema; fascist aesthetic. Everyday life in Hitler’s Germany: consent, dissent, opposition, and resistance, Jews in Germany; the Holocaust. GE credit: ArtHum, Wrt.—II. (I.) Menges

118D. Germany Between 1949 and 1989: Division and Restoration (4)
Lecture/discussion—3 hours; term paper. Survey of German history as a divided country. Associated cultural phenomena such as the so-called Economic Miracle, the Student Movement, the Historian’s Debate through a variety of theoretical and aesthetics texts and films. Offered in alternate years. GE credit: ArtHum, Wrt.—II. (I.) Menges

118E. Contemporary German Culture (4)
Lecture—2 hours; discussion—1 hour; term paper. Prerequisite: course 50. Thorough introduction into the political, economic, social and cultural scene of Germany today (Austria and Switzerland marginally included). Historical background and comparative perspectives. Readings from a variety of sources, films and video-tapes. Knowledge of German not required. Offered in alternate years. GE credit: ArtHum, Wrt.—II. (I.) Menges

118F. The German War Experience in Literature, Art, Film, and Music (4)
Lecture—3 hours; extensive writing. Prerequisite: one of History 144B, 146A, 146B, 147B or 147C recommended. German experience of war in the 20th century as manifested in literature, art, film, and music. Reaction to both wars contrasted and compared in the area of aesthetics texts and films. Offered in alternate years. GE credit: ArtHum, Wrt.—II. (I.) Menges

119. From German Fiction to German Film (4)
Lecture—3 hours; discussion—1 hour; term paper. Examines a number of film adaptations of major German prose works and plays to ascertain the types of changes involved in the shift in medium and the positive and negative effects achieved by such transferences. GE credit: ArtHum, Wrt.—II. (I.)
120. Survey of German Culture (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 21. Major developments in such areas of German life as the arts, philosophical thought, social institutions, and political history. GE credit: ArtHum.—(I.) Schaeffer

121. The Medieval Period in German Literature (4)
Discussion—3 hours; term paper. Prerequisite: course 22. Literary-philosophical profile of the Mittelhochdeutsche Blütezeit in terms of the significant epics, romances, and lyric poetry. Readings in modern German. GE credit: ArtHum.—(II.) McConnel

122A. Humanism and Reformation (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 21. Exemplary literary works of the sixteenth century tracing the principal lines of development and showing the reflection in literature of the social scene. Offered in alternate years. GE credit: ArtHum.—(I.) Schaeffer

122B. The Literary Baroque (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 21. Exemplary literary works of the seventeenth century tracing the principal lines of development and showing the reflection in literature of the social scene. Offered in alternate years. GE credit: ArtHum.—(II.) Schaeffer

123. Literature of the Classical Age (4)
Discussion—3 hours; term paper. Prerequisite: course 22. A critical assessment of principal works of Goethe and Schiller in their development from Sturm und Drang individualism and rebellion to the balanced harmony of the classical period. GE credit: ArtHum.—(I.) Menges

124. Major Movements in German Literature (4)
Lecture/discussion—4 hours. Prerequisite: course 21 or the equivalent. Examination of significant movements in German literature schools, with particular emphasis on the broader cultural dynamics and ideologies as these apply to individual literary works. May be repeated for credit when topic differs. Offered in alternate years. GE credit: ArtHum.—(II.) Schaeffer

125. Short Fiction: 1880-1914 (4)
Lecture—3 hours; term paper. Prerequisite: course 21. Representative short German fiction in the fin-de-siecle period, to attain conversance with various prose styles and the cultural currents they reflect. Offered in alternate years. GE credit: ArtHum.—(III.) Schaeffer

126. Modern German Literature (4)
Discussion—3 hours; extensive writing. Prerequisite: course 21. Selections from significant works of major twentieth-century writers, such as Hesse, Mann, Kafka, Riike, Brecht, Grass. May be repeated for credit with consent of Undergraduate Major Adviser. Offered in alternate years.—(I.) Menges

127. Studies in Major Writers (4)
Lecture/discussion—4 hours. Prerequisite: course 21 or the equivalent. Examination of representative works by a major writer, set in the broader cultural context of the relevant period or movement in each case. May be repeated for credit when topic differs. Offered in alternate years.—(III.) Menges

129. Postwar Women Writers (4)
Discussion—3 hours; term paper. Prerequisite: course 21 or consent of instructor. Survey of major women writing in German since 1945. Considers such issues as the existence of “feminine writing” and of feminist aesthetics. Writers include Seghers, Bachmann, Wolf, Kirsch, Herlach, Heidegger, Gehlen, The Frankfurt School. Illustrations from landscape and social institutions. Introduction to feminist literary criticism. Offered in alternate years.—(II.) Schaeffer

130. Modernity and its Discontents: the Tradition of German Cultural Critique (4)
Lecture—3 hours; discussion—1 hour; four short papers. Prerequisite: History 4B or 4C. Philosophical and aesthetic tradition of Kulturkritik, from Romanticism to present. Authors include Herder, Schiller, Novalis, Hegel, Marx, Nietzsche, Freud, Spengler, Klages, Heidegger, Gellhorn, The Frankfurt School. Illustrations from landscape and city-representations. Knowledge of German not required. Offered in alternate years. GE credit: ArtHum, Wrt.—(I.) Menges

131. German Lyric Poetry (4)
Lecture—3 hours; term paper. Prerequisite: course 21. Study of the genre of lyric poetry from the late Middle Ages through Renaissance, Baroque, Classical, Romantic, and Modern periods in correlation with other literary forms and the social climate of each period. Offered in alternate years. GE credit: ArtHum, Wrt.—(II.) Menges

132. The German Novel (4)
Lecture—3 hours; written reports. Prerequisite: course 22. Inquiry into the art of the “Novelle” through analysis of the materials and formal devices of representative authors from Goethe to Kafka. GE credit: ArtHum.—(I.) Schaeffer

133. The German Drama (4)
Lecture—3 hours; term paper. Prerequisite: course 22. Readings in the works of Germany’s leading dramatists from the seventeenth century to the present day, such as Lessing, Goethe, Schiller, Kleist, Hebbel, Hauptmann, Brecht. GE credit: ArtHum.—(II.) Schaeffer

134. Topics in German Intellectual History (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 21. Topics in German intellectual history with materials from a number of periods, genres, and disciplines. May be repeated twice for credit when topic differs. Offered in alternate years. GE credit: ArtHum.—(II., III.) Schaeffer, Menges

140. German Political Literature from the Middle Ages to the Present (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: English 3 or 4 or French 25; course 51 recommended. Examination of the relationship of art to politics in German literary history from the time of Walther von der Vogelweide in the Middle Ages, through the Reformation, the period of Romanticism, and the Twentieth Century. GE credit: ArtHum, Wrt.—(II. (II.) McConnell

141. The Holocaust and its Literary Representation (4)
Lecture—3 hours; discussion—1 hour; term paper. Prerequisite: knowledge of German not required. Aesthetic representation and metaphorical transformation of the holocaust in its human and historical perspectives. Offered in alternate years. GE credit: ArtHum, Wrt.—(II.) Menges

142. New German Cinema: From Oesterhausen to the Present (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 21. Study of contemporary German-language news media—press, video, film, CD-ROM, Internet—for insight into political and cultural developments in the German-speaking countries. Discussion of contents, critical approaches, writing of summaries, rebuttals and comments. Offered alternate years.—(II.) Schaeffer

143. Marx, Nietzsche, Freud (4)
Lecture/discussion—3 hours; term paper. Study of major texts of these thinkers, selection on an eye to their impact on 20th-century economics, ethics, and attitudes toward eros. Particular focus on conceptions of the self and the individual's relation to society. Taught in English. Offered in alternate years. GE credit: ArtHum.—(I.) Finney

145. The Literature of Deviance: Mann, Hesse, Kafka (4)
Lecture/discussion—3 hours; term paper. Close study of selected prose works as representative of modernism's fascination with social, sexual, and psychological alienation. Attention to the nuanced portrayal of deviance through formal innovations in fiction. Taught in English. Offered in alternate years.—(II.) Finney

160. Love in the Middle Ages (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 22. Analysis of the phenomena of love in selected medieval lyrical poems and romances of the twelfth and thirteenth century Blütezeit. Origins of courtly love, and individualism, love and the Church, love and adultery.—(I.) McConnel

165. The German Epigram (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 22. Survey of the German epigram from its beginnings to the present, tracing the origins and development of the genre, its place in European literature, and its function as a mirror of the historical ideas. Offered in alternate years.—(II.) Schaeffer

166. Die Meistersingers (4)
Lecture/discussion—3 hours, listening—1 hour. Prerequisite: course 22. Wagner's music-drama Die Meistersinger von Nürnberg against the background of the city's cultural history, the practice of Meistersang and the historical Hans Sachs, to show the relationship of words to music, and the resulting master-piece as an eminently humanistic work. Offered in alternate years.—(III.) Schaeffer

167. Ribaldy in German Literature (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 22 or consent of instructor. Survey of German Literature from late Middle Ages to Age of Goethe, focusing on ribaldy, i.e., fairly close to everyday life, sometimes for its own sake, more often as social satire or the promotion of causes such as the Reforma. Offered in alternate years.—(III.) Schaeffer

168. Multiculturalism in German Literature (4)
Lecture/discussion—3 hours; term paper/discussion—1 hour. Prerequisite: course 21 or consent of instructor. Examples of German literature in which “encounter with the other” is thematic. Going from the High Middle Ages to mid-20th century, these examples reflect contact with people of color, different beliefs and cultures and inner-German minorities. Offered in alternate years. GE credit: ArtHum, Div.—(II.) Schaeffer

185. The Age of Bismarck (4)
Discussion—3 hours; term paper. Prerequisite: course 22. Study of notable literary repercussions that took place when Germany's international status reached its peak during the age of the Iron Chancellor. The poetry of Storm, the prose of Fontane, the drama of Hauptmann. GE credit: ArtHum.—(II.) Bend

192. Field Work in German (1-12)
Internship—3-36 hours. Prerequisite: course 109A. Internship with several German companies. Participation in various business activities where expertise in German is expected and further developed. (P/NP grading only.)—Haendler

194H-194HB, Honors Program (3-3)
Independent study—2 hours; term paper. Prerequisite: open only to majors with a 3.5 minimum GPA in at least 135 graduation units. (A) Research of an integrative nature, either “General” or “Area Studies Emphasis” fields of major. Guided by thesis advisor chosen by student; (B) Writing of Honors Thesis on topic selected by student in consultation with thesis advisor. (P/NP grading only. Deferred grading only, pending completion of course sequence.)
Graduate Courses

202. Middle High German (4)
Discussion—3 hours; lecture—1 hour. Outline of grammar; selections from Middle High German epic, romance, and lyric poetry.—II. (III.) McConnell

210. Techniques of Literary Scholarship (4)
Seminar—3 hours; term paper. The bibliographical, organizational, and methodological tools and resources for advanced, independent research.—I. (I.)

211. Concepts in Literary Theory (4)
Seminar—3 hours; written reports. Advanced course in concepts of literary theory and criticism. Discussion of the emergence of theoretical concepts and their impact on modern and contemporary literary theory; different approaches to literary theory and criticism. May be repeated for credit with consent of instructor.—I. (I.) Menges

212. Contemporary Approaches to Literary Theory (4)
Seminar—3 hours; term paper. Study of contemporary theoretical approaches such as structuralism, deconstruction, feminism, Marxism/Frankfurt School, and reception theory in conjunction with the works of major authors.—III. (III.) Finney

239. Narrative and Narrative Theory (4)
Seminar—3 hours; term paper. Studies in a theoretical and literary historical context, major elements of 19th- and 20th-century narrative, such as techniques of framing, refraction, and montage; narrative perspective; mimesis, and self-consciousness. Focuses on paradigmatic prose texts alongside a spectrum of critical approaches. Offered in alternate years.—I. Finney

240. Forms of German Verse (4)
Seminar—3 hours; term paper. The development of German verse from the Middle Ages to the present, with special emphasis on different techniques of text analysis and interpretation. May be repeated for credit with consent of instructor. Offered in alternate years.—II. Bernd

241. The German Drama (4)
Seminar—3 hours; term paper. The major forms of German drama from its origins to the middle of the twentieth century. May be repeated for credit with consent of instructor.—I. (I.) Finney

242. The German Novelle (4)
Seminar—3 hours; term paper. The major German Novellist, with particular emphasis on the flowering of this genre in the nineteenth century. May be repeated for credit with consent of instructor.—II. (III.) Bernd

243. Fontane and the Rise of the Modern German Novel (4)
Seminar—3 hours; term paper. Fontane, the father of the modern German novel and the chief German representative of the European novel at its greatest, in the context of the nineteenth-century European political and social scene.—II. (III.) Bernd

244. Gender and Comedy (4)
Seminar—3 hours; term paper. Studies of genre and gender in German-language comedy by male and female writers from the 18th century to the present. Authors treated include Lessing, Kleist, Büchner, Eber-Eneschben, Hauptmann, Hofmannsthal, Frisch, Langner, and Jelinek. Offered in alternate years.—III. Finney

252. The Writings of Lessing (4)
Seminar—3 hours; term paper. Study of Lessing's theory of literature with particular emphasis upon his critical attacks on French drama.—I. (I.)

253. Goethe (4)
Seminar—3 hours; term paper. Study of the origins of Goethe's thought in German Pietism, and his principal artistic, autobiographical, scientific, and philosophical works.—I. (I.) Bernd

254. Schiller (4)
Seminar—3 hours; term paper. A critical analysis of Schiller's major works and his impact on the intellectual climate in Germany during the late eighteenth and early nineteenth centuries.—II. (II.)

255. Aesthetics in the Age of Goethe (4)
Seminar—3 hours; term paper. Prerequisite: German 200A, 200B, 200C. Focuses on the emergence of aesthetic autonomy from eighteenth-century normative poetics during the Age of Goethe. This involves the shift from a model based on the imitation of nature (and the Ancients) to a new concept grounded in the individuality of aesthetic experience.—I. (I.) Menges

257. Heinrich von Kleist (4)
Seminar—3 hours; term paper. Kleist's important dramatic and prose works; special attention will be given to the peculiar hermeneutic problems in modern German, French, and Anglo-American Kleist criticism.—III. (III.) Bernd

258. The Novels of Thomas Mann (4)
Seminar—3 hours; term paper. Reading of selected novels with emphasis on aesthetic techniques, originality, ethical and political views, and influence on the contemporary literary scene in Germany.—II. (II.) Menges

259. Studies in Kafka (4)
Seminar—3 hours; term paper. Study of Kafka's narrative techniques with special emphasis in the shorter works on the existential development from its roots in Expressionism.—II. (II.)

260. The Poetry of Rilke (4)
Seminar—3 hours; term paper. Study of the principal motifs, myths, images, and problems in the poetry of Rainer Maria Rilke.—I. (I.) Menges

261. Brecht and the Epic Theater (4)
Seminar—3 hours; term paper. A reading of Brecht's works with emphasis on the ideas which impelled the development of new literary forms and concepts.—II. (III.)

262. Studies in Turn-of-the-Century Culture (4)
Seminar—3 hours; term paper. Investigates literary currents in turn-of-the-century Germany and Austria against the background of contemporaneous developments in psychology, the visual arts, philosophy, and music. Authors treated include Hauptmann, Holz and Schilf, Schnitzler, T. Mann, Wedekind, Musil, Hofmannsthal. Offered in alternate years.—III. Finney

285. Middle High German Literature (4)
Lecture/discussion—3 hours; term paper. Prerequisite: consent of instructor. Expository reading of Middle High German texts in the original language. Examines linguistic and literary problems. May be repeated for credit when topic differs.—II. (III.) McConnell

288. The Renaissance and Reformation in German Literature (4)
Seminar—3 hours; term paper. The parabolic and didactic style in Germany's literature during the sixteenth century. May be repeated for credit with consent of instructor.—I. (I.) Schafer

289. German Literature of the Baroque (4)
Seminar—3 hours; term paper. The "Elegantiaideal" and the varying methods used to portray it in seventeenth-century German literature. May be repeated for credit with consent of instructor.—I. (I.) Schafer

290. The Enlightenment in German Literature (4)
Seminar—3 hours; written reports. Reaction to overemphasis on Reason: theories of Herder and Herder and works of poets such as Lenz, Leisewitz, the early Goethe and Schiller. May be repeated for credit with consent of instructor.—I. (I.) Menges

293. The Classical Age of German Literature (4)
Seminar—3 hours; term paper. Inquiry into the aesthetic and humanistic qualities of Germany's greatest literary epoch. May be repeated for credit with consent of instructor.—II. (III.) Bernd

294. The Romantic Period in German Literature (4)
Seminar—3 hours; term paper. Survey of the works of early nineteenth-century authors in reaction against the age of classicism. May be repeated for credit with consent of instructor.—I. (III.)

295. Poetic Realism in German Literature (4)
Seminar—3 hours; term paper. Outstanding figures in German literature between 1840 and 1890. Important phases in their developments will be treated. May be repeated for credit with consent of instructor.—I. (I.) Bernd

296. Twentieth-Century German Literature (4)
Seminar—3 hours; term paper. Considers the revolt of the Hauptmann generation, Symbolism, Expressionism, and the chief currents of the contemporary scene. May be repeated for credit with consent of instructor.—I. (I.) Menges

297. Special Topics in German Literature (4)
Seminar—3 hours; term paper. Various special topics in German literature, which may cut across the more usual period and genre rubrics. May be repeated for credit when topic differs.

298. Group Study (1-5)
299. Individual Study (1-12)

Professional Courses

309A. The Teaching of German (2)
Lecture—2 hours. Prerequisite: graduate standing or consent of instructor. Theoretical instruction in modern teaching methods and demonstration of their practical application. Required of new teaching assistants. (S/U grading only.)—I. (I.) Henderson

309B. The Teaching of German (2)
Lecture—2 hours. Prerequisite: graduate standing or consent of instructor. Theoretical instruction in modern teaching methods and demonstration of their practical application. Required of new teaching assistants. (S/U grading only.)—II. (II.) Henderson

309C. The Teaching of German (2)
Lecture—2 hours. Prerequisite: graduate standing or consent of instructor. Theoretical instruction in modern teaching methods and demonstration of their practical application. Required of new teaching assistants. (S/U grading only.)—III. (III.) Henderson
396. Teaching Assistant Training Practicum (1-4)
Prerequisite: graduate standing. May be repeated for credit. (S/U grading only)—I, II, III. (I, II, III.)

Professional Course

400. Tutorial and Instructional Internship (1-3)
Discussion—1-3 hours. Prerequisite: graduate standing. Apprentice training in ongoing undergraduate literature courses taught by regular staff, with supplementary weekly critique sessions; intern leadership of discussion sections under staff supervision. May be repeated for credit.—I, II, III. (I, II, III.)
Graduate Courses

201A. Transmission Genetics (3)
Lecture—3 hours. Prerequisite: Biological Sciences 101, introductory statistics and calculus. Study of segregation, linkage, and mapping and the modifications of Mendel's original genetic model.—I. (I.)

201B. Cytogenetics (3)
Lecture—3 hours. Prerequisite: course 201A or consent of instructor. Study of cytogenetics including meiosis, recombination, chromosomes, haploidy, aneuploidy, trisomies, monosomies, autopolyploids and intra- and interspecific manipulation.—II. (II.)

201C. Molecular Genetics (3)
Lecture—3 hours. Prerequisite: course 201A or consent of instructor. Current topics in molecular genetics at a graduate level, with emphasis on the relationship between classical genetic studies and current molecular research, as well as on the molecular techniques used to develop the basic concepts of molecular genetics.—III. (III.)

201D. Quantitative and Population Genetics (3)
Lecture—3 hours. Prerequisite: course 201A or consent of instructor. The basic concepts of quantitative and population genetics, including gene and genotypic frequencies, multiple factor hypothesis, phenotypic and genotypic values, heritability, selection, genetic variation and evolution in populations, and experimental methodologies.—II. (II.)

205. Molecular Genetics Laboratory (5)
Lecture—6 hours. Prerequisite: course 201A or permission of instructor. Working knowledge of contemporary methodologies in plant genetics is obtained by participating in research programs of the various Plant Genetics Affinity Group members. (S/U grading only)—I, II, III. (I, II, III.)

207L. Research Methods in Plant Genetics Laboratory (2-5)
Lecture—6 hours. Prerequisite: course 207L (may be taken concurrently). Working knowledge of contemporary methodologies in plant genetics is obtained by participating in research programs of the various Plant Genetics Affinity Group members. (S/U grading only)—I, II, III. (I, II, III.)

210. Horizontal Gene Transfer (3)
Lecture-discussion—5 hours. Prerequisite: background in basic microbiology and genetics required; introductory course in molecular biology, biotechnology and microbial and animal/plant genetics recommended. Transfer of genes between unrelated organisms in nature. Dissemination of foreign DNA from genetically engineered organisms, including plants and animals. Mechanisms by which genes are transferred horizontally, and between kingdoms.—I. (I.) Kado

291. Seminar in History of Genetics (2)
Seminar—2 hours. Prerequisite: Biological Sciences 101. The development of modern genetic theories beginning with Mendel.—II. (II.)
292A. Seminar in Cytogenetics (1-3)
Seminar—1-3 hours. Prerequisite: course 201A or consent of instructor. Topics related to the deletion, duplication and rearrangement of chromosome regions. Offered in alternate years.—I.

292B. Seminar in Quantitative Genetics (1-3)
Seminar—1-3 hours. Prerequisite: course 201A or consent of instructor. Topics of current interest related to the inheritance of continuous characters. Offered in alternate years.—I.

292C. Seminar in Developmental Genetics (1-3)
Seminar—1-3 hours. Prerequisite: course 201A or consent of instructor. Topics in the area of cell-specific control of genes in development. Offered in alternate years.—II.

292D. Seminar in Population, Evolutionary and Ecological Genetics (1-3)
Seminar—1-3 hours. Prerequisite: course 201A or consent of instructor. Topics related to the analysis and prediction of genetic changes in populations. Offered in alternate years.—II.

293. Seminar in Animal Genetics (1-3)
Seminar—1-3 hours. Prerequisite: course 201A or consent of instructor. Emphasis on recent advances in the field of animal genetics, ranging from quantitative genetics to molecular biology as it relates to animals.—III. (III.)

295. Seminar in Molecular Genetics (1-3)
Seminar—1-3 hours. Prerequisite: course 201A or consent of instructor. Topics of current interest related to the structure, modification and expression of genes.—I. (I.)

296. Scientific Professionalism and Integrity (2)
Lecture—1 hour; seminar—1 hour. Prerequisite: graduate standing or consent of instructor. Review of basic skills required of contemporary scientists. Topics include scientific conduct, manuscript preparation, grant writing, seminar presentations, and time management. Emphasis on responsibilities of scientists to factually and thoughtfully communicate results. (S/U grading only.)—I. (I.) Yoder

297. Seminar in Plant Genetics (1-3)
Seminar—1-3 hours. Prerequisite: course 201A or consent of instructor. Current topics in plant genetics will be examined in student-conducted seminars and discussion format. The integration of molecular, organismal and population genetics to address questions in plant biology will be emphasized.

298. Group Study (1-5)
Prerequisite: consent of instructor. Group study of selected topics in genetics. (S/U grading only.)

299. Research (1-12)
(S/U grading only.)
Global and International Studies

(College of Letters and Science)
The interdisciplinary minor in Global and International Studies will enable students not only to learn about global and international issues at UC Davis, but also to gain first-hand academic experience abroad. The minor is designed for students who intend to focus their interest in global and international studies in either the Arts and Humanities or the Social Sciences.

Students will be expected to work closely with an academic advisor in developing an intellectually coherent program of study. Each proposal must be approved by the Academic Advisory Committee.

The minor is sponsored by the Humanities Program. For information, contact the Director of the Humanities Program or the Director of the Education Abroad Center.

Minor Program Requirements:

<table>
<thead>
<tr>
<th>Units</th>
<th>Global and International Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td></td>
</tr>
</tbody>
</table>

Arts and Humanities Emphasis:

- One course from Anthropology 4, 20, International Relations 1, Political Science 3 or Sociology 5 ..4
- One upper division UC Davis general course on global or international studies in the Arts and Humanities ..3-4

Course cluster requirement...16-17

The minor requires the selection of interrelated courses totaling a minimum of 16-17 upper division units in area and regional studies or thematic course clusters in global and international studies in the Arts and Humanities.

Suggested course clusters include:

1) Country or region-specific courses: Western Europe; Russian and East/Central Europe; Asia and the Pacific; Latin and South America; Africa and the Middle East; Jewish Studies; specific countries.

2) Courses clustered around a thematic field in global and international studies: people and nationalities; the individual and society, arts, language, literature and culture.

Study abroad and international internships. The course cluster requirement may be met in one of two ways: 1) completion of a minimum of 16-17 units in the course cluster emphasis by taking UC Davis accredited courses while participating on EAP or another study abroad program, or 2) completion of 12 units of course work in a UC Davis accredited international internship, plus UC Davis courses sufficient to total 16-17 units. Those students who are unable to study abroad or participate in an international internship may fulfill the requirement by taking appropriate global/international courses at UC Davis that are approved by the Academic Advisory Committee.

Social Science Emphasis:

- One course from Anthropology 20, International Relations 1, Political Science 3, or Sociology 5 ...4
- One upper division UC Davis general course on global or international studies in the Social Sciences ..3-4

Course cluster requirement...16-17

The minor requires the selection of interrelated courses totaling a minimum of 16-17 upper division units in area and regional studies or thematic course clusters in global and international studies in the Social Sciences.

Suggested course clusters for the Social Science Emphasis:

1) Country or region-specific courses in the Social Sciences: Western Europe; Russian and East/Central Europe; Asia and the Pacific; Latin and South America; Africa and the Middle East; Jewish Studies; specific countries.

2) Courses clustered around a thematic field in global and international studies: world trade and development; peace and security; global environment, health, and natural resources.

Study abroad and international internships. This requirement may be met in one of two ways: 1) completion of a minimum of 16-17 units in the course cluster emphasis by taking UC Davis accredited courses while participating on EAP or another study abroad program, or 2) completion of 12 units of course work in a UC Davis accredited international internship, plus UC Davis courses sufficient to total 16-17 units. Those students who are unable to study abroad or participate in an international internship may fulfill the requirement by taking appropriate global/international courses at UC Davis that are approved by the Academic Advisory Committee.

Restriction. No more than two courses from a single UC Davis department may be offered in satisfaction of the minor requirements.

Foreign language study. Students are strongly encouraged to study a foreign language, particularly the language of the country in which and about which they intend to study.

Quarter Offered: I = Fall; II = Winter; III = Spring; IV = Summer; 2001-2002 offering in parentheses.

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
Human and Community Development

(College of Agricultural and Environmental Sciences)
Beth A. Ober, Ph.D., Chairperson of the Department
Alvin D. Sokolow, Ph.D., Associate Chairperson of the Department
Department Advising Office, 1303 Hart Hall (530-752-2244)
Community Studies and Development, Human Development and Family Studies,
and International Agricultural Development (530-752-0770)
World Wide Web: http://hcd.ucdavis.edu

Faculty—Community Studies and Development
Ted Bradshaw, Ph.D., Assistant Professor
Stephen B. Brush, Ph.D., Professor
Luis E. Guarnizo, Ph.D., Assistant Professor
Frank Hirtz, Ph.D., Associate Professor
Martin F. Kenney, Ph.D., Professor
Janet Momsen, Ph.D., Professor
Michael P. Smith, Ph.D., Professor
Miriam J. Wells, Ph.D., Professor

Emeriti Faculty
Isao Fujimoto, M.A., Senior Lecturer Emeritus
Orville E. Thompson, Ph.D., Professor Emeritus

Affiliated Faculty
Barbara G. Goldman, Ph.D., Lecturer
Laurie Lippin, Ph.D., Lecturer
Charlie Moore, Ph.D., Lecturer
Harland Padfield, Ph.D., Lecturer
Bernadette Tarallo, Ph.D., Lecturer
Jim Grieshop, Ph.D., Specialist in Cooperative Extension
Alvin D. Sokolow, Ph.D., Specialist in Cooperative Extension
Robert Wiener, Ph.D., Lecturer
Joan Wright, Ph.D., Specialist in Cooperative Extension

Faculty—Human Development and Family Studies
Carolyn M. Aldwin, Ph.D., Professor
Keith Barton, Ph.D., Professor
Brenda K. Bryant, Ph.D., Professor
Zhe Chen, Assistant Professor
Xiaoja Ge, Ph.D., Associate Professor
Lawrence V. Harper, Ph.D., Professor
Rosemarie Kraft, Ph.D., Senior Lecturer
Beth A. Ober, Ph.D., Associate Professor
Carol Rodning, Ph.D., Associate Professor

Emeriti Faculty
Glenn R. Hawkes, Ph.D., Professor Emeritus
Emmy E. Werner, Ph.D., Professor Emeritus

Affiliated Faculty
Curtis R. Acredolo, Ph.D., Adjunct Associate Professor
Marc Braverman, Ph.D., 4-H Cooperative Extension Specialist
Kay Jeanne Gaedeke, M.S., Lecturer
Richard Ponzio, Ph.D., 4-H Cooperative Extension Specialist
Stephen Russell, Youth Development Specialist in Cooperative Extension

Faculty—International Agricultural Development
Faculty includes members from various departments across colleges.

Major Programs. See Community and Regional Development (formerly Applied Behavioral Sciences), Human Development, and International Agricultural Development.

Quarter Offered: I—Fall; II—Winter; III—Spring; IV—Summer; 2001-2002 offering in parentheses.
General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
Human Development

(College of Agricultural and Environmental Sciences)

Faculty. See Department of Human and Community Development.

The Major Program

Human development explores the developmental process in humans throughout the life cycle. Cognitive and personality/social development are studied from various perspectives.

The Program. Human development majors complete a group of preparatory courses in anthropology, biological sciences, genetics, nutrition, physiology, psychology, statistics, and human development. Upper division students can design their programs in consultation with a faculty member to emphasize a particular interest. For instance, students can study the social and biological aspects of human development while emphasizing child or adult development.

Internships and Career Alternatives. At least one practicum course is required. A second practicum or supervised internship can be used to fulfill the requirements for the major. In addition, students can intern in schools, early childhood education centers, hospitals, rehabilitation centers, probation offices, group foster homes, mental health clinics, or as tutors for handicapped or bilingual students. Human development graduates fill a wide variety of positions in pre-schools, elementary and special educational settings, as well as governmental jobs related to social welfare and recreation. Those who emphasize the biological aspect of human development can apply to medical school or pursue training for positions in the health sciences. Human development prepares students to pursue advanced degrees in behavioral and social sciences, education, social work, family law, or health sciences.

B.S. Major Requirements:

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>English Composition Requirement</td>
<td>4-12</td>
</tr>
<tr>
<td>See College requirement</td>
<td>0-8</td>
</tr>
<tr>
<td>Preparatory Subject Matter</td>
<td>38-44</td>
</tr>
<tr>
<td>Biological Sciences 1A or 10</td>
<td>4-5</td>
</tr>
<tr>
<td>Molecular and Cellular Biology 10 or Biological Sciences 101</td>
<td>4</td>
</tr>
<tr>
<td>Human Development 30</td>
<td></td>
</tr>
<tr>
<td>Nutrition 10 or 101</td>
<td>3-5</td>
</tr>
<tr>
<td>Neurobiology, Physiology, and Behavior 10 or 101</td>
<td>4-5</td>
</tr>
<tr>
<td>Psychology 1</td>
<td></td>
</tr>
<tr>
<td>Education 114, Psychology 41, Sociology 46A and 46B, or Statistics 13</td>
<td>4</td>
</tr>
</tbody>
</table>

† Chemistry 2A is recommended prerequisite for Biological Sciences 1A. Biological Sciences 1A is prerequisite for Biological Sciences 1B.

Breadth/General Education

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>American history/American government (History 17A, 17B, 72A, 72B, and Political Science 1 are recommended courses)</td>
<td>24-32</td>
</tr>
</tbody>
</table>

Depth Subject Matter

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human Development 100A, 100B, 100C, 110</td>
<td>16</td>
</tr>
<tr>
<td>Human Development 102 or 103</td>
<td>4</td>
</tr>
<tr>
<td>Human Development 120 or 121</td>
<td></td>
</tr>
<tr>
<td>Human Development 101, 132, or 163</td>
<td>4</td>
</tr>
<tr>
<td>Human Development 130 or 131</td>
<td>4</td>
</tr>
<tr>
<td>Human Development 140-140L, or 141 or 142 or 143</td>
<td>4-5</td>
</tr>
<tr>
<td>Four additional upper division courses chosen from the Human Development courses or from a list of restricted electives (in consultation with faculty adviser)</td>
<td>16</td>
</tr>
</tbody>
</table>

Unrestricted Electives

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unrestricted Electives</td>
<td>39-72</td>
</tr>
</tbody>
</table>

Total Units for the Degree

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>180</td>
</tr>
</tbody>
</table>

Major Adviser. K. Barton.

Minor Program Requirements:

The Department of Human and Community Development offers two minors.

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aging and Adult Development</td>
<td>21-26</td>
</tr>
<tr>
<td>Human Development 100C, 143, 163</td>
<td>12-14</td>
</tr>
<tr>
<td>Human Development 160 or 162</td>
<td>3-4</td>
</tr>
<tr>
<td>Select two courses from the following: Epidemiology and Preventive Medicine 180; Human Development 110, 117, 160, 162, 163; Community and Regional Development 173; Exercise Science 117; Sociology 127</td>
<td>6-8</td>
</tr>
</tbody>
</table>

Minor Adviser. C. Aldwin, B. Ober.

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human Development</td>
<td></td>
</tr>
<tr>
<td>Human Development 100A</td>
<td>4</td>
</tr>
<tr>
<td>Human Development 100B or 100C</td>
<td>4</td>
</tr>
<tr>
<td>Human Development 110 or 103 or 151</td>
<td>4</td>
</tr>
<tr>
<td>Two courses from Human Development 101, 102, 130, 131, 132, or 163</td>
<td>8</td>
</tr>
</tbody>
</table>

Minor Adviser. L. V. Harper.

Related Major Program. See the major in Community and Regional Development.

Graduate Study. Graduate study is available through a Master of Science degree in child development, and a Ph.D. degree in human development. See the Child Development Graduate Group and Human Development Graduate Group. Refer also to the Graduate Studies chapter of this catalog.

Courses in Human Development (HDE)

Questions pertaining to the following courses should be directed to the instructor or to the Human and Community Development Advising Office, 1303 Hart Hall (530-752-2244).

Lower Division Courses

12. Human Sexuality (3)

Lecture—3 hours. Vocabulary, structure and function of reproductive system; sexual response; pre-natal development; pregnancy and childbirth; development of sexuality; rape and sexual assault; birth control; sexually transmitted diseases; homosexuality; establishing and maintaining intimacy; sexual dysfunctions; communication; enhancing sexual interaction. GE Credit: Wrt—II, III, Summer.

13. Parenting (4)

Lecture/discussion—4 hours. Provides the basis for understanding the nature of the parenting process. Consideration of aspects of parenting that begin before conception and develop throughout the life of the child and parent. GE Credit: SocSci.

15. Family and the Life Cycle (4)

Lecture—4 hours. Prerequisite: Psychology 1, or 15 and 16. Socialization in families throughout the life cycle. Impact of alcoholism and abuse. Sources of strength and help. Not open for credit to students who have completed courses 100A, 100B, 110 and/or Psychology 112, 114, and 115. GE credit: SocSci—Summer.

30. Observation Techniques in Human Development (4)

Lecture—3 hours; laboratory—3 hours. Prerequisite: Psychology 1 and consent of instructor. Observational techniques used in the study of human behavior and development, with focus on ages six months to five years; analysis and use of observational data.

92. Internship (1-6)

Internship—3-18 hours. Prerequisite: field work experience or at least one course (e.g. course 30, 100A, 100B, 140, 140L) related to the fieldwork assignment; consent of instructor. Supervised internship, off and on campus, in community and institutional settings. (P/NP grading only.)

98. Directed Group Study forUndergraduates (1-5)

Prerequisite: consent of instructor. (P/NP grading only.)

99. Special Study for Undergraduates (1-5)

(P/NP grading only.)
Upper Division Courses

100A. Infancy and Early Childhood (4)
Lecture—4 hours. Prerequisite: Psychology 1 or 15, Biological Sciences 1A or 10. Analysis of the biological, social, and cultural influences on the psychological growth and development of children, prenatal through age six.—I, II, summer. (I, II.) Harper

100B. Middle Childhood and Adolescence (4)
Lecture—4 hours; three brief observations of school-age children. Prerequisite: course 100A or the equivalent; introductory biology. Analysis of the interplay of biological and social-cultural factors in the emotional, cognitive and social development from middle childhood through adolescence.—II, III, (II, III) Ge, Harper

100C. Adulthood and Aging (4)
Lecture—4 hours. Prerequisite: Psychology 1 or 15. Development during early, middle, and late adulthood; biological, cognitive, and psycho-social aspects of adult development. Emphasis on normative patterns of development which characterize "successful aging."—III, (III) Aldwin

101. Cognitive Development (4)
Lecture—4 hours. Prerequisite: courses 100A and 100B, or Psychology 112. Theories of cognitive development including developmental views of perception, learning, memory, concept formation, and language.—III, Chen

102. Social and Personality Development (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: introductory psychology; course 100B or the equivalent. Theories of development of a child’s personality through interactions with children and adults; development of interpersonal and culturally valued skills.—II, Rodning

103. Cross-Cultural Study of Children (4)
Lecture—4 hours. Prerequisite: course 100A or consent of instructor. Cross-cultural studies of children in developing countries and among minority groups in the U.S. GE credit: Div.—IV, III.

110. Contemporary American Family (4)
Lecture—4 hours. Prerequisite: introductory psychology. Factors currently influencing American families including changing economic conditions, changing sex roles, divorce, and parenthood; theories and research on family interaction.—II, summer.

117. Biodemography of Longevity (4)
Lecture—3 hours; term paper: Nature, origin, determinants, and limits of longevity with particular reference to humans, emphasis on implications of findings from non-human model systems including natural history, ecology and evolution of life span; description of basic demographic techniques including life table methods. (Same course as Entomology 147.) GE Credit: Sci.-Soc. Writ.—I, Carey

120. Research Methods in Human Development (4)
Lecture—3 hours; laboratory/discussion—1 hour. Prerequisite: courses 100A and 100B; elementary statistics. Research methods in selected areas of human development (e.g., infancy, learning, cognition, personality).—II, III, Barton, Acredolo

121. Psychopathology (4)
Lecture—4 hours. Prerequisite: courses 100A-100B; elementary statistics. Current issues and methodology related to the process of psychological assessment with children.—I, Barton

130. Emotionally Disturbed Children (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 100A and 100B or consent of instructor. Discussion of psychosis, neurosis, behavior disorders, and learning difficulties in children.—I, Bryant

131. Developmental Disabilities (4)
Lecture—4 hours. Prerequisite: course 100A or consent of instructor. Mental retardation and specific learning disabilities, etiology, diagnosis, education and socialization. Introduction to community resources.—II, Acredolo

132. Individual Differences in Giftedness (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 100A and 100B or consent of instructor. Conceptualization, identification and education of the intelligent, the creative, and the talented, gifted individual.—I, Acredolo

140. Communication and Interaction with Young Children (2)
Lecture—2 hours. Prerequisite: courses 300, 100A, and 140L (concurrent enrollment recommended). Theory and practice in the area of effective interaction with young children. Humanistic, child-centered approaches; awareness of goals, beliefs, and values as these affect interactions. To enroll, students must sign up for laboratory time at the Child and Family Studies Center.—I, II, III, (I, II, III.) Gaedeke

140L. Laboratory in Early Childhood (3-6)
Discussion—3 hours; laboratory—6-15 hours. Prerequisite: course 140 (may be taken concurrently). Application of theories of learning and development to interaction with children six months to five years at Early Childhood Laboratory. Applied skills in communication, discipline and curriculum. May be repeated for credit for a total of 12 units. (P/NP grading only.)—I, II, III, (I, II, III.) Gaedeke

141. Field Studies with Children and Adolescents (4-6)
Discussion—2 hours; field study—6-12 hours. Prerequisite: course 100B or the equivalent and consent of instructor. Study of children’s affective, cognitive and social development within the context of family/school environments, hospitals and foster group homes. May be repeated for credit for a total of 12 units following consultation with and consent of instructor.—I, II, III, Kraut, Ponzio

142. Field Studies with Exceptional Children (4-6)
Discussion—1.5 hours; field study—6-12 hours. Prerequisite: consent of instructor and one course from courses 130, 131, or 132 (may be taken concurrently). Field study with children who are identified as developmentally disabled, emotionally distressed, or intellectually gifted. May be repeated for credit for a total of 12 units following consultation with and consent of instructor.—I, Bryant

143. Field Studies of the Elderly (4-6)
Discussion—2 hours; field work—6-12 hours. Prerequisite: course 100C or 160 may be taken concurrently. To apply theory and research on adult development and aging, to work with older adults in a variety of settings, and to develop skills relevant to that application. Students will also develop a small research project.—II, Ober

151. Shared Child Care (4)
Lecture—4 hours. Prerequisite: course 100A or 110. Psychology 112, or Anthropology 131. Examines roles of caregivers other than parents in contemporary society, and the impact of grandparents, siblings, family day care providers, foster parents, church- and employer-sponsored child care on children’s development. Reviews child care legislation and social policy issues. May be offered via UC Davis Washington Center.

160. Social Aspects of Aging (4)
Lecture—4 hours. Prerequisite: course 100C or Psychology 115. How the social context affects adult development and aging. Emphasis on demography, social policy, culture, and adaptation. Oral histories as class projects. Offered in alternate years. GE credit: Div.—II, Aldwin

162. Issues in Aging (3)
Lecture—2 hours; lecture/discussion—1 hour. Prerequisite: course 100C or 160. Research and policy issues concerning the elderly and aging in contemporary society. Offered in alternate years.

163. Cognitive Neuropsychology in Adulthood and Aging (4)
Lecture/discussion—4 hours. Prerequisite: Psychology 1; course 100C recommended. Theories, methods, and findings concerning the relationship between cognitive processes and brain functioning. Readings, lectures, and in-class discussions cover research on normal younger and older adults, neuropsychological case studies, and selected patient groups (e.g., amnesia, schizophrenia, Alzheimer’s disease).—Ober

190C. Introductory Research Conference (1)
Discussion—1 hour. Prerequisite: involvement in ongoing research. Instructors lead discussions with undergraduate students who involve themselves in a research project. Research papers are reviewed and aspects of project proposals developed out of class are presented and evaluated. May be repeated for credit. (P/NP grading only.)—I, II, III, (I, II, III.)

192. Internship (1-12)
Internship—3-36 hours. Prerequisite: upper division standing and consent of instructor. Supervised internship off and on campus, in community, and institutional settings. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5)
(P/NP grading only.)

Graduate Courses

200A. Early Development (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: graduate standing; basic biology or physiology; one upper division course in psychology or a related field; one upper division or graduate course in developmental psychology (may be taken concurrently). Theory and research on the biological, social, cognitive, and cultural aspects of development from conception to the age of five years.—I, Rodning

200B. Middle Childhood and Adolescence (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: graduate standing; basic biology or physiology, and at least two upper division or graduate-level courses in psychology or related fields. Theory and research on biological, cognitive, social, and cultural influences on behavioral development from age five years until late adolescence.—II, Ge

200C. Development in Adulthood (4)
Lecture/discussion—4 hours. Prerequisite: courses 200A and 200B. Theory and research focusing on social, personality, cognitive, and biological development from early to late adulthood. Emphasis is on theory development and continuity and change.—III, Ober

201. Social-Emotional Development in Infancy (4)
Lecture/discussion—4 hours. Prerequisite: course 200A. Analysis of theory, methods, and research on social-emotional development in infancy. Emphasizes the development of primary and secondary emotions, and the development of attachment. Other possible topics include temperament, sex differences, compliance, and self-regulation. Offered in alternate years.

210. Theories of Behavioral Development (3)
Lecture—2 hours; discussion—1 hour. Prerequisite: graduate standing in behavioral sciences. Consideration of enduring issues in theories of behavioral development; analysis of adequacy of major theoretical schools (e.g., social learning, Piagetian) as scientific theories. Offered in alternate years.
211. Physiological Correlates of Behavioral Development (3)
Seminar—3 hours. Prerequisite: consent of instructor. An overview of mechanisms of organismic development and the implications of developmental biology for the analysis of behavioral ontogeny; consideration of parallels between processes of organismic development and behavioral development in children and infra-human mammals.—II. Harper

212. Adaptation and Aging (3)
Lecture/discussion—3 hours. Prerequisite: course 200C. Interdisciplinary perspective of the ways biological, psychological, and sociocultural factors affect aging and adaptation in late life. Focus is on the ways in which stress, coping, and social support affect health and the factors which contribute to optimal aging. Offered in alternate years.—II. Aldwin

213. Cross-Cultural Study of Children (3)
Lecture—2 hours; discussion—1 hour; field project or paper. Prerequisite: graduate standing in Human Development, Education, Anthropology, Psychology or Sociology. Current theory and research concerned with comparative child development. Introduction into the major issues and methods of cross-cultural research (e.g., biological, cognitive and social development of children in different cultures and subcultures in U.S.A.). Offered in alternate years.

217. Development of Cortical and Perceptual Laterality (3)
Seminar—3 hours. Prerequisite: graduate standing in child or human development or consent of instructor. Current theory and research regarding the development of human cortical and perceptual laterality — emphasizing the relationship of this development to thinking and behavior. Offered in alternate years.

220. Research Methods in Human Growth and Development (3)
Lecture—3 hours. Prerequisite: Statistics 13 or the equivalent and at least two upper division courses in human biology or developmental psychology. Theory and research methods in biological growth, and cognitive and social/emotional development from prenatal period to death.—I. (I.) Pollitt

221. Psychological Assessment of Children (4)
Lecture—2 hours; discussion—2 hours. Prerequisite: course 121 or consent of instructor. Study of children's behavior through examination, analysis and evaluation of perceptual-motor, cognitive, affective and social development. Problems in assessment of exceptional children considered. Assignments focus on preparation of a comprehensive report on one child.—II. Barton

222. Applied Research and Program Evaluation (3)
Lecture/discussion—3 hours. Prerequisite: graduate standing and consent of instructor. Focuses on the design and conduct of applied research and evaluation studies, especially with regard to programs serving children and their families. Offered in alternate years.—II. Braverman

225. Behavioral Development and Food Intake (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: graduate standing in Human Development (and related fields) and Nutrition. Multidisciplinary view covering key theoretical and research issues in basic human development processes related to food intake.

231. Issues in Cognitive and Linguistic Development (3)
Seminar—3 hours. Prerequisite: consent of instructor. Study and evaluation of key issues in the theoretical and empirical literature on cognitive and linguistic development.—III.

232. Cognition and Aging (3)
Lecture/discussion—3 hours. Prerequisite: course 200C. The manner in which cognitive processes are affected by aging as well as an understanding of the changes in the central nervous system occurring with aging. Offered in alternate years.

234. Children's Learning and Thinking (3)
Seminar—3 hours. Prerequisite: course 200A or Psychology 212 recommended. Analysis of theories, research methods, and major findings of children's higher order cognition, including origins of knowledge, development of problem solving skills, reasoning strategies, and scientific concepts, with an emphasis on the underlying mechanism involved in children's thinking and learning processes. Offered in alternate years.—I. Chen

237. Parent-Child Interaction (3)
Seminar—3 hours. Prerequisite: consent of instructor; upper division course on the family recommended. Current theory and research. Emphasis on parent-child interaction in other animals and other cultures, child-rearing practices, the child's perception of parents, the differential influence of each parent on the child's psychological well-being, sex-role development, and moral development. Offered in alternate years.

238. The Context of Individual Development (3)
Lecture/discussion—3 hours. Prerequisite: graduate standing in Human Development, Child Development, Education, Psychology, Anthropology, Sociology, or consent of instructor. Analysis of human development within the context of daily life. Contextualizing theories and methods of developmental psychology will be distinguished from contextual theories and methods. Developmental psychology models will be distinguished from child psychology models. Offered in alternate years.—II. Bryant

241. Consultation Approaches to Child Development (3)
Lecture—1 hour; discussion—1 hour, laboratory—3 hours. Prerequisite: graduate standing; supervised field experience with children (e.g., course 140, 141, 142, may be taken concurrently); and consent of instructor. Analysis and application of theories and approaches of consultation and child development to facilitate delivery of child-related services (e.g., educational and mental health). Develop working knowledge of consultation skills for working with adults directly interacting with children and adolescents. Offered in alternate years.

242. Adolescent Health Behavior: Theory and Programs (2)
Lecture/discussion—2 hours. Prerequisite: graduate standing in child or human development, or consent of instructor; course 200B recommended. Theoretical conceptions relating to adolescent behaviors that have potential impact on health (e.g., use of tobacco, alcohol and other drugs; sexual behavior; accident prevention). Development and evaluation of programs that aim to influence adolescents' behaviors or attitudes in these areas. Offered in alternate years.

290. Seminar (3)
Seminar—3 hours. Discussion and evaluation of theories, research, and issues in human development. Different topics each quarter.—I, II, III, I, II, III.

290C. Research Conference (1)
Discussion—1 hour. Prerequisite: graduate standing and consent of instructor. Supervising instructors lead research discussions with their graduate students. Research papers are reviewed and project proposals are presented and evaluated. May be repeated for credit. (S/U grading only.)—I, II, III, I, II, III.

291. Research Issues in Human Development (3)
Lecture—3 hours. Prerequisite: graduate standing in the behavioral sciences. In-depth presentations of research issues in particular areas of behavioral development.—I, II. Kraft, Pollitt

298. Group Study (1-5)

299. Research (1-12)
(S/U grading only)

Professional Course

396. Teaching Assistant Training Practicum (1-4)
Prerequisite: graduate standing. May be repeated for credit. (S/U grading only.)—I, II, III, I, II, III.
Human Development (A Graduate Group)

Carol Bruch, J.D., Group Chairperson
Group Office, 1303 Hart Hall (530-752-1926)
World Wide Web: http://hcd.ucdavis.edu

Faculty
Curtis R. Acredolo, Ph.D., Adjunct Associate Professor (Human and Community Development)
Linda P. Acredolo, Ph.D., Professor (Psychology)
Carolyn M. Aldwin, Ph.D., Professor (Human and Community Development)
Thomas F. Anders, M.D., Professor (Psychiatry)
Marilynn S. Barkley, Ph.D., M.D., Associate Professor (Neurobiology, Physiology, and Behavior)
Keith Barton, Ph.D., Professor (Human and Community Development)
Marc Braverman, Ph.D., 4-H Cooperative Extension Specialist (Human and Community Development)
Carol S. Bruch, J.D., Professor (School of Law)
Brenda K. Bryant, Ph.D., Professor (Human and Community Development)
Zhe Chen, Ph.D., Assistant Professor (Human and Community Development)
George DeVos, Ph.D., Professor Emeritus
Kathryn G. Dewey, Ph.D., Professor (Nutrition)
Dorothy Eichorn, Ph.D., Research Psychologist Emeritus
Robert A. Emmons, Ph.D., Professor (Psychology)
Frank Fulkner, M.D., Professor Emeritus
Xiaojia Ge, Ph.D., Associate Professor (Human and Community Development)
Beth Goodlin-Jones, Ph.D., Assistant Adjunct Professor (Psychiatry)
Gail Goodman, Ph.D., Professor (Psychology)
Mary Haan, Ph.D., Associate Professor (Epidemiology and Preventive Medicine)
Robin L. Hansen, M.D., Associate Professor (Pediatrics)
Lawrence V. Harper, Ph.D., Professor (Human and Community Development)
Emily S. Harris, M.D., Assistant Professor (Psychiatry)
Glenn R. Hawkes, Ph.D., Professor Emeritus
R. Scott Hawley, Ph.D., Professor (Molecular and Cell Biology)
Suad Joseph, Ph.D., Professor (Anthropology, Women and Gender Studies)
Penelope Knapp, M.D., Professor (Psychiatry)
Rosemarie H. Kraft, Ph.D., Associate Professor (Human and Community Development)
Michael R. Levenson, Ph.D., Assistant Research Psychologist (Human and Community Development)
Seymour Levine, Ph.D., Adjunct Professor (Psychiatry)
Thomas L. Morrison, Ph.D., Professor (Psychology)
Beth A. Ober, Ph.D., Associate Professor (Human and Community Development)
John Ogbu, Ph.D., Professor (Anthropology, UC Berkeley)
Ernesto Pollitt, Ph.D., Professor (Pediatrics)
Richard W. Robins, Ph.D., Assistant Professor (Psychology)
Carol J. Rodning, Ph.D., Associate Professor (Human and Community Development)
Michael Russell, Ph.D., Assistant Professor (Anesthesiology)
Stephen Russell, Ph.D., Assistant Cooperative Extension Specialist (Human and Community Development)
Jonathan H. Sandoval, Ph.D., Professor (Education)
Phillip Shaver, Ph.D., Professor (Psychology)
Karen Watson-Gedge, Ph.D., Professor (Education)
Miriam J. Wells, Ph.D., Professor (Human and Community Development)
Emmy E. Werner, Ph.D., Professor Emeritus

Graduate Study. The interdisciplinary and interdepartmental Graduate Group in Human Development offers a program of study leading to the Ph.D. degree. The program provides lifespan study of human behavioral development, with a balance of emphasis on biological, cognitive, and socio-emotional development in context. Recipients of the degree will be prepared to teach, to conduct research, and to be actively involved in public service in human behavioral development. Admission applications must be turned in by April 1.

Graduate Adviser. Contact the Group Office.
History

A.B. Major Requirements:

Preparatory Subject Matter (Plan I or II) ...20
Five lower division courses, including at least two from each of the following fields ...20
(a) Western Civilization: History 3, 4A, 4B, 4C, 10, 30
(b) Asian Civilization: History 8, 9A, 9B
(c) United States and Latin America: History 17A, 17B, 72A, 72B, 85, 86
(d) Africa: History 15

Depth Subject Matter—Plan I ..40-41
Four upper division courses from one of the fields of concentration listed below ...16
Three upper division courses from one of the other fields of concentration listed below12
Two upper division courses from a field or fields other than those chosen to satisfy the two preceding requirements ...8
One course from the following: History 101 or 102 or 103 (in field of concentration) ..4-5
Total Units for the Major, Plan I ...60-61

Depth Subject Matter—Plan II ..42
Four upper division courses from one of the fields of concentration listed below. Include a two-quarter sequence of courses ..16
Three upper division courses from one of the other fields listed ...12
History 101 ...5
History 102 in field of concentration (in exceptional circumstances, a student may, with the permission of an adviser, take the seminar in another field) ..4
History 103 in field of concentration ...4
Total Units for the Major, Plan II ...62

Fields of Concentration

g. Within broad fields, a student may wish to concentrate some of the courses on a particular area or period, such as China or Great Britain or Medieval Europe. Special approval is not required.

History and Philosophy of Science. Courses from the History and Philosophy of Science program may count toward the History major. History and Philosophy of Science 130A fulfills upper division requirements in the field of pre-industrial Europe. History and Philosophy of Science 130B, 150, and 180 fulfill upper division requirements in either the U.S. or Modern Europe field.

Students can create a field in the History of Science upon consultation with a faculty adviser. They may draw upon the relevant History courses (History 85, 86, 135A, 135B, 185A, and 185B) as well as History and Philosophy of Science offerings to do so.

Consult the History and Philosophy of Science program for a more detailed description of course offerings this area and the minor in History and Philosophy of Science.

The Program. A student electing a major in History may complete Plan I or Plan II. Plan I enables students to receive a broad education in histories of several geographic areas. Plan II encourages interested students, including those preparing for graduate work in history, to enroll in a seminar, to undertake independent work, and to study the history of historical thought as part of the major. Students preferring more active engagement in research and writing are encouraged to follow Plan II.

Career Alternatives. A degree in history is excellent preparation for a professional career such as teaching, law, journalism, public administration, or business management. Professional schools in these and related fields are looking for students who can weigh conflicting evidence, evaluate alternative courses of action or divergent points of view, and express conclusions logically in everyday language. These analytical skills are stressed in history classes, and their mastery gives the history student a solid preparation for subsequent training in a specialized career.
Minor Program Requirements:
The minor in History consists of five upper division courses chosen so that at least three courses are in one field and at least one course is in another field. The two fields shall be chosen from among those defined in the catalog for the major. However, students may also, in consultation with and with the authorization of a faculty adviser, define other thematic fields.

At least 20 units of upper-division courses are required, of which 20 must belong to the History Department. The remaining 10 units may be satisfied by courses outside the History Department.

The minor in History consists of five upper division courses chosen so that at least 20 units of upper-division courses are required, of which 20 must belong to the History Department. The remaining 10 units may be satisfied by courses outside the History Department.

History...20

UNITs

At least 20 units of upper division history courses, of which at least 20
Examples of minor with thematic emphasis: Pre-Law (British and American Political and Constitutional Development), The Twentieth Century: The History of Ideas in Society.

Minor Advisers

Same as major advisers.

Honors and Honors Program

A student becomes eligible for graduation with honors by meeting the minimum GPA (usually 3.5) and course requirements established by the College of Letters and Science. To quality for History honors, high honors, students must also complete the History Department honors program with a GPA of 3.5 or above and write a thesis that meets the criteria for honors, high honors, or highest honors. Students apply to participate in the department honors program during the latter part of their junior year. Admission to the program is based on GPA, interviews, and faculty recommendations. Students admitted to the program must complete the History 104A, 104B, 104C sequence of honors courses, which demands the completion of a senior honors thesis. Students who anticipate seeking admission to the honors program are urged to complete at least one History 102 (undergraduate seminar) before the end of their junior year. When applying for admission to the honors program, a student should indicate the research project he or she intends to pursue and should consult with a faculty member about the project. A student may not follow either Plan I or Plan III described above, and may substitute History 104 in their program (though they may not substitute it for History 102).

Students who anticipate pursuing graduate work in history or a teaching credential, and who do not wish to opt for the research emphasis embodied in the honors program, are encouraged to select Plan II of the major.

Study Abroad and the History Major

The department strongly encourages interested students to pursue their studies abroad. While there are no specific required courses or prerequisites, students are urged to take at least one history course that touches upon the geographic area where they plan to study abroad before departing. To receive a history degree from UC Davis, students must complete at least 18 upper division units in the history major at UC Davis (which can include History 101, 102, 103). The remaining major requirements can be fulfilled abroad provided that (a) the course should be evaluated as at least four UC Davis units by the Office of the Registrar; (b) the course is upper division by the standards set forth by the Education Abroad Program, (c) the student presents copies of the course syllabus, and writing assignments to the department liaison person with the EAP office for approval. Note: students who wish to receive credit for courses taken abroad under programs other than EAP may petition the Undergraduate Program Committee to do so.

Teaching Credential Subject Representative
See also the section on the Teacher Education Program.

Waiver Program for Single-Subject Teaching Credential in History

The Department of History offers a program of study for students seeking a secondary teach-
ing credential in historical studies. The program can be accommodated within the requirements for the major in History, but does require some specific course work. A list of current course requirements is available in the Advising Office, Division of Education, 174 Kerr Hall.

Graduate Study

The Department of History offers programs of study and research leading to the M.A. and Ph.D. degrees in history. Detailed information may be obtained by writing to the Graduate Advisor, Department of History.

Graduate Advisers

American History and Institutions

This University requirement can be satisfied by passing one of the following courses in History: 17A, 17B, 72A, 72B, 72A, 170A, 170B, 170C, 171A, 171B, 174A, 174B, 174C, 175A, 175B, 175C, 176A, 176B, 177A, 177B, 180A, 180B, 183A, 183B. The upper division courses may be used only with the consent of the instructor. (See also Undergraduate requirements.)

Courses in History (HIS)

Lower Division Courses

3 Cities: A Survey of Western Civilization (4)

4A History of Western Civilization (4)
Lecture—3 hours; discussion—1 hour. Growth of western civilization from late antiquity to the Renaissance. GE credit: ArtHum.—Wrt.—II. (I, II, III, IV)

4B History of Western Civilization (4)
Lecture—3 hours; discussion—1 hour. Development of western civilization from the Renaissance to the Eighteenth Century. GE credit: ArtHum.—Wrt.—II. (I, II, III, IV)

4C History of Western Civilization (4)
Lecture—3 hours; discussion—1 hour. Development of Western Civilization from the Eighteenth Century to the present. GE credit: ArtHum.—Wrt.—II. (I, II, III, IV)

8 History of Indian Civilization (4)
Lecture—3 hours; discussion—1 hour. Written reports. Survey of Indian civilization from the rise of cities (ca. 2000 B.C.) to the present, emphasizing themes in religion, social and political organization, and art and literature that reflect cultural interaction and change. GE credit: ArtHum.—Wrt.—II. (I, II, III, IV)

9A History of East Asian Civilization (4)
Lecture—3 hours; discussion—1 hour. Surveys traditional Chinese civilization and its modern transformation. Emphasis is on thought and religion, political and social life, art and literature. Perspectives on contemporary China are provided. GE credit: ArtHum.—Wrt.—II. (I, II, III, IV)

9B History of East Asian Civilization (4)
Lecture—3 hours; discussion—1 hour. Surveys traditional Japanese civilization and its modern transformation. Emphasis is on thought and religion, political and social life, art and literature. Perspectives on contemporary Japan are provided. GE credit: ArtHum.—Wrt.—II. (I, II, III, IV)

10C World History III (4)
Lecture—3 hours; discussion—1 hour. Major topics from world history of the 19th and 20th centuries, emphasizing the rise and fall of Western colonial empires, Cold War and the superpowers; the spread of the nation-states; and process of globalization. GE credit: ArtHum.—Wrt.—II. (I, II, III, IV)

15 Introduction to African History (4)
Lecture—3 hours; discussion—1 hour. Examination of the long-range historical context as background to current conditions in Africa.Includes the early development of African civilizations, the slave trade and its abolition, 19th century colonialization, and African independent states. GE credit: ArtHum.—Wrt.—II. (I, II, III, IV)

17A History of the United States (4)
Lecture—3 hours; discussion—1 hour. The experience of the American people from the Colonial Era to the Civil War. GE credit: ArtHum.—Wrt.—II. (I, II, III, IV)

17B History of the United States (4)
Lecture—3 hours; discussion—1 hour. The experience of the American people from the Civil War to the end of the Cold War. Not open for credit to students who have completed course 17C. GE credit: ArtHum.—Wrt.—II. (I, II, III, IV)

72A Social History of American Women and the Family (4)
Lecture—3 hours; discussion—1 hour. Social and cultural history of women, sex roles and the family from colonial America until the late nineteenth century emphasizing changes resulting from the secularization, commercialization, and industrialization of American society. GE credit: ArtHum.—Wrt.—II. (I, II, III, IV)

72B Social History of American Women and the Family (4)
Lecture—3 hours; discussion—1 hour. Social and cultural history of women, sex roles, and the family in twentieth-century America, emphasizing female reformers and revolutionaries, working class women, consumerism, the role of media, the “feminine mystique,” changes in family life, and the emergent women’s movement. GE credit: ArtHum.—Wrt.—II. (I, II, III, IV)

85 Nature, Man, and the Machine in America (4)
Seminar—4 hours; term paper. Prerequisite: consent of instructor. History of the attitudes and behavior of Americans toward their natural environment and their technology, from colonial times to the present. No final examination. Limited enrollment. GE credit: ArtHum.—Smith

98 Directed Group Study (1-5)
Prerequisite: consent of instructor. Primarily for lower division students. (P/NP grading only.)

99 Special Study for Undergraduates (1-5)
(P/NP grading only.)

Upper Division Courses

101 Introduction to Historical Thought and Writing (5)
Lecture/discussion—4 hours; term paper. Prerequisite: consent of instructor. Study of the history of historical thought and writing, analysis of critical and speculative philosophies of history and evaluation of modes of organization, interpretation, and style in historical writing.—II. (I, III, IV)

1022 R. Undergraduate Proseminar in History (5)
Seminar—3 hours; term paper. Designed primarily for history majors. Intensive reading, discussion, research, and writing in selected topics in the various fields of history: (A) Ancient; (B) Medieval; (D) Modern Europe to 1815; (E) Europe since 1815; (F) Russia; (Q) China to 1800; (Q) China since 1800; (O) Britain; (U) Latin America since 1811; (A) American History to 1875; (A) United States, 1875-1986; (N) United States since 1896; (J) Japan; (Q) Africa; (P) Christianity and Culture in Europe, 50-1850; (O) India; (R) Muslim Societies; (X) Comparative History. Selected topics in cultural, political, economic, and social history that deal comparatively with more than one geographic field. May be repeated for credit. Limited enrollment.—II. (I, II, III, IV)

103 Topics in Historical Research (4)
Discussion—3 hours; individual consultation with instructor; term paper. Prerequisite: consent of instructor. Individual research resulting in a research paper on a specific topic in one of various fields of history. May be repeated for credit.

Quarter Offered: I—Fall; II—Winter; III—Spring; IV—Summer. 2001-2002 offering in parentheses.
104A. Introduction to Historical Research and Interpretation (4) Seminar—3 hours; term paper. Prerequisite: acceptance into History Department Honors Program. Directed reading and research aimed at preparing students to select appropriate topics and methodologies for a senior honors essay and to situ- ate their topics within a meaningful, broad context of historical interpretations. Culminates in the submission of a full prospectus for an honors essay.—I. (I.) Brower

104B. Honors Tutorial (4) Tutorial—4 hours. Prerequisite: course 104A and 104B. Completion of a senior honors thesis under the direction of a faculty adviser. (Deferred grading only, pending completion of sequence.)—II. (II.)

104C. Honors Tutorial (4) Tutorial—4 hours. Prerequisite: course 104A and 104B. Completion of a senior honors thesis under the direction of a faculty adviser.—II. (II.)

110. Themes in World History (4) Lecture—3 hours; discussion—1 hour. Prerequisite: upper division standing; at least 8 units in history. Issues in world history from 1400 to the present. Topics will empha- size the interaction of diverse regions of the world as well as common patterns of his- torical change. Offered in alternate years. GE credit: ArtHum.

111A. Ancient History (4) Lecture—3 hours; discussion or paper (student option). History of ancient empires of the Near East and of their historical legacy to the Western world. GE credit: ArtHum, Wrt.—III. (III.) Spyridakis

111B. Ancient History (4) Lecture—3 hours; discussion or paper (student option). History of ancient empires of the Near East and of their historical legacy to the Western world. GE credit: ArtHum, Wrt.—III. (III.) Spyridakis

112A. Topics in Pre-Modern Jewish History (4) Lecture—3 hours; term paper. Topics in the history of Jews from the Biblical era to the era of Jewish emancipation. Topics can be framed chronologically (e.g., medieval Jewry) or thematically (e.g., trade and Jewish communities). May be repeated once for credit. GE credit: ArtHum, Div, Wrt.—I. (I.)

112B. Topics in Modern Jewish History (4) Lecture—3 hours; term paper. Topics in the history of Jews from the era of Jewish emancipation to the present. Topics can be framed chronologically or thematically (e.g. Zionism, assimilation, the post Holocaust Diaspora). May be repeated once for credit. GE credit: ArtHum, Div, Wrt.—III. (III.)

115A. History of West Africa (4) Lecture—3 hours; term paper. Topics in the history of Jews from the Biblical era to the era of Jewish emancipation. Topics can be framed chronologically (e.g., medieval Jewry) or thematically (e.g., trade and Jewish communities). May be repeated once for credit. GE credit: ArtHum, Div, Wrt.—I. (I.)

115B. History of East and Central Africa (4) Lecture—3 hours; written reports. Prerequisite: course 115A recommended. Introductory survey of the history of West Africa and the Congo region from the earli- est times to the present. GE credit: ArtHum, Div, Wrt.—I. (I.) Brantly

115C. History of Southern Africa, Swaziland, Lesotho, and Botswana from 1500 to the Present (4) Lecture—3 hours; written reports. Prerequisite: courses 115A and 115B recommended. Introductory survey of the history of Southern Africa, including South Africa, Swaziland, Lesotho, and Botswana from 1500 to the present. GE credit: ArtHum, Div, Wrt.—II. (II.)

116. African History: Special Themes (4) Lecture—3 hours; term paper. Prerequisite: courses 115A and 115B recommended. Themes of African history, such as African states and empires, slave trade, rela- tionship of Egypt to rest of Africa, Bantu origins and migrations, and French policy of Assimilation and Association. GE credit: ArtHum.—Brantly

121A. Medieval History (4) Lecture/discussion and panel presentations—3 hours. European history from "the fall of the Roman Empire" to the eighth century. GE credit: ArtHum, Wrt.—I. (I.)

121B. Medieval History (4) Lecture/discussion and panel presentations—3 hours. European history from Charlemagne to the twelfth century. GE credit: ArtHum, Wrt.—III. (III.)

121C. Medieval History (4) Lecture/discussion and panel presentations—3 hours. European history from the Crusades to the Peace of Constance. GE credit: ArtHum, Wrt.—I. (I.) Cadden

122. Selected Themes in Medieval History (4) Lecture—3 hours; term paper. Each offering will focus on single major theme, such as medieval agrarian history, feudalism, the family, medieval Italy, or the Crusades. Readings include original sources in English translation and modern works. May be repeated for credit. GE credit: ArtHum.—III. (III.) Cadden

125. Topics in Early Modern European History (4) Laboratory/discussion—3 hours; term paper. Prerequisite: course 4B recommended. Social and cultural history, 1300-1800. Topics such as medieval and Renaissance Italy, early modern Italy. Ancient Regime France, family and sexuality, and material culture and daily life. May be repeated for credit. GE credit: ArtHum, Wrt.—I. (I.)

130A. Christianity and Culture in Europe: 50-1450 (4) Lecture—3 hours; term paper or research paper. A history of the ideas and insti- tutions of Christianity and their impact on the late Roman Empire and medieval Europe in terms of outlook on life, art, politics and economics. GE credit: ArtHum, Div, Wrt.—II. (II.)

130B. Christianity and Culture in Europe: 1450-1600 (4) Lecture—3 hours; written report or research paper. A history of the Lutheran, Zwinglian-Calvinist, Radical, Anglican, and Catholic Reformations as foundation stones of a new culture in Europe, with special attention to the interconnections between the revival of antiquity and the different reform movements. GE credit: ArtHum.—II. (II.)

130C. Christianity and Culture in Europe: 1600-1950 (4) Lecture—3 hours; written report or research paper. A survey of the intellectual, cul- tural and political reorientation of European society in the aftermath of the Wars of Religion. "Secularization" will be discussed in the context of the Enlightenment and Romanism. GE credit: ArtHum.

131A. Early Modern European History (4) Lecture—3 hours; written reports. Prerequisite: courses 4A and 4B recommended. Western European history from about 1350 to about 1500. GE credit: ArtHum.—I. (I.)

131B. European History During the Renaissance and Reformation (4) Lecture—3 hours; term paper. Survey of European society, politics, and culture in the 17th and 18th centuries, focusing on religious warfare, absolutism, Scientific Revolution, Enlightenment and the growth of religious tolerance, the French Revo- lution and the collapse of the old regime. GE credit: ArtHum, Wrt.—III. (III.)

132. Crime and Punishment in Early Modern Europe (4) Lecture—3 hours; term paper. Deviance and crime in early modern Europe, con- trasting imaginary crimes, e.g. witchcraft, with "real" crimes such as highway robery and infanticide. Examines impact of gender, sexual orientation, ethnicity, and class in processes of criminalization. GE credit: SocSci, Div, Wrt.—II. (II.)

133. The Age of Ideas (4) Lecture—3 hours; written reports. The Enlightenment and its background in the seven- teenth century. GE credit: ArtHum.

134A. The Age of Revolution (4) Lecture—3 hours; written reports. Ideas and institutions during the French Revolu- tion and the Napoleonic era. GE credit: ArtHum.—I. (I.)

135A. History of Science to the 18th Century (4) Lecture/discussion—3 hours; term paper. Prerequisite: upper division standing. Survey of the historical development of science, technology, and medicine from the ancient world to the eighteenth century, with special emphasis on Copernicus and Newton as the culmination of the seventeenth century scientific revolution. GE credit: ArtHum.—Cadden, Harkness

135B. History of Science, 18th to 20th Centuries (4) Lecture/discussion—3 hours; term paper. Prerequisite: upper division standing. Survey of the historical development of scientific thought in geology, biology, chemistry, physics, and cosmology from the eighteenth to the twentieth century, with special emphasis on emergence of broad explanatory principles that serve more than one science. GE credit: ArtHum.—I. (I.)

136. Scientific Revolution (4) Lecture/discussion—3 hours; term paper. Prerequisite: course 135A or 135B recom- mended. History of science in Western Europe (1400-1750). Investigates the changing definitions of science in the age of Copernicus, Vensalvis, Harvey, Galileo and Newton. Considers the evolution of new ideas about nature, experiment, obser- vation, and scientific theory. GE credit: ArtHum, Wrt.—III. (III.)

138A. Russian History: The Rise of the First Empire, 1500-1881 (4) Lecture—3 hours; term paper. Prerequisite: courses 4B and 4C recommended. Expansion of the Russian state in Muscovite and imperial era. Expansion on autocratic rule, the incorporation of non-Russian peoples, and emergence of Russia as a Great Power. Only two units of credit will be allowed to students who have com- pleted former course 137B. GE credit: ArtHum, Wrt.—II. (II.)

138B. Russian History: The Russian Revolution, 1880-1917 (4) Lecture—3 hours; term paper. Prerequisite: courses 4B and 4C recommended. History of the fall of the Russian Empire and of the Revolution of 1917. Not open for credit to students who have received credit for former course 138. GE credit: ArtHum. Wrt.—I. (I.)

138C. Russian History: The Rise and Fall of the Soviet Union, 1917 to the Present (4) Lecture—3 hours; term paper. Prerequisite: courses 4B and 4C recommended. The emergence of the Soviet Union as a socialist system and a Great Power; the decline and collapse of the Soviet Union and the formation of independent nation states in its place. Not open for credit to students who have completed former course 137C. GE credit: ArtHum, Wrt.—III. (III.)
139A. Medieval and Renaissance Medicine (4)
Lecture/discussion—3 hours; term paper. The history of medicine, circa 1000-1700. Revival of ancient medicine; role of the universities; development of anatomy, physiology, and natural history; ideas about the body; cultural understanding of disease; hospital and the public health system. Offered in alternate years. GE credit: ArtHum or SocSci, Wrt.—Cadden

139B. Medicine, Society, and Culture in Modern Europe (4)
Lecture—1 hour; term paper. History of European medicine, 18th to 20th centuries, by examining the development of medical knowledge in epistemology and anatomy; function of this knowledge, how it changed with technological breakthroughs and professionalization; and role of medicine in attitudes toward poverty, women, race, disease. Offered in alternate years. GE credit: ArtHum or SocSci, Wrt.—(III.) Kudlick

140. The Rise of Capitalism in Europe (4)
Lecture—3 hours; term paper. Prerequisite: course 4B or 4C. Comparative analysis of major interpretations of the rise of merchant capitalism during the Middle Ages and Renaissance European expansion overseas, 1450-1815; the transition to modern capitalism via industrial revolution. Interplay of social, political, cultural, and economic history. Offered in alternate years. GE credit: SocSci.—III. Hagen

141. France Since 1815 (4)
Lecture—3 hours; term paper. GE credit: ArtHum, Wrt.—II. (II.) Margadant

142. Why the Holocaust? (4)
Lecture—3 hours; term paper. Long- and short-term causes of the Holocaust; the emancipation of European Jewry; the rise of modern antisemitism; nationality question in central Europe; antisemitism and German fascism; Nazism and mass murder; responses by victims and bystanders. GE credit: ArtHum, Div.—II. (II.)

143. History of Eastern Europe and the Balkans (4)
Lecture—3 hours; essays. History of the Baltic, Danubian, and Balkan lands since the Middle Ages. National cultures and conflicts in the Polish Commonwealth and the Habsburg and Ottoman Empires; nationalist movements, 1789-1914, the twentieth century, including an analysis of the contemporary scene. GE credit: ArtHum, Div, Wrt.—II. (II.) Hagen

144A. History of Germany, 1450 to 1789 (4)
Lecture—3 hours, extensive writing. Survey of early modern Germany, 1450 to 1789, covering the theology and social history of the Reformation, the Peasants War of 1525, religious warfare, state building and absolutism, the rise of Prussia, Austro-Prussian dualism, and the German Enlightenment.—III. (III.) Stuart

144B. History of Germany since 1789 (4)
Lecture/discussion—3 hours; extensive writing. Prerequisite: course 144A recommended. History of the German lands in the age of the French Revolution; 19th-century liberalism, nationalism, and industrialization; the World Wars, National Socialism, and the Holocaust; east and west Germany in the Cold War; the post-reunification scene. (Not open for credit to students who have completed former course 144.) GE credit: ArtHum, Div, Wrt.—II. (II.) Hagen

145. War and Revolution in Europe, 1789-1918 (4)
Lecture—3 hours; term paper. Survey of revolutionary movements, international crises, and wars in Europe from the French Revolution to World War I. GE credit: ArtHum, Wrt.—II. (II.) Margadant

146A. Europe in the Twentieth Century (4)
Lecture—3 hours; term paper. Survey of the history of Europe from 1919 to 1939. GE credit: ArtHum, Wrt.—II. (II.) von Henneberg

146B. Europe in the Twentieth Century (4)
Lecture—3 hours; term paper. Survey of the history of Europe since 1939. GE credit: ArtHum, Wrt.—II. (II.) von Henneberg

147A. European Intellectual History, 1800-1870 (4)
Lecture—3 hours; term paper. European thought in the early industrial era. Shifting cultural frameworks, from romanticism to scientism; liberal and socialist reactions to social change. Focus on the work of Goethe, Hegel, J.S. Mill, Marx, Darwin and Faber. GE credit: ArtHum or SocSci, Wrt.—II. (II.) Sailer

147B. European Intellectual History, 1870-1920 (4)

147C. European Intellectual History, 1920-1970 (4)
Lecture—3 hours; term paper. European thought and culture since World War I. Coverage includes: literature and politics; Communism and Western Marxism; Fascism; Existentialism; Structuralism; Feminism; Particular attention to Lenin, Brecht, Hitler, Sartre, Camus, Beckett, Marcuse, Foucault, WOlf and de Beauvoir. GE credit: ArtHum or SocSci, Div, Wrt.—II. (III.) Sailer

148A. Women and Society in Europe: 1500-1789 (4)
Lecture—3 hours; term paper. Prerequisite: course 14B recommended. Roles and perceptions of women from the Renaissance to the French Revolution. Emphasis on social and economic factors as well as on discussions of women in the writings of political theorists and social commentators. GE credit: ArtHum, Div, Wrt.—II. (II.) Hagen

148B. Women and Society in Europe: 1789-1920 (4)
Lecture—3 hours; term paper. Prerequisite: course 4C and 148A recommended. Roles and perceptions of women from the French Revolution to World War I, primarily in France and England. Emphasis on social and economic developments within a loosely chronological and comparative framework. GE credit: ArtHum, Div, Wrt.—II. (II.) Kudlick

148C. Women and Society in Europe: 1914-Present (4)
Lecture—3 hours; term paper. History of women's roles and participation. History of 20th-century Europe from the perspective of the women and the family, and of sexual and gender relations. Emphasis on the impact on women of major events and movements, such as World War I, fascism, Soviet communism, World War II, the welfare state, feminism, and mass culture. GE credit: ArtHum, Div, Wrt.—III. (III.)

149. Comparative Cultural History of Modern Britain and France, 1880-1914 (4)
Lecture—3 hours; term paper. Cultural comparison of the histories of Britain and France during the fin de siecle. Addresses cultural debates of the period (including gender, race, class) and the practices of cultural history. Offered in alternate years. GE credit: ArtHum or SocSci, Div, Wrt.—II. Kudlick, Sailer

151A. England: The Middle Ages (4)
Lecture—3 hours; term paper. Prerequisite: course 4A recommended. Origins of England to the accession of the Lancastrians. Survey includes: impact of Norman Conquest on Anglo-Saxon institutions; rise of the Church, common law, parliament, and the economy; thought, arts, and literature to the age of Chaucer and Wyclif. GE credit: ArtHum, Wrt.—III. (III.)

151B. England: The Early Modern Centuries (4)
Lecture—3 hours; term paper. Prerequisite: courses 4A, 4B; course 151A recommended. From Lancaster and York to the Glorious Revolution. Includes growth of the Church of England; beginnings of modern worldwide economy; rise of the gates of parliament; thought, arts, and literature in the times of More, Shakespeare, Hobbes, Wtten, and Newton. GE credit: ArtHum, Wrt.

151C. Eighteenth-Century England (4)
Lecture—3 hours; term paper. English history from the Glorious Revolution to the French Revolution. Examination of the transformation of one of Europe's most politically unstable kingdoms into the firmly established constitutional monarchy which provided an environment for to engender the industrial revolution. GE credit: ArtHum, Wrt.—I. (I.) Landau

151D. Industrial England (4)
Lecture—3 hours; term paper. English history from Waterloo to the Battle of Britain; the rise and continuance of the first industrial nation, examining the transformation of landed to class society, oligarchy to democracy and bureaucracy. Bentham to Bloomsbury, empire to commonwealth. GE credit: ArtHum, Div, Wrt.—Landau

161A. History of Colonial Spanish America (4)
Lecture/discussion—3 hours; written reports. Pre-Columbian civilizations of Middle America and the Andean region (mainly Aztec and Inca); the impact of European conquest and colonization; the formation of a hybrid culture. Extensive use of photographic slides. GE credit: ArtHum, Div, Wrt.—I. (I.) Bauer

161B. Latin American History (4)
Lecture/discussion—3 hours; written reports. Evolution of modern Latin America: export economies, oligarchic rule, reform and revolution; the difficulties of the twentieth century. Emphasis on Mexico, Cuba, the Andean region, Chile, and Argentina. Photographic slides. GE credit: ArtHum, Div, Wrt.—II. (II.) Bauer, C. Walker

162. History of the Andean Region (4)
Lecture/discussion—3 hours; written and/or oral reports. History of the Andean region (area that now comprises modern Peru, Bolivia, and Chile); from the beginning of human settlement to the present. GE credit: ArtHum, Div, Wrt.—III. (III.) C. Walker

163A. History of Brazil (4)
Lecture—3 hours; written reports. The history of colonial and imperial Brazil from 1500 to 1889. Offered in alternate years. GE credit: ArtHum.—(III.)

163B. History of Brazil (4)
Lecture—3 hours; written reports. The history of the Brazilian republic from 1889 to the present. Offered in alternate years. GE credit: ArtHum.—III.

164. History of Chile (4)
Lecture—3 hours; term paper. Prerequisite: course 161A, 161B, 165, or 168 recommended. Emphasis on the history of Chilean political economy from 1930 to the present. Various strategies of development (modernization, Marxism, Neo-Liberalism); the rise of mass politics; the course of foreign relations; and the richness of Chilean literature. Offered in alternate years. GE credit: ArtHum.—III. Bauer

165. Latin American Social Revolutions (4)
Lecture—3 hours; written reports. Major social upheavals since 1900 in selected Latin American nations; similarities and differences in cause, course, and consequences. GE credit: ArtHum.—(II.) Bauer

166A. History of Mexico to 1910 (4)
Lecture/discussion—3 hours; written and/or oral reports. History of Mexico from 1848 to the present. Offered in alternate years. GE credit: ArtHum.—I. (I.) Resendez

166B. History of Mexico Since 1848 (4)
Lecture/discussion—3 hours; written and/or oral reports. History of Mexico from 1848 to the present. Offered in alternate years. GE credit: ArtHum.—(III.) Resendez

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
168. History of Inter-American Relations (4)
Lecture—3 hours; hours written. Diplomatic history of Latin America since independ-ence, intra-Latin American relations, relations with the United States, participa-
tion in international organizations, and communism in Latin America. GE credit: ArtHum.—Ill. (III.)

169A. Mexican-American History (4)
Lecture/discussion—3 hours; written and/or oral reports. Economic, social, religious, cultural and political development of the Spanish-speaking population of the South-
western United States from about 1800 to 1910. GE credit: ArtHum, Div, Wrt.—II. (II.) Oropeza

169B. Mexican-American History (4)
Lecture/discussion—3 hours; written and/or oral reports. Role of the Mexican and Mexican-American in the economy, politics, religion, culture and society of the Southwestern United States since 1910. GE credit: ArtHum, Div, Wrt.—I. (I.)

170A. Colonial America (4)
Lecture—3 hours; term paper. Colonial society from 1607 to the American Revolu-
tion, with emphasis on European expansion, political, social and economic founda-
tions, colonial thought and culture, and imperial rivalry. GE credit: ArtHum, Div, Wrt.—Taylor

170B. The American Revolution (4)
Lecture—3 hours; term paper. Analysis of the Revolutionary epoch with emphasis on the structure of British colonial policy, the rise of revolutionary movements, the War for Independence and its consequences, and the Confederation period. GE credit: ArtHum, Div, Wrt.—Taylor

170C. The Early National Period, 1789-1815 (4)
Lecture—3 hours. Political and social history of the American republic from the adoption of the Constitution through the War of 1812 and its consequences. GE credit: ArtHum.—Ill. (III.) Deyle

171A. The Jacksonian Era (4)
Lecture—3 hours. Political and social history of the American republic from the end of the War of 1812 to the Compromise of 1850. GE credit: ArtHum, Div, Wrt.—II. (II.) Deyle

171B. U.S. Civil War: Politics and Society (4)
Lecture/discussion—3 hours; term paper. Social crisis, 1848-1877: slavery and the West, new political parties, secession, mobilization and emancipation, economic nationalism and reconstruction (for military aspects, see course 173). GE credit: ArtHum.—Ill. (III.) Deyle

171BF. The Civil War in American Film (1)
Discussion—1 hour; film viewing. Prerequisite: course 171B concurrently. Viewing and discussion of films with short writing assignments. (PINP grading only) —I, II, III. (I, II, III.) Rosen

173. Becoming an American: Immigration and American Culture (4)
Lecture—3 hours; term paper. Prerequisite: course 17B or 72B recommended. An introduction to the wide range of immigrant experiences and cycles of nativism that have shaped American culture in the twentieth century. From novels, memoirs and films, students will explore how external and internal immigration has created a multi-
cultural society. Offered alternate years. GE credit: ArtHum, Div, Wrt.—I. (I.) Deyle

174A. The Emergence of Modern America, 1876-1914 (4)
Lecture—3 hours; term paper. Rise of modern business and labor organizations, changing political institutions, the culmination and decline of Victorian culture, and the reaction of the 1920s; rise of organized labor; the automobile and moving picture industry; social and literary developments; Progressive reform. GE credit: ArtHum, Div, Wrt.—II. (II.) Taylor

174AD. Emergence of Modern America: Discussion (1)
Discussion—1 hour; short papers. Prerequisite: course 174A concurrently. Intensive discussion of topics and readings for course 174A. (PINP grading only) —I. (I.) Barber

174B. America in War, Prosperity and Depression, 1914-1945 (4)
Lecture—3 hours; term paper. America’s emergence as a world power, the business cycle of the 1920s, the New Deal and World War II. Emphasis on such issues as govern-
ment regulation of the economy, welfare capitalism, and class, racial, ethnic and gender conflicts. GE credit: ArtHum, Wrt.—II. (II.)

174BD. America in War, Prosperity and Depression: Discussion (1)
Discussion—1 hour; short papers. Prerequisite: course 174B concurrently. Intensive discussion of topics and readings for course 174B. (PINP grading only) —II. (II.)

174C. The United States Since World War II: 1945 to the Present (4)
Lecture—3 hours; term paper. America’s struggle to respond to new complexities in foreign relations, social tensions, family changes and media. Emphasis on such topics as: Cold War, anticommunist crusade; civil rights, feminist and environmen-
talist movements; New Left; counterculture; Vietnam, Watergate, and the moral major-
ty. GE credit: ArtHum, Wrt.—II. (II.) Smith

174CD. The United States Since World War II: Discussion (1)
Discussion—1 hour; short papers. Prerequisite: course 174C concurrently. Intensive discussion of topics and readings for course 174C. (PINP grading only) —III. (III.)

174D. Selected Themes in 20th Century American History (4)
Lecture—3 hours; term paper. Prerequisite: course 17B or the equivalent. Interpre-
tive overview of a single topic in the history of the United States in the 20th century with attention to the phases and processes of historical change. May be repeated once for credit when topic differs. Offered in alternate years. GE credit: ArtHum.—II. (II.)
174DD. Selected Themes in 20th Century American History: Discussion (1)
Discussion—1 hour; short papers. Prerequisite: course 174D concurrently. Intensive discussion of topics and readings for course 174D. May be repeated for credit. (PINP grading only) —I, II, III (I, II, III.)

176A. Cultural and Social History of the United States (4)
Lecture—3 hours; term paper. Study of social and cultural forces in American soci-
ety in the nineteenth century with emphasis on social structure, work and leisure, socialization and the family, social reform movements and changes in cultural values. GE credit: ArtHum.—I. (I.) Halttunen

176B. Cultural and Social History of the United States (4)
Lecture—3 hours; term paper. Study of social and cultural forces in American soci-
ety in the nineteenth century with emphasis on social structure, work and leisure, socialization and the family, social reform movements and changes in cultural values. GE credit: ArtHum.—Ill. (III.) Halttunen

177A. History of Black People and American Race Relations (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 17A or 17B. History of black people in the United States from the African background to Reconstruction. GE credit: ArtHum, Div, Wrt.—C. Walker

177B. History of Black People and American Race Relations (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 17A or 17B. History of black people in the United States from the African background to Reconstruction. GE credit: ArtHum, Div, Wrt.—C. Walker

178. Race in America (5)
Lecture—4 hours; discussion—1 hour. Prerequisite: courses 17B, 177A, 177B rec-
F. Smith

180A. Growth of American Politics to 1815 (4)
Lecture—3 hours; extensive reading and supervised writing. The growth of Ameri-
ican politics from the early settlements to 1815 focusing on the distribution of power, its changes over time and the ways power has been used. Examines political party development and the social and ideological dimensions of political behavior. GE credit: ArtHum.

180B. Growth of American Politics, 1815-1890 (4)
Lecture—3 hours; extensive reading and supervised writing. Continuation of course 180A. GE credit: ArtHum.—III. (III.)

180C. Growth of American Politics, 1890 to the Present (4)
Lecture—3 hours; extensive reading and supervised writing. Continuation of course 180B. GE credit: ArtHum.

183A. The Frontier Experience: Trans-Mississippi West (4)
Lecture—3 hours; written and/or oral reports. The fur trade, western exploration and transportation, the Oregon Country, the Greater Southwest and the Mexican War, the Mormons, mining discovery, and the West during the Civil War. GE credit: ArtHum, Div, Wrt.—I. (I.) Taylor

183B. The Frontier Experience: Trans-Mississippi West (4)
Lecture—3 hours; written and/or oral reports. Spread of the mining kingdom, the range cattle industry, Indian-military affairs, settlement of the Great Plains and Rocky Mountain Regions and political organization of the West. GE credit: ArtHum, Div, Wrt.—II. (II.)

185A. History of Science in America (4)
Lecture—3 hours; research paper. Survey of the European background. Study of American scientific institutions, ideas, personalities, creative processes in science, and of relationships between society and science from colonial times to present. GE credit: ArtHum, Wrt.

185B. History of Technology in America (4)
Lecture—3 hours; research paper. Study of American technology, emphasizing biographical approach to historical understanding of technological change, creative processes, institutions, ideas, and relationships between technology and society from colonial times to present. GE credit: ArtHum, Wrt.—Smith

189A. History of California (4)
Lecture—3 hours; written and/or oral reports. Spanish exploration and settlement; the mission as a frontier institution; revolt of the Californios; penetration by Moun-
tain Men; pioneer trails and settlement; Bear Flag Revolt and Mexican War. GE credit: ArtHum.

189B. History of California (4)
Lecture—3 hours; written and/or oral reports. State constitution; land grant and Indian policies; Gold Rush; vigilantes; railroad construction; the wheat era; chang-
ing economy; social and literary developments; Progressive reform. GE credit: ArtHum.

190C. History of California (4)
Lecture—3 hours; written and/or oral reports. Impact of World War I; conservative reaction of the 1920s; rise of organized labor; the automobile and moving picture industry; New Deal developments; changes with World War II; role of minorities; contemporary politics. GE credit: ArtHum, Wrt.

191A. Classical China (4)
Lecture—3 hours; term paper. History of Chinese civilization from its origins through the establishment of city states and the flowering of classical philosophy, to the rise and fall of the First Empire. GE credit: ArtHum, Div, Wrt.—I, II, III (I, II, III) Price
191B. High Imperial China (4)
Lecture—3 hours; term paper. Political disunion and the influx of Buddhism; reunification under the great dynasties of Tang, Sung, and Ming with analysis of society, culture, and thought. GE credit: ArtHum, Div, Wrt.—II. (I.) Bossler

191C. Late Imperial China (4)
Lecture—2 hours; discussion—1 hour; two long papers. Prerequisite: course 9A or upper division standing. Patterns and problems of Chinese life traced through the Ming and Ch'ing dynasties (1500–1800), prior to the confrontation with the West in the Opium War. Readings include primary sources and novels portraying elite ethos as well as popular culture. Offered in alternate years. GE credit: ArtHum, Div, Wrt.—I. Mann

191D. Nineteenth Century China: The Empire Confronts the West (4)
Lecture—2 hours; discussion—1 hour; extensive writing. Prerequisite: upper division standing. Analysis of China's cultural and political transformation from Confucian empire into Communist state. Emphasis on the social and political issues of teaching methods and techniques (to 1949), with some attention to its implications for post-revolutionary culture and politics. GE credit: ArtHum, Div, Wrt.—II. (II.) Price

191F. History of the People’s Republic of China (4)
Lecture—2 hours; discussion—1 hour; extensive writing. Prerequisite: upper division standing. Comprehensive analysis of recent Chinese history, including legal reform, the Cultural Revolution, the post-Mao era, and the consequences of the new economic policies of the 1980s. Not open for credit to students who have completed course 190C. Offered in alternate years. GE credit: ArtHum, Div, Wrt.—II. (II.) Mann

192. Internship in History (1-12)
Prerequisite: enrollment dependent on availability of intern positions, with priority to History majors. Supervised internship and study as historian, archivist, curator, or in another history-related capacity, in an approved organization or institution. (P/NP grading only.)

194A. Aristocratic and Feudal Japan (4)
Lecture—3 hours; term paper and/or discussion. Broad survey of the cultural, social, religious, and political aspects of Japanese history from mythological times through the sixteenth century emphasizing comparison of the organizations, values, and beliefs associated with the aristocratic and feudal periods. Offered in alternate years. GE credit: ArtHum, Div, Wrt.—II. (I.) Borgen

194B. Early Modern Japan (4)
Lecture—3 hours; term paper and/or discussion. Survey of the cultural, social, economic, and political aspects of Japanese history from the seventeenth through the nineteenth centuries emphasizing the development of those patterns of thought and political organization with which Japan met the challenge of the nineteenth-century Western expansionism. GE credit: ArtHum, Div—II. (I.) Kim

194C. Modern Japan (4)
Lecture—3 hours; term paper and/or discussion. Survey of the cultural, social, economic, and political aspects of Japanese history from the seventeenth through the nineteenth centuries emphasizing the development of those patterns of thought and political organization with which Japan met the challenge of the nineteenth-century Western expansionism. GE credit: ArtHum, Div—II. (I.) Kim

194D. Business and Labor in Modern Japan (4)
Lecture—3 hours; term paper or papers. Survey of labor and management relations in Japan from the mid-eighteenth century to the present. Offered in alternate years. GE credit: ArtHum, Div—II. (I.) Kim

194E. Education and Technology in Modern Japan (4)
Lecture—3 hours; term papers. Survey of education and technology in Japan from the mid-eighteenth century to the present. Offered in alternate years. GE credit: ArtHum, Div—II. (I.) Kim

196A. Medieval India (4)
Lecture—3 hours; discussion—1 hour; written reports. Survey of history of India in the millennium preceding arrival of British in the eighteenth century, focusing on interaction of the civilizations of Hinduism and Islam and on the changing nature of the state. GE credit: ArtHum, Div, Wrt.—I. (I.) Metcalf

196B. Modern India (4)
Lecture—3 hours; discussion—1 hour; written reports. Survey of cultural, social, economic, and political aspects of South Asian history from arrival of the British in the eighteenth century to formation of new independent states—India, Bangladesh, and Pakistan—in the twentieth century. GE credit: SocSci, Div, Wrt—Metcalf

197T. Tutoring in History (2)
Discussion—1 hour; laboratory—3 hours. Prerequisite: enrolled as a History major with senior standing and consent of department chairperson. Tutoring of students in lower division courses. Weekly meeting with instructors in charge of courses. Written reports on methods and materials required. May be repeated once for credit. No final examination. (P/NP grading only.)

198. Directed Group Study (1-5)
Prerequisite: consent of instructor; upper division standing. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)

Graduate Courses

201A-T. X. Sources and General Literature of History (4)
Seminar—3 hours; term paper. Designed primarily for students preparing for higher degrees in history (A) Ancient; (B) Medieval; (C) Renaissance and Reformation; (D) Early Modern; (E) Europe since 1815; (F) China to 1880; (G) China since 1880; (H) Britain; (I) Latin America since 1810; (J) American History to 1877; (K) United States, 1787–1896; (L) United States since 1896; (M) Modern Japan; (Q) Cross-Cultural Women's History. (S) History of Science and Medicine; (T) Jewish History; (X) World History. May be repeated for credit when different subject area is studied.—II, III, I, II, III)

202A-I. Major Issues in Historical Interpretation (4)
Seminar—3 hours; term paper. Prerequisite: graduate standing. Fundamental issues and debates in the study of history. (A) Ancient; (B) Medieval; (C) Modern Europe; (D) India; (E) Africa; (F) China; (G) Japan; (H) United States; (I) Latin America. Readings, papers, and class reports. May be repeated for credit when a different subject area is studied.—II, III, I, II, III)

203. Seminar Research (4)
Seminar—3 hours. Prerequisite: consent of instructor. Designed primarily for students preparing for higher degrees in History. Individual research and analysis resulting in substantial research paper. May be repeated for credit.—II. (II.)

204. Historiography (4)
Seminar—3 hours; term paper. Major issues in the philosophy and methodology of history.—II. (II.)

221. Medieval History (4)
Seminar—3 hours. Prerequisite: courses 121A, 121B, 121C recommended. Topics in the history of medieval and early Renaissance Europe.

245. Modern European History (4)
Seminar—3 hours. Prerequisite: course 201E. Primary sources and research methodologies in the history of modern France and Germany. May be repeated once for credit.—III, (III.) Margadant

261. Latin American History (4)
Seminar—3 hours. Prerequisite: two courses in Latin American history; reading knowledge of Spanish or Portuguese.—II, III, (II, III.) Bauer

271A-271B. United States History (4-4)
Seminar—3 hours; term paper. Prerequisite: course 201J-L or 202H. Research in literature, methods, and sources on aspects of United States history, culminating in each student completing a research paper in the field by the end of the second quarter. May be repeated for credit. (Deferred grading only, pending completion of sequence.)—II, III, (II, III.)

291A. Chinese History (4)
Seminar—3 hours; term paper. Prerequisite: consent of instructor. Research on topics to be chosen by the students for the purpose of writing article-length papers. May be repeated for credit. (Deferred grading only, pending completion of sequence.)—Price, Mann, Bossler

291B. Chinese History (4)
Seminar—3 hours; term paper. Prerequisite: consent of instructor. Completion of article-length papers on topics chosen by students. May be repeated for credit. (Deferred grading only, pending completion of sequence.)—Price, Mann, Bossler

291C. Chinese History (4)
Seminar—2 hours; tutorial—1 hour. Prerequisite: reading knowledge of Chinese. Readings in Chinese historical materials. Training in the use of Chinese reference works. May be repeated once for credit.—Price, Mann, Bossler

292. College Teaching Internship (4)
Internship—4 hours. Prerequisite: course 300 (may be taken concurrently). Student prepares and teaches one lower division history course in a nearby community college under the supervision of a UC Davis instructor and a community college instructor. (SU grading only.)

298. Group Study (1-5)

299. Research (1-12)
(SU grading only)

299D. Individual Study (1-12)
(SU grading only)

Professional Courses

389. Introductory Seminar for Teaching Assistants (1)
Seminar—1 hour. Prerequisite: must be enrolled in course 380. An introduction to the broad comparative and theoretical issues of teaching methods and techniques in history. (SU grading only.)—I, II, III, (I, II, III)

390. Teaching History in College (2)
Discussion—2 hours. Designed for teaching assistants with emphasis on problems and procedures encountered by teachers of lower division classes at the university. (SU grading only.)—I, II, III, (I, II, III)
Honors Challenge

Kenneth L. Verosub, Ph.D., Program Director
Program Office, 162 Kerr Hall (530-752-9797)
http://www-honors.ucdavis.edu

Honors Council
Andrew D. Frank, M.A. Chairperson (Music)
Gary E. Ford, Ph.D. (Electrical and Computer Engineering)
Jared Haynes, M.A. (English)
Nancy Kushigian, Ph.D., M.L.I.S. (Shields Library)
Nora A. McGuinness, Ph.D. (Integrated Studies)
Maureen McMahon, Ph.D. (Education)
Kevin Salyer, Ph.D. (Economics)
Arnold J. Sillman, Ph.D. (Neurobiology, Physiology, and Behavior)
Kenneth L. Verosub, Ph.D. (Geology)

The Program of Study

The Davis Honors Challenge (DHC) is a program for highly motivated students interested in enhancing their education through special courses, closer contact with faculty, and dynamic interaction with academic peers. Interested students apply in the spring for places the following year. First- and second-year students participating in the DHC take two honors courses and one problem-oriented interdisciplinary seminar per academic year. Second-year students have the option to substitute an honors contract for an honors course. Third-year students are required to complete three honors contracts and one upper division honors seminar. Fourth-year students participate in a year-long team honors project. All students who successfully complete the program receive transcript notation for each year of participation.

Lower division departmental Honors courses, special DHC sections of regular courses, DHC seminars, and special studies offerings constitute the course offerings of the Davis Honors Challenge. A complete list of these courses, with course registration numbers, is made available to admitted students through the Davis Honors Challenge Office.

Lower division seminars are offered each year during winter and spring quarters. The seminars are designed to foster critical thinking and analytic interpretation, improve oral and written communication skills, enhance research skills, provide experience with group dynamics and collaborative exploration of problems, and develop familiarity with electronic communication and visual presentations. Enrollment in each seminar is limited to 20 students. Updated program information is available at our web site.

Students not admitted to the program may not register for Davis Honors Challenge sections, seminars, or special study opportunities.

Courses in Davis Honors Challenge (HNR)

Lower Division Courses

90X. Honors Discussion Section (1)
Discussion—1 hour. Prerequisite: open only to students in the Davis Honors Challenge. Examination of special topics in selected lower division courses through additional readings, discussions, term papers, collaborative work, or special activities, including projects, field and laboratory experiences, computer simulations, creative works. May be repeated for credit.

92. Internship (1-12)
Internship—3-36 hours. Prerequisite: open only to students in the Davis Honors Challenge. Supervised work experience under the auspices of the Davis Honors Challenge. May be repeated for credit for a total of 12 units. (P/NP grading only.)

94. Honors Seminar (3)
Seminar—3 hours. Open only to students in the Davis Honors Challenge. Team-based work on actual problems drawn from the public or private sector. Focus on critical thinking and analytical interpretation, oral and written communication skills, and development of practical solutions to real-world problems. GE credit: Wrt. (II, III.)

95. Honors Thesis/Honors Project (1-3)
Independent Study—3-9 hours. Prerequisite: Open only to students in the Davis Honors Challenge. Guided independent study of a selected topic leading to the presentation of an honors thesis/honors project. May be repeated for credit up to 9 units.

98. Directed Group Study (1-5)
Discussion—1-5 hours. Prerequisite: open only to students in the Davis Honors Challenge. May be repeated for credit. (P/NP grading only.)

99. Special Study for Advanced Undergraduates (1-5)
Independent study—1-5 hours. Prerequisite: open only to students in the Davis Honors Challenge. May be repeated for credit. (P/NP grading only.)

Upper Division Courses

190X. Honors Contract (1)
Independent study or discussion—3 hours. Prerequisite: open only to students in the Davis Honors Challenge. In-depth examination of material in an upper division course as defined in an Honors Contract Proposal submitted by the student. Contract must be approved by the instructor and the Honors Council of the Academic Senate. May be repeated for credit.

192. Internship (1-12)
Internship—3-36 hours. Prerequisite: open only to students in the Davis Honors Challenge. Supervised work experience under the auspices of the Davis Honors Challenge. May be repeated for credit for a total of 12 units. (P/NP grading only.)

194. Honors Seminar (3)
Seminar—3 hours. Open only to students in the Davis Honors Challenge. Team-based work on actual problems drawn from the public or private sector. Focus on critical thinking and analytical interpretation, oral and written communication skills, and development of practical solutions to real-world problems. GE credit: Wrt. (II, III.)

195. Honors Thesis/Honors Project (1-3)
Independent Study—3-9 hours. Prerequisite: Open only to students in the Davis Honors Challenge. Guided independent study of a selected topic leading to the presentation of an honors thesis/honors project. May be repeated for credit up to 9 units.

198. Directed Group Study (1-5)
Discussion—1-5 hours. Prerequisite: open only to students in the Davis Honors Challenge. May be repeated for credit. (P/NP grading only.)

199. Special Study for Undergraduates (1-5)
Independent study—1-5 hours. Prerequisite: open only to students in the Davis Honors Challenge. May be repeated for credit. (P/NP grading only.)

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
History and Philosophy of Science

(College of Letters and Science)

Joan Cadden, Ph.D., Program Director

Program Office, 1238 Social Sciences and Humanities Building (530-752-9621)

World Wide Web: http://hpslab.ucdavis.edu

Committee in Charge

- Joan Cadden, Ph.D. (History)
- Patrick E. Carroll-Burke, Ph.D. (Sociology)
- James R. Griesemer, Ph.D. (Philosophy)
- Deborah E. Harkness, Ph.D. (History)
- Kevin D. Hoover, D.Phil. (Economics)
- Catherine J. Kudlick, Ph.D. (History)
- Jay E. Mechling, Ph.D. (American Studies)
- Benjamin S. Orlove, Ph.D. (Environmental Science and Policy)
- Paul Teller, Ph.D. (Philosophy)

Minor Program Requirements:
The interdisciplinary minor in the history and philosophy of science invites students to examine historical and contemporary problems in a variety of scientific disciplines, and to explore concepts and procedures basic to science and how they have evolved. The minor is sponsored by the Program in the History and Philosophy of Science.

UNITS

History and Philosophy of Science .. 24

<table>
<thead>
<tr>
<th>Philosophy 104</th>
<th>History 135A or 135B</th>
<th>Four courses from those listed below. One course must be from each of three areas: (a) history, (b) philosophy, and (c) history and philosophy of science</th>
<th>20, 130A, 130B, 150, 180</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td>(a) History 102, 136, 139A, 139B, 185A, 185B, 188A, 188B; (b) Philosophy 106, 107, 108, 109, 110, 111; (c) History and Philosophy of Science 20, 130A, 130B, 150, 180</td>
<td></td>
</tr>
</tbody>
</table>

Minor adviser: J. Griesemer, 2297 Social Sciences and Humanities Building, 530-752-1068.

Courses in History and Philosophy of Science (HPS)

Upper Division Courses

130A. From Natural History to the History of Nature (4)
Lecture/discussion—3 hours; term paper. Prerequisite: History 135A recommended. Evolution and demise of natural history as a discipline from Aristotle to Linnaeus. Considers ancient views of nature and its Renaissance rediscovery; the emergence of biology, botany, geology, and zoology; the history of taxonomy and classification. GE credit: ArtHum or SciEng, Wrt.

130B. History of Modern Biology (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 130A recommended. Development of modern biology from pre-Darwinian roots to the present. Considers emergence of modern biological specialties and consolidation of biological theory around evolutionary ideas. History of allied fields such as genetics, paleontology, embryology, ecology, systematics and molecular biology. GE credit: ArtHum or SciEng, Wrt.—II, (II.)

131. Darwin (4)
Lecture—3 hours; term paper. Prerequisite: upper division standing or consent of instructor. Students will explore the life and times of Charles Darwin and will trace the development of evolutionary thinking before and after the Origin of Species to appreciate its place in Victorian society and in the corpus of Darwin’s thought. GE credit: ArtHum or SciEng, Wrt.—II, (II.)

150. Gender and Science (4)
Lecture/discussion—3 hours; term paper. An interdisciplinary approach to the relations between gender and science. Topics include the biological and cultural construction of sexual difference, the role of women as practitioners of science, and feminist approaches to science. GE credit: SocSci, Div, Wrt.

180. Topics in History and Philosophy of Science and Technology (4)
Seminar—3 hours; term paper. Prerequisite: course in History and Philosophy of Science or other course work relevant to the particular topic offering. In-depth treatment of selected topics in the history and philosophy of science. Possible topics include: history of modern physics, history of molecular biology, science and society, scientific explanation, technology and culture, theory testing.—II, (II.)

186. Directed Group Study (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)

Graduate Courses

250. History and Philosophy of Science (4)
Seminar—3 hours; term paper. Prerequisite: graduate standing or consent of instructor. Interdisciplinary seminar in the history and philosophy of science. Focuses on issues such as historiography, methodology, and the conceptual foundations of science. May be repeated for credit with consent of instructor.

296. Group Study (1-5)
Prerequisite: consent of instructor. (S/U grading only.)

298. Research (1-12)
Prerequisite: consent of instructor. (S/U grading only.)

Professional Course

396. Teaching Assistant Training Practicum (1-4)
Prerequisite: graduate standing. May be repeated for credit. (S/U grading only.)—I, II, III. (I, II, III.)

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social–Cultural Diversity; Wrt = Writing Experience.

Quarter Offered: I—Fall; II—Winter; III—Spring; IV—Summer; 2001-2002 offering in parentheses.
Horticulture and Agronomy (A Graduate Group)

M. Andrew Walker, Ph.D., Chairperson of the Group
Group Office, 140 Environmental Horticulture
(530-752-7738)
World Wide Web: http://ghha.ucdavis.edu

Faculty

Douglas C. Adams, Ph.D., Associate Professor (Viticulture and Enology)
Michael G. Barbour, Ph.D., Professor, Academic Senate Distinguished Teaching Award (Environmental Horticulture)
David E. Bayer, Ph.D., Professor (Vegetable Crops)
Alison M. Berry, Ph.D., Professor (Environmental Horticulture)
Arnold J. Bloom, Ph.D., Professor (Vegetable Crops)
Kent J. Bradford, Ph.D., Professor (Vegetable Crops)
Patrick H. Brown, Ph.D., Associate Professor (Pomology)
David W. Burger, Ph.D., Professor (Environmental Horticulture)
Marita Cantwell, Ph.D., Lecturer (Vegetable Crops)
Roger T. Chetelat, Ph.D., Lecturer (Vegetable Crops)
Carlos H. Crisosto, Ph.D., Lecturer (Pomology)
Stephen M. Southwick, Ph.D., Lecturer (Pomology)
Kenneth A. Shackel, Ph.D., Associate Professor (Soil Science)
Michael S. Reid, Ph.D., Professor (Agronomy and Range Science)
D.William Rains, Ph.D., Professor (Vegetable Crops)
Carlos F. Quiros, Ph.D., Professor (Agronomy and Range Science)
Daniel Potter, Ph.D., Assistant Professor (Viticulture and Enology)
Vito S. Polito, Ph.D., Professor (Pomology)
Mark Francis, M.L.A., Professor (Agronomy and Range Science)
James A. Wolpert, Ph.D., Cooperative Extension Specialist (Viticulture and Enology)

Graduate Study. The Graduate Group in Horticulture and Agronomy offers programs of study leading to the M.S. degree. The programs provide opportunities for specialized study in the production, management, and utilization of horticultural and agronomic plants and the postharvest handling of horticultural commodities. Options include agronomy, environmental horticulture, pomology, vegetable crops, viticulture and weed science. Within an option, the student can specialize in one of a number of areas, including agroecology, biotechnology, breeding and crop improvement, crop physiology, crop production, mineral nutrition, modeling and quantitative horticulture, pest management, plant growth and development, postharvest physiology, revegetation/contamination, and water relations. Research may be conducted on an applied or basic problem having a physiological, genetic, or ecological emphasis.

Preparation. A level of competence equivalent to that of a sound undergraduate program in Plant Science is required. This includes coursework in general biology, chemistry, physics, statistics, genetics, and introductory plant physiology. A few limited deficiencies in any of these areas can be made up after admission to the program. Specific requirements are outlined in detail and may be obtained from the Group office.

Graduate Advisers. Consult the Group office.

Courses in Horticulture (HRT)

Graduate Courses

203. Research Perspectives in Horticulture (3)
Lecture—1 hour, lecture/discussion—2 hours. Prerequisite: Plant Biology 111 and 112, or Environmental Horticulture 102 or the equivalent. Following lectures/discussions of scientific methodology, students develop research proposals aided by classroom discussions and individual interactions with instructors. Lectures and critiques of "classical papers" provide a sense of the evolution of the current concepts in perennial plant biology. Offered in alternate years.—(I.) Weinbaum, De Jong

251. Modeling Horticultural Systems (3)
Lecture—2 hours; laboratory—3 hours. Prerequisite: Plant Biology 142, calculus, or consent of instructor. Development and application of models. Primary emphasis on physiological and ecological models, with examples drawn from areas of interest to class participants. Applications to horticultural systems. Students will build models and implement them on computers.—II. (II.) Leith

290. Seminar (1)
Seminar—1 hour. Prerequisite: graduate standing at UCD. Seminars presented by invited speakers, students, or faculty on selected topics in horticulture. (S/U grading only.)—I. (I.)
Humanities

(College of Letters and Science)
Georges Van Den Abbeele, Ph.D., Program Director
Program Office, 176 Voorhees (530-752-0431)

Committee in Charge
Marc E. Blanchard, Agrégé de lettres (Comparative Literature, French)
John Boe Ph.D. (Campus Writing Center)
Manfred Kusch, Ph.D. (French)
Neil Larsen, Ph.D. (Spanish)
Jay Mechling, Ph.D. (American Studies)
Harriet Murav, Ph.D. (Comparative Literature, Russian)
Pablo Ortiz, Ph.D. (Music)
Juliana Schiesari, Ph.D. (Italian)
Georges Van Den Abbeele, Ph.D. (French)

The Program of Study
The Humanities program offers courses in the Humanities proper and also sponsors minors in Film Studies, Global and International Studies, and Jewish Studies. Courses in the Humanities proper are interdisciplinary in scope and aim to develop critical thinking and writing skills (most courses fulfill partial or complete GE requirements) in three areas: major authors and texts, major periods, major themes in world culture.

Courses in Humanities (HUM)

Lower Division Courses
1. Humanities Forum (2)
Seminar—2 hours. Reading and discussion of a single work representative of a particular culture, historical period, or genre and significant for its ongoing cultural impact in the humanities, sciences, social sciences, technology, and popular areas. Attention to provocative implications for contemporary society. May be repeated once for credit when topic differs.—I, II, (III.) Schildgen

1D. Issues and Concepts in the Humanities (2)
Discussion—2 hours. Prerequisite: concurrent enrollment in course 1. Small group discussions and preparation of short papers for course 1. May be repeated for credit when topic differs. GE credit with concurrent enrollment in course 1: Wrt.—I, II, (III.)

2. Cultural Approaches to Life and Death Experience (4)
Lecture/discussion—3 hours, extensive writing. Prerequisite: completion of Subject A requirement. Readings from a variety of perspectives (philosophical, literary, religious, and artistic) form the basis for a reflection on issues of love, life and mortality, death and suicide. GE credit: ArtHum or SocSci, Wrt.—III. (III.)

3. Medicine and Humanities (4)
Lecture/discussion—3 hours, extensive writing. Prerequisite: completion of Subject A requirement. Evolution of the "medical arts" into the "science of medicine." The culture of medicine in the context of society, medical ethics. GE credit: SocSci, Wrt.—III. (III.)Flynn

5. Representation of the Law in Literature and Film (4)
Lecture/discussion—3 hours, extensive writing. Prerequisite: completion of Subject A requirement. The relationships among literature, film, and the law, from Greek tragedy to popular American fiction and films. Common themes in law and literature portraying human experience. GE credit: ArtHum or SocSci, Wrt.—I. (I.) Morrow

6. Wagner and Star Wars (4)
Lecture/discussion—3 hours, extensive writing. Wagner's Ring and Lucas' Star Wars, as examples of 19th and 20th centuries approaches to the arts and their relationship with the society. GE credit: ArtHum or SocSci, Wrt.—II. (II.)Ortiz

7. Travel and Travel Literature (4)
Lecture/discussion—3 hours, extensive writing. Prerequisite: Subject A requirement. History of travel from the age of exploration to the modern era. Contemporary trends in travel, including mass tourism, adventure travel, and ecotourism. Social, economic, and cultural issues related to modern trends in travel. Analysis of literary representations of travel. GE credit: ArtHum, Div, Wrt.—II, (II.)

8. Introduction to Perspectives on Narrative (4)
Lecture/discussion—3 hours, extensive writing. Prerequisite: satisfaction of Subject A requirement. Interdisciplinary approach to the use of story across time, culture, and discipline. How the telling and retelling of particular stories reflect the values, concerns, and assumptions of their original audiences and genres. GE credit: ArtHum or SocSci, Div, Wrt.—III. (III.)Clarke

9. Don Quixote and the Modern World (2)
Lecture—2 hours. Reading Don Quixote as emblem of modernity in the West. Issues of reality versus illusion, heroism, freedom and self-satisfaction, radical tolerance and love. Don Quixote in other cultural and popular media: film, art, dance, musical drama, and television. Offered in alternate years. GE credit with concurrent enrollment in course 9D. ArtHum, Wrt.—III. (III.)

9D. Don Quixote and the Modern World Discussion (2)
Discussion—2 hours. Prerequisite: course 9 concurrently. Small group discussions and preparation of short papers for course 9D. Offered in alternate years.—(I.) Marin

10. Introduction to Film Studies (4)
Lecture—2 hours; discussion—1 hour; film viewing—3 hours. Introduction to the study of cinema. Exploration of the analysis of form and examination of a variety of issues in film studies, including spectatorship and cultural context. Emphasis on critical thinking and an analytical outlook on culture, generally. GE credit: ArtHum, Div, Wrt.—I, III, (II, III.) Proanksy

11. Shakespeare in Performance (4)
Lecture/discussion—4 hours. Reading, viewing, and discussion of one or two Shakespeare plays with focus on the relationship between text and performance (on stage and on film); analysis of the relationship between presentation of Shakespeare and cultural world view, meaning, and aesthetics. GE credit: ArtHum, Wrt.—I. (I.) Boe

12. History of the Book (4)
Lecture/discussion—3 hours; extensive writing. The invention and impact of writing systems on cultures, including the invention of paper, the introduction of the codex, illustrations, the book-buying client, and the history of censorship and bookburning and their connection to the technology of the word. Offered in alternate years. GE credit: ArtHum or SocSci, Wrt.—(I.)

40. Introduction to Computing in the Humanities (4)
Lecture—3 hours; laboratory—3 hours. Survey of current approaches to use of computers in such fields as language, literature, history, art, music, and drama. Laboratory in text creation and analysis.—II, (II.) Roddy

60. Narrative and Argumentative Approaches to Major Current Issues in the Media, Culture, and Society (4)
Lecture/discussion—3 hours; term paper. Prerequisite: English A or the equivalent. Interdisciplinary approach to contemporary issues (abortion, AIDS, civil rights, war and peace, welfare state) around which individuals, communities and institutions define themselves in American society, by applying principles of narrative theory to the narratives where those issues are embedded. GE credit: ArtHum or SocSci, Div, Wrt.—I. (I.) Blanchard

Upper Division Courses

118. The Emergence of Modern Hebrew Literature (4)
Lecture/discussion—3 hours; extensive writing. Prerequisite: one lower division Humanities or foreign language course. Hebrew literature in relation to religious and social changes in Jewish life in the modern period; the rise of Hebrew modernism and Jewish nationalism; Hebrew in relation to European national literary traditions; changing gender relations as reflected in Hebrew fiction. Offered in alternate years. GE credit: ArtHum, Div, Wrt.—II. (II.)

119. Israeli Writing Since 1960 (4)
Lecture/discussion—3 hours; extensive writing. Prerequisite: course 10. Contemporary Hebrew literature in relation to post-Independence debates about religious, social, and political identity of the Jewish state; literary reflections of Israeli ethnicity and changing gender relations; modern Hebrew poetry and postmodern experiments in fiction. Offered in alternate years. GE credit: ArtHum, Div, Wrt.—II. (II.)

120. Italian-American Cinema (4)
Lecture/discussion—3 hours; film viewing—3 hours. Prerequisite: course 10. Italian-American film and literature;, history of the film industry, film classics; the evolution of Italian-American film and literature; Italian-American culture and society. GE credit: ArtHum, Div, Wrt.—II. (II.)

121. Readings in Jewish Writing and Thought in German Culture (4)
Lecture/discussion—3 hours; term paper. Prerequisite: Religious Studies 23 or consent of instructor. Historical tradition of Jewish thought in the German cultural context: unique contributions of Hebrew writers to culture of the German speaking world; what it means to be "other" in the mainstream culture. May be repeated for credit when topic differs. Offered in alternate years. GE credit: ArtHum, Div, Wrt.—I. (I.)

122. Cinema and the American Jewish Experience (4)
Lecture/discussion—3 hours; film viewing—3 hours. Prerequisite: course 10 strongly recommended. Examination of American cinema to reveal how Jewish identity is expressed and submerged, tracing the relations between religion, identity, race, politics, and art. Offered in alternate years. GE credit: ArtHum, Div, Wrt.—I. (I.)

123. Oral History and Jewish Life (4)
Lecture/discussion—3 hours; term paper. Oral history methodologies and application to an in-depth oral history interview about Jewish life. Topics include oral history practice, ethics, immigration, religion, race, ethnicity, and community organization structures. GE credit: SocSci—II, (III.)
124. Special Topics in U.S. Film History (4)
Lecture—3 hours; film viewing—3 hours. Prerequisite: course 10. Topics in U.S. film history in terms of its cultural, technological, institutional, political, and representational development. GE credit: ArtHum, Wrt.—I. (I.) Projansky

125. Film Genres (4)
Lecture—3 hours; film viewing—3 hours. Prerequisite: course 10. Genre theory, the historical specificity of particular genres, the structure of the film industry, and film’s relationship to popular culture. GE credit: ArtHum, Wrt.—III. (III.) Projansky

140. Advanced Computing in the Humanities (4)
Lecture—3 hours; laboratory—3 hours; research project. Prerequisite: course 40 or consent of instructor. The computer as support for the humanities. Topics include advanced textual analysis, editing, vocabulary control, and data base management (design, application and evaluation, and search strategies).—III. (III.) Roddy

176. “From Caligari to Hitler”: A Study of Classic Weimar Cinema (4)
Lecture/discussion—3 hours; film viewing—3 hours. Prerequisite: course 10. Following Siegfried Kracauer’s famous study of classic Weimar cinema, this survey of German film of the 1920s critiques his teleological reading of Weimar film as the harbinger of German totalitarianism. Films include The Cabinet of Dr. Caligari, The Joyless Street, M, Metropolis, and The Blue Angel. Offered in alternate years. GE credit: ArtHum, Wrt.—(II.) Kuhn

177. “From Hitler to Heimat”: Coming to Terms with Nazism in Postwar German Film (4)
Lecture/discussion—3 hours; film viewing—3 hours. Prerequisite: course 10. Post-war German culture has been indelibly marked by the Nazi past. Course examines the contributions of New German Cinema to the project of Vergangenheitsbewältigung, or coming to terms with the Nazi past. Films by Fassbinder, Syperberg, Kluge, Sander, Sanders-Brahmes, Reitz. Offered in alternate years. GE credit: ArtHum, Wrt.—(III.) Kuhn

180. Topics in the Humanities (4)
Lecture/discussion—4 hours; term paper. Analysis of interdisciplinary issues in the humanities. Topics will vary. May be repeated once for credit. GE credit: ArtHum, Wrt.—I, II, III. (I, II, III.)

198. Directed Group Study (1-4)
Prerequisite: consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-4)
Prerequisite: consent of instructor. (P/NP grading only.)

Graduate Courses

250. Topics in the Humanities (4)
Seminar—3 hours; term paper. Prerequisite: graduate standing or consent of instructor. Topics in the humanities, selected by the instructor. May be repeated once for credit.—I, II, III. (I, II, III.)

299. Individual Research (1-4)
Individual research in the humanities resulting in a formal written research report. (S/U grading only.)
Hydrology

(College of Agricultural and Environmental Sciences)

Faculty. See under Department of Land, Air and Water Resources, Hydrology Section.

The Major Program

Hydrology is the study of the occurrence, distribution, circulation, and behavior of water in the environment of Earth. It includes measurement and analysis of water phenomena in the subsurface, on the Earth’s surface, and in the atmosphere, for the purpose of understanding and addressing problems that affect sustainability of both water quantity and water quality.

The Program. Hydrologists generally need strong backgrounds in physics, mathematics, chemistry, biology, geology, field methods, and computer methods. Knowledge of biology and chemistry is important for understanding modulators of water quality. Geology is essential for those working in groundwater hydrology. Field methods are necessary for observing and measuring hydrologic phenomena, and computer methods and mathematics are routinely needed for coherently analyzing field data and forecasting future system behavior.

Contemporary hydrologic problems include more efficient use and development of groundwater and surface water resources; pollution of subsurface and surface waters from such sources as urban runoff, leaky underground storage tanks, and agricultural drainage; water quality criteria for drinking water and for fish and aquatic life; acidic precipitation and its impact on the environment; and the role of water in natural disasters such as flooding, landslides, and land subsidence. Other contemporary concerns include artificial recharge of groundwater, remote sensing for water resources, risk analysis in the operation of surface water reservoirs, and hydrologic prediction under uncertainty. The resolution of these problems demands hydrologic scientists with the comprehensive, multidisciplinary education embodied in this program.

Internships and Career Alternatives. Numerous opportunities for internships exist with state and federal agencies in the Greater Sacramento–Davis area. Career opportunities in hydrologic science are available in private consulting firms, environmental interest groups, and government agencies dealing with water resources, including the U.S. Geological Survey, U.S. Department of Agriculture (Fish and Wildlife, Agricultural Research, Forest Service, and Soil Conservation Service), Environmental Protection Agency, national research laboratories (Lawrence Livermore National Laboratory, Oak Ridge National Laboratory), and California Departments of Water Resources, Water Resources Control Board, Regional Water Quality Control Boards, Conservation, Fish and Game, and Toxic Substances. The major is excellent preparation for advanced degrees in hydrologic science and related fields.

B.S. Major Requirements:

Written/Oral Expression...0-8
See College requirement

Preparatory Subject Matter...72
Biological Sciences 1A, 1B, 1C ...15
Chemistry 2A, 2B, 2C ..15
Physics 9A, 9B ...8
Mathematics 21A, 21B, 21C, 21D, 22A, 22B22
Geology 50, 59L ...5
Engineering 5 or the equivalent ..3

Breadth/General Education ..18-24

Depth Subject Matter...44-54
Hydrologic Science 103, Engineering 103A and 103B, or Chemical Engineering 150A and 150B, or Civil and Environmental Engineering 141 and 141L ..6-8

Hydrologic Science 134, 141, 142, 143, 145, 146, 151A, 151B ..34
Soil Science 107 ...4
Civil and Environmental Engineering 114 or Statistics 130A and 130B ..6-8

Select one of Agricultural and Resource Economics 147, Environmental Science and Policy 161, 1663-4

Restricted Electives...16-26

Students select an area of concentration in consultation with the Master Adviser, and then obtain prior approval from the Master Adviser for courses used to satisfy the student’s area of concentration. Areas of concentration include:

Hydrogeology (Geology 60, 60L, 100, 100L, 101, 101L, 103, 109, 109L, 161, Soil Science 120, Applied Science Engineering 115)

Remote sensing (Applied Biological Systems Technology 180, 181, Environmental and Resource Sciences 186)

Water management (irrigation and drainage) (Hydrologic Science 110, 115, 117, 124)

Unrestricted Electives ..6-20
(Including units earned from 192 and 199 courses.)

Total Units for the Degree ..180

Major Adviser. C. E. Puente.

Minor Program Requirements:

The Hydrology Section of the Department of Land, Air and Water Resources offers the minor in Hydrology for environmental or natural science students who have an interest in water/environmental issues. The interested student should have completed preparatory course work in calculus (Mathematics 16B), chemistry (Chemistry 2A; Chemistry 2B recommended), physics (Physics 5A), and biology (Biological Sciences 1A). Course work in the minor provides fundamental skills and knowledge of the hydrologic sciences. The program is sufficiently flexible for students to pursue particular water issues or problems of interest to them.

UNITS

Hydrology ..19-21

Hydrologic Science 103 or Engineering 103A and Hydrologic Science 141, or Environmental and Resource Sciences 100 and 100L ...6-7

Atmospheric Sciences 115, Environmental and Resource Sciences 131 ..6

Select two courses from Atmospheric Sciences 133, Environmental and Resource Sciences 110, 120, 180, Environmental Science and Policy 150A, 151, Geology 135, Hydrologic Science 115, 126, 145 and 146, Soil Science 107, 118 ...6-8

Graduate Study. See the Hydrologic Sciences Graduate Group.

Courses in Hydrologic Science (HYD)

Questions pertaining to the following courses should be directed to the instructor or to the Resource Sciences Teaching Center, 111A Weihmeyer Hall or 122 Hoagland Hall (530-752-1669).

Lower Division Courses

92. Hydrologic Science Internship (1-12) Internship—36 hours. Prerequisite: lower division student, consent of instructor. Work experience off and on campus in Hydrologic Science. Internship supervised by a member of the faculty. (P/NP grading only.)

Upper Division Courses

103. Introduction to Fluid Mechanics (3) Lecture—3 hours. Prerequisite: Physics 5A and Mathematics 16B; course 100 recommended. General course for agricultural and engineering students dealing with soil and plant aspects of irrigation and drainage. Soil-water movement and storage, plant responses to irrigation regimes, water use by crops; procedures for determining frequency and depth of irrigation, drainage. Not open for credit to students who have completed Water Science 110—II. (I.) Parlange

110. Irrigation Principles and Practices (3) Lecture—2 hours, laboratory—3 hours. Prerequisite: Physics 5A; Soil Science 100 recommended. General course for agricultural and engineering students dealing with soil and plant aspects of irrigation and drainage, Soil-water movement and storage, plant responses to irrigation regimes, water use by crops; procedures for determining frequency and depth of irrigation, drainage. Not open for credit to students who have completed Water Science 110—II. (I.) Schawanki

115. Irrigation and Drainage Systems (4) Lecture—4 hours. Prerequisite: Engineering 103A or course 103. Engineering and scientific principles applied to the design of surface, sprinkler and micro irrigation systems and drainage systems within economic, biological, and environmental constraints. Interaction between irrigation and drainage will be emphasized. Not open for credit to students who have completed Water Science 145. (Same course as Biological Systems Engineering 145)—II. (II.) Wallender, Grimmer, Hills

117. Irrigation Water Management (3) Lecture—2 hours; discussion—1 hour. Prerequisite: course 110 or 124. Irrigation principles of soil-water and plant-water relations with irrigation system characteristics and other factors into an analytical framework for irrigation water management. Case studies discussed. Not open for credit to students who have completed Water Science 172—II. (III.) Hopmans

Quarter Offered: I—Fall; II—Winter; III—Spring; IV—Summer, 2001-2002 offering in parentheses.

General Education (GE) credit: ArHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
122. Biology of Running Waters (3)
Lecture—2 hours; discussion—1 hour. Prerequisite: introductory course in biology and junior standing. The study of lotic aquatic animals and plants in relation to their environment; various factors affecting the distribution of freshwater plants and animals is emphasized in a manner particularly suitable for students of freshwater ecology, soil and water science, and renewable natural resources. Not open for credit to students who have completed Water Science 122.—I. (I.)

122L. Biology of Running Waters Laboratory (2)
Laboratory—2 hours (including 2 or 3 weekend field trips). Prerequisite: introductory course in biology or consent of instructor and junior standing; course 122 (concurrently). Course allows interested students to obtain experience in sampling, processing, and synthesizing field data. Field trips will allow students to obtain an understanding of the structure and function of stream ecosystems. Not open for credit to students who have completed Water Science 122L.—I. (I.)

124. Plant-Water-Soil Relationships (4)
Lecture—3 hours; discussion—2 hours. Prerequisite: course 100; Soil Science 100 recommended, and one additional course in botany or plant physiology; or consent of instructor. Principles of plant interactions with soil and water environments and their applications in crop and environmental management. Includes nutrient and water uptake and transport; transpiration; soil processes affecting supplies; deficiencies and plant responses. Not open for credit to students who have completed Water Science 104.—III. (III.) Hsiao

134. Aqueous Geochemistry (6)
Lecture—3 hours; laboratory—3 hours. Prerequisite: Chemistry 2B; The chemistry of natural waters: dielectric properties of water; thermodynamic and mass-action relations; metal hydrolysis; acid-base equilibria; metal-coordination chemistry; solubility calculations; electron-exchange reactions; and rate laws.—III. (III.) Casey

141. Physical Hydrology (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: Physics 9B, Mathematics 21B, course 100 recommended. Introduction to the processes that constitute the hydrologic cycle. Special emphasis on a quantitative description of the following processes: precipitation, infiltration, evaporation, transpiration, surface runoff, and groundwater runoff.—I. (I.) Fuente

142. Systems Hydrology (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 141 or Civil and Environmental Engineering 142. General course considering hydrologic processes from a systems or statistical model perspective. General probability concepts are applied to frequency, time series and spatial data analysis. Linear systems are also considered in conjunction with Kalman filter techniques.—II. (II.) Fuente

143. Hydrological Processes in Ecosystems (3)
Lecture—3 hours. Prerequisite: course 141 or Environmental and Resource Science 100. Movement and storage of water are integral parts of landscape and ecosystem functioning. Hydrological processes in individual ecosystems and the role of water linking the myriad components of the landscape.—III. (III.) Pasternack

144. Groundwater Hydrology (3)
Lecture—3 hours. Prerequisite: Mathematics 16B or 21A; Hydrologic Science 103 or Engineering 103 recommended. Fundamentals of groundwater hydrology—ocurrence, movement and distribution of groundwater; well-flow systems—well construction, operation and maintenance; groundwater contamination—exploration and quality assessment. (Same course as Biological Systems Engineering 144.) Not open for credit to students who have completed course 145A.—I. (I.) Marino

146. Hydrogeology and Contaminant Transport (4)
Lecture—3 hours; laboratory—3 hours. Prerequisite: course 145 or Civil and Environmental Engineering 144 or the equivalent. Physical and chemical processes in contaminant transport, with emphasis on effects of aquifer complexity. Groundwater geology and chemistry. Fundamentals of groundwater flow and transport modeling. Laboratory includes field pumping test and work with physical and computer models. Not open for credit to students who have completed Water Science 149B and 149L, or course 145B.—II. (II.) Fogg

151A. Field Methods in Hydrology (4)
Lecture—2 hours; laboratory—3 hours; fieldwork—3 hours; Saturday field trip every other weekend. Prerequisite: course 141 or Environmental and Resource Sciences 100. Measurement methods and data analysis for evaluation of water storage, movement and contamination in the field. Equipment such as data loggers, water and sediment samplers, pressure transducers, weather stations, surveying equipment, and flow meters will be used.—II. (II.) Pasternack

151B. Field Methods in Hydrology (3)
Lecture—1 hour; laboratory—6 hours. Prerequisite: course 151A. Data collection methods in the lab and field associated with water movement in the environment. Using the skills developed in course 151A, students evaluate water resource and contamination issues quantitatively at surface and ground water field sites.—III. (III.) Grismer

182. Environmental Analysis with Geographical Information Systems (GIS) (5)
Lecture—2 hours; laboratory/discussion—6 hours. Prerequisite: Applied Biological Systems Technology 180; Applied Biological Systems Technology 181 recommended. Ecosystem and landscape modeling with emphasis on hydrology and solute transport. Spatial analysis of environmental risk analysis including ecological risk assessment. Precision farming. Natural resource management. Spatial data base structures. Remote sensing applications. Data quality and error analysis in GIS. (Same course as Applied Biological Systems Technology 182.)—I. (I.)

192. Hydrologic Science Internship (1-12)
Internship—3-40 hours. Prerequisite: completion of 84 units and consent of instructor. Work experience off and on campus in water science. Internship supervised by a member of the faculty. (P/NP grading only.)

198. Directed Group Study (1-5)
(P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5)
Prerequisite: senior standing. (P/NP grading only.)
Hydrologic Sciences (A Graduate Group)

Randy A. Dahlgren, Ph.D., Chairperson of the Group
Group Office, 113 Veihmeyer Hall (530-752-0453)
World Wide Web: http://lawr.ucdavis.edu/hyd

Faculty
Lewis Bledsoe, Ph.D., Associate Research Engineer (Civil and Environmental Engineering)
William Casey, Ph.D., Professor (Land, Air and Water Resources)
Randy Dahlgren, Ph.D., Professor (Land, Air and Water Resources)
Jannie Darby, Ph.D., Professor (Civil and Environmental Engineering)
Harrison Dunning, LL.B., Professor (School of Law)
Graham Fogg, Ph.D., Professor (Land, Air and Water Resources)
Timothy Grimm, Ph.D., Associate Professor (Civil and Environmental Engineering)
Charles Goldman, Ph.D., Professor (Environmental Studies)
Mark Grismer, Ph.D., Professor (Land, Air and Water Resources)
David Hintz, Ph.D., Professor (Anatomy, Physiology, and Cell Biology)
Britt Holmen, Assistant Researcher (Croker Nuclear Lab)
Jan Hopmans, Ph.D., Professor (Land, Air and Water Resources)
William Horwath, Ph.D., Assistant Professor (Land, Air and Water Resources)
Theodore Hisao, Ph.D., Professor (Land, Air and Water Resources)
Alan Jackman, Ph.D., Professor (Chemical Engineering and Materials Science)
Michael Johnson, Associate Research Engineer (Civil and Environmental Engineering)
M. Levend Kavvas, Ph.D., Professor (Civil and Environmental Engineering)
Bruce Kutter, Ph.D., Professor (Civil and Environmental Engineering)
Bruce Larock, Ph.D., Professor (Civil and Environmental Engineering)
Jay Lund, Ph.D., Professor (Civil and Environmental Engineering)
Miquel Marino, Ph.D., Professor (Land, Air and Water Resources)
Jeffrey Mount, Ph.D., Professor (Geology)
Alexandra Navrotzky, Ph.D., Professor (Land, Air and Water Resources)
Gregory Pasternack, Ph.D., Assistant Professor (Land, Air and Water Resources)
Kyaw Paw U, Ph.D., Professor (Land, Air and Water Resources)
Carlos Puente, Ph.D., Associate Professor (Land, Air and Water Resources)
Ekaterina Rejmankova, Ph.D., Associate Professor (Environmental Science and Policy)
Dennis Roelofs, Ph.D., Professor (Land, Air and Water Resources)
Paul Sabatier, Ph.D., Professor (Environmental Science and Policy)
Geoffrey Schiavon, Ph.D., Associate Professor (Civil and Environmental Engineering)
Kate Scow, Ph.D., Professor (Land, Air and Water Resources)
Roger Shaw, Ph.D., Professor (Land, Air and Water Resources)
Maryn Shelton, Ph.D., Professor (Land, Air and Water Resources)
Susan Ustin, Ph.D., Associate Professor (Land, Air and Water Resources)
Wesley Wallender, Ph.D., Professor (Land, Air and Water Resources)
Bryan Weare, Ph.D., Professor (Land, Air and Water Resources)
Marco Weinberg, Ph.D., Assistant Professor (Environmental Science and Policy)
Stephen Whitaker, Ph.D., Professor (Chemical Engineering and Materials Science)
Tom Young, Assistant Professor (Civil and Environmental Engineering)
Minghua Zhang, Ph.D., Assistant Adjunct Professor (Land, Air and Water Resources)

Emeriti Faculty
Kenneth Tanji, Sc.D., Professor

Affiliated Faculty
Teresa Fan, Ph.D., Assistant Researcher (Land, Air and Water Resources)
Suduan Gao, Ph.D., Assistant Researcher (Land, Air and Water Resources)
David Goldhamer, Ph.D., Irrigation Specialist (Land, Air and Water Resources)
Stephen Gratton, Ph.D., Water Relations Specialist (Land, Air and Water Resources)
Blaine Hansen, Ph.D., Irrigation Specialist (Land, Air and Water Resources)
Thomas Harter, Ph.D., Assistant Cooperative Extension Specialist (Land, Air and Water Resources)
Terry Prichard, M.S., Water Management Specialist (Land, Air and Water Resources)
Lawrence Schrunk, Ph.D., Irrigation Specialist (Land, Air and Water Resources)
Richard Snyder, Ph.D., Biometeorologist Specialist (Land, Air and Water Resources)
Kenneth Tate, Extension Rangeland Specialist (Agriculture and Range Science)

Graduate Study. The Graduate Group in Hydrologic Sciences is an interdisciplinary program offering M.S. and Ph.D. degrees. Course work is available from many programs, including Hydrologic Sciences, Civil and Environmental Engineering, Geology, and Soil Science. Education in the group broadens the skills and knowledge of the physical science or engineering student interested in the occurrence, distribution, circulation and properties of water on earth. Because of water's ubiquity and importance to physical, chemical and biological processes, hydrologic sciences involve the geologic, atmospheric and oceanic sciences, as well as engineering and other applied physical sciences. Basic to the program are core courses in fluid dynamics, hydrologic phenomena, hydrobiology, hydrogeochemistry, hydrologic techniques, and hydrologic policy. The program has degree options in Hydrology, Hydrogeochemistry and Hydrology. The Hydrology option includes specialized courses in surface hydrology, subsurface hydrology, irrigation and drainage, and water resources management. The subsurface hydrology specialization includes hydrogeology and vadose-zone hydrology.

Preparation. Applicants to the program are expected to have completed or to be completing an undergraduate degree in environmental or physical sciences, mathematics, or engineering. Undergraduate study must include one year each of calculus, of physics with calculus, and of chemistry. Additional courses in applied statistics, computer programming, and geology are recommended.

Specialization. Each student will pursue an individual program of advanced study under the direction of a group of faculty members with similar interests but diverse backgrounds. Course work in addition to the above is typically taken in the most appropriate departments.

Courses in Hydrologic Sciences (HYD)

Graduate Courses
200. Survey of Hydrologic Sciences (1)
Seminar—1 hour; paper. Prerequisite: open to students in the Hydrologic Sciences program. Seminar course exposes students to the diversity of sciences involved in the program. Students prepare a paper and presentation in their area of research interest. May be repeated twice for credit. (SU grading only)—I, II, III. (I, II, III.) Grismer

210. Hydrologic Modeling of the Vadose Zone (3)
Lecture—2 hours. Prerequisite: Soil Science 107, Mathematics 22B. Programming Language. Principles and modeling of soil water, solute transport, heat and water flow, root water and nutrient uptake. Numerical techniques to incorporate solute heterogeneity. Offered in alternate years.—III. Hopmans

212. Evapotranspiration (3)
Lecture—3 hours. Prerequisite: Course 103. Review of lower atmosphere properties; introduction to similarity theory; surface roughness parameterization, calculation of energy fluxes, local advection and turbulence measurements will be studied in the field. Offered in alternate years.—III.

243. Water Resource Planning and Management (3)
Lecture—3 hours. Prerequisite: course 141 or Civil and Environmental Engineering 142. Applications of deterministic and stochastic mathematical programming techniques to water resource planning, analysis, design and management. Water allocation, capacity expansion, and reservoir operation. Conjunctive use of surface water and groundwater. Water quality management. Irrigation planning and operation models. (Same course as Biological Systems Engineering 243).—I. (I.) Marino

264. Modeling of Hydrologic Processes (3)
Lecture—3 hours. Prerequisite: course 141 or the equivalent and Statistics 102 or the equivalent. Techniques used to model the spatio-temporal structure of rainfall and runoff are introduced. Procedures studied include those based on stochastic point processes, chaos theory, fractal geometry, and fractional noises. Offered in alternate years.—III. Puente

269. Numerical Modeling of Groundwater Systems (3)
Lecture—3 hours. Prerequisite: course 145A or Civil Engineering 144 and course 145B, Mathematics 22B. Finite difference and finite element techniques in modeling groundwater flow and transport. Fundamentals of constructing and calibrating models with hands-on applications. Methods and limitations of numerical solution of transport equations. Model interpretation and ethics.—III. (III.) Fogg

273. Introduction to Geostatistics (3)
Lecture—3 hours. Prerequisite: Statistics 130A and 130B, or the equivalent. Statistical treatment of spatial data with emphasis on hydrologic topics. Topics include theory of random functions, variogram analysis, Kriging, co-Kriging, indicator geostatistics, and stochastic simulation of spatial variability. Demonstration and use of interactive geostatistical software included. Offered in alternate years.—I. Fogg

275. Analysis of Spatial Processes (3)
Lecture—3 hours. Prerequisite: Statistics 102 or the equivalent; course 273 or Statistics 271A is recommended. Characterization of homogeneous random fields; extremes and spectral parameters; geometry of excursions, local averaging; scale of fluctuation; non-Gaussian and irregular random fields; geostatistical applications. Offered in alternate years.—III. Puente
290. Seminar in Hydrologic Science (1)
Seminar—1 hour. Prerequisite: graduate standing and background in Hydrologic Science, consent of instructor. Seminars and critical review of problems, issues, and research in hydrologic sciences. Oral presentations of research. Topics will vary. May be repeated for credit. (S/U grading only.)—III. (III.)

298. Group Study (1-5)
Prerequisite: graduate standing and consent of instructor. (S/U grading only.)

299. Research (1-12)
Prerequisite: graduate standing and consent of instructor. (S/U grading only.)

Professional Course

396. Teaching Assistant Training Practicum (1-4)
Prerequisite: graduate standing. May be repeated for credit. (S/U grading only.)—I, II, III. (I, II, III.)

Professional Courses

410. OSHA HAZWOPER Refresher Course (1)
Lecture—1 hour. Updates hazardous materials handling information for purposes of keeping certification current. Certification lapses until the refresher course is complete. (P/NP grading only.)—II. (II.) Grismer

440. Hazardous Waste Operations Training (3)
Lecture—2 hours; laboratory—2 hours. Prerequisite: upper division standing in College of Agricultural and Environmental Sciences. Forty-hour course designed to meet the requirements of Federal OSHA regulation CFR 1910.120. Covers the health, regulatory, processing and safe handling issues/problems associated with working with hazardous materials. (P/NP grading only.)—III. (III.) Grismer

Quarter Offered: I=Fall; II=Winter; III=Spring; IV=Summer; 2001-2002 offering in parentheses.

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
International Agricultural Development

(College of Agricultural and Environmental Sciences)

International Agricultural Development is an interdisciplinary major in the Human and Community Development department.

Faculty. Includes members from various departments across colleges.

The Major Program

The goal of international agricultural development is to improve food production, nutrition, marketing, and health in less technically advanced countries. Students in this major are trained in technical areas of agriculture that can be applied to the problems of world hunger and health.

The Program. Principle subjects of study within the major are Agricultural Production, Economic Development, Environmental Issues, Nutrition, Rural Communities, and Trade and Commodity Development. Courses in social sciences, humanities, and economic environments in which agriculture operates in countries outside the United States.

Career Alternatives. The study of international agricultural development prepares a student for a variety of careers. Some students choose service through the Peace Corps. Others seek employment in international trade, while others choose to work for a governmental or private agency in foreign countries. Religious groups and organizations also employ university-trained individuals for agricultural work in conjunction with missions and other types of human service work overseas. The major is also preparation for further graduate work in agricultural development.

B.S. Major Requirements:

English Composition Requirement................................. 0-8

UNITS

See College requirement

International Agricultural Development Abroad 0-20

A maximum of five courses abroad, selected with approval of an adviser, may be applied toward the 12 upper division courses in the major.

Preparatory Subject Matter ... 47

Choose 47 units from either the Social Science or Natural Science core in consultation with an adviser.

Social Sciences core:

Agricultural and Resource Economics 15; Agricultural Systems and Environment 1; Animal Science 41 and 41L or Agricultural Systems and Environment 2; Chemistry 10; Community and Regional Development 1 or 17; Economics 1A and 1B; International Agricultural Development 10; Mathematics 16A and 16B; Nutrition 10 or 20; Sociology 1 or Anthropology 2; Soil Science 10; Statistics 13 or Sociology 46B.

Natural Science core:

Animal Science 41 and 41L or Agricultural Systems and Environment 2; Biological Sciences 1A and 1B or 1A and 1C; Chemistry 2A and 2B; Chemistry 8A and 8B or Physics 1A and 1B; Economics 1A or Agricultural and Resource Economics 15; International Agricultural Development 10; Mathematics 16A and 16B; Nutrition 10 or 20; Soil Science 10 or 100; Statistics 13

Breadth/General Education .. 5-24

Satisfaction of General Education requirement

Depth Subject Matter .. 36-37

Agricultural and Resource Economics 147 or Agricultural Systems and Environment 101 or Geography 161 ... 4

Economics 115A ... 4

International Agricultural Development 142 or 160 2

International Agricultural Development 103 and 104 8

International Agricultural Development 110 or 111 4

Sociology 170 .. 4

Agricultural Systems and Environment 110A or 110B or 135 or Plant Biology 142 ... 3-4

Political Science 123 or 124 or Sociology 145A 4

Textiles and Clothing 174 ... 3

Foreign Language Requirement 0-15

Students must complete 15-unit level in one language or pass the foreign language proficiency examination. A score of 5, 4, or 3 on a foreign language College Board Advanced Placement Examination (except Latin) or a score of 550 on the College Board SAT II. Subject Test will also satisfy this requirement.

Internship Requirement .. 4-8

Students must complete at least 4 units of internship and may use up to 8 units toward major requirements. Internships can be chosen in consultation with an adviser. Internship requirement waived for students enrolled in the UC Education Abroad Program.

Areas of Specialization ... 30-35

Agricultural Production Option:

Economic Development Option:

Agricultural and Resource Economics 100A and 100B, Economics 115B

Agricultural and Resource Economics 120, 130, 140, 175 and International Agricultural Development 195A or 195B

Environmental Issues Option:

Environmental Science and Policy 100 or 110, 160, 171 and Plant Biology 151

Agricultural and Resource Economics 147, Agricultural Systems and Environment 101, Environmental Horticulture 150, Environmental Science and Policy 126, 161, 175 and International Agricultural Development 195A or 195B

Rural Communities Option:

Community and Regional Development 140, 151, 151L, 152, 154

Community and Regional Development 164 or 172 or 173 or 174

International Agricultural Development 195A or 195B, additional restricted electives chosen in consultation with an adviser.

Trade and Development in Agricultural Commodities Option:

Agricultural and Resource Economics 100A, 113, 130, Plant Biology 172

Agricultural and Resource Economics 138, Econom 160A, 160B

Food Science and Technology 100A, 109, 160, International Agricultural Development 195A or 195B, Textiles and Clothing 162, 163

Total Units for the Degree ... 180

Specialization Advisers

A listing of faculty in the various areas of specialization and with interests in International Agricultural Development is available from the Major Adviser.

Major Adviser, S.B. Brush (Human and Community Development).

Minor Program Requirements:

International Agricultural Development.................................. 22

International Agricultural Development 10 and 110 or 111 8

Agricultural Systems and Environment 101 and 110A or 110B 6

International Agricultural Development 103, 104, 195A or 195B, Agricultural and Resource Economics 115A

Minor Adviser, S.B. Brush (1331 Hart Hall).

Graduate Study. A program of study and research leading to the M.S. degree is available in International Agricultural Development. Detailed information regarding graduate study may be obtained by writing to the Coordinator of Graduate Recruitment (I.A.D.), Graduate Studies, UC Davis.

Courses in International Agricultural Development (IAD)

Questions pertaining to the following courses should be directed to the instructor or to the Department of Human and Community Development Advising Center in 3000 Hart Hall (530-752-2944).

Quarter Offered: I=Fall; II=Winter; III=Spring; IV=Summer, 2001-2002 offering in parentheses.

92. Internship (1-12)
Internship—3-36 hours. Prerequisite: consent of instructor. Supervised internship, off and on campus, in community and institutional settings. (P/NP grading only.)

Upper Division Courses

103. Social Change and Agricultural Development (4)

104. Gender and Environment in the Developing World (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 10 recommended. Examines how environmental problems in the countries of Africa, Asia and Latin America affect men and women differently and the impact of structural adjustment on the environment in rural and urban areas.—II. (III.) Monsen

110. Agricultural Production Economics (4)
Lecture—4 hours. Prerequisite: upper division status and an introductory course in microeconomics (Economics 1A). Economic analysis of agricultural production in low income countries, from field-level data collection to national food policy. Emphasis is on construction and use of farm models in project evaluation.—I. (I.)

111. Agricultural Marketing Systems (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: upper division status and an introductory course in microeconomics recommended (Economics 1A). Economic analysis of agricultural marketing systems in low income countries, including the functions of transportation, storage, packaging, handling, grading and standardization, processing, and market news. Emphasis is given to evaluation of interventions in marketing systems to speed economic development.—II. (II.) Moore

142. Equipment and Technology for Small Farms (2)
Lecture—1 hour; laboratory—3 hours. Types and characteristics of agricultural equipment and technologies appropriate for small commercial farming. Adjustment and calibration of equipment. Selection of and budgeting for equipment. (Same course as Applied Biological Systems Technology 142.)—III. (III.) Rumsey

160. Agroforestry: Global and Local Perspectives (2)
Lecture/discussion—2 hours. Prerequisite: Agricultural System and Environment 2 or Biological Sciences 1C; Plant Biology 142 or a general ecology course (Environmental Studies 100). Explores traditional and evolving use of trees in agricultural ecosystems, their multiple roles in environmental stabilization and the production of food, fuel and fiber, and socioeconomic barriers to adoption. Offered in alternate years. (Same course as Agricultural Systems and Environment 160.)—I. Weinbaum

170. Program Development for International Agriculture (4)
Lecture/discussion—4 hours. Prerequisite: course 10. Principles of leadership and management for international agricultural development. Organizations and organizational behavior, and the implications for planning and administering organizations involved in the global development effort.—I. (I.)

190. Proseminar in International Agricultural Development (1)
Seminar—1 hour. Presentation and discussion of current topics in international agricultural development by visiting lecturers, staff and students. May be repeated for credit. (P/NP grading only.)—I, II, III.

192. Internship (1-12)
Internship—3-36 hours. Prerequisite: consent of instructor. Supervised internship, off and on campus, in community and institutional settings. (P/NP grading only.)

195A. Field Study in Agricultural Development—California (3)
Lecture—2 hours total; seminar—8 hours total; fieldwork—8-day trip to Mexico. Prerequisite: consent of instructor. Students will incur travel expenses. Observation of agricultural development strategies and effects on rural communities. Discussion with farmers, workers and organizational staff members. Study of farm commodities, institutions and experiences in dealing with agricultural development problems. International influence on U.S. agriculture. (P/NP grading only.)

198. Directed Group Study (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5)
(P/NP grading only.)
Internal Agricultural Development (A Graduate Group)

Quarter Offered: I–Fall; II–Winter; III–Spring; IV–Summer; 2001-2002 offering in parentheses.

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.

The International Agricultural Development M.S. degree program prepares students for careers in global agricultural and rural development, especially in developing and less-industrialized regions. This is an interdisciplinary program designed to provide students with knowledge and skills that will enable them to implement, facilitate, and manage programs that enhance agricultural development, resource management, and rural life.

Students are prepared to accomplish biological and technological improvement in agricultural and natural systems to facilitate social innovation. Training in International Agricultural Development includes both breadth and depth components. Breadth components, required of all M.S. students, aim to establish an understanding of the issues in international development as they relate to agriculture and the environment. These include the history and philosophy of development, leadership and management techniques, fundamentals of crop and livestock farming systems, and agricultural economics. Students acquire depth in their own areas of specialization within the agricultural and social sciences. These areas include agricultural economics, agroecology, animal science, community development, cropping systems, gender issues, international nutrition, and natural resource policy, among others.

Practical and on-site experience with development issues is encouraged and facilitated by guidance from the group’s approximately 80 faculty members, who possess a wide range of experience in international development.

Graduate Adviser. Contact the Group Office.

Faculty

Lindsay Allen, Ph.D., Professor (Nutrition)
Diane M. Barrett, Ph.D., Associate Specialist (Food Science and Technology)
David Boyd, Ph.D., Associate Professor (Anthropology)
Ted Bradshaw, Ph.D., Assistant Professor (Human and Community Development)
Kenneth H. Brown, Ph.D., Professor (Nutrition)
Patrick H. Brown, Ph.D., Associate Professor (Pomology)
Stephen B. Brush, Ph.D., Professor (Human and Community Development)
Marta Cantwell, Ph.D., Lecturer (Vegetable Crops Extension)
Tim E. Carpenter, Ph.D., Professor (Medicine and Epidemiology)
Colin A. Carter, Ph.D., Professor (Agricultural Resource and Economics)
Patricia A. Conrad, D.V.M., Ph.D., Professor (Pathology, Microbiology, and Immunology)
Montague W. Demment, Ph.D., Professor (Agriculture and Range Science)
Johannes J. DeVries, Ph.D., Lecturer (Civil and Environmental Engineering)
Kathryn G. Dewey, Ph.D., Professor (Nutrition)
Dennis Dingemans, Ph.D., Professor (Geography)
Serge I. Doroshov, Ph.D., Professor (Animal Science)
Karen Paige Erickson, Ph.D., Professor (Psychology)
James Fadel, Ph.D., Associate Professor (Animal Science)
Theodore C. Foin, Ph.D., Professor (Agriculture and Range Science)
Isao Fujimoto, M.A., Lecturer Emeritus
Shu Geng, Ph.D., Professor (Agriculture and Range Science)
Paul L. Gepts, Ph.D., Professor (Agriculture and Range Science)
John S. Glenn, D.V.M., Ph.D., Extension Veterinarian (Veterinary Medicine Extension)
Barbara G. Goldman, Ph.D., Lecturer (Education, Human and Community Development)
Thomas Gradziel, Ph.D., Associate Professor (Pomology)
Richard D. Green, Ph.D., Professor (Agricultural and Resource Economics)
James I. Grieshop, Ph.D., Cooperative Extension Specialist (Human and Community Development)
Louis E. Grivett, Ph.D., Professor (Nutrition)
Luis Guarino, Ph.D., Assistant Professor (Human and Community Development)
Bruce R. Hartough, Ph.D., Professor (Biological and Agricultural Engineering)
Timothy K. Hartz, Ph.D., Lecturer (Vegetable Crops Extension)
Glenn Hawkes, Ph.D., Professor Emeritus
David W. Hird, D.V.M., Ph.D., Professor (Medicine and Epidemiology)
Franks W. Hirtz, Ph.D., Assistant Professor (Human and Community Development)
Theodore C. Hisae, Ph.D., Professor (Land, Air, and Water Resources)
Slatis O. Hung, Ph.D., Professor (Animal Science)
Lovell S. Jarvis, Ph.D., Professor (Agricultural and Resource Economics)
Bryan M. Jenkins, Ph.D., Professor (Biological and Agricultural Engineering)
Desmond A. Jolly, Ph.D., Lecturer (Agricultural and Resource Economics)
Suad Joseph, Ph.D., Professor (Anthropology, Women and Gender Studies)
Martin Kenney, Ph.D., Professor (Human and Community Development)
Emilio A. Laca, Ph.D., Assistant Professor (Agriculture and Range Science)
W. Thomas Lanini, Ph.D., Lecturer (Vegetable Crops)
William C. Liebhardt, Ph.D., Lecturer (Agriculture and Range Science)
Jay Lund, Ph.D., Professor (Civil and Environmental Engineering)
D. Dean MacCannel, Ph.D., Professor (Environmental Design)
David J. Mackill, Ph.D., Lecturer (USDA Rice Research)
Miguel A. Marino, Ph.D., Professor (Land, Air, and Water Resources, Civil and Environmental Engineering)
Philip E. Martin, Ph.D., Professor (Agricultural and Resource Economics)
Mark A. Matthews, Ph.D., Professor (Viticulture and Enology)
Gale McGranahan, Ph.D., Lecturer (Pomology)
Jeffrey P. Mitchell, Ph.D., Lecturer (Vegetable Crops)
Janet D. Monseri, Ph.D., Professor (Human and Community Development)
Donald Nevins, Ph.D., Professor (Vegetable Crops)
Benjamin Orlove, Ph.D., Professor (Environmental Science and Policy)
Raul H. Piedrahita, Ph.D., Professor (Biological and Agricultural Engineering)
Emanet Pollitt, Ph.D., Professor (Pediatrics)
David Potter, Ph.D., Assistant Professor (Pomology)
D. William Rains, Ph.D., Professor (Agriculture and Range Science)
Michael S. Reid, Ph.D., Professor (Environmental Horticulture)
Panama C. Ronald, Ph.D., Associate Professor (Plant Pathology)
Scott Rozelle, Ph.D., Associate Professor (Agricultural and Resource Economics)
Roberto D. Sainz, Ph.D., Associate Professor (Animal Science)
Richard Sexton, Ph.D., Professor (Agricultural and Resource Economics)
Michael J. Singer, Ph.D., Professor (Land, Air and Water Resources)
R. Paul Singh, Ph.D., Professor (Biological and Agricultural Engineering)
Michael P. Smith, Ph.D., Professor (Human and Community Development)
Avlin D. Sokolow, Ph.D., Cooperative Extension Specialist (Human and Community Development)
Daniel A. Sumner, Ph.D., Professor (Agricultural and Resource Economics)
J. Edward Taylor, Ph.D., Professor (Agricultural and Resource Economics)
Stephen R. Temple, Ph.D., Lecturer (Agriculture and Range Science)
Larry R. Teuber, Ph.D., Professor (Agriculture and Range Science)
Orville E. Thompson, Ph.D., Professor Emeritus
Mark Van Horn, M.S., Lecturer (Agriculture and Range Science)
Chris van Kessel, Ph.D., Professor (Agriculture and Range Science)
Ronald E. Voss, Ph.D., Lecturer (Vegetable Crops Extension)
Steven Weinbaum, Ph.D., Professor (Pomology)
Miriam J. Wells, Ph.D., Professor (Human and Community Development)
Diane L. Wolf, Ph.D., Associate Professor (Sociology)
Wing Woo, Ph.D., Professor (Economics)
Lin Wu, Ph.D., Professor (Environmental Horticulture)
Aram A. Yengoyan, Ph.D., Professor (Anthropology)
Tilahun D. Yifru, Ph.D., Professor (Pathology, Microbiology, and Immunity)
Frank G. Zalom, Ph.D., Lecturer (Entomology)
Richard A. Zinn, Ph.D., Professor (Animal Science)

Graduate Study. The International Agricultural Development M.S. degree program prepares students for careers in global agricultural and rural development, especially of developing and less-industrialized regions. This is an interdisciplinary program designed to provide students with knowledge and skills that will enable them to implement, facilitate, and manage programs that enhance agricultural development, resource management, and rural life.

Students are prepared to accomplish biological and technological improvement in agricultural and natural systems to facilitate social innovation. Training in International Agricultural Development includes both breadth and depth components. Breadth components, required of all M.S. students, aim to establish an understanding of the issues in international development as they relate to agriculture and the environment. These include the history and philosophy of development, leadership and management techniques, fundamentals of crop and livestock farming systems, and agricultural economics. Students acquire depth in their own areas of specialization within the agricultural and social sciences. These areas include agricultural economics, agroecology, animal science, community development, cropping systems, gender issues, international nutrition, and natural resource policy, among others.

Practical and on-site experience with development issues is encouraged and facilitated by guidance from the group’s approximately 80 faculty members, who possess a wide range of experience in international development.

Graduate Adviser. Contact the Group Office.
Immunology (A Graduate Group)

M. Eric Gershwin, M.D., Chairperson of the Group
Group Office, 1202D Meyer Hall (530-754-7684)

Faculty

Hilary P. Benton, Ph.D., Associate Professor (Anatomy, Physiology, and Cell Biology)
Jeffrey L. Stott, Ph.D., Professor (Medical Microbiology and Immunology)

Graduate Study.

The Graduate Group in Immunology is a multidisciplinary group offering programs of study leading to the M.S. and Ph.D. degrees in various aspects of immunology. Possible areas of specialization include molecular biology, immunogenetics, cellular immunology, clinical immunology, and tumor and developmental immunology.

Preparation. Applicants for candidacy to these programs should have completed undergraduate preparation in general biology, zoology or botany, general bacteriology or microbiology, general genetics, mathematics, general physics, chemistry, and biochemistry.

For work leading to the Ph.D. degree, the requirements include cell biology, chemical immunology, cellular immunology, immunohaematology, and advanced immunology. In addition to these general requirements, more specialized preparation in at least one of the following is required: (a) microbiological specialties (bacteriology, virology, parasitology, medical microbiology); (b) zoological specialties (cell biology, endocrinology, embryology, protozoology, histology, cytology, physiology); (c) medical specialties (pathology, anatomy, pharmacology, clinical pathology, reproduction, hematology, epidemiology); (d) biochemistry/biophysics specialties (biologically active molecules, control mechanisms); (e) genetic specialties (developmental genetics, population genetics, cytogenetics, molecular genetics).

Graduate Adviser. Contact the Group Office.

Courses in Immunology (IMM)

Additional courses are available and listed under the individual sponsoring departments. Contact the group office for information.

Graduate Courses

292. Immunotoxicology Seminar (2)
Seminar—2 hours. Prerequisite: graduate standing in Pharmacology/Toxicology, Immunology, Physiology, or Biochemistry. Seminar presentations dealing with principles of xenobiotic effects on immune system functions and specific examples of drugs and environmental chemicals exerting toxic effects on the immune system. Offered in alternate years. (S/U grading only.) Golub

295. Cytokines: An Expanding Class of Cell Regulatory Agents (2)
Lecture/discussion—2 hours. Prerequisite: undergraduate courses in immunology, cell biology and biochemistry. Lectures, discussion and presentations which examine the role of cytokines in immunity, inflammation tissue injury and disease. Current knowledge of their molecular structures, specific receptors, antagonists and signaling mechanisms will be discussed.——II. (II.) Benton, Erickson

296. Advanced Topics in Immunology (3)
Seminar—3 hours. Prerequisite: graduate standing. Presentation, discussion and analysis of research topics in immunology, with emphasis on investigative bench research. (S/U grading only.)—II. (II.)
Individual Major

(College of Agricultural and Environmental Sciences and College of Letters and Science)

The Major Program

The Individual Major, an integrated program composed of courses from two or more disciplines, is designed by the student and is subject to approval by faculty advisers and appropriate college committees. This major enables a student to pursue a specific interest that cannot be accommodated within the framework of an existing major. It must clearly and specifically meet the student’s educational goals as well as meet university and college academic standards.

College of Agricultural and Environmental Sciences

Program Office, 228 Mrak Hall (530-752-0610)

Student Proposal. An Individual Major may be organized by a student having a specific academic interest not represented by an established major. Each student wishing an Individual Major should submit a proposal to the Dean at least four quarters before graduation, for review by the Individual Major Committee. This proposal must include (1) a description of the special educational aims of the student, including a statement indicating why the educational objectives cannot be met by existing majors; and (2) a list of planned courses. It is critical that students contact a college counselor for consultation and development of the proposal.

B.S. Major Requirements:

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>English Composition requirement</td>
<td>0-8</td>
</tr>
<tr>
<td>See College requirement</td>
<td></td>
</tr>
<tr>
<td>Preparatory Subject Matter (variable)</td>
<td></td>
</tr>
<tr>
<td>Lower division courses basic to the program or needed to satisfy prerequisites for upper division requirements.</td>
<td></td>
</tr>
<tr>
<td>Breadth/General Education</td>
<td>6-24</td>
</tr>
<tr>
<td>Satisfaction of General Education requirement</td>
<td></td>
</tr>
<tr>
<td>Depth Subject Matter (45-54)</td>
<td></td>
</tr>
<tr>
<td>Upper division units must include: (a) interrelated courses of 45 upper division units from two or more areas of study, and (b) at least one of the two or more areas of study must be within the College of Agricultural and Environmental Sciences; and (c) at least 30 of the 45 upper division units that are required in the program must be taken from courses provided by the College of Agricultural and Environmental Sciences.</td>
<td></td>
</tr>
<tr>
<td>Unrestricted Electives (variable)</td>
<td></td>
</tr>
<tr>
<td>Total Units for the Degree</td>
<td>180</td>
</tr>
</tbody>
</table>

Master Adviser. J. Stasulat (Environmental and Resource Sciences).

College of Letters and Science

Program Office, 200 Social Sciences and Humanities Building (Dean’s Office), (530-752-0392)

Committee in Charge

Jack Goldberg, Ph.D., Chairperson (Neurobiology, Physiology, and Behavior)
Max Byrd, Ph.D. (English)
Peter Chesson, Ph.D. (Evolution and Ecology)
Christian Drake, Ph.D. (Statistics)
Joel Johnson, Ph.D. (Psychology)

Student Proposal. A student who wishes to propose an individual major must submit the proposal to the Faculty Committee on Individual Majors in the College of Letters and Science prior to reaching 120 units. The proposal must be submitted by the end of the fourth week of the quarter. This proposal will consist of (1) an essay, identifying the specific educational and professional objectives, including an indication of why the objectives cannot be met within existing majors, (2) a list of courses planned to complete the major, and (3) faculty adviser recommendations. The proposal will be reviewed and a decision provided the quarter of submittal. It is important for you to make arrangements to speak with a counselor in the college early in the development of your major.

A.B. and B.S. Major Requirements:

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparatory Subject Matter (variable)</td>
<td></td>
</tr>
<tr>
<td>Lower division courses basic to the program or needed to satisfy prerequisites for upper division requirements.</td>
<td></td>
</tr>
<tr>
<td>Depth Subject Matter (45-54)</td>
<td></td>
</tr>
<tr>
<td>Upper division units must include: (a) interrelated and complementary courses from two or more departments which provide a unified pattern and focus; (b) at least 30 units from Letters and Science teaching departments or programs; (c) no more than 10 units in courses numbered 194H, 198 and 199; (d) for the A.B. degree, a maximum of 80 units toward the major; for the B.S. degree, a maximum of 110 units toward the major.</td>
<td></td>
</tr>
<tr>
<td>Total Units for Degree (180)</td>
<td></td>
</tr>
</tbody>
</table>

Major Advisers (selected by student). Principal Adviser: a faculty member in a teaching department or program in the College of Letters and Science in major field of emphasis. Secondary Adviser: a faculty member from secondary area of interest.

Honors Program. By the fourth week of the last quarter of the junior year, students potentially eligible for high or highest honors at graduation (see College section), may petition the Individual Majors Committee for tentative acceptance into an honors program.

Final admission will depend upon the Committee’s approval of a senior thesis prospectus that has been agreed upon by the student and faculty adviser. The prospectus must be presented to the Committee by the end of the fourth full week of instruction of the first quarter of the senior year. Graduation with high or highest honors will be conditional upon both the maintenance of the required grade point average and the completion of the senior thesis project. Students who anticipate doing a senior honors thesis should allow up to 3 units of independent study in the program during each of two quarters in the senior year as course options.
International Nutrition

Kenneth H. Brown, M.D., Program Director
Program Office, 3150 Meyer Hall (530-752-1992)
World Wide Web: http://www-nutrition.ucdavis.edu/pin/DESEMPH.HTM

Faculty
Lindsay H. Allen, Ph.D., Professor (Nutrition)
Kenneth H. Brown, M.D., Professor (Nutrition)
Kathryn G. Dewey, Ph.D., Professor (Nutrition)
Louis E. Grivetti, Ph.D., Professor (Nutrition)
Charles H. Halsted, M.D., Professor (Internal Medicine)
Lovell S. Jarvis, Ph.D., Professor (Agricultural and Resource Economics)
Lucia Kaiser, Ph.D., (Cooperative Extension)
Janet King, Ph.D., Director (USDA Western Human Nutrition Research Center)
Bo L. Lönnédal, Ph.D., Professor (Nutrition)
Benjamin Orlove, Ph.D., Professor (Environmental Science and Policy)
Ernesto Pollitt, Ph.D., Professor (Pediatrics)
Charles B. Stephensen, Ph.D., Research Scientist (USDA Western Human Nutrition Research Center)
Fernando E. Viteri, M.D., Ph.D., Professor (Nutrition Science, UC Berkeley)

Graduate Study. The Program in International Nutrition, an organized research unit located in the Department of Nutrition, coordinates specialized course work and research leading to the designated emphasis in International Nutrition for students in various graduate programs. The program focuses on both theoretical and practical issues concerning the identification, treatment, and prevention of human nutritional problems in low-income countries. Students enrolled in the designated emphasis are expected to (1) complete the course requirements already established by their respective graduate programs, (2) participate in a weekly advanced seminar in international nutrition, (3) complete additional core courses in international nutrition (Nutrition 219A, 219B, 258) and selected courses in the related disciplines of epidemiology, statistics, and social and behavioral sciences, and (4) conduct their dissertation research on a relevant topic under the supervision of a professor who is a member of the Program in International Nutrition.

Students accepted into the following doctoral programs are automatically eligible to participate in the designated emphasis: Nutrition, Agricultural Economics, Epidemiology, Anthropology, and Human Development. Students from other programs may also be accepted by special request to the Program Director. Upon graduation, students receive a Ph.D. in their major field, with specific recognition for the designated emphasis in international nutrition.

Graduate Adviser. Contact the Program Office.
Internship Program

Albert A. Harrison, Ph.D., Director
The Internship and Career Center 2nd and 3rd Floors, South Hall (530-752-2855),
Buehler Alumni and Visitors Center

Program Areas
Agricultural and Environmental Sciences
Joe J. Stasulat, Program Manager
Education and Graduate Placement
Joe J. Stasulat, Program Manager
Engineering and Physical Sciences
Linda R. Hughes, Program Manager
Health and Biological Sciences
Linda R. Hughes, Program Manager
Liberal Arts
Linda R. Hughes, Program Manager

Internship Experience
The Internship and Career Center facilitates a campuswide internship program. All internships, both credit and non-credit, can be taken for Transcript Notation with completion of required evaluation reports. The notation briefly describes the nature and location of the internship experience. Questions pertaining to academic credit and Transcript Notation may be directed to The Internship and Career Center.

Course Credit. Internship courses (numbered 92 and 192) are available for credit on a variable-unit and Passed/Not Passed grading basis. A maximum of 12 units of 92 and/or 192 courses may be counted toward the 180-unit minimum needed for graduation. To qualify for the 192 course, students must have acquired 84 units of credit. All credited internships require approval and sponsorship by a faculty member from an appropriate discipline. Arrangements may be made through the department of the sponsoring faculty member and facilitated by The Internship and Career Center Staff.
International Relations

(College of Letters and Science)

Emily O. Goldman, Ph.D., Program Director
Program Office, 1270 Social Sciences and Humanities Building (530-752-3063)

Committee in Charge
Robert Blake, Ph.D. (Spanish)
Gregory Clark, Ph.D. (Economics)
Dennis J. Dutschke, Ph.D. (Italian)
Emily O. Goldman, Ph.D. (Political Science)
Jack A. Goldstone, Ph.D. (Sociology)
David J. Kyle, Ph.D. (Sociology)
Miroslav Nincic, Ph.D. (Political Science)
Kristyna Von Henneberg, Ph.D. (History)
Geoffrey Wandesforde-Smith, Ph.D. (Political Science)
Mark L. Wheelis, Ph.D. (Microbiology)

The Major Program

Problems of security, development, ethnic conflict, human rights, health, and the environment are increasingly confronted at a global rather than a national level. With its theoretical models and real-world application, the study of international relations is an exciting and highly relevant interdisciplinary major.

The Program. Graduation with a major in international relations requires completion of introductory courses in political science, economics, geography, and history. Upper division work is composed of twelve courses chosen from one of four tracks that encompass major topical areas in combination with an area studies emphasis: I. World Trade and Development; II. Peace and Security; III. Global Environment, Health, and Natural Resources; IV. Peoples and Nationalities. The major also requires fluency in English and a working knowledge (approximately 24 to 30 units of course credits or equivalent fluency) of one other modern language.

Programs, Internships, and Career Alternatives. One program of special interest to international relations majors is the Education Abroad Program, which provides insights into the life and culture of other countries. At UC Davis, the Internship and Career Center assists students in obtaining legislative, legal, and business internships. In addition, the UC Davis Washington Center arranges internships and runs a full-credit academic program in Washington, D.C. with a full range of opportunities for International Relations majors (see also the UC Davis Washington Center listing). International relations graduates are prepared for employment in government agencies (such as the Foreign Service), state agencies, international or non-governmental organizations (such as the United Nations), foundations, and companies having interests in international business, trade, or finance. The stringent language requirement of the major program enhances career prospects in jobs which demand knowledge of the language and culture of other countries.

International Relations Abroad. International Relations strongly encourages students to participate in the UC Education Abroad Program. A maximum of five courses taken abroad may be applied toward the 12 upper division courses in the International Relations major. Courses are selected with the approval of the major program.

Preparatory requirements. Before declaring a major in International Relations, students must complete the following courses with a combined GPA of at least 2.50 (all courses must be taken for a letter grade):

- Economics 1A, 1B ...10 units
- Geography 10 ...3 units
- History 4C or 10C ...4 units
- International Relations 1 ...4 units

A.B. Major Requirements:

Preparatory Subject Matter..24-25

<table>
<thead>
<tr>
<th>Preparatory Subject Matter</th>
<th>UNITs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Economics 1A, 1B</td>
<td>10</td>
</tr>
<tr>
<td>Geography 10</td>
<td>3</td>
</tr>
<tr>
<td>History 4C or 10C</td>
<td>4</td>
</tr>
<tr>
<td>International Relations 1</td>
<td>4</td>
</tr>
</tbody>
</table>

Note: Mathematics 16A and 16B are prerequisites for some courses.

Foreign language...0-30

One of the following series in a single language:

- Cantonese 1, 2, 3, 4, 5, and 6 ...24
- Chinese 1, 2, 3, 4, 5, and 6 ...30
- or Chinese 1CN, 2CN, 3CN ...15
- or Chinese 1BL, 2BL, 3BL ...15
- French 1, 2, 3, 21, 22 ...25
- German 1, 2, 3, 20, 21 ...23
- Italian 1, 2, 3, 4, 5, 6 ...21
- or Italian 1, 2, 3, 8A, 8B ...21
- Japanese 1, 2, 3, 4, 5, 6 ...30
- or Japanese 8, 18, 28 ...15
- Russian 1, 2, 3, 4, 5 ...23
- Spanish 1, 2, 3, 21, 22 ...25
- or Spanish 31, 32, 33 ...15

Note: The language curriculum is subject to change; please check with an adviser for the major. A language not listed above may be substituted only with prior written approval of the International Relations Program Committee.

Depth Subject Matter...47-50

Track I: World Trade and Development

(Emphasizes contemporary economic relations of industrialized and developing countries)

For Advanced Industrialized Focus:

- Economics 100 or 104, 101 or 105, 160A-160B, Political Science 123 ...20-22
- Two courses selected from Group A ...8
- One course selected from Group B ...4
- Four courses to fulfill Area Studies Requirement ...16

For Developing Countries Focus:

- Economics 115A-115B, 162 ...12
- Political Science 123, 124 ...8
- One course selected from Group A ...4
- Two courses selected from Group B ...8
- Four courses to fulfill Area Studies Requirement ...16

Group A courses (Advanced Industrialized Countries):

- Anthropology 127, Community and Regional Development 141, Economics 110B, Geography 143, History 145, 146A, 146B, Philosophy 118, Physics 137, Political Science 112, 126, 131, 140, Sociology 100, 118 ...12
- Four courses to fulfill Area Studies Requirement ...16

Track II: Peace and Security

(Focuses on political and security relationships among states and non-state actors, examining questions of war, peace, alliances, and diplomacy)

- Economics 162 ...4
- Political Science 123, 130, 132 ...12
- Political Science 120 or 121 ...4
- Three additional courses from at least two departments selected from Comparative Literature 157, Economics 116, Geography 143, History 145, 146A, 146B, Philosophy 118, Physics 137, Political Science 112, 126, 131, 140, Sociology 100, 118 ...12
- Four courses to fulfill Area Studies Requirement ...16

Track III: Global Environment, Health, and Natural Resources

(Familiarizes students with new sources of global interdependence such as biodiversity, natural resource conflicts, population growth, and world health)

- Note: Some courses shown below have additional prerequisites
- Economics 162 ...4
- Political Science 122, 129 ...8
- Select one from Agricultural and Resource Economics 175, 176, Economics 115A, or Physics 160 ...4
- Select one from Agricultural and Resource Economics 147, Anthropology 121, Environmental Science and Policy 164, Political Science 107 ...3-4

Quarter Offered: I=Fall; II=Winter; III=Spring; IV=Summer; 2001-2002 offering in parentheses.

General Education (GE) credit: ArtHum = Arts and Humanities, SciEng = Science and Engineering, SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
Select two courses from International Relations 104, Political Science 124, Relations)

Select three additional courses from two of the following groups ..9-12

Land use and food supply:
Agricultural Systems and Environment 101, 150, Community and Regional Development 142, Plant Biology 151

Energy supplies and technology:
Environmental Science and Policy 167, Geology 130, Political Science 171

Human populations:
Anthropology 101, 133, Geography 156, Political Science 102, Sociology 170

Health:
Environmental Science and Policy 126, Environmental Toxicology 101, 112A, Infectious Diseases (Internal Medicine) 141, Medical Microbiology 115, Nutrition 111, 118

Four courses to fulfill Area Studies Requirement ...16

Track IV: Peoples and Nationalities
(Examines social and cultural foundations of national development and international relations)

Select two courses from International Relations 104, Political Science 124, Sociology 118..8

Select one course from Anthropology 130A, 133..4

Select one course from Community and Regional Development 176, Political Science 126....4

Select four courses from at least two departments ..16

Anthropology 123A, 123B, 123C, 124, 126, 131, 135, Communication 145, Human Development 103, Philosophy 105, Political Science 178, Religious Studies 168, 170, Sociology 143A, 143B, 146, 156, 175, 185, Women's Studies 102

Four courses to fulfill Area Studies Requirement ...16

Area Studies Requirement
Four courses: three of the four must be selected within one region, and from at least two of three groups (History, Social Analysis, Culture and Literature); the fourth course may be selected from any region.

Western Europe
History: History 140, 141, 142, 144B, 145, 146A, 146B, 147A, 147B, 147C, 151D

Social Analysis: Geography 123, Political Science 137, 147

Russian and East/Central Europe
History: History 138B, 138C, 143

Social Analysis: Political Science 144

Culture and Literature: Russian 123, 129, 130, 131, 143, 151

Asia and the Pacific
History: History 191E, 191F, 194C, 194D, 196B

Latin and South America
History: History 161B, 162, 163B, 164, 165, 166B, 168

Social Analysis: Anthropology 144, 146, Chicano Studies 130

Culture and Literature: African American and African Studies 153, Comparative Literature 152, Spanish 149, 155, 172

Africa and the Middle East
History: History 115A, 115B, 115C

Social Analysis: African American and African Studies 110, Anthropology 140A, 140B, 142, Political Science 134, 146, 149

Culture and Literature: African American and African Studies 162, Art History 156

Total units for the major ...72-105

Major Adviser. E. Goldman (Political Science).

Courses in International Relations (IRE)

Lower Division Courses

1. Global Interdependence (4)
Lecture—4 hours; discussion—1 hour. Development of the concept of global interdependence along its political, economic, demographic, cultural, technological, and environmental dimensions. Focus on the ways societies and states interact. Course provides the foundation for upper division multidisciplinary work in international relations.—I, III, (II, III.) Nincic, Goldman

98. Directed Group Study (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)

99. Special Study for Undergraduates (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)

Upper Division Courses

104. The Political Economy of International Migration (4)
Lecture—4 hours; term paper or discussion—1 hour. Prerequisite: upper division standing. Analysis of worldwide migration patterns, and social scientific theories of international and transnational migration. Focus in economical, political, and social impact of immigration and potential for international and regional cooperation. (Same course as Sociology 104)—II. (I, II.) Kyle

131. Ocean Politics (4)
Lecture—4 hours; term paper. Prerequisite: course 1 or Political Science 3; Political Science 123 recommended. The political, economic, security and environmental aspects of the world's oceans. Focus on the international dimensions of ocean economic resources, and on the means—both cooperative and conflictual—by which these resources have been, and are likely to be, managed.—II, III. (I, II, III.) Goldman

190. Topics in International Relations (4)
Lecture/discussion—4 hours. Prerequisite: consent of instructor. Selected topics in international relations. Variable content. May be repeated for credit when topic differs.—I, II, III. (II, III.)

192. International Relations Internship (1-12)
Internship—3-36 hours (to be arranged). Prerequisite: upper division standing and consent of instructor. Work experience in international relations, with term paper summarizing the practical experience of the student. (P/NP grading only.)

194HA-194HB. Special Study for Honors Students (4-12)
Seminar—2 hours; term paper. Prerequisite: open only to majors of senior standing who qualify for honors program. Directed reading, research, and writing on topics selected by students and instructor culminating in preparation of a senior honors thesis under direction of a faculty adviser. (Deferred grading only; pending completion of sequence.)

198. Directed Group Study (1-5)
Prerequisite: upper division standing and consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5)
Prerequisite: upper division standing and consent of instructor. (P/NP grading only.)

Quarter Offered: I=Fall; II=Winter; III=Spring; IV=Summer; 2001-2002 offering in parentheses.

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
Independent Study Program

Information:
Chairperson
Committee on Courses of Instruction
c/o Academic Senate Office (530-752-2220)
The Independent Study Program provides an opportunity for upper division students to design and pursue a full quarter (12-15 units) of individual study in an area of special interest.

A program qualifying as Independent Study will consist of one or more courses in the 190–199 series. While the theme of such a program may be reasonably broad, a recognizable common thread should unite all the academic work you undertake during an independent study quarter. Regularly offered formal courses will only be acceptable as a part of such a program if they clearly fit its theme and contribute something essential toward the realization of its objectives. The program is not to be considered a way to take more variable-unit courses than normally permitted.

The procedure for enrolling in an Independent Study Program is as follows:
1. develop, in general terms, a plan of study;
2. locate a faculty sponsor or panel of sponsors, and with their help and approval develop a detailed plan;
3. complete a project proposal form (obtained from the Academic Senate Office) and submit it to the Academic Senate Committee on Courses of Instruction.

The deadline for applications is the tenth day of instruction of the term before the term in which the project is to be undertaken. (See the Academic Calendar at the front of the catalog for specific dates.)

You must report the completion or termination of the project to the Committee on Courses of Instruction.
Integrated Studies

Nora A. McGuinness, Ph.D., Program Director
Program Office, 2292 Social Sciences/Humanities (530-752-9760)

Committee in Charge
Richard T. Curley, Ph.D. (Anthropology)
Susan B. Kaiser, Ph.D. (Textiles and Clothing, Women and Gender Studies)
Douglas W. McColm, Ph.D. (Physics)
Nora A. McGuinness, Ph.D. (Integrated Studies)
Jay E. Mechling, Ph.D. Chairperson (American Studies)

Faculty
Richard T. Curley, Ph.D., Senior Lecturer (Anthropology)
Dennis Dingemans, Professor (Social Sciences)
Evan Fletcher, Ph.D., Lecturer (Center for Neuroscience)
Nora A. McGuinness, Ph.D., Academic Administrator (Integrated Studies)
Jay Mechling, Ph.D., Professor (American Studies)
David A. Robertson, Ph.D., Professor (English)
Eric Schroeder, Ph.D., Lecturer (English)
Kenneth A. Shackel, Ph.D., Associate Professor (Pomology)
Michael L. Smith, Ph.D., Professor (History)
Gergely Zimanyi, Ph.D., Associate Professor (Physics)

The Program of Study
Integrated Studies is an invitational, first-year, residential honors program. Established in 1969, the program aims to help high-achieving students integrate knowledge gained from humanities, natural sciences, and social sciences study and organize their learning experiences through interdisciplinary or multidisciplinary approaches to a common theme. The theme for 2000-2003 is “Our Region.” Enrollment is limited to 25 students per class, and program membership is limited to the top 3% of the entering class. (In 2000-2001, 69 students will be admitted to the program.)

Students enroll in three Integrated Studies courses and two seminars during the year. Students not admitted to the Program may not register for Integrated Studies courses or seminars.

Courses in Integrated Studies (IST)

Lower Division Courses
8. Colloquium (1)
Discussion—1 hour. Lectures, films, and readings on the interrelation between the arts and sciences. May be repeated for credit. (P/NP grading only)—I, II, (I, II,)

8A. Special Topics in Natural Science and Mathematics (4)

8B. Special Topics in Humanities (4)
Lecture—3 hours; discussion—1 hour. Group study of a special topic in humanities. Course varies with topic offered. Limited enrollment. May be repeated for credit. GE credit: ArtHum, Wrt.—I, II, III, (I, II, III,)

8C. Special Topics in the Social Sciences (4)

9. Seminar (1)
Lecture—1 hour. Preparation of a research report. Normally taken with course 8. May be repeated for credit. (P/NP grading only)—I, II, III, (I, II, III,)

Upper Division Course
197T. Tutoring in Integrated Studies (1-4)
Prerequisite: consent of Director of Integrated Studies. Tutoring in lower division Integrated Studies courses, usually in small discussion groups. Weekly discussions with the instructor on the subject matter of the course being tutored and on the art and craft of teaching. (P/NP grading only)—I, II, (I, II,)

Quarter Offered: I=Fall; II=Winter; III=Spring; IV=Summer; 2001-2002 offering in parentheses

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
Italian

(Office of the Dean of the College of Letters and Science)
Program Director
Department Office, 522 Sproul Hall (530-752-1219)
World Wide Web: http://italian.ucdavis.edu

Faculty
Antonella Bassi, M.A., Lecturer
JoAnn Cannon, Ph.D., Professor
Dennis J. Dutschke, Ph.D., Professor
Gustavo Foscari, M.A., Lecturer
Jay Grossi, M.A., Lecturer
Margherita Heyer-Caput, Ph.D., Lecturer
Juliana Schiesari, Ph.D., Professor (Italian, Comparative Literature)

The Major Program
The major in Italian provides a solid language background which will enable the student to develop an appreciation for Italian language and culture. The Program. The Italian program is small and geared to the individual needs of the student. The use of Italian is stressed on all levels and a knowledge of the language is required for literature courses that are taught only in Italian. The Italian program actively participates in the Education Abroad Program, the International Internships Program, and the Summer Sessions International (Rome), all of which offer opportunities for travel and study in Italy. Career Alternatives. Specific career opportunities for those students who have a background in foreign languages are abundant. In addition to the Foreign Service, jobs are available in business and education, both overseas and in the U.S. For example, those wishing to live (for brief or longer periods of time) and work in Italy have a choice of cities: Milan for business, Rome for international concerns in agriculture and nutrition in the F.A.O., and Florence for retail commerce and the arts, just to name a few. In the U.S., foreign-owned companies or American companies with interests in the foreign market need qualified people who are also fluent in a foreign language.

A.B. Major Requirements:

Preparatory Subject Matter..............................0-24
Italian 1, 2, 3, 4, 5, and 9 (or the equivalent)0-24

Depth Subject Matter..36
Italian 101 and 105...8
Upper division courses in literature, taught in the language........28
Must include at least one course from two of the following literary periods: (a) Early Italian, (b) Renaissance and Baroque, (c) Eighteenth through Twentieth Centuries. Upper division General Education courses in Italian may fulfill this requirement with approval of the major adviser.
A total of 8 units in literature may be replaced by Italian 107 (highly recommended) and/or courses in related fields such as history, art, history, music, comparative literature, English, critical theory, classics, and linguistics.
Note: All upper division courses are to be chosen in consultation with the major adviser.

Total Units for the Major...36-60

Recommended
One year of study abroad with the Education Abroad Program or college Latin or a Romance Language.

Major Adviser. D. Dutschke.

Minor Program Requirements:

Italian..20
Italian 101 and 105...8
Upper division courses in literature chosen in consultation with major adviser..12
One course chosen from the following three areas: (a) Early Italian Literature, (b) Renaissance and Baroque, and (c) Eighteenth through Twentieth Centuries. (One of the above courses may be replaced by course 107 or by a course of literature in translation offered by the Italian Program).

Honors and Honors Program. The honors program comprises two quarters of study under course 194H (3 units) and course 195H (3 units), which will include a research paper and a comprehensive examination. See also the Academic Information chapter of this catalog.

Education Abroad Program. Applicable courses taken on EAP are accepted for credit in the major or the minor programs.

Teaching Credential Subject Representative. See Major Adviser above and also the section on the Teacher Education Program in this catalog.

Prerequisite Credit. Credit will not normally be given for a course if it is a prerequisite of a course already successfully completed. Exceptions can be made only by the Program Director.

Short Term Language and Culture Program. The Italian program offers an exciting study abroad program of Italian language and culture at the University for Foreigners in Perugia. The spring quarter program is directed and taught in part by a faculty member of the Italian program. All students in good standing at UC Davis are eligible to apply. There is no language requirement to participate. Language and culture instruction is offered at all levels, and students are able to earn up to 20 units of credit. The courses may be used for credit towards the Italian major or minor. For information, contact the director of the Italian program or the Education Abroad Center.

Courses in Italian (ITA)

Lower Division Courses

Students offering high school language preparation as a prerequisite must take a placement test.

1. Elementary Italian (5)
 Discussion—5 hours; laboratory—1 hour. Introduces Italian grammar and development of all language skills in a cultural context with special emphasis on communication. (Students who have successfully completed Italian 2 or 3 in the 10th or higher grade in high school may receive unit credit for this course on a P/NP grading basis only; although a passing grade will be charged to the student’s P/NP option, no petition is required. All other students will receive a letter grade unless a P/NP petition is filed.)—I, II, III. (I, II, III.)

2. Elementary Italian (5)
 Discussion—5 hours; laboratory—1 hour. Prerequisite: course 1. Continuation of course 1 in areas of grammar and basic language skills.—I, II, III. (I, II, III.)

3. Elementary Italian (5)
 Lecture/discussion—5 hours. Prerequisite: course 2. Continuation of grammar sequence, and practice of all language skills through cultural texts.—I, II, III. (I, II, III.)

4. Intermediate Italian (3)
 Lecture/discussion—3 hours. Prerequisite: course 3 or the equivalent. Review of grammar and syntax through written exercises, and readings of short prose works. Intended to develop the linguistic foundations of students who have completed the first-year language classes.—I, II, III. (I, II, III.)

5. Intermediate Italian (3)
 Lecture/discussion—3 hours. Prerequisite: course 4 or the equivalent. Review and study of grammar and syntax, readings of short prose works, and written exercises. Intended to prepare students to read, understand and discuss modern Italian.—I, II, III. (I, II, III.)

8A. Italian Conversation (3)
 Discussion—3 hours. Prerequisite: course 3 or the equivalent. Course designed to offer practice in speaking Italian. May be repeated once for credit. (P/NP grading only.)—I, II, III. (I, II, III.)

8B. Italian Conversation (3)
 Discussion—3 hours. Prerequisite: course 8A. Course designed to offer practice in speaking Italian. (P/NP grading only.)—II. (II.)

9. Reading Italian (3)
 Lecture/discussion—3 hours. Prerequisite: course 5. Reading and discussion of modern Italian prose, including selections from creative, scientific and journalistic writings. Introduction to contemporary Italian literature and culture, as well as a means of strengthening the student's command of the Italian language.—I, II, III. (I, II, III.)

50. Studies in Italian Cinema (1-20)
 Lecture—2 hours; discussion—1 hour; term paper. Introduction to Italian cinema through its genres. Focus is on cinema as a reflection of and a comment on modern Italian history. Film will be studied as an artistic medium and as a form of mass communication. GE credit: ArtHum, Wrt.—II. (II.)

90X. Lower Division Seminar (1-2)
 Seminar—1-2 hours. Prerequisite: lower division standing and consent of instructor. Examination of a special topic in Italian language or culture (such as Italian culture seen through film, Italian feminism, literature, or politics) through shared readings, discussions, written assignments, or special activities such as film screening or laboratory work.
Upper Division Courses

101. Advanced Conversation, Composition, and Grammar (4)
Lecture—3 hours; weekly essays. Prerequisite: course 9 or consent of instructor.—I. (I.)

104. Italian Translation and Style (4)
Lecture/discussion—3 hours; two research papers; term paper. Prerequisite: course 101 or consent of instructor. Practice in translation from Italian to English and English to Italian, using literary and non-literary texts of different styles. Analysis of linguistic problems and elements of style contained in the translation material.—III. (III.) Dutschke

105. Introduction to Italian Literature (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 101 or consent of instructor. Introduction to the study of the principal authors, works, and movements of the Medieval, Renaissance, and Early Modern periods in Italy. GE credit: ArtHum.—II. (II.)

107. Survey of Italian Culture and Institutions (4)
Lecture—3 hours; term paper. Assessment of the impact of regional autonomy on Italian cultural life from the Middle Ages to the present. Special emphasis will be placed upon achievements in literature, the arts, philosophy, and socio-political institutions. To be taught in English. GE credit: ArtHum.—III. (III.) Foscarini

108. Contemporary Issues in Italian Culture and Society (4)
Lecture/discussion—3 hours; term paper. Analysis of cultural issues in contemporary Italy: Myth and reality of imagined Italic, Italian identities; immigration and race relations; the media and popular culture. Taught in English. GE credit: ArtHum, Div, Wrt.—I. (I.) Bassi

112. Medieval and Renaissance Poetry: St. Francis to Petrarch (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 9 or consent of instructor. Study of the origins of Italian religious and secular poetry of the 13th and 14th centuries. A diversified poetry is illustrated in works of St. Francis, Dante, Cavalcanti, Petrarch, the School of Bologna, the Sweet Style Poets, and other authors. Offered in alternate years. GE credit: ArtHum.—I. (I.) Dutschke

113. Dante Alighieri, Divina Commedia (Inferno, Purgatorio, Paradiso) (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 9 or consent of instructor. Study of Dante Alighieri's Divina Commedia, and its role in the development of Italian language and literature. Emphasis will be placed on reading the whole poem within the historical context of the Middle Ages. GE credit: ArtHum.—III. (III.) Dutschke

114. Boccaccio, Decameron, and the Renaissance Novella (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 9 or consent of instructor. Study of the development of the short story in Italy, as exemplified in Giovanni Boccaccio's Decameron, in his predecessors and Renaissance followers. Offered in alternate years. GE credit: ArtHum.—II. (II.)

115A. Studies in the Cinquecento (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 9 or consent of instructor. Analysis of key texts from the high moment of the Italian Renaissance. The political and aesthetic legacy of humanism will be foregrounded in relation to authors such as Finizio, Ariosto, Machiavelli, Aretino, Castiglione, and Tasso. Offered in alternate years. GE credit: ArtHum.—III. (III.) Schiesari

115B. Italian Literature of the Renaissance and the Baroque: From Cellini to Marino (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 115A. Continued examination into the loss of an ideal. Emphasis on the conflicts in Michelangelo and Tasso leading to Marino, with an excursion on Galileo's role in the formation of a modern literary standard. GE credit: ArtHum.—II. (II.) Schiesari

115C. Italian Drama from Machiavelli to the Enlightenment (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 9 or consent of instructor. Development of comic and tragic forms as critical representation of their societal and historical contexts, i.e., Machiavelli and the logic of power. Baroque dramatists in the service of counter-reformation Italy. Golden's comedies and bourgeois social consciousness. Offered in alternate years. GE credit: ArtHum.—I. (I.) Schiesari

115D. Early Modern Italian Lyric (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 9 or consent of instructor. Examination of poetic tradition influenced by Petrarch. Consideration of the relation between gender and genre in such poets as Petrarch, Bembo, della Casa, Tasso, Marino, Spinelli, Stampa, Veronico Franco, Isabella della Morra. Offered in alternate years. GE credit: ArtHum.—I. (I.) Schiesari

118. Italian Literature of the Eighteenth Century (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 9 or consent of instructor. Development of modern Italian literature. Emphasis on the work of Goldoni, Bettinelli, Alfieri and Vico. GE credit: ArtHum.—I. (I.)

119. Italian Literature of the Nineteenth Century (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 9 or consent of instructor. Romanticism in Italy, including Manzoni, Verga, and Verismo. GE credit: ArtHum.—II. (II.)

120A. Italian Literature of the Twentieth Century: The Novel (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 9 or consent of instructor. Development of the novel from Svevo to the present. Emphasis on the work of Svevo, Levi, Moravia, Pasve, and Vittorini. GE credit: ArtHum.—III. (III.) Cannon

120B. Italian Literature of the Twentieth Century: Poetry and Drama (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 9 or consent of instructor. Italian poetry with emphasis on Hermeticism; the theater of Luigi Pirandello and its role in the development of contemporary Italian drama. GE credit: ArtHum.—I. (I.) Cannon

131. Autobiography in Italy (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 9 or consent of instructor. Study of representations of selfhood with particular attention to generic conditions, the confessional tradition and the problem of women's self-representation. Authors studied may include Petrarach, Tasso, Casanovas, Alfieri, Zvekov, Sibilla Aleramo and Primo Levi. Offered in alternate years. GE credit: ArtHum.—III. (III.)

139B. Italian Literature in English: Boccaccio, Petrarch and the Renaissance (4)
Lecture/discussion—3 hours; term paper. Petrarch and Boccaccio and their relations to the Middle Ages and the Renaissance; the Renaissance, with particular attention to the works of Lorenzo de' Medici, Leonardo da Vinci, Machiavel, Ariosto, Michelangelo, and Tasso. GE credit: ArtHum.—II. (II.) Dutschke

140. Italian Literature in English Translation: Dante, Divine Comedy (4)
Lecture/discussion—3 hours; term paper. Prerequisite: any course from the GE Literature list. Critical analysis of texts from the Italian Renaissance. Primary concern focuses on issues such as "the dignity of Man," education and gender politics; "high" and "low" culture and its relation to literary practices. GE credit: ArtHum, Div, Wrt.—I. (I.) Dutschke

141. Culture, Gender and the Italian Renaissance (4)
Lecture—3 hours; discussion—1-2 hours; laboratory—2-4 hours. Prerequisite: any course from the GE Literature list. Critical analysis of texts from the Italian Renaissance. Recommendations for a total of 10 units. (P/NP grading only.)—Schiesari

142. Masterpieces of Modern Italian Narrative (4)
Lecture—1.5 hours; discussion—1.5 hours; term paper. Prerequisite: either English 3, Comparative Literature 2, or History 4C. Analysis of major works of Italian narrative fiction from unification of Italy to present. Students will learn to use representative methods and concepts which guide literary scholarship. Consideration of works within European social and cultural context. Offered in alternate years. GE credit: ArtHum, Div, Wrt.—II. (II.) Schiesari

145. Special Topics in Italian Literature (4)
Lecture/discussion—4 hours. Prerequisite: course 9 or consent of instructor. Study of special topics and themes in Italian literature, such as comic literature, epic poetry, pre-twentieth century theater, fascism, futurism, women and literature, and the image of America, etc. May be repeated for credit when topic differs. GE credit: Wrt.—I., II., III. (I., II, III.)

150. Studies in Italian Cinema (4)
Lecture/discussion—3 hours; term paper. Prerequisite: Humanities 10 or consent of instructor. Introduction to Italian cinema through its genres. Focus on cinema as a reflection or a comment on modern Italian history. Film as an artistic medium and as a form of mass communication. GE credit: ArtHum, Div, Wrt.—II. (II.)

190X. Upper Division Seminar (1-2)
Seminar—1-2 hours. Prerequisite: upper division standing and consent of instructor. Examination of a special topic in Italian language and culture through shared readings, discussions, written assignments or special activities such as film screening or laboratory work. Limited enrollment. May not be repeated for credit.

192. Italian Internship (1-12)
Internship—3-36 hours. Prerequisite: upper division standing and consent of person of Italian Department. Participation in government and business activities to gain work experience and to develop a better knowledge of Italian language and culture. (P/NP grading only.)

194H. Special Study for Honors Students (3)
Independent study—3 hours. Prerequisite: open only to majors of senior standing who qualify for honors program. Guided research, under the direction of a faculty member, leading to a senior honors thesis on a topic in Italian literature, civilization, or language studies. (P/NP grading only.)

195H. Honors Thesis (3)
Independent study—3 hours. Prerequisite: course 194H. Writing of an honors thesis on a topic in Italian literature, civilization, or language studies under the direction of a faculty member. (P/NP grading only.)

197T. Tutoring in Italian (1-4)
Seminar—1.2 hours; laboratory—1.2 hours. Prerequisite: upper division standing and consent of instructor. Tutoring in undergraduate courses, including leadership in required supplementary discussion groups affiliated with departmental courses. May be repeated for credit for a total of 6 units. (P/NP grading only.)

197C. Community Tutoring in Italian (1-5)
Seminar—1.2 hours; laboratory—2-4 hours. Prerequisite: consent of instructor. Field experience as Italian tutors or teacher's aides. May be repeated for credit for a total of 10 units. (P/NP grading only.)—Foscarini
198. Directed Group Study (1-4)
Prerequisite: consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)

Graduate Courses

297. Individual Study (1-5)
Prerequisite: graduate standing or consent of instructor.

298. Group Study (1-5)
Prerequisite: graduate standing or consent of instructor.

299. Research (1-12)
Prerequisite: graduate standing or consent of instructor. (S/U grading only.)

299D. Dissertation Research (1-12)
Prerequisite: graduate standing or consent of instructor. (S/U grading only.)

Quarter Offered: I = Fall; II = Winter; III = Spring; IV = Summer; 2001-2002 offering in parentheses.

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
Jewish Studies

(College of Letters and Science)
David Biale, Ph.D., Program Director
Program Office, 2216 Social Sciences and Humanities Building

Committee in Charge
David Biale, Ph.D. (History)
Naomi Janowitz, Ph.D. (Religious Studies)
Harriet Murav, Ph.D. (Comparative Literature)
Bruce Rosenstock, Ph.D. (Classics and Religious Studies)
Seth Schein, Ph.D. (Comparative Literature)
Diane Wolf, Ph.D. (Sociology)

The Program of Study
The Program in Jewish Studies offers students the opportunity to explore Jewish history, communities, literature, religion, and culture in a comparative perspective and multicultural framework. Courses include Hebrew language instruction (Hebrew 1, 2, 3) as well as the study of classical and modern Jewish texts in translation.

The interdisciplinary minor in Jewish Studies provides an introduction to the study of Jewish culture, thought, history, and literature, primarily in the modern period. Students learn a broad range of methodologies and critical concepts in these areas and gain insight into the relation between Jewish identities, histories, and representations and those of the cultures in which Jews throughout the world find themselves.

The Program in Jewish Studies will be of special interest to students in History, Religious Studies, Comparative Literature and Sociology as well as other fields in the Humanities and Social Sciences.

Minor Program Requirements

<table>
<thead>
<tr>
<th>UNITs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>Jewish Studies</td>
</tr>
<tr>
<td>4</td>
<td>Religious Studies</td>
</tr>
<tr>
<td>16</td>
<td>4 upper division courses selected from the following list, with at least one course in each category:</td>
</tr>
<tr>
<td>16</td>
<td>(a) Religion: English 171A, Religious Studies 122, 124, 125</td>
</tr>
<tr>
<td>4</td>
<td>(b) Representations, Languages, and Identity: Comparative Literature 147, English 179, French 108, German 141, Hebrew 100, 101, 102, Humanities 118, 119, 121, 122, Russian 159, Sociology 130, 174</td>
</tr>
<tr>
<td>4</td>
<td>(c) Histories: History 112A, 112B, 142, 143, 144A, 144B, 173, Humanities 194</td>
</tr>
</tbody>
</table>

Note: Students are encouraged to participate in the Education Abroad Program in Israel. Courses taken in EAP may, with an adviser’s concurrence, be approved for credit in the minor.

Advising, History Department (530-752-0776)

Quarter Offered: I = Fall; II = Winter; III = Spring; IV = Summer; 2001-2002 offering in parentheses.

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
Landscape Restoration

(College of Agricultural and Environmental Sciences)

This minor is of particular interest to students majoring in Wildlife, Fish, and Conservation Biology, Environmental Biology and Management, Environmental and Resource Sciences, Landscape Architecture, Biological Sciences, Evolution and Ecology and Plant Biology. Biological Sciences 1C is a prerequisite to some courses in the minor. The minor is sponsored by the Department of Environmental Horticulture.

Landscape Restoration ...17-22

Select one of Environmental Horticulture 144/Environmental and Resource Sciences 144/Plant Biology 144, Environmental Science and Policy 155, Evolution and Ecology 121, Evolution and Ecology 117/Plant Biology 117, Plant Biology 102 ...3-5

Select one of Environmental Horticulture 100, 130, 133, Plant Biology 121, 176 ..3-4

Soil Science 10 or 100 ..3-4

Select two courses and a minimum of 5 units from Agricultural Systems and Environment 130, Environmental Horticulture 150, Environmental Science and Policy 155L, Environmental Planning and Management 110, 134, Landscape Architecture 180H, 180I ..5-8

Environmental Horticulture 192 ..3

Minor adviser. T.P. Young.
Law, School of

Courses in Law (LAW)

Professional Curriculum

First Year Courses

200. Introduction to Law (1)
Discussion—1 hour. Introduction to basic concepts of the law; the historical roots of common law and equity, the precedent system in its practical operation, the modes of reasoning used by courts and attorneys, and the fundamentals of statutory interpretation. (SU grading only.)

200A. Introduction to the Law of the United States (2)
Discussion—2 hours. History and fundamental principles of the United States's legal system. Important current legal issues, developments and trends. Required for LL.M. students who have not attended a U.S. law school. Fall semester only. (SU grading only.)

201. Property (5)
Discussion—5 hours. Doctrines and concepts of property law with primary emphasis on real property. Topics include the estates in land system, the landlord-tenant relationship, conveyancing, and private and public land use control. (Same course as 201A-201B.)

201A-201B. Property (3-2)
Discussion—3-2 hours. Study of doctrines and concepts of property law with primary emphasis on real property. The estates in land system, the landlord-tenant relationship, conveyancing, and private and public land use control. (Deferred grading only, pending completion of course.)

202A-202B. Contracts (3-2)
Discussion—3-2 hours. Examines the sorts of promises that are enforced and the nature of protection given promissory obligations in both commercial and noncommercial transactions. Inquiry into the means by which traditional doctrine adjudicates—or fails to adjust—to changing social demands. (Deferred grading only, pending completion of course.)

203. Civil Procedure (5)
Discussion—5 hours. Fundamental and recurrent problems in civil actions including the methods used by federal and state courts to resolve civil disputes. Topics include the relation between federal and state courts; the power of courts over persons, property, and subject matter (jurisdiction); the scope of litigation (joinder of claims and parties); preparation for trial through pleadings, discovery, and pretrial; devices for resolving actions and issues before and during trial, function of judge and jury; and the finality of the trial court’s decision. (Deferred grading only, pending completion of course.)

203A-203B. Civil Procedure (3-2)
Discussion—3-2 hours. Study of the fundamental and recurrent problems in civil actions including the methods used by federal and state courts to resolve civil disputes. Topics covered include the relation between federal and state courts; the power of courts over persons, property, and subject matter (jurisdiction); the scope of litigation (joinder of claims and parties); preparation for trial through pleadings, discovery, and pretrial; devices for resolving actions and issues before and during trial, function of judge and jury; and the finality of the trial court’s decision. (Same course as 203A-203B.)

204. Torts (3-2)
Discussion—3-2 hours. Legal concepts which apply to actions brought by litigants who seek relief for injury. Intentional and unintentional invasions of person and property. Analysis of common actions and defenses. Examines legal rules upon which such actions are based. (Deferred grading only, pending completion of course.)

205. Constitutional Law I (4)
Discussion—4 hours. The principles, doctrines, and controversies regarding the basic structure of, and division of powers in, American government. In particular, course treats judicial review, jurisdiction, standing to sue, federalism, federal and state powers and immunities, and the separation of powers between branches of the federal government. It also begins an examination, continued in course 216, of procedural and substantive constitutional rights and the limits they place on governmental action. Economic substantive due process, procedural due process, and rights of privacy and personal autonomy will also be addressed.

206. Criminal Law (3)
Discussion—3 hours. Study of the bases and limits of criminal liability. Coverage of the constitutional, statutory, and case law rules which define, limit, and provide defenses to individual liability for the major criminal offenses.

207. Legal Research (1)
Discussion—0.5 hours, laboratory—0.5 hours. Description of the evolution and use of sources of law and secondary authority. Class discussion followed by research exercises.
208. Legal Writing (2)
Lecture—2 hours. Instruction in the form and substance of writing. A variety of law-related documents will be discussed and drafted. An experience in oral advocacy will be included. Grading based on the form and writing assignments. No final examination.

Second and Third Year Courses
The second- and third-year courses fall into subject areas as shown here:
(a) Business Law: 215, 228, 232, 236A, 236B, 243, 253, 262, 266, 269, 284, 295
(b) Constitutional Law: 218, 288
(c) Criminal Law: 213, 216, 227A, 227B, 245, 276
(d) Estate Planning: 214, 223
(e) Environmental Law: 230, 256, 264, 265, 282, 285, 287, 289, 294
(f) Family Law: 225, 272, 273
(g) Human Rights and Civil Liberties Law: 222, 226, 233, 234, 267, 268, 270, 408
(i) Labor and Employment Law: 251, 255, 260, 279
(j) Legal Theories and Ethics: 237, 238A, 238B, 259
(k) Medicine and Mental Health Law: 212, 241, 244, 268A, 268B
(l) Procedure and Jurisprudence: 242, 246, 276, 283
(m) Public Law and Policy: 235, 240, 254, 257, 279, 281, 293
(o) Taxation: 214, 220, 238, 247
(q) Clinical Program: 240, 420, 435, 445, 450, 455, 460, 470
(r) Individual and Group Study: 411, 416, 417, 418, 419, 495, 498, 499

209. The Internet and the Law (2)
Discussion—2 hours. Is the internet defining the law as we know it, or reforming traditional 19th- and 20th-century legal principles? How should the law adapt, if it should, to the internet era? Essential background on the internet. Students conduct internet research. Brief review of forms of governance and law that have emerged on the internet, survey of the current state of the law of the internet, covering programming, online communications law and developments in the following areas: contracts and business transactions (including digital signatures and "clickable" licenses); securities and antitrust; jurisdiction, trademarks and domain names; copyright and trade secrets; electronic databases; defamation and libel; decency and free speech; privacy; and public records. Problems faced by actual or private sector clients posed and resolved.

210. Criminal Justice Administration Seminar (2)
Seminar—2 hours. American criminal procedure compared with that of other countries, particularly the differing roles of the prosecutor, defense counsel, and the judge, and the offering systems of sentencing. Class paper can be used to satisfy advanced writing requirement. Limited enrollment.

211. Negotiation and Dispute Resolution (2)
Discussion—2 hours. Strategies and tactics of negotiation in settling controversies between parties. Role-playing exercises and simulations to develop negotiating skills. Limited enrollment.

212. Law and the Mental Health System (3)
Discussion—3 hours. The concept of mental illness, the regulation of mental health professionals, the patient-professional relationship, mental health professionals as experts, the regulatory framework for professional standards, the duty of a nation to extradite or prosecute persons accused of harms more than one nation or when a person accused in one nation is a citizen in another. Topics include the role of mental health professionals in matters of national security, the rights of mental health professionals, and transnational identity issues, affirmative action, and civil rights. Considers the theoretical approaches to the often oversimplified issue of race. The seminar will theoretical and practical approaches to the often oversimplified issue of race. Seminar will place current issues within a historical context; evaluate the strength of conflicting legal approaches and to apply legal reasoning to issues that are commonly addressed in political or emotional terms. The advanced legal writing requirement may be satisfied at the discretion of the instructor. Limited enrollment.

213. International Criminal Law Seminar (2)
Seminar—2 hours. Prerequisite: courses 205 and 206. Issues that arise when crime acquires an international character; for example, when an offense occurs in or harms more than one nation or when a person accused in one nation is a citizen in another. Topics include the United States’ role in investigating and prosecuting international offenses, and what law, domestic or international, U.S. courts should apply in such cases; the duty of a nation to extradite or prosecute persons accused of breaking the law of another nation; the prosecution of international war criminals in the post-World War II tribunals in Nuremberg and Tokyo and in the current Bosnia and Rwanda tribunals in the Hague; the Pinochet case, and the proposed permanent International Criminal Court. Students will be required to write a research paper that will satisfy the advanced legal writing requirement. Limited enrollment.

214. Estate and Gift Tax (3)
Discussion—3 hours. Prerequisite: course 220; course 221 recommended. Fundamentals of federal transfer taxation, including the estate tax, the gift tax, and the generation-skipping transfer tax. Introduction to the income taxation of trusts and estates.

215. Business Associations (4)
Discussion—4 hours. Broad survey of the legal rules and concepts applicable to business associations, both public and closely held. Principal attention to the corporate form of organization, although other legal principles also treated briefly. Topics include the planning of business transactions, the process of incorporation, the financing of corporations, the role of managers and shareholders, the federal securities laws, and social responsibility.

215A. The Law of Corporate Governance Seminar (2)
Seminar—2 hours. Prerequisite: course 215. Advanced issues in the governance of publicly-held corporations. Exploration of how the law has addressed the separation of ownership and control and the theoretical level in the context of such topics as the duties of corporate directors, shareholder voting rights, and competition among states to attract corporate charters. Limited enrollment.

216. Criminal Process Reform Seminar (2)
Seminar—2 hours. Considerations of possible reform efforts in criminal justice administration. Guest lecturers. Class presentations by each student. May satisfy advanced legal writing requirement. Limited enrollment.

217. Telecommunications Law (3)
Discussion—3 hours. Economic and administrative regulation of telephony, radio and television broadcasting, and video technologies such as direct broadcast satellites. Emphasis on the recently enacted Telecommunications Reform Act and the role of the Federal Communications Commission, as well as other sources of regulation such as related antitrust law and state public utility regulation.

218. Constitutional Law II (4)
Discussion—4 hours. The First Amendment and the Equal Protection Clause. The First Amendment study involves an examination of freedom of speech and assembly, focusing on the various kinds of speech the courts have identified and their constitutional significance: political speech, commercial speech, offensive speech, obscenity, fighting words, and speech constituting a clear and present danger. Attention to issues involving the forum in which speech occurs: prior restraint, overbreadth, vagueness doctrine, and the protection provided symbolic expression. The equal protection study will examine suspect class doctrine including discrimination on the basis of race, gender, alienage, and other characteristics, affirmative action, the problem of “invidious motive,” state action, and the extent to which the equal protection clause prevents government from burdening the exercise of fundamental rights. If time permits, the Establishment Clause and the Free Exercise Clause will also be considered.

219. Evidence (4)
Discussion—4 hours. The rules regarding the admissibility of testimonial and documentary proof during the trial of civil and criminal cases, including the concept of relevance, hearsay rules, the examination and impeachment of witnesses, the opinion rule, constitutional and statutory privileges.

220. Federal Income Taxation (4)
Discussion—4 hours. Introduction to basic principles of federal income taxation. Topics include identification of income subject to tax, gains and losses from property transactions, deductions from income, the timing of income and deductions (tax accounting), and the identity of persons subject to tax on particular items of income.

221. Trusts, Wills and Decedent’s Estates (3)
Discussion—3 hours. The law of decedent’s estates, wills and trusts. Topics include intestate succession; family protection and limits on the power of testament, execution, revocation and revival of wills; will substitutes; intestacy and testamentary private trusts. Topics may include contracts to make wills; class gifts; powers of appointment; the Rule against Perpetuities; and introduction to the administration of estates and trusts, including powers, duties, rights, and liabilities of fiduciaries and the management of assets.

222. Law of Race Relations Seminar (2)
Seminar—2 hours. Prerequisite: courses 218 (may be taken concurrently), 267; course 260 recommended. Treatment of racial issues throughout American legal history and in current debates on such issues. Various, and often conflicting, theoretical approaches to the often oversimplified issue of race. Seminar will place current legal issues into a historical context; evaluate the strength of conflicting legal approaches and to apply legal reasoning to issues that are commonly addressed in political or emotional terms. The advanced legal writing requirement may be satisfied at the discretion of the instructor. Limited enrollment.

222A. Latinos and Latinas and the Law (2)
Seminar—2 hours. Some of the legal issues of particular relevance to the Latino community in the United States, including immigration, language regulation, national and transnational identity issues, affirmative action, and civil rights. Consider research in the social sciences and humanities as well as legal sources. The advanced legal writing requirement may be satisfied at the discretion of the instructor.

223. Estate Planning Seminar (2)
Seminar—2 hours. Prerequisite: course 221. Selected topics in the estates and trusts area. Content varies with instructor. Satisfies the advanced legal writing requirement. Limited enrollment.

224. Law and Institutions of European Union (2)
Discussion—2 hours. Seminar on legal problems of European integration, including the transfer of powers to supranational institutions, their decision making, the role of the Courts of the Communities and discussion of selected areas of European Law.

225. Marital Property (2)
Discussion—2 hours. California’s community property system, including rights of spouses in the treatment of the property during marriage, the characterization, valuation, and division of property upon the termination of marriage by divorce. The law of marriage and divorce, spousal support, taxes, and creditor’s rights. The law concerning non-marital relationships, premarital agreements, and termination of marriage by death.
225A. Marital Property (2)
Discussion—2 hours. The California community property system, including the rights of spouses and the treatment of their property during marriage, and the character and division of property upon divorce. Topics may include creditor’s rights, premarital agreements, non-marital relationships, and division of property upon death.

226. Disability Rights (2)
Discussion—2 hours. The Americans with Disabilities Act (A.D.A.), as it applies to employment, higher education, public accommodations, and government services and programs. Emphasis on the statutory definition of disability, entities subject to the A.D.A., the “otherwise qualified” requirement, forms of discrimination, reasonable accommodations, and defenses.

227A. Criminal Procedure (3)
Discussion—3 hours. Examines U.S. Constitutional constraints on the police func-
tion; in particular, on arrest, search and seizure, electronic surveillance, entrapment, police interrogation and confessions, lineups, and the exclusionary rule.

227B. Advanced Criminal Procedure (3)
Discussion—3 hours. Prerequisite: course 227A (may be taken concurrently). Pro-
secutorial discretion, plea bargaining, three strikes, death penalty, jailhouse infor-
mants, prisons as well as other selected areas. Students may present 40-page paper in lieu of final exam.

228. Business Planning and Drafting (3)
Discussion—3 hours. Prerequisite: course 215, 220, or consent of instructor. Range
of transactions frequently encountered by lawyers representing business clients, emphasizing the tax aspects of such transactions. Business and tax strategies, techniques and skills relative to formation of partnerships, limited liability company, corporations, franchises, and other types of business entities. Topics may include executive compensation, retirement of stock interests, financially troubled business, and acquisitions, dispositions, divisions, and liquidations of businesses. Problem methods and significant work: drafting a variety of legal documents and class presentations. Limited enrollment.

229. Scientific Evidence (3)
Discussion—3 hours. Prerequisite: course 219. Examines evidence law governing the admission of scientific testimony, and considers trial advocacy in presenting and attacking scientific testimony that will be used in both civil and criminal cases. Limited enrollment.

230. International Environmental Law Seminar (2)
Seminar—2 hours. Prerequisite: prior or concurrent enrollment in course 248 or con-
sent of instructor. Examination of international law norms applicable to the protection of the global environment, including air and water resources, flora and fauna, and historical and cultural treasures of international interest. Study of institutions that make and enforce the norms. Special emphasis on implementation and compliance by the United States. Required seminar paper will satisfy the advanced legal writing requirement. Limited enrollment.

231. Sex-Based Discrimination (3)
Discussion—3 hours. The law’s differential treatment of women and men in a histor-
ical and contemporary context. Constitutional and statutory protections from dis-
crimination based on gender, as well as women’s and men’s family rights. Subject
matter areas also include reproductive rights, educational opportunity, and criminal law.

232. Real Estate Finance (3)
Discussion—3 hours. Examination of the problems involved in the acquisition, financ-
ing, and development of real estate, and of lender remedies and debtor protections in the event of debtor default. Stresses the practical application of California legal doctrines.

233. Refugee Law Seminar (2)
Seminar—2 hours. Prerequisite: course 292 recommended. Focus on the law con-
cerning the admission of refugees into the United States. Detailed study of the Refugee Act of 1980, which is the major piece of legislation dealing with refugee admission, the international law that fueled the passage of the Act, and the various regulations promulgated by the Attorney General implementing the law. Analysis of the implementation of the Refugee Act and examination of some criticisms of the immigration bureaucracy’s implementation of the law. Some topical issues of refugee law, such as gender-based persecution, persecution based on the exercise of religious beliefs, and division of property upon deportation. May include legal writing requirement. Limited enrollment.

234. Sexual Orientation and the Law (2)
Discussion—2 hours. Social and legal regulation of sexual orientation, emphasizing both the legal subordination of lesbians and gay men and the ongoing struggles to end that subordination. Sexual orientation issues in criminal, employment, constitu-
tional, and family law. Materials will be both doctrinal and theoretical, and will
include fiction and oral history as well as cases and statutes.

235. Administrative Law (3)
Discussion—3 hours. Examination of how the U.S. Constitution and the federal Admi-
nis trative Procedure Act constrain and regulate decision making by govern-
ment agencies and officials. Topics include administrative due process, separation of powers, delegation of authority to agencies, procedural requirements for agency
adjudication and rulemaking, and the extent and limits of judicial review. Course highly recommended for anyone intending to practice in any public law area or at the intersection of public/private law.

236A. Securities Regulation I (2)
Discussion—4 hours. Prerequisite: course 215 or consent of instructor. Focuses on the Securities Act of 1933 and the Securities Exchange Act of 1934. Topics include domestic and international public offerings, registration statements, exemptions from registration, secondary offerings, market regulation, liability provisions, the def-
inition of a security, enforcement of the securities act, responsibilities of securities lawyers, and transnational securities fraud. Particular attention to problems of small issuers of securities.

236B. Securities Regulation II (2)
Discussion—4 hours. Prerequisite: course 215 or consent of instructor; course 236A recommended. Principal focus is the Securities Exchange Act of 1934 and the regulation of securities markets. Topics include the regulation of security mar-
kets, market efficiency, continuous reporting, institutional investors, shareholder voting and going-private transactions, regulation of securities markets and securi-
ties professionals, responsibilities of securities lawyers, transactional securities fraud, and enforcement of the securities acts.

237. American Legal History (2)
Seminar—2 hours. The changing substance of American law—both constitutional and private—and the varied uses to which it has been put; the functioning of Amer-
ican legal institutions—courts, legislatures, executives, and administrative agen-
cies—in the context of the nation’s social values; the role of American lawyers as they respond to the demands of clients, legal institutions, and society; and the trans-
scendent values which lend thematic unity to an identifiable “American” legal his-
tory. Limited enrollment.

238. Tax Strategies and Business (2)
Discussion—2 hours. Framework for analyzing how income taxes affect business decisions and company strategy. Applications include the role of taxes in manage-
ment compensation, multinational decision making, corporate restructuring trans-
actions, and succession planning. Tax planning concepts and their application. Intended to develop broad understanding of how taxes work. Simple algebra to describe generic tax issues and work with computer spreadsheets.

239. Mediation: Theory and Practice (3)
Discussion—3 hours. This practice-oriented course teaches the basic, practical knowledge necessary to begin a mediation practice. All students will gain a detailed understanding of the mediation process that will enable them to counsel clients knowledgeably about the mediation option and represent clients ably in mediation. All will gain communication skills that will be valuable in working with clients and other attorneys, develop the ability to analyze disputes and understand why negoti-
tiations succeed or fail, and understand the advantages and limitations of mediation as a method of resolving disputes. Stages of mediation: contracting (establishing contact with the parties and explaining the process), developing the issues, working the conflict, resolving the conflict, and close. Limited enrollment.

240. Elections and Political Campaigns (2)
Discussion—2 hours. Constitutional and statutory aspects of federal and state elec-
tions, including laws relating to campaign finance, initiatives, term limits and reap-
portionment. Satisfies legal writing requirement. Limited enrollment.

241. Law and Psychiatry (2)
Seminar—2 hours. Prerequisite: course 212. Open to medical students who are par-
ticipating in the program offered by the Forensic Center of Excellence at the UC Davis School of Medicine, and to law students at the UC Davis School of Law. Focus on forensic and psychiatry for medical and legal professionals. All psychiatrists and forensic fellows are paired with law students to work in tandem as a forensic team. Each team is assigned to actual cases that have been adjudicated, although the teams will approach each client as if adjudication has not yet taken place. Each case is assessed from a psychiatric and a legal perspective so that both team mem-
bers will confront the legal and psychiatric issues presented. Students prepare cases to provide a broad array of legal/psychiatric problems and raise specific critical issues around which psychiatrists and lawyers interact and at times collide. Course is graded on the basis of the students’ participation in the seminar ses-
sions and on the instructor’s evaluation of the written assessment of the cases pre-
pared by the team to which the student belongs.

242. Private International Law (3)
Discussion—3 hours. Transactions with multistate or international contacts. Topics
include jurisdiction, recognition of foreign judgments, and choice of applicable law. Problems practitioners frequently encounter in a wide variety of fields, such as com-
mercial law, family law and personal injury law. Applicable statutory and treaty law.

243. Commercial and Bankruptcy Law (4)
Discussion—4 hours. Introduction to commercial law (mostly under the Uniform Com-
mercial Code) and bankruptcy (mostly Chapter 11 of the Bankruptcy Code). Examples of how Groco, a hypothetical seller of mountain bikes, gets organized, borrows money to operate, buys goods, then borrows money to expand but runs into trouble paying debts. Examination of some of the remedies available to Groco’s creditors and following Groco into bankruptcy where it tries to “reorganize” and restructure its debt. International bankruptcy.

244. Basic Human Physiology (2)
Discussion—2 hours. Several basic science faculty give lectures on the basic anatomy and physiology of the organs systems, basic word roots which underlie medical/scientific terminology. Clinical and law faculty give lectures on new tech-
nologies in medicine and associated legal problems. Limited enrollment. (S/U
eligibility only)
245. White Collar Crime (2)
Discussion—2 hours. Designed for students preparing to represent business enti-
ties generally and to defend or prosecute business crime matters. Substantive and
procedural issues that typically arise in the investigation and prosecution of busi-
ness crimes. Hypothetical investigation and exploration of issues involving a busi-
ness entity’s response to an investigation, prosecutorial discretion, criminal intent
and officer/employee liability, corporate liability, the grand jury, the Fifth Amendment,
immunity, internal investigations, and the interplay between criminal and civil pro-
ceedings.

246. Federal Jurisdiction (3)
Discussion—3 hours. The subject-matter jurisdiction of federal courts. The consti-
tutional and statutory authority of federal courts to adjudicate civil actions arising
under federal law or between parties of diverse citizenship in contemporary detail,
and from the perspective of history and the Constitution. Federal appellate jurisdic-
tion, federal writs in the nature of habeas corpus, abstention, justiciability, and mis-
cellaneous matters affecting attorneys’ decisions to seek a federal forum. Careful
study of the fine points of relevant legislation in light of its history and the constitu-
tional themes of separation of powers and federalism as guides to understanding
the Supreme Court’s leading opinions on the scope of federal jurisdiction.

247. Taxation of Partnerships (3)
Discussion—3 hours. Prerequisite: course 220. Most business that is not publicly
traded is organized (or should be) under the partnership tax regime. Course exam-
ines the federal income taxation of business entities whose owners are taxed on
the income, deductions and losses of the entity on a pass-through basis. This includes
limited liability companies and S corporations. Explores choice of entity, identification of entities eligible for pass-through tax treat-
ment and the income tax impact of formation, operation and dissolution of pass-
through business entities.

247A. Taxation of Business Organizations I (4)
Discussion—4 hours. Prerequisite: course 220. Federal income taxation of business
entities whose owners are taxed on the income, deductions and losses of the entity
on a pass-through basis. This includes partnerships, limited liability companies and S corporations. Entity issues, identification of entities eligible for pass-through tax treatment and the income tax impact of formation, operation and dissolution of pass-through business entities.

247B. Taxation of Business Organizations II (3)
Discussion—3 hours. Prerequisite: course 247A. Transfer of corporate stock or assets in the course of liquidations, sales mergers and divisions of corporations.
Taxable and tax-free corporate reorganizations. Taxation of Subchapter S corpora-
tions, a pass-through tax regime for incorporated entities. Appropriate for students
who will pursue a career advising clients in corporate restructuring and acquisitions.

248. International Law (3)
Discussion—3 hours. Prerequisite: course 217 recommended. Basic international law
concepts such as statehood and recognition; treaty law and customary inter-
national law; use of force; human rights and war crimes; expropriation; the relation-
ships between international law and national law; and the jurisprudence of interna-
tional law.

248A. Use of Force (2)
Seminar—2 hours. Emerging issues regarding use of force in international law, focus-
ning on humanitarian intervention. Analysis of the history of military intervention; the
development of the doctrine of the sovereign equality of states, and its use to coun-
trol over international instruments of investment of humanitarian norms that might serve as a basis for intervention; the doctrine of self-defense, and the extent to which the UN Charter prohibits armed intervention; intervention for democ-
racy; intervention for self-determination; intervention and counter-intervention in civil wars; multilateral vs. unilateral intervention; intervention by regional organizations such as NATO; incidents since 1945 that may contribute to emerging interventionist norms at odds with the text of the Charter; and philosophical and foreign policy consider-
ations underlying new interventionist justifications.

248B. International Human Rights (3)
Discussion—3 hours. Prerequisite: course 205. Laws, theories, and institutions relat-
ing to international human rights. Topics include the origins of the idea of human
rights and the acceptance of that idea in the second half of the twentieth century;
the debate between universalists and cultural relativists about the nature of rights;
how international human rights are treated in national systems, with particular atten-
tion to the United States; the United Nations and other bodies that promote human
rights; and how various systems treat civil and political rights, such as the right to
vote freely; and economic and social rights, such as the right to education.

249. Comparative Law (3)
Discussion—3 hours. The uses of comparative method, principal differences
between common law and civil law and the styles of legal reasoning that prevail in
these two great legal cultures. Topics include the evolution of the civil law, the phe-
nomenon of codification, the structure of European civil codes and the interpretation
of their provisions, the respective roles of counsel, judges and law teachers, civil law
procedure, and the analysis of selected areas of substantive law.

250. Jurisprudence Seminar (2)
Seminar—2 hours. The question of how judges should decide “hard cases,” where
the content of the law is in doubt and competent arguments have or could be offered,
whether they are in favor of either party. Examination of the broader question of
the relationship between justice and law, and hence of the still broader questions of
the nature of “justice” and “law.” To what extent should a judge’s personal convictions about justice and moral considerations about the legal rights of the parties be a basis for a lawsuit? Does it matter if the judge is dealing with a case in which the controversy concerns the proper interpretation of precedent rather than legislation? Is it any more appropriate for a judge to resolve doubtful cases by appeal to “the public interest” than by appeal to the judge’s personal sense of justice? VIr-
ually every case in which the Supreme Court of the United States grants review on
a question of constitutional law is a “hard case.” Introductory readings of a general
and synthetic nature followed by a study of the work of several leading philosophers
of law and adjudication, with particular emphasis on the work of Ronald Dworkin.
Previous study of philosophy is neither required nor discouraged. Limited enroll-
ment.

251. Labor Law (3)
Discussion—3 hours. Survey of the legislative, administrative, and judicial regulation of
labor relations. Focus on the historical development of labor law; the scope
of national legislation, union organization and recognition, the negotiation and admin-
istration of collective bargaining agreements, legality of strikes, picketing, boy-
cotts, and employer interference with employee-concerted activities. Rights of
employees under wrongful discharge theories are contrasted with labor law protec-
tions.

251A. Individual Employment Rights (2)
Seminar—2 hours. Legal regulation of the relationship between employers and
individual employees. Topics include hiring, wrongful termination, employees’ duty
of loyalty; restrictions on post-employment competition, workplace privacy and
defamation, and protection against harassment and other abusive conduct in the
workplace. In addition to the substantive law, examination of prevailing assumptions
about the nature of the employment relationship, the role of law in regulating the
employment relationship, and whether common law approaches should be
replaced or supplemented by statutory schemes.

252. International Litigation and Arbitration (3)
Discussion—3 hours. Current developments in international law, conflict of laws, civil
procedure, arbitration and comparative law in the context of transactions and dis-
putes that cut across national boundaries. Topics include jurisdiction, the enforce-
ment of judgments, the relative merits of arbitration and adjudication, international
discovery and international choice-of-law problems. Exercises in international arbi-
tration and mediation.

253. Products Liability (3)
Discussion—3 hours. Civil action for harm to the consumer resulting from defective
products. Includes manufacturing defects, warning defects and design defects.

254. Housing and Community Development Law (2)
Seminar—2 hours. Legal issues related to developing, securing, keeping, main-
taining, and preserving decent, affordable, accessible housing and sustaining
viable, diverse communities. Topics include landlord-tenant law, real property
and contract issues, affirmative habitability/slumlord tort litigation, publicly subsidized
housing or the government as landlord (constitutional and administrative law issues,
employee housing (including the role of the government and interrelation-
ship with employers and the agricultural industry), housing and community planning
(including land use, housing element, general plan, growth management, environ-
mental and agricultural preservation issues), and housing discrimination (e.g., race,
national origin, type of housing occupant, NIMBY, family, affirmatively futher-
 fair housing requirements, federal and state law).

255. Pension and Employee Benefit Law (3)
Discussion—3 hours. Federal regulation and taxation of private pensions and
employee benefits. The Employee Retirement Income Security Act of 1974 (ERISA),
including such topics as coverage, forfeitures, spousal rights, creditor access, pre-
emption of state law, and a variety of employee benefits litigation and fiduciary
duty issues. Internal Revenue Code issues such as discrimination in favor of the
highly compensated, limitations on cash and benefits, rollovers, IRAs, early
distribution penalties, and minimum distribution rules are highlighted. Problems sur-
rounding plan terminations and mergers and acquisitions.

256. Land Use (2)
Discussion—2 hours. Prerequisite: courses 201, 205. Government regulation of land
use, with particular attention to the tension between private and public values. Basic
tools of land development regulation, including zoning, general planning, and sub-
division regulation. Constitutional constraints on land-use regulation; discrimination
on the basis of race, income and disability; novel regulatory tools such as transfer-
able development rights; and the role of land use regulation in the establishment
and definition of communities.

257. Legislative Process (2)
Discussion—2 hours. Fundamental elements of the legislative process, including
legislative procedure; the legislature as an institution; the legislative investigative
power and subpoenaing, legislative executive relations, and the legislature’s constitutional
powers and limitations.

258A. Professional Responsibility (1)
Discussion—1 hour. Study of ethical duties and responsibilities under the American
Bar Association Code of Professional Responsibility, the Model Rules of Professional
Conduct, and the Code of Judicial Conduct and the law of California. Required of all
students for graduation. (SU grading only.)
258B. Professional Responsibility (2)
Discussion—2 hours. The American Bar Association's Model Rules of Professional Conduct and the Code of Judicial Conduct, which are tested on the Multistate Professional Responsibility Exam. Examination, and the California Rules of Professional Conduct, which are tested on the California Bar Examination. Current issues affecting the legal profession, including lawyer's ethical duties and responsibilities to clients, third parties, the courts, the bar, and the public. Emphasis on the law pertaining to conflicts of interest, attorney-client privilege, deceit, and the unauthorized practice of law. Research paper with additional unit credit may be arranged with consent of instructor to satisfy the advanced legal writing requirement.
274A. International Intellectual Property (2)
Discussion—2 hours. Prerequisite: course 274 or 296A or consent of instructor. Topics include approaches to patent protection for pharmaceuticals and agricultural products in developing nations, and copyright protection in a digital world.

274B. Intellectual Property Rights in Culture (3)
Discussion—3 hours. The effects of a burgeoning intellectual property regime on cultural conflict and formation. Examination of some of the cultural and political implications of a body of law that is fast becoming one of the most important legal forms of the next millennium. Introduction to the field of "cultural studies" as it relates to intellectual property and cultural property. Topics include the expansion of intellectual property rights and a comparison of economic and identity-based justifications for intellectual property rights; how culture is conceived (is it fixed and noncapable of being protected by intellectual property, or is it dynamic, continually subject to transformation); intellectual property on the Internet; how intellectual property and cultural property may protect cultural groups, such as Native Americans, against cultural appropriation and the social and political implications of developing intellectual property rights in culture.

274C. Intellectual Property in Cyberspace Seminar (2)
Seminar—2 hours. Economic and administrative regulation of telephony, radio and television broadcasting, and video technologies such as cable and direct broadcast satellites. Emphasis on the relevantly enacted Telecommunications Act and the role of the Federal Communications Commission as well as other sources of regulation such as related antitrust law and state public utility regulation. Limited enrollment.

275. Complex Litigation (2)
Discussion—2 hours. A survey of the issues that frequently arise in large complex litigation involving multiple parties and multiple claims. In-depth treatment of topics introduced in the first-year civil procedure course, with emphasis on cutting-edge issues currently the topic of litigation. Topics include complex party joinder, multi-district federal court litigation, motion practice and sanctions, class action litigation, discovery and "discovery abuse," including privilege and work product claims, judicial management and settlement of litigation, and preclusion (collateral estoppel and res judicata). Not all topics will necessarily be covered in any one semester.

276. Juvenile Justice Seminar (2)
Seminar—2 hours. Legal and philosophical bases of a separate juvenile justice process for crimes committed by minors; police investigation, apprehension, and diversion; probation intake and disposition; juvenile court hearing and disposition; juvenile corrections; and the role of counsel at each phase of the process. Student presentations of individually selected research paper topics. Guest speakers and a field trip possible.

277. Native American Law (2)
Seminar—2 hours. Legal relations between Native American tribes and the federal and state governments. Topics include the basic jurisdictional conflicts which dominate this area of law and cover specific areas such as land rights, hunting and fishing rights, water rights, domestic relations law, and environmental protection. Religious freedom, repatriation. Issues regarding terminated and non-recognized tribes are also addressed.

278. Pretrial Skills (2)
Discussion—2 hours. Role-playing exercises, videotaped simulations, and related projects to introduce students to lawyering skills basic to the practice of law, including client interviewing and counseling, fact investigation, and negotiation. Limited enrollment.

279. Public Sector Labor Law (2)
Seminar—2 hours. Legal and philosophical bases of a separate juvenile justice process for crimes committed by minors; police investigation, apprehension, and diversion; probation intake and disposition; juvenile court hearing and disposition; juvenile corrections; and the role of counsel at each phase of the process. Student presentations of individually selected research paper topics. Guest speakers and a field trip possible.

280. Advanced Legal Writing Seminar (2)
Seminar—2 hours. How to write a variety of legal documents in plain English. Writing exercises and outside readings will be assigned weekly. Each student completes an individual writing project in lieu of final examination. The writing project will satisfy the law school's advanced legal writing requirements. Limited enrollment.
(SU grading only.)

283. Remedies (3)
Discussion—3 hours. Survey of modern American civil remedies law, in both private and public law contexts. Topics include equitable remedies, equitable defenses, contempt power, injunctive restraint, and money damages.

284. Law and Economics (3)
Discussion—3 hours. Basic concepts of law and economics and application to questions in torts, contracts, property and criminal law. Application of the tools of microeconomic theory to the law and critical evaluation of theories about the role of the government in the legal system (the modeling of strategic behavior) and social choice theory (the axiomatic study of collective decision-making). Philosophical claims underlying the law and economics methodology, and consideration of criticisms of the efficiency criterion.

285. Environmental Law (3)
Discussion—3 hours. Federal and state environmental law, including coverage of historical development of environmental law, the role of courts, the legislature and the executive branch in the development and implementation of environmental policy; allocation of authority among different levels of government; the role of market forces in environmental decisions; and the major regulatory strategies that have been applied to control environmental harm. The National Environmental Policy Act, Endangered Species Act, Clean Air Act, and Clean Water Act.

286A. Health Law (3)
Discussion—3 hours. Identification and analysis of a variety of legal issues that arise in the dynamic field of health care. Topics drawn from four general themes relating to health care: quality, cost, access, and the personhood of the patient. Topics may include professional licensure, discipline and liability; institutional/corporate liability for the quality of health care; informed consent; professional relationships within health care—enterprises; government role in health care programs; legal and ethical ramifications of the new reproductive technologies and medical genetics; advance directives and end-of-life care; the "right to die" and euthanasia.

286B. Advanced Health Law Seminar (2)
Seminar—2 hours. Prerequisite: course 286A or consent of instructor. Specific seminar topics will be taken from those covered in course 286A. Reading and discussion of book on seminar topic and/or a set of selected readings. Students will select research project related to seminar topic and will facilitate the discussion of that topic. Written paper analyzing a legal issue related to chosen research project.

287. Public Land Law (3)
Discussion—3 hours. Legal aspects of federal land management, including the history of public land law, authority over federal lands and specialized law dealing with particular natural resources and uses found on federal lands (minerals, timber, range, wildlife, recreation and preservation).

288. Advanced Constitutional Law Seminar (2)
Seminar—2 hours; paper. Explores in-depth selected topics or problems in constitutional law and theory. Initial topics may include the regulation of hate speech, the interpretation of the Establishment Clause, or the development of the Takings Clause doctrine. Other topics selected by the seminar group. Students will write papers and present them to the seminar. Satisfies advanced legal writing requirement. Limited enrollment.

289. Toxics Law and Policy (3)
Discussion—3 hours. How to regulate the thousands of toxic substances used in commerce is a central focus of federal environmental law. The range of regulatory approaches dealing with toxic substances and hazardous wastes, including the federal Superfund, the federal hazardous waste management law, and other statutes controlling toxic chemicals, pesticides, the workplace, and other settings. Risk assessment and risk management issues relevant to traditional regulation such as California's Proposition 65, and toxic torts.

290. International Trade Dispute Seminar (2)
Seminar—2 hours. One of the great debates raging in international trade circles is between pragmatists and legalists. Pragmatists argue that informal, negotiation-based, win-win resolution processes are the best, and perhaps the only workable, means of effectively settling trade controversies between disputing countries. Legalists believe that formal, litigation-style dispute resolution processes are superior and that "soft" pragmatic approaches to setting trade disputes inherently are doomed to failure. Introduction to the economic, political, and legal theories underlying the debate and, using actual disputes from NAFTA, MERCOSUR, and the WTO, attempts to determine which camp has the better argument. Grade based on paper and class presentation. Satisfies the advanced legal writing requirement. Limited enrollment.

291. International Trade Law and Latin America (3)
Discussion—3 hours. Covers the role of the executive, legislative and judicial branches of the United States with respect to international trade policy. International organizations include the World Trade Organization (WTO) and the General Agreement on Tariffs and Trade Agreements (GATT, 1947); the GATT, 1994, North American Free Trade Agreement (NAFTA) and economic integration in this Western Hemisphere. Students are encouraged to do supervised research on selected topics of trade law and Latin America. Satisfies the advanced legal writing requirement.

292. Immigration Law and Procedure (3)
Discussion—3 hours. Survey of the complex area of U.S. immigration and policy; federal agency interrelationship (Justice and State Department); entry of nonimmigrant (temporary) visitors and immigrants into the United States; the worldwide quota and preference systems; family and employment relationship critical to securing lawful immigrant status; deportation procedures; discretionary relief available to persons otherwise subject to deportation; available defenses to deportation and exclusion proceedings; immigration consequences of criminal conviction; refugee and asylum law; administrative appeals; federal and state judicial relief; citizenship and naturalization;
293. Public Interest Law Seminar (2)
Seminar—2 hours. Examines the problems associated with providing legal services to those people and interests in American society traditionally unable to afford them. Topics will discuss selected readings that represent various theoretical issues and specific problems facing public interest lawyers. May satisfy advanced legal writing requirement. Limited enrollment.

294. Environmental Law Seminar (2)
Seminar—2 hours. Open to law and ecology graduate students. Wildlife law and policy, covering domestic and international law. Topics may include fishing and hunting regulations; responses to exotic species; protection of biodiversity; the role of international law and trade restrictions; division of authority between federal, state and local governments; indigenous treaty rights. Students lead a class discussion and write a research paper, which may satisfy the advanced legal writing requirement. Limited enrollment.

295. Business Bankruptcy (2)
Discussion—2 hours. Prerequisite: course 243, or good business law background and consent of instructor. Techniques for analyzing and investigating financial statements and for solving problems of a business having trouble paying its debts. Matters of business planning and deal-structuring, mostly under the Bankruptcy Code.

296. Copyright (3)
Discussion—3 hours. The law of copyright, including its application to literature, music, motion pictures, art, computer programs, and software. The subject matter of copyright, duration, ownership, formalities, exclusive rights, infringement, defenses, and international aspects of copyright.

297. Alternative Dispute Resolution (3)
Discussion—3 hours. Methods of avoiding or resolving disputes outside the traditional trial model. This includes, among others, engaging in preliminary discussion on the efficiency of trial-based methods compared to the alternatives. Attention to skills training, others in negotiating, mediating, and arbitrating. Students participate in simulated exercises on resolving and criticizing different methods of dispute avoidance and resolution used by their colleagues. Methods of dispute avoidance and resolution in commercial practice. Illustrations include other areas of law of interest to the class. Limited enrollment. Not open for credit to students who have taken or enrolled in course 234.

Additional Professional Courses

408. Community Education Seminar (3)
Seminar—3 hours. Trains students to educate the community about basic legal rights and responsibilities. Students attend an initial four-hour orientation, followed by weekly seminars that will prepare students to teach in a local high school at least two times per week. Paper or journal required, to be determined by instructor. Limited enrollment. (SU grading only.)

408A. Educational Policy and Law Seminar (2)
Seminar—2 hours. Examination of the interaction between policy and the law of various educational themes such as the "right" to an education, schooling and race, legalizing the curriculum, language and education, financial equalization, merit and testing, privatization, teacher, education, programs, and the testing, inquiry into the implications and limits of a model of social and economic regulation that can reduce or cement inequalities. Limited enrollment.

409. Environmental Law Moot Court Competition (1)
During the first eight weeks of fall semester, students research and submit briefs as appellees, appellants, or third parties on a topic selected by the Environmental law that is prepared by the National Environmental Law Moot Court Board. Students attend four to six classes (including guest lectures) on aspects of appellate advocacy, legal writing, and environmental law. Members of the spring environmental law moot court team will be selected on the basis of performance in class. (SU grading only.)

410A. Appellate Advocacy (2)
Development of oral advocacy skills though participation in a series of large group presentations and small group laboratories. Focus on appellate advocacy. Students work through mock problems in front of moot court and compete in two rounds of oral arguments that determine rankings going into second semester of program for the purpose of selecting participants in the annual Neumiller Competition and other interschool competition teams. Both courses 410A and 410B must be taken to qualify for most interschool competitions. (SU grading only.)

410B. Appellate Advocacy (2)
Prerequisite: course 410A. Continuation of course 410A. Refinement of oral advocacy skills and the development of appellate brief writing skills. Students research and write appellate brief and argue the case before moot court. Brief and arguments judged for selection of interschool competition teams and participants in the annual Neumiller Competition. Revision and edits of briefs under the supervision of professor. Limited enrollment. (SU grading only.)

411. Journal of International Law and Policy (1)
The Editor-in-Chief of the Journal receives one credit for each semester of service. Only one person may receive this credit in any one semester. (SU grading only.)

411B. Journal of Juvenile Law and Policy (1)
The Editor-in-Chief of the Journal of Juvenile Law and Policy receives one credit for each semester of service. Only one person may receive this credit in any one semester. (SU grading only.)

412. Carr Intraschool Trial Advocacy Competition (1)
Competition—1 hour. Named after the late Justice Frances Carr, this competition is open to second- and third-year students. A preliminary round is followed by quarter-finals, a semifinal round, and a final round. Students participate in mock trials presided over by judges and critiqued by experienced litigators. Limited enrollment. (SU grading only.)

413. Interschool Competition (1-3)
Prerequisite: consent of appropriate faculty adviser. Participation in interschool moot court and lawyering skills competitions. Enrollment is limited to students actually representing the School in the interschool competitions. Competition must be authorized by the appropriate faculty adviser. The faculty adviser may condition the award of one credit for any participation in competition on the performance of such additional work as may be reasonable to justify the credit. May satisfy advanced legal writing requirement. (SU grading only.)

414. Moot Court Board (1)
Prerequisite: courses 410A-410B. Members of Moot Court Board may receive one credit for each semester of service on the board, up to a maximum of two. Credit awarded only after certification by Moot Court Board and approval of the faculty advisers to Moot Court Board. Limited enrollment. (SU grading only.)

415. Trial Practice Honors Board (1)
Members of the Trial Practice Honors Board administer the Frances Carr competition. Members are nominated by their individual Trial Practice I adjuncts. Students receive one credit for serving on the Board, awarded upon approval of the faculty adviser. (SU grading only.)

416. Law Review Writer (1-2)
Editors must have completed an editorships and must perform editorial duties requiring a substantial time commitment. Credit awarded only after certification by the Editor-in-Chief of the Law Review and approval of the faculty advisers to the Law Review. Students may receive four credits over two semesters for service as an editor. In exceptional cases, students may petition to participate for one semester only and receive two credits. (SU grading only) Deferred grading pending only, pending completion of sequence.

418. EnviroSens Editor (1)
The Editor-in-Chief of EnviroSens receives one credit for each semester of service. Only one person may receive this credit in any one semester. (SU grading only.)

419. Advanced Writing Project (1-4)
Completion of a writing project under the active and regular supervision of a faculty member in satisfaction of the legal writing requirement. Writing project must be an individually authored work of rigorous intellectual effort of at least 20 typewritten, double-spaced pages, excluding footnotes. Project may take any of several forms, for example, a paper, a brief, a memorandum of law, a proposed statute, a statute or regulation, or of administrative regulations (with explanatory comments), or a will or agreement (with explanatory comments). Advanced writing project may also be undertaken in connection with another course or seminar to satisfy the legal writing requirement. Number of units for the writing project shall be approved by the faculty supervisor and will depend upon the scope and intensity of the writing effort. (Grading may be on SU or letter-grade basis at the faculty supervisor’s discretion.)

420. Civil Rights Clinical Program (2-6)
Clinical program. Prerequisite: prior or concurrent enrollment in course 267 and 219. Provides practical experience in providing legal services to indigent clients who have filed civil rights actions in the United States District Court for the Eastern District of California. Students will work on clinic cases under the supervision of the clinic director and supervising attorney. Limited enrollment. (SU grading only.)

425. Judicial Clinical (2 to 6 or 12)
Clinical program. Prerequisite: course 261 required for full-time clinical students and recommended for part-time clinical students. Students may arrange judicial clerkship clinical programs with an approved list of state and federal judges through the Clinical Office and under the supervision of the faculty member in charge. All students must complete weekly time records and bi-weekly journals. Full-time clinical students must complete an evaluative final paper of approximately 10 pages. (SU grading only.)

430. Clinical Program in Federal Taxation (2-6)
Clinical program. Prerequisite: course 220. Students will have the opportunity to work with the Internal Revenue Service or other governmental taxing agencies. Journals and attendance at group meetings are required. Limited enrollment. (SU grading only.)

435. Family Protection Clinic (4)
Provides practical experience in providing legal services to indigent clients who have filed civil rights actions in the United States District Court for the Eastern District of California. Students will work on clinic cases under the supervision of the clinic director and supervising attorney. Limited enrollment. (SU grading only.)

Quarter Offered: I = Fall; II = Winter; III = Spring; IV = Summer; 2001–2002 offering in parentheses.

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
440. Immigration Law Clinical (2 to 6 or 12)
Clinical program. Students may represent clients in administrative law hearings in San Francisco. Minimum units for the course are 4 and maximum is 12. Each unit assumes four hours work per week, including participation in the seminar, conference, and case research and development. Students who have completed course 292 may take the clinic for a minimum of 2 units. Limited enrollment. (S/U grading only.)

445. Legislative Process Clinical (2-4)
Clinical program. Prerequisite: prior or concurrent enrollment in course 231 or 210, or consent of instructor. Provides students with practical experience in the operation of the office of a legislator or a legislative committee. The major thrust of the program is to enable students to become familiar with the give and take realities of making laws, as contrasted with their interpretation and enforcement. Journals are required. (S/U grading only.)

450. Environmental Law Clinical (2-4)
Clinical program. Practical experience in environmental law. Students will work under the direct supervision of a government or private lawyer engaged in some form of environmental law work for a minimum of 8 office hours per week. Students will also be required to prepare a bi-weekly journal, noting, commenting upon, and reflecting upon their clinical experience. (S/U grading only.)

455. Employment Relations (2 to 6)
Clinical program. Prerequisite: prior or concurrent enrollment in course 251 or 260. Practical experience in employment relations: private and public sector labor law, or employment discrimination. Students work under the direct supervision of a government or private lawyer and have the opportunity to participate in a range of activities associated with their specific office, with emphasis on observation and participation in actual investigation, interviewing, drafting of pleadings, and attendance at hearings. Journals and attendance at one or more small group meetings are required. Clinical students must complete an evaluative final paper of approximately 8 pages. (S/U grading only.)

460. Public Interest Law Clinical (2-6)
Clinical program. Prerequisite: prior or concurrent enrollment in course 293 recommended. Students work with a public interest practitioner in a nonprofit organization. Journals and attendance at two group meetings are required. Clinical students must complete an evaluative final paper of approximately 8 pages. Hours completed in public interest setting may be applied toward the practicum requirement for the Public Interest Law Program. (S/U grading only.)

465. Clinical Program in Administrative Law (2-6)
Clinical program. Prerequisite: course 235 (may be taken concurrently) or consent of instructor. For students interested in a work experience in an administrative law setting. Students will work under the direct supervision of an administrative law judge, hearing officer, or government attorney. Placement assistance will be provided by the instructor. A goal of this clinical will be a breadth of experience in the areas of formal adjudication, informal adjudication, rulemaking, and judicial review. Students will be required to meet monthly as a group to share experiences and maintain observational journals. (S/U grading only.)

470. Administration of Criminal Justice Externship (2-6 or 12)
Clinical activity—2-12 hours. Prerequisite: course 206, courses 219 and 227 (may be taken concurrently); course 236A recommended. Students wishing to practice must qualify for certification by the relevant state or federal jurisdiction. Prerequisite: students must maintain a minimum of 8 hours of office work in a government or private lawyer engaged in some form of administrative law work for a minimum of 8 office hours per week. Students must be required to complete a bi-weekly journal, noting, commenting upon, and reflecting upon their clinical experience. (S/U grading only.)

480. Clinical Program in Prison Law (2-6)
Clinical program. Provides practical experience in providing legal services to real clients who have various problems related to their incarceration in state prison. The services require analysis and application of Constitutional Law, state statutory law, agency regulations, and the rules of professional responsibility. Students will work under the direct supervision of the Prison Law clinical director and will be assigned a portion of the director's case load. Students will be required to follow the law office procedures of the clinic and employ skills such as interviewing, research, writing, negotiating, and possibly, the preparation of legal documents to be filed in court. (S/U grading only.)

495. Instruction in Legal Research and Legal Writing Skills (1-2)
Participants will assist in instructing legal research and writing for first-year students under the direction of the legal research and writing instructors. Approval of the research and writing instructors is required for enrollment. Participants may assist once in the legal research program and once in the legal writing program. One unit will be given in the fall semester for legal research instruction and two units in the spring for legal writing instruction. (S/U grading only.)

498. Group Study (1-4)
Groups of students (not fewer than 4 or more than 10) with common interest in studying a stated legal problem may plan and conduct their own research and seminar program, subject to the following regulations: (1) the program may extend over no more than two semesters; (2) the plan for the program and the list of members of the group must be submitted to Dean's Office at least 4 weeks prior to opening of the semester in which the program is to begin; (3) a three-member faculty board will be appointed for each group proposed and will have authority to approve or disapprove the program and the amount of credit sought; (4) changes in the program or in membership of the group must be approved by the faculty board and normally will be approved only prior to the semester involved; (5) group members must conduct a weekly seminar session to be arranged by them; (6) each member of the group must submit an individual paper or an approved alternative growing out of the seminar subject to the faculty board; (7) S/U grading only unless the entire group requests letter grades in advance.

499. Research in Legal Problems (1-4)
Students may receive credit for individual research projects, subject to the following regulations: (1) the project may extend over no more than two semesters; (2) each project will be under the supervision of a faculty member; (3) an outline of the project must be approved by the supervising faculty member in advance of the semester in which it is to be undertaken; (4) normally, no faculty member will be permitted to supervise more than five students working on individual programs during any semester; (5) each student must submit an individual paper or approved alternative to the supervising faculty member. (S/U grading only.) In exceptional cases, with prior approval of a professor and an associate dean, students may arrange for directed research in foreign and/or international legal problems by working abroad under the supervision of a UC Davis Law School faculty member and an attorney or faculty member at a foreign or international government agency or educational institution (4 up to 12 units). S/U grading only unless letter grading requested in advance.

Quarter Offered: I=Fall; II=Winter; III=Spring; IV=Summer; 2001-2002 offering in parentheses.
General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
Land, Air, and Water Resources

(College of Agricultural and Environmental Sciences)

Dennis E. Rolston, Ph.D., Chairperson of the Department
Graham E. Fogg, Vice Chairperson, Hydrology
Roger H. Shaw, Ph.D., Vice Chairperson, Atmospheric Science

Department Office, 151 Hoagland Hall (530-752-1406)
World Wide Web: http://lawr.ucdavis.edu

Faculty—Soils and Biogeochemistry

Office: 151 Hoagland Hall (530-752-1406)

Conrad J. Bahre, Ph.D., Professor (Environmental and Resource Sciences)
Caroline S. Bledsoe, Ph.D., Professor (Soil Science)
William J. Case, Ph.D., Professor (Aqueous Geochemistry)
Randy A. Dalgren, Ph.D., Professor (Soil Mineralogy)
William R. Horwath, Ph.D., Assistant Professor (Soil Biogeochemistry)
André E. Lauth, Ph.D., Professor (Plant Nutrition)
Alexandra Navrotsky, Ph.D., Professor (Chemical Engineering and Materials Science)

James H. Richards, Ph.D., Professor (Plant Nutrition)

Dennis E. Rolston, Ph.D., Professor (Soil Science)
Kate M. Scow, Ph.D., Professor (Soil Science)
Wendy Kuhn Silb, Ph.D., Professor (Hydrologic Science)
Michael J. Singer, Ph.D., Professor (Soil Science)

Randal J. Southard, Ph.D., Professor (Soil Genesis/Morphology)

Joe J. Stasulat, Ph.D., Lecturer (Environmental and Resource Sciences)

Robert J. Zasoski, Ph.D., Professor (Soil Science)

Emeriti Faculty

Francis E. Broadbent, Ph.D., Professor Emeritus
Richard G. Burau, Ph.D., Professor Emeritus
C.C. Delwiche, Ph.D., Professor Emeritus
Emmanuel Epstein, Ph.D., Professor Emeritus
Gordon L. Huntington, Ph.D., Lecturer Emeritus
Donald N. Munns, Ph.D., Professor Emeritus
H. Michael Reisenauer, Ph.D., Professor Emeritus
Victor V. Rendig, Ph.D., Professor Emeritus
Harry O. Walker, Ed.D., Senior Lecturer Emeritus

Affiliated Faculty

Gerald L. Meyer, Ph.D., Cooperative Extension Specialist
G. Stuart Pettigrove, Ph.D., Cooperative Extension Specialist

Faculty—Atmospheric Science

Office: 151 Hoagland Hall (530-752-1406)

Cort Anastasio, Ph.D., Assistant Professor (Tropospheric Chemistry)
John J. Carroll, III, Ph.D., Professor (Meteorology)
Robert G. Flocchini, Ph.D., Professor (Environmental and Resource Sciences)
Richard D. Grotjahn, Ph.D., Professor (Atmospheric Science)
Terrence R. Nathan, Ph.D., Professor (Atmospheric Science)

Roger H. Shaw, Ph.D., Professor (Meteorology)
Marilyn L. Shelton, Ph.D., Professor (Atmospheric Science)
Bryan C. Weare, Ph.D., Professor (Meteorology)

Emeriti Faculty

Thomas A. Cahill, Ph.D., Professor Emeritus
Kinsell L. Coulson, Ph.D., Professor Emeritus
Su-Tzu Soong, Ph.D., Professor Emeritus

Affiliated Faculty

Richard L. Snyder, Ph.D., Lecturer (Atmospheric Science) and Cooperative Extension Specialist

Faculty—Hydrology

Office: 113 Veihmeyer Hall (530-752-0453)

Graham E. Fogg, Ph.D., Professor (Hydrogeology)
Mark E. Grismer, Ph.D., Professor (Hydrologic Science, Biological and Agricultural Engineering)

Jan W. Hopmans, Ph.D., Professor (Water Management)

Theodore C. Hsiao, Ph.D., Professor (Hydrologic Science, Civil and Environmental Engineering)

Gregory B. Pasternack, Ph.D., Assistant Professor (Watershed Hydrology)

Carlos E. Puente, Ph.D., Professor (Hydrology)

Susan Ustin, Ph.D., Associate Professor (Environmental and Resource Sciences)

Wesley W. Wallender, Ph.D., Professor (Hydrologic Science, Biological and Agricultural Engineering)

Emeriti Faculty

James W. Biggar, Ph.D., Professor Emeritus
Robert H. Burgy, M.S., Professor Emeritus

Donald W. Grimms, Ph.D., Lecturer Emeritus

Robert M. Hagin, Ph.D., Professor Emeritus

Delbert W. Henderson, Ph.D., Professor Emeritus

Allen W. Knight, Ph.D., Professor Emeritus

Donald R. Nielsen, Ph.D., Professor Emeritus

William O. Pruitt, Jr., Ph.D., Lecturer Emeritus

Frank E. Robinson, Ph.D., Lecturer Emeritus

Verne H. Scott, Ph.D., Professor Emeritus

Kenneth K. Tanji, Sc.D., Professor Emeritus

Affiliated Faculty

David A. Goldharn, Ph.D., Lecturer (Hydrologic Science) and Cooperative Extension Specialist

Stephen Grattan, Ph.D., Lecturer (Hydrologic Science) and Cooperative Extension Specialist

Blaire H. Hanson, Ph.D., Lecturer (Hydrologic Science) and Cooperative Extension Specialist

Thomas Harter, Ph.D., Cooperative Extension Specialist

Terry L. Richrad, M.S., Lecturer (Hydrologic Science) and Cooperative Extension Specialist

Lawrence J. Schwankl, Ph.D., Lecturer (Hydrologic Science) and Cooperative Extension Specialist

Land, Air and Water Resources is a multidisciplinary department with faculty who specialize in atmospheric, plant, environmental resources, soil and water science, hydrology, and water engineering. Teaching and research focus on both agricultural and environmental science. The faculty contribute to numerous other undergraduate and graduate programs in the Colleges of Letters and Science, Engineering, and Agricultural and Environmental Sciences.

Advising Center. The advising center is located in 148 Hoagland Hall (530-752-1669). See Diane Swindall.

Graduate Study. Graduate work offered in the area of resource sciences is Atmospheric Science, Hydrologic Sciences, and Soil Science. Detailed information can be obtained from graduate advisers for these areas and the Graduate Announcement.

Courses. See courses listed under Atmospheric Science, Hydrologic Sciences, Hydrology, Environmental and Resource Sciences, and Soil Science.

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
Landscape Architecture
(College of Agricultural and Environmental Sciences)
Dean MacCannell, Ph.D., Chairperson, Landscape Architecture Program
Department Office, 142 Walker Hall (530-752-9907)
World Wide Web: http://lda.ucdavis.edu

Faculty
Nigel J. R. Allan, Ph.D., Professor
Mark Francis, M.L.A., Professor
Dean MacCannell, Ph.D., Professor
E. Byron McClure, B.S.L.A., Lecturer
Edward S. McNiel, M.L.A., Lecturer
Patsy E. Owens, M.L.A., Associate Professor
Heath Schenker, M.A., Associate Professor
Robert L. Thayer, Jr., M.A., Professor

The Major Program
Landscape architecture is the planning and design of land areas where human use requires adaptation or conservation of the environment. Students who study landscape architecture are concerned about the welfare of the environment and the people who use it. They are capable of solving physical problems and are able to visualize and "think" in terms of spaces and three-dimensional concepts. The program is fully accredited by the American Society of Landscape Architects, which is the only organization professionally sanctioned to grant landscape architectural accreditations in the United States. The program was last reviewed in 1996 and will next be reviewed in 2001.

The Program. The curriculum balances creativity and visual and spatial skills with technological expertise and a thorough background in physical, natural, and social sciences. Students develop proficiency at problem solving relating to design of parks, urban open spaces, energy-efficient neighborhoods, land reclamation projects, and landscape planning for wilderness and scenic regions, coastal and riparian environments, and other sensitive land areas. The program stresses a process-oriented approach to design and emphasizes environmental and community values.

Preparatory Requirements. Students are admitted to the landscape architecture major only after submitting a portfolio for review and selection by the faculty. Contact the Environmental Design Advising Center or the Landscape Architecture major adviser for further information, 152 Walker Hall (530-752-1165).

Career Alternatives. Graduates may find jobs in private landscape architectural firms or public agencies and corporations employing landscape architects. The landscape architecture major provides the student with excellent preparation for graduate school or career development in a wide range of environmental and design-related fields.

B.S. Major Requirements:

<table>
<thead>
<tr>
<th>Course ID</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>English 1, 3, 18, 19, 101, 102A, 102B, 102C, 102D, 102E, 102F, 102G, 104A, 104B, 104C, 104D, 104E, or 104F</td>
<td>Communication</td>
<td>4-5</td>
</tr>
<tr>
<td>Two courses from Biological Sciences 1C, Chemistry 2A or 10, Computer Science Engineering 10, 15, 30, Geology 1, Geography 1, Mathematics 16A, Physics 1A, 1A, 7A, 10, Soil Science 10, Statistics 13</td>
<td></td>
<td>7-10</td>
</tr>
<tr>
<td>Environmental Horticulture 6</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Two courses from Art Studio 2, 5, 16, 142, Design 125, any course from History, Music, Dramatic Art, Philosophy, Art History, language or literature</td>
<td>Preparatory Subject Matter</td>
<td>4-5</td>
</tr>
<tr>
<td>Environmental Horticulture 6</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>One course from Landscape Architecture 2, Geography 2, or 10</td>
<td></td>
<td>3-4</td>
</tr>
<tr>
<td>Two courses from Anthropology 2, 3, 20, 21, Economics 1A, 1B, Philosophy 1, Political Science 1, 2, 3, 4, 5, 7, Sociology 1, 2, 3, 4, 5, or 25</td>
<td>Depth Subject Matter</td>
<td>8-10</td>
</tr>
<tr>
<td>Landscape Architecture 1, 21, 23, 30, 50, 60, 70</td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>See General Education requirement</td>
<td>Breadth/General Education</td>
<td>0-24</td>
</tr>
</tbody>
</table>

Quarter Offered: I—Fall; II—Winter; III—Spring; IV—Summer, 2001-2002 offering in parentheses.

Graduate Study. Graduate-level landscape architecture courses are available to students pursuing graduate programs compatible with or directed toward landscape management, planning, and design issues. Currently we do not offer a graduate program in landscape architecture; however, department faculty are members of five different graduate groups: Environmental Horticulture, International Agricultural Development, Community Development, Geography, and Transportation Technology and Policy. Our faculty members have expertise in many areas, including landscape history, social theory, practice of public space design, historic landscape preservation, community participation in urban landscape design, landscape ecology, resource management, bioregionalism, and regenerative landscape systems.

Courses in Landscape Architecture (LDA)

Lower Division Courses

1. Landscape Meaning (4)
Lecture—3 hours; discussion—1 hour. Overview of the meaning of landscapes as manifested in designed and natural landscapes, everyday and sacred environments, parks, plazas, community gardens and found spaces. Introduction to the profession of landscape architecture and methods used to design, plan and manage landscapes. Not open for credit to students who have taken course 40. GE credit: ArtHum or SocSci. Wrt—I. (I.) Francis

2. Place, Culture and Community (4)
Lecture—4 hours. Introduction to the relationship of social and spatial arrangements. Basic social-science concepts such as class, status, role, kinship, visual, myth, alienation, etc., introduced through site-specific case studies of both historical and contemporary communities. GE credit: SocSci. Wrt—I. (II.) MacCannell

21. Landscape Drafting and Visualization (4)
Studio—8 hours; two all-day field trips. Prerequisite: course in free-hand drawing recommended. Development of idea expression through graphic media and the use of drawing techniques for visual representation, including plan, section, and axonometric drawing. Includes an introduction to computerized drafting and drawing.—I. (I.) Schenker

Studio—8 hours; two all-day field trips. Prerequisite: course 21. Landscape architectural communications explored through the computer. Includes computerized drafting, drawing, rendering, desktop publishing, and photorealistic simulation.—II. (II.) Schenker

50. Site Ecology (4)
Lecture—3 hours; laboratory—3 hours. Prerequisite: Biological Sciences 1A or 10 or an introductory course in biology, botany, or plant science. Priority given to Landscape Architecture majors. Introduction to ecological concepts, including nutrient dynamics, population regulation, community structure, ecosystem function. Principles will be applied to human activities such as biological conservation, ecological restoration, landscape planning, and management. Weekly laboratory devoted to field exercises in local ecosystems. Not open for credit to students who have taken course 153. GE credit: SciEng.—III. (III.) Schenker

60. Technology I: Grading and Drainage (4)
Studio—8 hours. Prerequisite: courses 21 and 23 or consent of instructor. Priority given to Landscape Architecture majors. Topographic and grading problems in landscape engineering: drainage plans, grading plans, spot elevations, road alignment, sections and profiles and cut and fill calculations. Not open for credit to students who have taken course 132.—III. (II.) McCulley

70. Basic Landscape Design Studio (4)
Studio—8 hours; field trips. Prerequisite: courses 1, 21, 30 or consent of instructor. Priority given to Landscape Architecture majors. Introduction to basic aesthetic, functional, social, and environmental considerations in landscape design. Provides a broad foundation in landscape design methodologies and skills necessary to create environmentally and socially responsible landscape designs. Not open for credit to students who have taken course 11.—II. (II.) Owens

Restricted Electives…………………………………………………………………………………………………32-33
One of Environmental Horticulture 105, 133, Evolution and Ecology 121, 122—II. (II.) Owens
Select 24 units of upper division courses in consultation with adviser 24
Psychology 144……4
Unrestricted Electives……………………………………………………………………………………………………0-30
Total Units for the Major……………………………………………………………………………………………………180

Major Adviser. R. Thayer.

Advising Center is located in 152 Walker Hall (530-752-1165).

Upper Division Courses

Contact the Advising Office at (530) 752-1165 for scheduling of upper division courses for 2001-2002.

120. Advanced Computer Applications (4)
Studio—8 hours; two all-day field trips. Prerequisite: course 23, open to majors in Landscape Architecture only. Studio work using computer-aided design, geographic information systems, and other advanced computer programs.—(III.) McNeil

122. Advanced Communication in Landscape Architecture (4)
Studio—8 hours; field trips. Prerequisite: course 1, 30, 170 and junior standing in the Landscape Architecture major. Advanced concepts and methods of personal and group communication including group process, participatory methods, written and verbal presentation in landscape architecture.—(III.)

155. Plants in the Cultural Environment (3)
Lecture—3 hours. Prerequisite: Biological Sciences 10. Cultural parameters of selected plants for use in environmental design and planning. Contemporary themes in climate, energy and resource conservation, low maintenance, aesthetic, edible landscapes, historic preservation, native plants, specialized gardens, and computerized plant selection.

160. Technology II: Construction Materials and Detailing (4)
Studio—8 hours. Prerequisite: courses 21, 23, and 60. Prior to Given Landscape Architecture majors. Introduction to materials and methods in landscape construction, including properties of common construction materials (stone, concrete and wood), detailing, preparation of cost estimates and specifications, design of drainage systems, fountains and roof decks. Not open for credit to students who have taken course 133.—II. (II.) McCully

161. Technology III: Professional Practice and Construction Documents (4)
Studio—8 hours. Prerequisite: course 160. Prior to Given Landscape Architecture majors. Legal and professional aspects of landscape architecture, including the development of construction documents (drawings and specifications), proposal writing, fee calculations, project management, cost estimation and insurance. Not open for credit to students who have taken course 134.—I. (I.) McCully

168. Mountain Landscapes and Life (3)
Lecture—3 hours. Prerequisite: an introductory course in cultural geography, cultural anthropology or landscape theory. Course provides knowledge of mountain landscapes, explains why different mountain societies exploit and reject resources available, and examines mountain landscapes that influence individual and collective behavior of residents and visitors. Examples from Himalayas, Andes, Alps, and Rockies. GE credit: ArtHum or SocSci, Wrt.—II. (III.) Allan

170. Field Studio in Landscape Architecture (12)
Lecture—6 hours; studio—12 hours. Prerequisite: course 1, 30, 70 and junior standing in the Landscape Architecture major. Intensive study of current topics in landscape architecture, focusing on relationships between environmental, social, and cultural systems on the land. Comprehensive field study and problem solving experience. Topics and sites will vary. Extended field trips will be arranged, ranging from 1 to 10 days.—I. (I.) Thayer, McNeil

180A. Special Topics in Landscape Architecture: Postmodern Landscapes (2)
Lecture—2 hours. Prerequisite: upper division standing. Basic principles of critical theory and postmodern modes of analysis. Application to interpretation and change of designed environment. Offered in alternate years. Not open for credit to students who have taken course 185.—III. (III.) MacCannel

180B. Special Topics in Landscape Architecture: Poetics of Gardens (2)
Lecture—2 hours. Prerequisite: courses 1 and 30. Prior to Landscape Architecture majors. New ideas and methods for developing gardens. Study of selected garden designers and their gardens. Cultural criticism of contemporary gardens and garden design practices. Offered in alternate years.—I. Schenker

180C. Special Topics in Landscape Architecture: Art of the Environment (2)
Lecture—2 hours. Prerequisite: courses 1 and 30. Prior to Given Landscape Architecture and Design majors. Introduction to environmental art. Encouragement of critical thinking about the intersection of art, landscape and environmental issues. Offered in alternate years.—(III.) Schenker

180D. Special Topics in Landscape Architecture: Advanced Technology (2)
Lecture—2 hours. Prerequisite: courses 60 and 160 or consent of instructor. Specialized areas of advanced technology related to site design and construction. Understanding of the concepts, resources and skills necessary to develop these areas in professional practice. Offered in alternate years.

180E. Special Topics in Landscape Architecture: Transit Facility Design (2)
Lecture—2 hours. Prerequisite: courses 1, 23 and 60 or consent of instructor. Specialized area of transit facility design. Concepts, skills and resources necessary to incorporate into professional practice. Offered in alternate years.

180F. Special Topics in Landscape Architecture: Landscape Ecology (2)
Lecture—2 hours. Prerequisite: course 50 or introductory course in ecology. Theories and concepts of research methods of landscape ecology. Spatial structure, function and dynamics of various landscape types. Biological conservation, ecological restoration, and landscape planning, design, and management. Offered in alternate years. Not open for credit to students who have taken course 183.

180G. Special Topics in Landscape Architecture: Regional Land Planning (2)
Lecture—2 hours. Prerequisite: upper division standing. Theories, methods and resources used in large scaled landscape analyses for orderly settlement, preservation or management of the land. Integration of natural, cultural and experiential data into decision making. Offered in alternate years.—(III.) McNeil

180H. Special Topics in Landscape Architecture: The Bioregional Landscape (2)
Lecture—2 hours. Prerequisite: courses 1 and 30. Prior to Given Landscape Architecture majors. Emerging concepts of bioregionalism and community-based ecological regional landscape planning. Exemplary extensions from within the Sacramento Valley Bioregion. Offered in alternate years.—II. Thayer

180I. Special Topics in Landscape Architecture: Regenerative Landscape Systems (2)
Lecture—2 hours. Prerequisite: courses 1 and 30. Prior to Given Landscape Architecture majors. Theories, basic techniques and applications for various systems by which landscapes regenerate and sustain life (both human and non-human) and culture over time. Offered in alternate years.—(III.) Thayer

180J. Special Topics in Landscape Architecture: Community Participation in Design (2)
Lecture—2 hours. Prerequisite: upper division standing. History and role of community participation in landscape design; methods of community involvement, including workshop techniques. Introduction to design processes, including public participation. Offered in alternate years.—III. Owens

180K. Special Topics in Landscape Architecture: Social Factors in Landscape Architecture (2)
Lecture—2 hours. Prerequisite: Psychology 144 and upper division standing. Concepts in environmental psychology as they relate to landscape architecture. Discussion of needs of various user groups of a land area. Introduction to post occupancy evaluations. Offered in alternate years.

180L. Special Topics in Landscape Architecture: Public Open Space (2)
Lecture—2 hours. Prerequisite: upper division standing. Intensive study of public open spaces, including parks, plazas, playgrounds, greenways and community gardens. Current issues associated with design and management of the public environment of cities. Offered in alternate years.—I. Francis

180M. Special Topics in Landscape Architecture: Urban and Community Design (2)
Lecture—2 hours. Prerequisite: upper division standing. Theories and methods of community and neighborhood design. Past and contemporary approaches including new urbanism, planned unit development, mixed use, pedestrian and transit-oriented development. Issues of open space and community form. Offered in alternate years.—Francis

180N. Special Topics in Landscape Architecture: Planting Design (2)
Lecture—2 hours. Prerequisite: upper division standing and Environmental Horticulture 6. Develop an understanding of the sensory, visual and functional importance of plants in the landscape. Visualization and design of planted landscapes. Development of planting plans. Offered in alternate years. Not open for credit to students who have taken course 156.—II. Thayer

180O. Special Topics in Landscape Architecture: Current Issues in Landscape Architecture (2)
Lecture—2 hours. Prerequisite: course 1 and 30. Prior to Given Landscape Architecture and Design majors. Study of current issues in landscape architecture with emphasis on design and design history. Offered in alternate years.

181A. Postmodern Landscapes Design and Planning Studio (3)
Studio—6 hours; one field trip required. Prerequisite: course 170; course 180A concurrently. Prior to Given Landscape Architecture majors. Application of design theory and methods to real-world projects associated with course 180A. Offered in alternate years.—III. MacCannel

181B. Poetics of Gardens Design and Planning Studio (3)
Studio—3 hours; one field trip required. Prerequisite: course 170, course 180B concurrently. Prior to Given Landscape Architecture majors. Application of design theory and methods to real-world projects associated with historic examples of garden design. Critical analysis of the “uses” of these precedents in contemporary landscape architecture. Offered in alternate years.—I. Schenker

181C. Art of the Environment Design and Planning Studio (3)
Studio—6 hours; one field trip required. Prerequisite: course 170; course 180C concurrently. Prior to Given Landscape Architecture majors. Application of design theory and methods to real-world projects associated with course 180C. Offered in alternate years.—(III.) Schenker

181D. Advanced Technology Design and Planning Studio (3)
Studio—6 hours; one field trip required. Prerequisite: course 170; course 180D concurrently. Prior to Given Landscape Architecture majors. Application of design theory and methods to real-world projects associated with course 180D. Offered in alternate years.

181E. Transit Facility Design and Planning Studio (3)
Studio—6 hours; one field trip required. Prerequisite: course 170; course 180E concurrently. Prior to Given Landscape Architecture majors. Application of design theory and methods to real-world projects associated with course 180E. Offered in alternate years.
181F. Landscape Ecology Design and Planning Studio (3)
Studio—6 hours; one field trip required. Prerequisite: course 170; course 180F concurrently. Priority given to Landscape Architecture majors. Application of design theory and methods to real-world projects associated with course 180F. Offered in alternate years. Not open for credit to students who have taken course 183.

181G. Regional Land Planning Design and Planning Studio (3)
Studio—6 hours; one field trip required. Prerequisite: course 170; course 180G concurrently. Priority given to Landscape Architecture majors. Application of design theory and methods to real-world projects associated with course 180G. Offered in alternate years.—(I.) McNiel

181H. The Bioregional Landscape Design and Planning Studio (3)
Studio—6 hours; one field trip required. Prerequisite: course 170; course 180H concurrently. Priority given to Landscape Architecture majors. Application of design theory and methods to real-world projects associated with course 180H. Offered in alternate years.—(I.) Thayer

181I. Regenerative Landscape Systems Design and Planning Studio (3)
Studio—6 hours; one field trip required. Prerequisite: course 170; course 180I concurrently. Priority given to Landscape Architecture majors. Application of design theory and methods to real-world projects associated with course 180I. Offered in alternate years.—(III.) Thayer

181J. Community Participation in Design: Design and Planning Studio (3)
Studio—6 hours; one field trip required. Prerequisite: course 170; course 180J concurrently. Priority given to Landscape Architecture majors. Application of design theory and methods to real-world projects associated with course 180J. Offered in alternate years.—III. Owens

181K. Social Factors in Landscape Architecture Design and Planning Studio (3)
Studio—6 hours; one field trip required. Prerequisite: course 170; course 180K concurrently. Priority given to Landscape Architecture majors. Application of design theory and methods to real-world projects associated with course 180K. Offered in alternate years.—(II.) Francis

181M. Urban and Community Design: Design and Planning Studio (3)
Studio—6 hours; one field trip required. Prerequisite: course 170; course 180M concurrently. Priority given to Landscape Architecture majors. Application of design theory and methods to real-world projects associated with course 180M. Offered in alternate years.—II. Francis

181N. Planting Design and Planning Studio (3)
Studio—6 hours; one field trip required. Prerequisite: course 170 and Environmental Horticulture 6; course 180N concurrently. Priority given to Landscape Architecture majors. Application of design theory and methods to real-world projects associated with course 180N. Offered in alternate years.—II. Francis

181O. Current Issues Design and Planning Studio (3)
Studio—6 hours; one field trip required. Prerequisite: course 170; course 180O concurrently. Priority given to Landscape Architecture majors. Application of design theory and methods to real-world projects associated with course 180O. Offered in alternate years.

190. Proseminar in Landscape Architecture (1)
Seminar—1 hour. Lectures and discussion of critical issues in landscape architecture. May be repeated for credit. (P/NP grading only.)—I, II, III. (I, II, III.)

191. Workshop in Landscape Architecture (1-2)
Seminar—1 hour workshop—3 hours. Prerequisite: courses 11 and 40, upper division standing and consent of instructor. Faculty-initiated workshops featuring advanced studies and applications of original work in landscape architecture. May be repeated for a total of 12 units.—I, II, III. (I, II, III.)

192. Internship in Landscape Architecture (1-12)
Internship. Prerequisite: senior standing in Landscape Architecture. Professional field experience in landscape architecture. May be repeated for a total of 12 units. (P/NP grading only.)

193A. Senior Project in Landscape Architecture (3)
Studio—6 hours. Prerequisite: senior standing in Landscape Architecture. Projects will focus on a critical area of landscape architectural design, planning, analysis, communication, or research. Limited enrollment. Required of all Landscape Architecture majors. (P/NP grading only.)—I, II, III. (I, II, III.)

193B. Senior Thesis in Landscape Architecture (4)
Studio—8 hours. Prerequisite: course 193A and senior standing in Landscape Architecture. Projects will focus on a critical area of landscape architectural design, planning, analysis, communication, or research. Limited enrollment. Required of all Landscape Architecture majors. (P/NP grading only.)—II, III. (II, III.)

197T. Tutoring in Landscape Architecture (1-5)
Tutoring—3-15 hours. Prerequisite: consent of instructor. Tutoring in Landscape Architecture courses. (P/NP grading only.)

198. Directed Group Study in Landscape Architecture (1-5)
Prerequisite: consent of instructor. Directed group study. (P/NP grading only.)

199. Special Study for Advanced Undergraduates in Landscape Architecture (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)

Graduate Courses

Contact the Advising Office at (530) 752-1165 for scheduling of graduate courses for 2001-2002.

201. Theory and Philosophy of the Designed Environment (4)
Seminar—4 hours. Prerequisite: course 140 or the equivalent; graduate standing or consent of instructor. Examines the major theories of environmental design. Epistemology of design serves as framework to examine modern landscape architecture, architecture in urban design and planning. Normative theories of design are reviewed along with the social and environmental sciences. Offered in alternate years.—Francis

202. Methods in Design and Landscape Research (4)
Seminar—4 hours. Prerequisite: Statistics 102 or the equivalent; graduate standing or consent of instructor. Explores many of the research and advanced design and planning methods employed in landscape architecture. Exercises provide the student with a vehicle for designing independent landscape research and creative activities. Lectures provide an historical overview of research methodology. Offered in alternate years.—Francis

204. Case Studies in Landscape Design and Research (4)
Seminar—4 hours; field trip required. Prerequisite: standing in Landscape Architecture. Ecology, Geography or Community Development or consent of instructor. Real-world designed environment situations where creative activity and/or basic research is the primary product. May be repeated for credit for a total of 12 units. Offered in alternate years.—(II, III, IV.)

210. Advanced Landscape Architecture Studio (4)
Laboratory—8 hours. Prerequisite: course 113 or the equivalent; graduate standing or consent of instructor. Explores students to real-world, designed-environment situations where creative activity and/or basic research is the primary product. Advanced landscape problems will be utilized at the site, urban or rural scale. Offered in alternate years.

220. Public Space and Culture (3)
Seminar—3 hours. Prerequisite: course 182 or the equivalent; graduate standing or consent of instructor. Explores the public environment of cities including their streets, parks, and squares. Public life and culture of American cities is examined and design responses to this culture evaluated. Typology is used to identify spaces. Offered in alternate years.—Francis

230. Landscape and Memory (4)
Seminar—4 hours; term paper. Prerequisite: graduate standing or consent of instructor. Theories of memory from other fields (critical theory, psychoanalysis, history) applied to landscape design, especially heritage and tourist sites. The relationships between place, memorial, and event. Offered in alternate years.—MacCannell

240. Historic, Cultural Landscapes: Concept, Perception, Preservation (4)
Seminar—4 hours. Prerequisite: graduate standing or consent of instructor. Historic cultural landscapes, as defined by the National Register of Historic Places. Identifications and analysis of aerial extent, structured makeup, integrity, and historical significance using common and emerging methods and tools. Offered in alternate years.—McNiel

250. Life-Place: Bioregional Theory and Principles (4)
Seminar—3 hours; tutorial—1 hour. Prerequisite: graduate standing or consent of instructor. The emerging concept of bioregionalism as a hypothesis for environmental quality; theoretical structures and practical methods by which individuals and groups identify with naturally-bounded “life-places” or “bioregions” and strive to live respectfully and reciprocally within them. Offered in alternate years.—Thayer

260. Landscape and Power (4)
Seminar—4 hours. Prerequisite: graduate standing or consent of instructor. How various representations of landscape have historically worked as agents of cultural power. Course framework is interdisciplinary, including studies of landscape representation in literature, art, photography, cartography, cinema, and landscape architecture.—Schenker

270. Environment and Behavior (4)
Seminar—3 hours; tutorial—1 hour. Prerequisite: graduate standing or consent of instructor. Psychology 144 recommended. Factors that influence human’s interaction with their surroundings and the mechanisms used for recognizing and addressing general and specific human needs in community design and development decisions. Offered in alternate years.—Owens

280. Landscape Conservation (4)
Seminar—3 hours. Prerequisite: contact department for prerequisite courses; graduate standing or consent of instructor. Focus is on land planning, design, and management techniques to further the goal of resource preservation. Examines current critical theory in the establishment and management of conservation areas. Offered in alternate years.

290. Graduate Seminar in Landscape Architecture (2)
Seminar—2 hours. Prerequisite: graduate standing and consent of instructor. Seminar on selected topics in landscape architecture research, analysis, planning, design, communication, or education. May be repeated for credit. (S/U grading only.)

General Education (GE) credit: ArHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
297. Practicum in Landscape Architecture (1-10)
Independent study—1-10 hours. Prerequisite: graduate standing and consent of instructor. Opportunity for students to work directly in the field with academics at other institutions or with professionals in an office setting. Gives experience beyond the confines of campus and allows direct interaction with the community. (S/U grading only.)

298. Group Study (1-5)
Prerequisite: graduate standing and consent of instructor. (S/U grading only.)

299. Directed Individual Research for Graduate Students (1-5)
Prerequisite: graduate standing and consent of instructor. (S/U grading only.)

Professional Course

396. Teaching Assistant Training Practicum (1-4)
Prerequisite: graduate standing. May be repeated for credit. (S/U grading only.)—I, II, III (I, II, III.)

Quarter Offered: I=Fall; II=Winter; III=Spring; IV=Summer; 2001-2002 offering in parentheses.

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
Linguistics

(Linguistics 1, Preparatory Subject Matter, A.B. Major Requirements)

Linguistics is the systematic study of human language. It focuses on theories of language structure, variation, and use, description of contemporary languages, and the examination of language change through time. Because of the pervasive influence of language in our everyday lives, work in linguistics interacts in important ways with studies carried out in many other fields, including psychology, anthropology, neuroscience, philosophy, computer science, sociology, literature, language teaching, communication and education.

The Program

An introductory lower division course provides students with basic concepts and some of the methods needed to analyze language in a systematic way. Upper division courses probe more deeply into specific aspects of language structure, language use, and the relationship of language to other realms of human activity.

Career Alternatives.

Majors in linguistics find practical outlets for their linguistic training: for example, in the computer science industry, in teaching English as a second language, in foreign language teaching, in elementary and secondary level bilingual-bicultural programs; in missionary work; in bilingual-bicultural curriculum development (for example, in publishing houses); in legal work; in speech therapy; or as lexicographers (for dictionaries). All these types of employment share an interest in persons skilled in the analysis of language, spoken and/or written—linguistics equips its students with just such skills.

A.B. Major Requirements:

Preparatory Subject Matter

Linguistics 1: Introduction to Linguistics (4)

Foreign language, one course beyond the 15-unit requirement of the College of Letters and Science in the same language used to fulfill the college requirement. (Former course English 21.) (P/NP grading only.)—I. (III.)

Depth Subject Matter

At least eight upper division units from the following courses: 8

The student should note that a number of these courses have prerequisites. Since it is usual to select some emphasis within the Linguistics major (e.g., anthropology, a foreign language, etc.) such prerequisites should be completed as a matter of course.

Total Units for the Major: 48-68

Major Adviser. P. Farrell.

Minor Program Requirements:

The minor in Linguistics provides the student with a basic knowledge of linguistic analysis. It is appropriate for students interested in any aspect of language use.

UNITS

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
22. Intermediate Reading and Writing for Non-Native Speakers (4)
Lecture/discussion—4 hours. Prerequisite: admission by placement examination, by successful completion of course 21, or by consent of instructor. Provides under-
graduate students whose native language is not English with experience in writing,
effects related to reading passages. Students will also read for tone, style,
context, and assumptions and will study advanced grammar needed for persuasive
essays. (P/NP grading only.)—I, II, III (I, II, III.)

23. Advanced Reading and Composition for Non-Native Speakers (4)
Lecture/discussion—4 hours. Prerequisite: admission by placement examination, by successful completion of course 22, or by consent of instructor. Provides under-
graduate students whose native language is not English with experience in writing per-
suasive essays related to reading passages. Students will also read for tone, style,
context, and assumptions and will study advanced grammar needed for persuasive
essays. (P/NP grading only.)—I, II, III (I, II, III.)

25. English for International/ESL Graduate Studies (4)
Lecture—3 hours; laboratory—3 hours. Prerequisite: open to international and ESL
graduate students and limited status international undergraduates. Required if held for
course by the English Entrance Exam for International Students. Improve-
ment of English skills needed for study at the graduate level: writing clearly under
time pressure, writing short papers and reports, summarizing accurately, giving
effective oral presentations, increasing listening comprehension, and systematically
expanding vocabulary. May be repeated for credit with consent of coordinator.
(P/NP grading only.)—I.

26. Writing for International Graduate Students (5)
Lecture—3 hours. Prerequisite: satisfactory completion of course 25 if held for it, or
consent of instructor. Restricted to international graduate students. Focuses on
writing needed for academic work, including summaries, critiques, research and
grant proposals, memos, resumes, and research papers. Includes a review of gram-
mar needed for writing and some focus on reading skills and American vocabulary
and culture. (P/NP grading only.)—II (I).

28. Reading in Scientific and Technical Subjects for ESL Students (4)
Lecture/discussion—4 hours. Instruction and practice in reading scientific and
technical texts. Techniques for comprehending and analyzing grammatical and
organizational patterns. Notetaking skills, summarizing, vocabulary enrichment.
(P/NP grading only.)—I, II.

50. Languages of the World (4)
Lecture—3 hours; discussion/laboratory—1 hour. Prerequisite: course 1 or Anthro-
pology 4 recommended. Survey of the world’s languages, their classification, distri-
bution, and interrelationships; structural similarities and differences; accounts of the
origin of human language, sign languages, pidgin/creoles, “universal” languages,
edgedangered, and languages of global significance. GE credit: ArtHum or SocSci; Wrt—III (III.) Benware

96. Directed Group Study in English as a Second Language (1-5)
Variable—1-5. Prerequisite: consent of instructor. Directed group study of topic in
English as a Second Language (ESL). May be repeated for credit by consent of the
ESL coordinator. (P/NP grading only.)—I, II, III (I, II, III.)

98. Directed Group Study (1-5)
Prerequisite: consent of instructor. Intended for lower division students. (P/NP grad-
ning only.)

99. Special Study for Undergraduates (1-5)
Prerequisite: consent of instructor. Intended for lower division students. (P/NP grad-
ning only.)

Upper Division Courses

103A. Linguistic Analysis I: Phonetics, Phonology, Morphology (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 1. Introduction to fun-
damental methods and concepts used in linguistic analysis, focusing on phonological,
and morphological phenomena. Emphasizes development of analyt-
ical skills and appreciation of structural regularities and differences among lan-
guages. Not open for credit to students who have completed course 139.—I (I.)

103B. Linguistic Analysis II: Morphology, Syntax, Semantics (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 1. Introduction to fun-
damental methods and concepts used in linguistic analysis, focusing on morpho-
logical, syntactic, and semantic phenomena. Emphasizes development of analytical
skills and appreciation of structural regularities and differences among languages.
Not open for credit to students who have completed course 140.—I (I.)

104. English Grammar (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 1. Survey of present-day
English grammar from the perspective of contemporary linguistics. Focus on major
syntactic and morphological constructions, their uses, and variation across dialects,
styless, and registers. Not open for credit to students who have completed English
105A.—I (I.) Ward

105. Topics in Language and Linguistics (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 1 and consent of instructor.
Detailed examination of a major contemporary linguistic theory, a major tempo-
crary issue or related set of issues in linguistics, or the structure of a particular lan-
guage or language family. May be repeated for credit when topic differs. Offered in
alternate years.—(I, II, III) Trim

106. English Grammar (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: English 1 or 3 or course 1 or consent of instructor. Survey of present day English grammar as informed by con-
temporary linguistic theories. The major syntactic structures of English; their varia-
tion across dialects, styles, and registers, their development, and their usefulness in
describing the conventions of English. Not open for credit to students who have completed
course 104. GE credit: Wrt—I (I.) Ojeda

111. Introduction to Phonological Theory (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 103A, 103B. Introduct-
tion to contemporary phonological theory, with emphasis on autosegmental, metri-
cal, and lexical theory. Not open for credit to students who have completed course
164.—I (I.)

112. Phonetics (4)
Lecture—3 hours; term paper. Prerequisite: courses 103A, 103B. Detailed examini-
ation of articulatory and acoustic phonetics. Not open for credit to students who
have completed course 109.—II (II.)

121. Morphology (4)
Lecture—2 hours; discussion—1 hour. Prerequisite: courses 103A, 103B. Introduct-
tion to the analysis of word structure and the relation of word structure to the lexi-
con and other grammatical components. Not open for credit to students who have completed
162.—III (III.)

131. Introduction to Syntactic Theory (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 103A, 103B. Introduct-
to syntactic theory, primarily through the examination of a major theory of syn-
tax, emphasizing theoretical reasoning, argumentation, and problems of theory
building in syntax. Not open for credit to students who have completed course
165.—III (III.) Farrell

141. Semantics (4)
Lecture—3 hours; term paper. Prerequisite: courses 103A, 103B. Introduction to the
linguistic study of the meanings of words and phrases. Survey of the meanings
expressed by lexical items and derivational and inflectional morphology, as well as
the contribution of argument structure, quantification, and coordination to meaning.
Not open for credit to students who have completed course 120. GE credit: Wrt—II (II.)

151. Historical Linguistics (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 103A, 103B. Descrip-
tion and methods of the historical study of language, including the comparative
method and internal reconstruction; sound change, morphological change, syntac-
tic change, semantic change. Not open for credit to students who have completed
102—II. (II.) Benware

152. Language Universals and Typology (4)
Lecture—3 hours; term paper. Prerequisite: courses 103A, 103B. Investigation into
common features of all human languages and the classification of languages in
terms of their structural features; theories of universal grammar; detailed discuss-
ation of non-Indo-European languages and comparison with English. Not open for
credit to students who have completed course 170. GE credit: Wrt—II (II.) Farrell

160. American Voices (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 1 or Anthropology 4 or
upper division standing recommended. Explores the forms of American English, tra-
tional notions of regional dialects and increasingly important social dialects,
reflecting age, class, gender, race, ethnicity, and sexual orientation. The influence of
language attitudes on perception of dialect speakers; dialect in media, education, and
literature. GE credit: SocSci, Div, Wrt—II, II (I, II.)

163. Language, Gender, and Society (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 1 or Anthropology 4. Investiga-
tion of real and putative (stereotyped) gender-linked differences in lan-
guage structure and usage, with a consideration of some social and psychological
consequences of such differences. Focus is on English, but other languages are
also discussed. Not open for credit to students who have completed course 131. GE
credit: SocSci, Div, Wrt—II, II (II.)

166. The Spanish Language in the United States (4)
Lecture—3 hours; term paper. Prerequisite: course 1 or Spanish 111N; and Spanish
23 or the equivalent. Linguistic features of the varieties of the Spanish language spoken
throughout the United States; phonology, morphology, syntax, vocabulary.
Focus on the relationship between United States Spanish and other world varieties
of Spanish, within a historical framework. Not open for credit to students who
have completed course 116. GE credit: Div, Wrt.

171. Introduction to Psycholinguistics (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 1; courses 103A, 103B
recommended. Introduction to psychological issues relating to the implementation
of language and linguistic structures during speech production and comprehension
and to the implications of research in psychology and related fields for linguistic the-
ory. Not open for credit to students who have completed course 135. Offered in
alternate years. GE credit: SocSci

173. Language Development (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 1 or consent of instruc-
tor; courses 103A, 103B recommended. Theory and research on children’s acquisi-
tion of their native language, including the sound system, grammatical systems,
and basic semantic categories. Not open for credit to students who have completed
175. Biological Basis of Language (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 1 or consent of instructor. Overview of issues in the field of neurolinguistics and techniques used to explore representation of language in the human brain. GE credit: SciEng.—III. (Ill.) Dronkers

192. Internship in Linguistics (1-12)
Internship—3-36 hours; two written reports. Prerequisite: course 1 or the equivalent. Internship applying linguistic-related skills to a fieldwork project in areas such as media, law, or industry, in approved organizations or institutions. Maximum of 4 units applicable toward major. (P/NP grading only.)

194H. Special Study for Honors Students (1-5)
Independent study—1-5 hours. Prerequisite: open only to linguistics majors of senior standing who qualify for honors program. Guided research, under the direction of a faculty member approved by the Program Director, leading to a senior honors thesis. May be repeated for credit for up to 6 units. (P/NP grading only.)

197T. Tutoring in Linguistics (1-4)
Discussion—1-4 hours. Prerequisite: upper division standing, consent of instructor, and consent of department chairperson. Leading of small voluntary discussion groups affiliated with one of the department's regular courses. May be repeated for credit. (P/NP grading only.)

198. Directed Group Study (1-5)
Prerequisites: consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5)
(P/NP grading only.)

Graduate Courses

203A. Modern Linguistic Theory: Structuralism (4)
Lecture—3 hours; term paper. Prerequisite: courses 103A, 103B. History of thought in grammatical theory from de Saussure to 1950 with emphasis on critical examination of major theoretical problems in the field. Offered alternate years.—(II.) Manoliu

203B. Modern Linguistic Theory: Generative Grammar (4)
Lecture—3 hours; term paper. Prerequisite: courses 111, 112. History of thought in grammatical theory from 1950 to the present with emphasis on critical examination of major theoretical problems in the field. Offered in alternate years.—(I.) Farrell

205A-205B-205C-205D. Topics in Linguistic Theory and Methods (4)
Seminar—3 hours; term paper. Prerequisite: consent of instructor. Advanced study of current problems in linguistic theory and methodology. May be repeated for credit when topic differs.—I, II, (I, II) Manoliu, Ramathan

211. Advanced Phonological Theory and Analysis (4)
Lecture—3 hours; term paper. Prerequisite: course 111. Critical examination of current phonological theories. Offered in alternate years.—(III.) Orgun

212. Advanced Phonetics (4)
Lecture—3 hours; term paper. Prerequisite: course 112. Advanced investigation of the physiological basis of speech articulation and acoustic phonetics. Offered in alternate years.—I. Orgun

231. Advanced Syntactic Theory and Analysis (4)
Lecture—3 hours; term paper. Prerequisite: course 131. Critical survey of contemporary theories of syntax. Offered in alternate years.—III. Farrell

241. Advanced Semantic Theory and Analysis (4)
Lecture—3 hours; term paper. Prerequisite: course 141 or consent of instructor. Advanced critical exploration of contemporary theories of linguistic semantics. Offered in alternate years.—II. Ojeda

251. Principles of Historical Linguistics (4)
Lecture—3 hours; term paper. Prerequisite: course 151. Advanced analysis of the theory and methods of historical linguistics. Offered in alternate years.—II. Benware

252. Romance Linguistics (4)
Lecture—3 hours; term paper. Prerequisite: course 151. Examination of the development of the Romance languages from Proto-Romance to the modern era. Application and critical examination of methods of historical and comparative linguistics in particular areas of structural change in Romance. Offered in alternate years.—III. Manoliu

280. Theories of Second Language Acquisition (4)
Lecture/discussion—3 hours; term paper. Prerequisite: graduate standing or consent of instructor. Covers theoretical perspectives that direct or have directed research in second language acquisition; explores the relationship between linguistics and language teaching and deals with the individual variables that influence second language learning.—I. (I.) Ramanathan

281. Research Methods in TESOL/SLD (4)
Lecture—3 hours; term paper. Prerequisite: course 280. Research methods in second language research; evaluation of research designs and methods of analysis, formulation of research questions and hypotheses and design of study with thought to various kinds of data.—II. (II.) Ramanathan

282. Individual and Social Aspects of Bilingualism (4)
Lecture—3 hours; term paper. Broad overview of bilingual and multilingualism, with focus on theoretical and descriptive research; topics covered range from language processing in bilinguals to code-switching to language as political issue in multilingual states.—II, (III.) Tirm
Linguistics (A Graduate Group)

Lenora A. Timm, Ph.D., Chairperson of the Group
Group Office, 108 Sproul Hall (530-752-9933)

Faculty
Wilbur A. Benware, Ph.D., Professor (Linguistics)
Robert Blake, Ph.D., Professor (Spanish)
Cecilia Colombi, Ph.D., Associate Professor (Spanish)
Patrick Farrell, Ph.D., Associate Professor (Linguistics)
Jeffrey King, Ph.D., Professor (Philosophy)
Debra L. Long, Ph.D., Associate Professor (Psychology)
Martha Macri, Ph.D., Professor (Anthropology, Native American Studies)
Cecilia Colombi, Ph.D., Associate Professor (Spanish)
Patrick Farrell, Ph.D., Associate Professor (Linguistics)
Jeffrey King, Ph.D., Professor (Philosophy)
Debra L. Long, Ph.D., Associate Professor (Psychology)
Martha Macri, Ph.D., Professor (Anthropology, Native American Studies)

Emeriti Faculty
David L. Omsted, Ph.D. Professor Emeritus
Benjamin E. Wallacker, Ph.D., Professor Emeritus
Gwendolyn Schwabe, M.A., Senior Lecturer Emerita
Maximo Torreblanca, Ph.D., Professor Emeritus

Affiliated Faculty
Brian Carpenter, M.A., Lecturer
Nina F. Dronkers, Ph.D., Associate Adjunct Professor
Janet Lane, M.A., Lecturer
Ellen Lange, M.A., Lecturer
Mary Lowry, M.A., Lecturer
John Samsel, M.A., Lecturer
Kathleen Ward, Ph.D., Lecturer

Graduate Study. The Graduate Group in Linguistics offers a program of study leading to the M.A. degree. There are two tracks within the program, one concentrating on applied linguistics and TESOL, and the other on general linguistics. Within the general linguistics track, the following areas are emphasized: (a) grammatical analysis and theory in syntax, morphology, semantics, and phonology, (b) sociolinguistics, (c) psycholinguistics and neurolinguistics, and (d) linguistic description (contemporary or historical) of a particular language or group of languages.

In general, the M.A. in Linguistics at UC Davis serves as preparation for advanced graduate work at the Ph.D. level, as a supplement to studies in related fields—especially anthropology, psychology, philosophy, the various languages—or as a major component in the training for a professional career (such as TESOL, speech therapy, and foreign language teaching). The program places considerable emphasis on interdisciplinary studies, thereby increasing the breadth of the candidate's knowledge, and providing a wider and more flexible variety of options to pursue thereafter.

Preparation. Applicants to the M.A. program who do not have a bachelor's degree in Linguistics must complete certain courses in Linguistics from the undergraduate program. Applicants to the Applied Track must complete 103A and 103B (introduction to linguistic analysis I and II), 141 (semantics), and 151 (historical linguistics). Applicants to the General Track must complete all of the above four courses, plus 111 (introduction to phonological theory), 112 (phonetics), and 131 (introduction to syntactic theory).

Requirements. The requirements for the two tracks differ. The track in general linguistics falls under the Plan I set of requirements. Thirty units of upper division and graduate course work above and beyond the prerequisite courses listed under Preparation (above) must be completed, and a thesis is required. The track in applied linguistics and TESOL operates under either Plan I or Plan II. The Plan I requirements are the same as those listed above. Under Plan II, 36 units of upper division and graduate course work above and beyond the prerequisite courses are required, and at the end of the course work a student must pass a written comprehensive examination. Students in both tracks must pass a foreign language reading examination.

Graduate Adviser. A.E. Ojeda (Linguistics).
Literature in Translation

The following courses are open to students throughout the campus. The readings can be in English. Refer to departmental listing for the course description.

Chinese

10. Modern Chinese Literature (in English)
11. Great Books of China (in English)
50. Introduction to the Literature of China and Japan (in English)
104. Twentieth-Century Chinese Fiction (in English)
105. Western Influences on Twentieth-Century Chinese Literature (in English)
106. Chinese Poetry (in English)
107. Traditional Chinese Fiction (in English)
108. Poetry of China and Japan (in English)
109A–I. Topics in Chinese Literature (in English)
108. Poetry of China and Japan (in English)
107. Traditional Chinese Fiction (in English)
106. Chinese Poetry (in English)
105. Western Influences on Twentieth-Century Chinese Literature (in English)
104. Twentieth-Century Chinese Fiction (in English)
103. Modern Chinese Literature (in English)

Classics

140. Homer and Ancient Epic
141. Greek and Roman Comedy
142. Greek and Roman Novel
143. Greek Tragedy

Comparative Literature

1. Great Books of Western Culture: The Ancient World
2. Great Books of Western Culture: From the Middle Ages to the Enlightenment
3. Great Books of Western Culture: The Modern Crisis
4. Major Books of the Contemporary World
5. Fairy Tales, Fables and Parables
6. Myths and Legends
7. Literature of Fantasy and the Supernatural
8. Utopias and their Transformations
9. The Short Story and Novella

10A–N. Master Authors of World Literature
11. Introduction to Women Writers
12. Dramatic Literature
13. Israeli Literature
14. Introduction to Poetry
20. Man and the Natural World
25. Ethnic Minority Writers in World Literature
53A. Literature of China and Japan
53B. Literature of India and Southeast Asia
120. Writing Nature: 1750 to the Present
135. Women Writers
138. Gender and Interpretation
139. Shakespeare and the Classical World
140. Thematic and Structural Study of Literature
141. Literary Theory and Criticism
142. Critical Reading and Analysis
144. The Grotesque
145. Representations of the City
146. Myth in Literature
147. Modern Jewish Writers
151. Colonial and Postcolonial Experience in Literature
152. Literature of the Americas
153. The Forms of Asian Literature
154. African Literature
157. War and Peace in Literature
158. The Detective Story as Literature
159A–G. Special Topics in Comparative Literature
160A. The Modern Novel
160B. The Modern Drama
161A. Tragedy
161B. Comedy
163. Biography and Autobiography
164A. The Middle Ages
164B. The Renaissance
164C. Baroque and Neoclassicism
164D. The Enlightenment
166A. The Epic
166B. The Novel
167. Comparative Study of Major Authors
168A. Romanticism
168B. Realism and Naturalism
169. The Avant-Garde
170. The Contemporary Novel
180. Selected Topics in Comparative Literature
194H. Special Study for Honors Students
195. Senior Seminar

Dramatic Art

193. Greek Tragedy
192. Greek and Roman Novel
191. Greek and Roman Comedy
190. Homer and Ancient Epic
189. Modern Jewish Writers
188. Special Topics in Native American Literary Studies
187. German Literature since 1945
186. Contemporary German Literature
185. German Culture
184. The Holocaust and its Literary Representation
183. New German Cinema: From Oberhausen to the Present
182. The Avant-Garde
181. Realism and Naturalism
180. Modern Jewish Writers
179. Modern Literary Theory
178. Modernist and Postmodernist Literature
177. Modern and Contemporary Drama
176. The Grotesque
175. Fairy Tales, Fables and Parables
174. Myths and Legends
173. The Short Story and Novella
172. Major Authors of World Literature
171. Introduction to Women Writers
170. Dramatic Literature
169. Introduction to Poetry

German

47. Erasmus and Christian Humanism
48. Myth and Saga in the Germanic Cultures
49. Freshman Colloquium
111. Major Writers in Translation
112. Topics in German Literature
113. Goethe’s Faust
114. German Literature since 1945
117. The Nibelungen Tradition: Medieval, Musical, and Modern
118A. Fin-de-siècle Vienna (The Swan Song of the Habsburg Empire)
118B. Weimar Culture: Defeat, the Roaring Twenties, the Rise of Nazism
118C. Germany under the Third Reich
118D. Germany between 1949 and 1989: Division and Restoration
118E. Contemporary German Culture
118F. The German War Experience in Literature, Art, Film, and Music
119. From German Fiction to German Film
130. Modernity and its Discontents: The Tradition of German Cultural Critique
140. German Political Literature from the Middle Ages to the Present
141. The Holocaust and its Literary Representation
142. New German Cinema: From Oberhausen to the Present

Italian

139B. Boccaccio, Petrarch and the Renaissance
140. Italian Literature in English Translation: Dante, Divine Comedy

Japanese

10. Masterworks of Japanese Literature (in English)
15. Introduction to Traditional Japanese Culture
50. Introduction to the Literature of China and Japan
101. Japanese Literature in Translation: The Early Period
102. Japanese Literature in Translation: The Middle Period
104. Modern Japanese Literature: War and Revolution
105. Modern Japanese Literature: Hero and Anti-Hero
106. Japanese Culture through Films
107. Modern Japanese Autobiographies (in English)
108. Poetry of China and Japan

Native American Studies

181A. Native American Literature (the novel and fiction)
181B. Native American Literature (non-fiction works by Native authors)
181C. Native American Literature (traditional and contemporary poetry)
188. Special Topics in Native American Literary Studies

Russian

41. Survey of Nineteenth-Century Russian Literature
42. Survey of Twentieth-Century Russian Literature
44. Children’s Literature in Russia
121. Nineteenth-Century Russian Prose
123. Twentieth-Century Russian Prose
126. The Russian Theater
130. Contemporary Soviet Culture
131. Literature of Revolution
132. Nature and Culture in the Soviet Union
140. Dostoevsky
141. Tolstoy
150. Russian Culture
151. Soviet Writers and Censorship
154. Russian Folklore
166. Representations of Sexuality in Russian Literature

Spanish

149. Latin-American Literature in Translation
Managerial Economics

(College of Agricultural and Environmental Sciences)

The Major Program

The major in managerial economics (formerly agricultural and managerial economics) teaches students to apply economics and quantitative principles to problems in agricultural production, management, and marketing.

The Program. Each student must specialize in at least one of three options: agricultural economics, which focuses on topics related to the production and marketing of foods and fibers; environmental and resource economics, which focuses on issues related to use of resources and environmental quality; or managerial economics, which focuses on topics related to evaluating, financing, and managing business activities.

Internships and Career Alternatives. Students in managerial economics have opportunities to gain additional career information and preparation through internships in a variety of private business and governmental agencies. Graduates qualify for supervisory and management training positions in farm and ranch production, food and agricultural processing, agricultural sales and service, banking, finance, commerce, and stockbroking in the private sector, and a variety of agency career positions in local, state, and federal government. Students who desire additional training are well qualified to enter graduate programs in agricultural economics, economics, business administration, or law.

B.S. Major Requirements:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>English Composition Requirement</td>
<td>4-12</td>
<td></td>
</tr>
<tr>
<td>Preparatory Subject Matter</td>
<td>75-78</td>
<td></td>
</tr>
<tr>
<td>Management 11A-11B</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Agricultural Systems and Environment 21, Computer Science Engineering 10, 15 or 30, Engineering 3</td>
<td>3-4</td>
<td></td>
</tr>
<tr>
<td>Economics 1A-1B</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Mathematics 16A-16B or 21A-21B</td>
<td>6-8</td>
<td></td>
</tr>
<tr>
<td>Statistics 13, 103</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Social Science, Natural Science, Agricultural Science</td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>

(See undergraduate handbook in Department Advising Office for complete list of courses.)

Breadth/General Education

General Education (GE) credit:

Div = Science and Engineering; SocSci = Social-Cultural Diversity; Wrt = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.

Note: Approved General Education courses may be used to simultaneously satisfy Social, Natural, and Agricultural Science courses as defined in the Preparatory Subject Matter for the major and the campus General Education requirement.

Depth Subject Matter

Students graduating with this major are required to attain at least a C average (2.0) in all upper division courses taken at the University in the depth subject matter.

Agricultural and Resource Economics 100A, 100B, 106, 155 | 16 |

Restricted Electives | 32 |

Choose at least one of the options below

Managerial Economics option

Choose at least 15 units from Agricultural and Resource Economics 120, 130, 132, 138, 139, 140, 145, 150. Select the remaining 7 units from the aforementioned courses, Agricultural and Resource Economics 18, or upper division courses in Agricultural and Resource Economics and/or Economics

Environmental and Resource Economics option

Choose at least 18 units from Agricultural and Resource Economics 175, 176 | 8 |

Choose at least 18 units from Agricultural and Resource Economics 15, 120, 138, 145, 146, 150, 156, Economics 123, 125, 130, Environmental Science and Policy 168A, 168B, 178. Select the remaining 6 units from the aforementioned courses or upper division courses in Agricultural and Resource Economics and/or Economics, Environmental Science and Policy 160, 161, 163, 165, 166, 167, 171, 172, 173, Environmental Toxicology 138

Managerial Economics option

Agricultural and Resource Economics 18 | 4 |

Unrestricted Electives | 37-48 |

Total Units for the Degree | 180 |

Advising Center for the major is in 1176 Social Sciences and Humanities Building (530-752-6185 or 530-752-4932).

Minor Program Requirements:

The Department of Agricultural and Resource Economics offers four minor emphases open to students majoring in other disciplines who wish to complement their study programs with a minor in Managerial Economics. Each emphasis requires Agricultural and Resource Economics 100A, which has prerequisites of Economics 1A-1B and Mathematics 16A-16B. For some courses, Statistics 13 and 103 may be required. Variable-unit courses are not accepted for any emphasis.

Managerial Economics option

Agricultural and Resource Economics 100A or the equivalent | 4 |

Additional upper division courses in Agricultural and Resource Economics | 14 |

Managerial Economics option

Agricultural and Resource Economics 100A or the equivalent | 4 |

Additional upper division courses in Agricultural and Resource Economics | 14 |

Select 9 or more units from Agricultural and Resource Economics 120, 130, 132, 138, 139, 140, 145, 150.

Select additional upper division Agricultural and Resource Economics courses to complete the 18-unit total for the minor.

Environmental and Natural Resource Economics

Agricultural and Resource Economics 100A or the equivalent | 4 |

Additional upper division courses in Agricultural and Resource Economics | 14 |

Select 9 or more units from Agricultural and Resource Economics 175 and 176, and either 100B or 120.

Select additional upper division Agricultural and Resource Economics courses to complete the 18-unit total for the minor.

Managerial Economics option

Agricultural and Resource Economics 100A or the equivalent | 4 |

Additional upper division courses in Agricultural and Resource Economics | 14 |

Select 9 or more units from Agricultural and Resource Economics 112, 118, 136, 157, 171A, 171B.

Select additional upper division Agricultural and Resource Economics courses to complete the 18-unit total for the minor.

Graduate Study. See the Graduate Studies section in this catalog.
Mathematics

The Major Programs

Mathematics is the study of abstract structures, space, change, and the interrelations of these concepts. It also is the language of the exact sciences. The Program. Students majoring in mathematics may follow a program leading to the Bachelor of Arts or the Bachelor of Science degree. After completing basic introductory courses such as calculus, students plan an upper division program in consultation with a faculty adviser. This individualized program can lead to graduate study in pure or applied mathematics, to elementary or secondary level teaching, or to other professional goals. It can also reflect a special interest such as computational and applied mathematics, computer science, or statistics, or may be combined with a major in some other field.

Career Alternatives. A degree in mathematics provides entry to many careers in addition to teaching. For instance, operations research, systems analysis, computing, actuarial work, insurance, and financial services are only a few such careers. Mathematics is also a sound basis for graduate work in a variety of fields, such as law, engineering, and economics.

A.B. Major Requirements:

Preparatory Subject Matter

<table>
<thead>
<tr>
<th>Course</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics 12</td>
<td>32-41</td>
</tr>
<tr>
<td>Mathematics 21A-21B, 21C, 21D, 22A, 22B</td>
<td>22</td>
</tr>
<tr>
<td>Computer Science Engineering 30 or Engineering 5 or 6</td>
<td>3-4</td>
</tr>
<tr>
<td>Physics 9A</td>
<td></td>
</tr>
<tr>
<td>Additional non-Mathematics courses chosen from natural sciences</td>
<td>8</td>
</tr>
</tbody>
</table>

Depth Subject Matter

<table>
<thead>
<tr>
<th>Course</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics 108</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 127A, 127B</td>
<td>8</td>
</tr>
<tr>
<td>Mathematics 149A, 149B, or 150A, 150B</td>
<td>8</td>
</tr>
<tr>
<td>Choose one Track from the following two (up to 4 of these 18 units may be approved upper division applied courses outside of mathematics)</td>
<td>18</td>
</tr>
</tbody>
</table>

Track 1: Secondary Teaching

<table>
<thead>
<tr>
<th>Course</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics 115A</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 141</td>
<td>4</td>
</tr>
<tr>
<td>Additional upper division units</td>
<td>10</td>
</tr>
<tr>
<td>Recommended: Mathematics 115B, 115C, 145, 147, 168 (Statistics 131A may be substituted for Mathematics 131)</td>
<td>18</td>
</tr>
</tbody>
</table>

Track 2: General Mathematics

<table>
<thead>
<tr>
<th>Course</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additional upper division units</td>
<td>18</td>
</tr>
<tr>
<td>Total Units for the Major</td>
<td>75-79</td>
</tr>
</tbody>
</table>

B.S. Major Requirements:

Preparatory Subject Matter

<table>
<thead>
<tr>
<th>Course</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics 12</td>
<td>0-3</td>
</tr>
<tr>
<td>Mathematics 21A-21B, 21C, 21D, 22A, 22B</td>
<td>22</td>
</tr>
<tr>
<td>Computer Science Engineering 30 (all tracks) or Engineering 5 or 6 (Tracks 1, 3, 4)</td>
<td>3-4</td>
</tr>
<tr>
<td>Physics 9A</td>
<td>4</td>
</tr>
<tr>
<td>Physics 9B-IC or Computer Science Engineering 40 (Track 2)</td>
<td>4-8</td>
</tr>
<tr>
<td>Statistics 13, 32, or 102 (Tracks 3 and 4 only)</td>
<td>3-8</td>
</tr>
</tbody>
</table>

Depth Subject Matter

<table>
<thead>
<tr>
<th>Course</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics 108</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 127A, 127B</td>
<td>8</td>
</tr>
<tr>
<td>Choose one Track from the following four (up to 4 of these 18 units for Track 1, 3, 4, and up to 8 of these 18 units for Track 2 may be approved upper division applied courses outside of mathematics)</td>
<td>36</td>
</tr>
</tbody>
</table>

Track 1: Preparation for Graduate Study in Mathematics

<table>
<thead>
<tr>
<th>Course</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics 127C</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 150A, 150B, 150C</td>
<td>12</td>
</tr>
<tr>
<td>One course from Mathematics 131, 147, 167, 185A</td>
<td>4</td>
</tr>
<tr>
<td>Additional upper division units</td>
<td>16</td>
</tr>
</tbody>
</table>
Track 2: Computational and Applied Mathematics
Mathematics 149A or 150A ...4
Mathematics 128A ...4
Mathematics 167 ...4
Two courses from Mathematics 128B, 128C, Computer Science Engineer-
ing 110, 122A ...8
Two courses from Mathematics 118A, 118B, 119A, 119B, 131, 132A, 145,
149B, 150B, 168 ...8
Additional upper division units ..8
Recommended: Mathematics 118A, 118B, 119A, 119B, 126A, 126B,
Track 3: Mathematics for Secondary Teaching
Mathematics 115A ..4
Mathematics 141 ..4
Mathematics 149A, 149B, or 150A, 150B8
Mathematics 131, 132A, or Statistics 130A, 130B; or Statistics 131A, 131B
Additional upper division units ..8
Total Units for the Major ..77–89

Recommended Language Preparation:
Bachelor of Science degree candidates are advised, but not required, to satisfy
the same language requirement as that for a Bachelor of Arts degree candidate,
and to fulfill it in French, German, or Russian.

Major Advisers. C. Borges, A. Dad-Del, J. De Loera, J.R. Diederich, D. Fuchs, E.O.

Depth Subject Matter Requirements.
Certain mathematically oriented courses given by other departments may be ad-
sirable in partial satisfaction of the above mentioned 36-unit or 45-unit requirements
with prior departmental approval. For the 190-level courses, (1) a maximum of
one unit of 190, 192, 197TC, 198, and 199 courses may be counted towards mathemat-
is major requirements; (2) up to 3 units of Mathematics 194H may be counted
throughout mathematics major requirements. No combination of (1) and (2) are to
be allowed.

Statement of Objectives. As early as possible, but no later than the last quarter
of the sophomore year, each prospective mathematics major should choose, in con-
sultation with an adviser, one of the tracks as suggested by the adviser, prepare a
statement of his or her mathematics objectives, and have a proposed program sat-
ifying the requirements of the chosen track. The form to be used for this statement
is available from the Department, and must be submitted in time to receive final
approval prior to the last day of instruction of the first quarter of the junior year.
Prospective mathematics majors transferring to the University at the upper division
level should consult an adviser immediately upon arrival.

Information for Undergraduates. Assistance in planning an undergraduate major
program in mathematics should be obtained from a major adviser. In addition, stu-
dents seeking information pertaining to the application of mathematics to the bio-
logical or social sciences or computer science may contact the appropriate special
area adviser.

Students preparing for an A.B. degree for secondary teaching or general mathe-
matics, or a B.S. degree for graduate study, biological sciences, physical sciences,
secondary teaching, or general mathematics should consult an undergraduate
adviser.

Mathematics Placement Requirement. Students who wish to enroll in Mathematics
12, 16A, 21A, 21A-H, and 36 must satisfy the mathematics placement requirement.
See the Department of Mathematics Web page for details well in advance of
enrolling. Students who do not satisfy the requirement will be administratively
dropped from these courses. Dates and times for qualifying exams, one of the ways
to meet this requirement, are posted on the Web site.

Minor Program Requirements:

<table>
<thead>
<tr>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics</td>
</tr>
</tbody>
</table>

Upper division units in mathematics (exclusive of Mathematics 192, 197TC, 198, 199)..............20
Teaching Credential Subject Representative. G.T. Saile. See also under Teacher Education Program.

Graduate Study. The Department offers programs of study and research leading to
the M.A., M.A.T., and Ph.D. degrees in mathematics. Detailed information regard-
ing graduate study may be obtained by writing to the Graduate Coordinator, Depart-
ment of Mathematics.

Courses in Mathematics (MAT)

Lower Division Courses

Elementary Algebra (no credit)
Lecture—3 hours. Basic concepts of algebra, including polynomials, factoring,
equations, graphs, and inequalities. Offered only if sufficient number of students
enroll. Not open to Concurrent student enrollment. (P/NP grading only.) (There is a fee
of $45.)—I, (I)

Trigonometry (no credit)
Lecture—2 hours. Basic concepts of trigonometry, including trigonometric functions,
identities, inverse functions, and applications. Offered only if sufficient number of
students enroll. Not open to Concurrent student enrollment. (P/NP grading only.)
(There is a fee of $30.)—I, (I, II)

D. Intermediate Algebra (no credit)
Lecture—3 hours. Basic concepts of algebra, designed to prepare the student for
college work in mathematics, such as course 16A or 21A. Functions, equations,
graphs, logarithms, and systems of equations. Offered only if sufficient number of stu-
dents enroll. Not open to Concurrent student enrollment. (P/NP grading only.)
(There is a fee of $15.)—I, II, (I, II)

12. Precalculus (3)
Lecture—3 hours. Prerequisite: Two years high school algebra, plane geometry,
plane trigonometry; and obtaining required score on the Precalculus Qualifying Examin-
ation. Topics selected for their use in calculus, including functions and their
graphs, slope, zeroes of polynomials, exponential, logarithmic and trigonometric
functions, sketching surfaces and solids. Not open for credit to students who have
completed any of courses 16A, 16B, 16C, 21A, 21B, or 21C with a C– or better.—I,
II, III, (II, III)

(Not: Mathematics 16A, 16B, and 16C are intended for students who will take no
more Mathematics courses.)

16A. Short Calculus (3)
Lecture—3 hours. Prerequisite: one and one-half years of high school algebra,
plane geometry, plane trigonometry, and obtaining required score on Precalculus Qualifying
Examination and its trigonometric component. Limits; differentiation of algebraic
functions; analytic geometry; applications, in particular to maxima and
minima problems. Not open for credit to students who have received credit for
course 21A. GE credit: SciEng.—I, II, III, (I, II, III)

16B. Short Calculus (3)
Lecture—3 hours. Prerequisite: course 16A or 21A. Integration; calculus for trigo-
metric, exponential, and logarithmic functions; applications. Not open for credit to
students who have received credit for course 21B. GE credit: SciEng.—I, II, III, (I, II, III)

16C. Short Calculus (3)
Lecture—3 hours. Prerequisite: course 16B or 21B. Differential equations; partial
derivatives; double integrals; applications; series. Not open for credit to students
who have received credit for course 21C. GE credit: SciEng.—I, II, III, (I, II, III)

21A. Calculus (4)
Lecture—3 hours; discussion; 1 hour. Prerequisite: two years of high school algebra,
plane geometry, plane trigonometry, and analytic geometry or course 12, and
obtaining required score on Precalculus Qualifying Examination and its trigonomet-
ic component. Functions, limits, continuity. Slope and derivative. Differentiation
of algebraic and transcendental functions. Applications to motion, natural growth,
graphing, extrema of a function. Differentials. L’Hopital’s rule. Only two units of credit
will be allowed to students who have credit for course 16A. Not open for credit to
students who have completed course 16B. GE credit: SciEng.—I, II, III, (I, II, III)

21AH. Honors Calculus (4)
Lecture/discussion—4 hours. Prerequisite: a Precalculus Qualifying Examination
score significantly higher than the minimum for course 21A. Required. More inten-

21AL. Emerging Scholars Program Calculus Workshop (2)
Workshop—4 hours. Prerequisite: concurrent enrollment in course 21A. Functions,
limits, continuity. Slope and derivative. Differentiation of algebraic and transcenden-
tal functions. Applications to motion, natural growth, graphing, extrema of a func-
tion. Differentials. L’Hopital’s rule. Enrollment for students in the Emerging Scholars Pro-
gram by instructor’s invitation only. (P/NP grading only)—I, (I)

21B. Calculus (4)
Lecture—3 hours; discussion; 1 hour. Prerequisite: course 21A or 21AH. Continua-
tion of course 21A. Definition of definite integral, fundamental theorem of calculus,
techniques of integration. Application to area volume, arc length, average of a func-
tion, improper integrals, surface of revolution. Only two units of credit will be allowed
to students who have received credit for course 16B or 16C. GE credit: SciEng.—I,
II, III, (II, III, I, II, III)

21BH. Honors Calculus (4)
Lecture—3 hours. Detailed—4 hours. Prerequisite: a grade of B or better in course 21A
or 21AH. More intensive treatment of material covered in course 21B. Students com-
pleting 21BH can continue with course 21CH or the regular 21C. GE credit: Sci-
Eng.—II, (II)
Upper Division Courses

108. Introduction to Abstract Mathematics (4)
Lecture/discussion—4 hours. Prerequisite: course 21B or consent of instructor. Rigorous treatment of abstract mathematics with emphasis on developing ability to construct and present mathematical arguments. GE credit: WR—II, III, (II, III.)

114. Convex Geometry (4)
Lecture—3 hours; extensive problem solving. Prerequisite: courses 21C, 22A, 108, or consent of instructor. Topics selected from the theory of convex bodies, convex functions, geometric inequalities, combinatorial geometry, and integral geometry. Offered in alternate years.—(II.)

115A. Number Theory (4)
Lecture—3 hours; extensive problem solving. Prerequisite: course 108. Divisibility and related topics, diophantine equations, selected topics from the theory of prime numbers.—I. (I.)

115B. Number Theory (4)
Lecture—3 hours; extensive problem solving. Prerequisite: course 108. Euler function, Moebius function, congruences, primitive roots, quadratic reciprocity law. Offered in alternate years.—II.

115C. Number Theory (4)
Lecture—3 hours; extensive problem solving. Prerequisite: course 108. Continued fractions, partitions. Offered in alternate years.—III.

116. Differential Geometry (4)
Lecture—3 hours; extensive problem solving. Prerequisite: courses 22A, 21D, or consent of instructor. Vector analysis, curves and surfaces in three dimensions. Offered in alternate years.—II.

118A. Partial Differential Equations: Elementary Methods (4)
Lecture—3 hours; extensive problem solving. Prerequisite: courses 22A, 22B, 21D. Derivation of partial differential equations; separation of variables; equilibrium solutions and Laplace's equation; Fourier series; method of characteristics for the one-dimensional wave equation; solution of nonhomogeneous equations.—I. (I.)

118B. Partial Differential Equations: Eigenfunction Expansions (4)
Lecture—3 hours; extensive problem solving. Prerequisite: course 118A. Sturm-Liouville Theory; self-adjoint operators; mixed boundary conditions; partial differential equations in two and three dimensions; Eigenvalue problems in various domains; nonhomogeneous problems and the method of eigenfunction expansions. Poisson's Equations.—II. (II.)

118C. Partial Differential Equations: Green's Functions and Transforms (4)
Lecture—3 hours; extensive problem solving. Prerequisite: course 118B. Green's functions for one-dimensional problems and Poisson's equation; Fourier transforms; Green's Functions for time dependent problems; Laplace transform and solution of partial differential equations.—III.

119A-B. Ordinary Differential Equations (4-4)

121A. Advanced Calculus for the Sciences (4)
Lecture—3 hours; extensive problem solving. Prerequisite: courses 21D, 22A, 22B. Functions of several real variables; continuity, differentiation, implicit functions, integration, interchange of limiting procedures. Fourier series, integral transforms. Intended primarily for students majoring in science and engineering.—I. (I.)

121B. Advanced Calculus for the Sciences (4)
Lecture—3 hours; extensive problem solving. Prerequisite: course 121A. Functions of several real variables; continuity, differentiation, implicit functions, integration, calculus of variations, vector analysis. Elementary single complex variable theory. Intended primarily for students majoring in science and engineering.—II. (II.)

127A-127B-127C. Advanced Calculus (4-4-4)

128A. Numerical Analysis (4)
Lecture—3 hours; term project. Prerequisite: course 21C; knowledge of a programming language such as Pascal, FORTRAN or BASIC. Error analysis, approximation, interpolation, numerical differentiation and integration.—I. (I.)

128B. Numerical Analysis in Solution of Equations (4)
Lecture—3 hours; term project. Prerequisite: courses 21C and 22A; knowledge of a programming language such as Pascal, FORTRAN or BASIC. Solution of nonlinear equations and nonlinear systems. Minimization of functions of several variables. Simultaneous linear equations. Eigenvalue problems.—II. (II.)

128C. Numerical Analysis in Differential Equations (4)
Lecture—3 hours; term project. Prerequisite: courses 22A, 22B, and a knowledge of a programming language such as Pascal, FORTRAN or BASIC. Difference equations, operators, numerical solution of ordinary and partial differential equations.—III. (III.)
131. Probability Theory (4)
Lecture—4 hours. Probability space, event, combinatorics; discrete, continuous distributions; random variables; joint marginal conditional distributions; transformation; sums and moments; inequalities; laws of large numbers; central limit law; probability models via conditioning. Not open for credit to students who have completed Statistics 131A. —I, II, III. (I, II, III.)

132A-132B. Stochastic Processes (4-4)
Lecture—3 hours; extensive problem solving. Prerequisite: course 131 or Statistics 131A. Markov chains, Poisson process, birth and death processes, renewal theory, queuing theory. Brownian motion, stationary processes. Course 132B is offered in alternate years. —II. (II-III.)

141. Euclidean Geometry (4)
Lecture—3 hours; extensive problem solving. Prerequisite: course 108. Combinatorial methods using basic graph theory counting methods, generating functions, and recurrence relations. —II. (II-III.)

145. Combinatorics (4)
Lecture—3 hours; extensive problem solving. Prerequisite: course 108. Combinatorial methods using basic graph theory counting methods, generating functions, and recurrence relations. —II. (II-III.)

147. Topology (4)
Lecture—3 hours; extensive problem solving. Prerequisite: courses 108, 127A. Basic notions of point-set and combinatorial topology. Offered in alternate years. —(II-III.)

149A-149B. Discrete Mathematics (4-4)
Lecture/discussion—4 hours. Prerequisite: courses 22A and 108. Coding theory and counting theory and the algebraic concepts needed in their development. —II. (II-III.)

150A-150B-150C. Modern Algebra (4-4-4)
Lecture/discussion—4 hours. Prerequisite: course 108. Basic concepts of groups, rings, and fields. Emphasis on the techniques used in the proof of the ideas (Lemmas, Theorems, etc.) developing these concepts. Precise thinking, writing, and the ability to deal with abstraction. —II-III. (I-III.)

160. Mathematical Foundations of Database Theory, Design and Performance (4)
Lecture—3 hours; extensive problem solving. Prerequisite: course 108. Basic data structures of high-level computer language. The relational model; relational calculus, normal forms, functional and multivalued dependencies. Separability. Cost benefit analysis of physical database design and reorganization. Performance via analytical modeling; simulation; and queuing theory. Block accesses; buffering; operating system contention; CPU intensive operations. Offered in alternate years. —I-

167. Advanced Linear Algebra (4)
Lecture—3 hours; extensive problem solving. Prerequisite: course 22A. Introduction to linear algebra; linear equations, orthogonal projections, similarity transformations, quadratic forms, eigenvalues and eigenvectors. Applications to physics, engineering, economics, and economic statistics. —I, II, III. (I, II, III.)

168. Mathematical Programming (4)
Lecture—3 hours; extensive problem solving. Prerequisite: courses 21C, and 22A or 167; knowledge of a programming language. Linear programming, simplex method. Basic properties of unconstrained nonlinear problems, descent methods, conjugate direction method. Constrained minimization. —III. (III.)

180. Special Topics (3)
Lecture—3 hours. Prerequisite: course 22B or consent of instructor. Special topics from various fields of modern pure and applied mathematics. Some recent topics include: The General Relativity, and Fuzzy Sets. May be repeated for credit when topic differs. —II-III. (I, II, III.)

185A. Complex Analysis with Applications (4)
Lecture—3 hours; extensive problem solving. Prerequisite: course 21D. Complex number systems, analyticity and the Cauchy-Remann equations, elementary functions, complex integration, power and Laurent series expansions, residue theory. —II. (II-III.)

185B. Complex Analysis with Applications (4)
Lecture—3 hours; extensive problem solving. Prerequisite: course 185A or consent of instructor. Analytic functions, elementary functions and their mapping properties, applications of Cauchy’s integral theorem, conformal mapping and applications to heat flow and fluid mechanics. Offered in alternate years. —(I-III.)

190. Advanced Problem Solving Seminar (1)
Seminar—1 hour. Prerequisite: two years of college mathematics. Students solve and present solutions to challenging and unusual problems at the board. The problems require a background in, at most, second-year university mathematics. May be repeated once for credit. (P/NP grading only.)—I, II, III. (I, II, III.)

192. Internship in Applied Mathematics (1-3)
Internship; final report. Prerequisite: upper division standing; project approval by faculty sponsor prior to enrollment. Supervised work experience in applied mathematics. May be repeated for credit for a total of 10 units. (P/NP grading only.)

194. Undergraduate Thesis (3)
Prerequisite: consent of instructor. Independent research under supervision of a faculty member. Student will submit written report in thesis form. May be repeated with consent of Vice Chairperson. (P/NP grading only.)—I, II, III. (I, II, III.)

197TC. Tutoring Mathematics in the Community (1-5)
Seminar—1-2 hours; laboratory—2-6 hours. Prerequisite: upper division standing and consent of instructor. Special projects in mathematical education developing techniques for mathematics instruction and tutoring on an individual or small group basis. May be repeated once for credit. (P/NP grading only.)

198. Directed Group Study (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5)
(P/NP grading only.)
221A-221B. Mathematical Fluid Dynamics (3-3)
Lecture—3 hours. Prerequisite: course 118B. Dynamics of fluid motion, perfect fluids, rotational and irrotational motion, two-dimensional and three-dimensional axisymmetric flows, compressible and incompressible viscous fluids. Offered in alternate years.—(II-III.)

222. Introduction to Biofluid Dynamics (3)
Lecture—3 hours. Prerequisite: Population Biology 231/Ecology 231 and Neurobiology, Physiology and Behavior 245 or consent of instructor. The basic principles of fluid dynamics are introduced in the first half of the course by describing various phenomena studies from a biofluids perspective. The equations of fluid motion associated with these phenomena are derived and studied in the second half.—III. (III.)

227. Scientific Computation Applied to Problems in Biology (4)
Lecture—4 hours. Prerequisite: graduate standing or consent of instructor. Numerical solution of differential equations is studied using programming environments such as Maple, Mathematica and Matlab. Emphasis on understanding why numerical algorithms work. Particular attention to the application of these algorithms to problems in biology.—I. (I.)

228A-228B-228C. Numerical Solution of Differential Equations (4-4-4)
Lecture—3 hours; term paper or discussion. Prerequisite: course 128C. Numerical solutions of initial-value, eigenvalue and boundary-value problems for ordinary differential equations. Numerical solution of parabolic and hyperbolic partial differential equations. Offered in alternate years.—I-II-III.

229A-229B. Numerical Methods in Linear Algebra (4-4)
Lecture—3 hours; term paper or discussion. Prerequisite: consent of instructor. Computational methods for the solution of linear algebraic equations and matrix eigenvalue problems. Analysis of direct and iterative methods. Special methods for sparse matrices. Offered in alternate years.—(I-II III.)

235A-235B-235C. Probability Theory (3-3-3)
Lecture—3 hours. Prerequisite: course 127C and Statistics 131A-131B or the equivalent. Measure theoretic foundations, abstract integration, modes of convergence, limit theorems, independence, laws of large numbers, characteristic functions, central limit theorem, conditional expectations; topics from discrete time Markov and stationary processes, ergodic theory, Brownian motion, weak convergence, Wiener and Poisson processes. (Same course as Statistics 235A-235B-235C.)—I-II-III. (I-II III.)

236A-236B. Stochastic Dynamics and Applications (3-3)
Lecture—3 hours. Prerequisite: course 201C or 235B. Stochastic processes including Gaussian, Markov and stationary processes. Diffusion, martingales, stochastic differential equations. Applications and advanced topics.—I-II. (II.)

240A-240B-240C. Differential Geometry (3-3-3)
Lecture—3 hours. Prerequisite: course 116 or consent of instructor. Introduction to differentiable manifolds, the tangent bundle, tensor fields, differential forms. DeRham cohomology, connections, Lie groups, Riemannian geometry. Offered in alternate years.—(II-III-I.)

250A-250B-250C. Algebra (4-4-4)
Lecture—3 hours; discussion—1 hour or paper (instructor’s option). Prerequisite: graduate standing in Mathematics or consent of instructor. Theory of groups, rings, and fields.—I-II-III. (I-II III.)

258A. Numerical Optimization (4)
Lecture—3 hours; term paper or discussion. Prerequisite: courses 127A, 167. Numerical methods for infinite dimensional optimization problems. Newton and Quasi-Newton methods, linear and sequential quadratic programming, barrier methods; large-scale optimization; theory of approximations; infinite and semi-infinite programming; applications to optimal control, stochastic optimization and distributed systems.—I. (I.)

258B. Numerical Optimization (4)
Lecture—3 hours; term paper. Prerequisite: course 127A, 167. Provides the students with the mathematical foundations to deal with optimization and variational problems.—II. (II.)

261A-261B. Lie Groups and Their Representations (3-3)
Lecture—3 hours. Prerequisite: courses 215A, 240A, 250A-250B. Mathematical theory of Lie groups and Lie algebras, including the classification of semi-simple Lie groups. Representations of Lie groups, weights and characters, the Weil character formulas. Infinite-dimensional Lie groups, Kac-Moody algebras and the Virasoro algebra. Offered in alternate years.—II-III.

280. Topics in Pure and Applied Mathematics (3)
Lecture—3 hours. Prerequisite: graduate standing. Special topics in various fields of pure and applied mathematics. Topics selected based on the mutual interests of students and faculty. May be repeated for credit when topic differs.—I, II, III. (I, II III.)

290. Seminar (1-6)
Advanced study in various fields of mathematics, including the following: algebraic theory of semigroups, control theory, mathematical logic, mathematical statistics, ordinary differential equations, partial differential equations, theory of distributions, and univalent functions. (SU grading only.)—I, II, III. (I, II, III.)

298. Group Study (1-5)

299. Individual Study (1-12)
(SU grading only)

299D. Dissertation Research (1-12)
(SU grading only)
Biological Sciences: Molecular and Cellular Biology

Michael E. Dahmus, Ph.D., Chairperson of the Section
Section Office, 149 Briggs Hall (530-752-3611)
World Wide Web: http://www-mcb.ucdavis.edu

Faculty

Primary Section Members
Peter B. Armstrong, Ph.D., Professor
Enoch Baldwin, Ph.D., Assistant Professor
Ronald J. Baskin, Ph.D., Professor
Sean M. Burgess, Ph.D., Assistant Professor
Kenneth C. Burts, Ph.D., Associate Professor
Judy Callis, Ph.D., Associate Professor
Don M. Carlson, Ph.D., Professor
James S. Ciegg, Ph.D., Professor
John H. Crowe, Ph.D., Professor
Michael E. Dahmus, Ph.D., Professor
Roy H. Doi, Ph.D., Professor
Carol A. Erickson, Ph.D., Professor
Martyn P. Elzner, Ph.D., Professor
Andrew Fisher, Ph.D., Assistant Professor
Charles S. Gasser, Ph.D., Professor
Robert D. Grey, Ph.D., Professor
academic Senate Distinguished Teaching Award
R. Scott Hawley, Ph.D., Professor
Jenny M. Hedrick, Ph.D., Professor
Leonard M. Hjelmeland, Ph.D., Professor (ophthalmology)
Kenneth B. Kaplan, Ph.D., Assistant Professor
John A. Kiger, Ph.D., Professor
J. Clark Lagarias, Ph.D., Professor
Francis J. McNally, Ph.D., Assistant Professor
Mark G. McNamee, Ph.D., Professor
Diana G. Myles, Ph.D., Professor
Jeanette E. Natze, Ph.D., Associate Professor
Richard L. Nuccitelli, Ph.D., Professor
Jodi Nunnari, Ph.D., Assistant Professor
Edmund R. Powers, Ph.D., Assistant Professor
Raymond L. Rodriguez, Ph.D., Professor
Leslie S. Rose, Ph.D., Assistant Professor
Carl W. Schmid, Ph.D., Professor (chemistry)
Jonathan M. Scholey, Ph.D., Professor
Irwin H. Segel, Ph.D., Professor
Larry R. Sprechman, Ph.D., Lecturer
David K. Wilson, Ph.D., Assistant Professor

Secondary Section Members
Ernest S. Chang, Ph.D., Professor (animal science)
Richard H. Fulk, Ph.D., Professor
Leslie D. Gottlieb, Ph.D., Professor
John J. Harada, Ph.D., Professor
Wolf-Dietrich Heyer, Ph.D., Associate Professor
Stephen C. Kowalczykowski, Ph.D., Professor
William J. Lucas, Ph.D., Professor
Brian Mulloney, Ph.D., Professor
Sharman O’Neill, Ph.D., Associate Professor
Pamea A. Pappone, Ph.D., Professor
Martin L. Prawalski, Ph.D., Professor
Steven M. Thog, Ph.D., Associate Professor
Robert M. Thornton, Ph.D., Senior Lecturer
academic Senate Distinguished Teaching Award
Larry N. Vanderhevel, Ph.D., Professor
Martin Wilson, Ph.D., Professor

Emeriti Faculty
Paul A. Castelfranco, Ph.D., Professor Emeritus
Sterling Chaykin, Ph.D., Professor Emeritus
Eric C. Conn, Ph.D., Professor Emeritus
academic Senate Distinguished Teaching Award, UC Davis Prize for Teaching and Scholarly Achievement
Richard S. Cridle, Ph.D., Professor Emeritus
David W. Deamer, Ph.D., Professor Emeritus
Gordon J. Edlin, Ph.D., Professor Emeritus
Melvin M. Green, Ph.D., Professor Emeritus
Lloyd L. Ingraham, Ph.D., Professor Emeritus
Che-Kun J. Shen, Ph.D., Professor Emeritus
Paul K. Stumpf, Ph.D., Professor Emeritus

Affiliated Faculty
Benjamin F. Edwards, Ph.D., Lecturer
Robert Fairclough, Ph.D., Associate Professor (neurology)
Kenneth L. Hilt, Ph.D., Lecturer
Donna M. Lagarias, Ph.D., Lecturer
Laura L. Lindsay, Ph.D., Lecturer
Randy D. Mitchell, Ph.D., Lecturer
Larry Z. Morand, Ph.D., Lecturer
Carol M. Rubin, Ph.D., Lecturer
Mark F. Sanders, Ph.D., Lecturer
Leigh D. Segel, Ph.D., Lecturer

The section of Molecular and Cellular Biology offers three major programs: biochemistry, cell biology, and genetics.

Courses in Molecular and Cellular Biology (MCB)

Lower Division Courses
10. Introduction to Human Heredity (4)
Lecture—3 hours; discussion—1 hour. Topics in human heredity and human gene structure and function, and the genetic basis of human development, causes of birth defects, mental retardation, genetic diseases, sexual determination, development and behavior. GE credit. SciEng, writing { I, III. }

99. Special Study (1-5)
Independent study—3-15 hours. Prerequisite: consent of instructor. (P/NP grading only.)

Upper Division Courses
120L. Biochemistry Laboratory (6)
Laboratory—10 hours; lecture—2 hours; laboratory discussion—1 hour. Prerequisite: Biologcal Sciences 103 (may be taken concurrently). Introduction to laboratory methods and procedures employed in studying biochemical processes. Designed for students who need experience in the use of biochemical techniques as laboratory tools.—I, II, III. I, II, III. Doi, Fairclough, Hilt, D. Lagarias, J.C. Lagarias, Lindsay, L. Morand, Nunnari, A. Rose, Rubin, L. Segel, Sprechman

121. Molecular Biology of Eukaryotic Cells (3)
Lecture—3 hours. Prerequisite: Biological Sciences 101, 103, course 120L. Structure, expression and regulation of eukaryotic genes. Chromosome structure and replication; gene structure, transcription and RNA processing; protein synthesis and translation control; development, immune system and oncogenes. Not open for credit to students who have completed course 141 or 161.—II, III, (I, III.)

122. Structure and Function of Proteins (3)
Lecture—3 hours. Prerequisite: course 120L, Biological Sciences 103. Correlation of structure and biological function. Molecular models of proteins that explain their physiological functioning. Physical and chemical methods used in determining protein structure. Function as measured by kinetic and binding models and as affected by physiological considerations.—I, II, III. I, II, III. Baldwin, Sprechman

123. Behavior and Analysis of Enzyme and Receptor Systems (3)
Lecture—3 hours. Prerequisite: Biological Sciences 103. Introduction to the principles of enzyme kinetics and receptor-ligand interactions with emphasis on metabolic regulation and data analysis. Topics include simultaneous equilibrium, chemical and steady-state kinetics, allosteric enzymes, multireactant systems, enzyme assays, membrane transport and computer-assisted simulations and analyses.—I, III, (I, III, I.) Segel, Wilson

126. Plant Biochemistry (3)
Lecture—3 hours. Prerequisite: Biological Sciences 1C or the equivalent, and Biological Sciences 103. Introduction to the historical developments of modern plant biology processes and metabolic pathways. Discussion of methods used to understand plant processes, including use of transgenic plants. (Same course as Plant Biology 126.—III.)

Abel, Callis

138. Undergraduate Seminar in Biochemistry (1)
Seminar—1 hour. Prerequisite: Biological Sciences 103. Discussion of the historical developments of modern biochemistry or current major research problems. May be repeated twice for credit when topic differs. (P/NP grading only)—I, II, III. I, II, III. Abel, Callis, Gasser, Fairclough, Sprechman

140L. Cell Biology Laboratory (4)
Lecture—2 hours; laboratory—6 hours. Prerequisite: Biological Sciences 104 (may be taken concurrently). Exercises illustrating the principles of cell biology with emphasis on light microscopy.—I. (I) Baskin, D. Lagarias, Myles, Nuccitelli

Quarter Offered: I–Fall; II–Winter; III–Spring; IV–Summer; 2001-2002 offering in parentheses

141. Cellular Regulation of Gene Expression (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: Biological Sciences 101 and 102. Biological Sciences 104 recommended. Molecular and cellular mechanisms for regulating the flow of information from genome to the cytoplasm, and from one generation to the next in eukaryotes and prokaryotes. Various levels of regulation will be discussed from an experiment-based perspective. Not open to credit for students who have completed Biological Sciences 121 or 161.

142. Advanced Cell Biology: Contractile and Motile Systems (4)
Lecture—3 hours; term paper. Prerequisite: Biological Sciences 102, 104 (may be taken concurrently); Mathematics 16B. Advanced cell biology with emphasis on molecular, biophysical and cellular properties of contractile and motile systems.—(III.) Backin

148. Undergraduate Seminar in Cell Biology (2)
Seminar—2 hours. Prerequisite: upper division standing in the biological sciences or a related discipline. Student reports on current topics in cell biology with emphasis on integration of concepts, synthesis, and state-of-the-art research approaches. Reviews of literature and reports of undergraduate research may be included. May be repeated for credit. (P/NP grading only.)

150. Embryology (4)
Lecture—4 hours. Prerequisite: Biological Sciences 101 and concurrent enrollment in course 150L. The events and mechanisms of embryonic development, including fertilization, morphogenesis, cell differentiation and organogenesis, with emphasis on vertebrates.—(I, III, I, III.) Armstrong, Edwards, Erickson

150L. Laboratory in Vertebrate Embryology (1)
Laboratory—3 hours. Prerequisite: concurrent enrollment in course 150. The comparative analysis of the embryonic development of vertebrates. (P/NP grading only)—I, II, III, I, III.) Armstrong, Edwards, Erickson

158. Undergraduate Seminar in Developmental Biology (2)
Seminar—2 hours. Prerequisite: upper division standing in the biological sciences or a related discipline. Student reports on current topics in cell biology with emphasis on integration of concepts, synthesis, and state-of-the-art research approaches. Reviews of literature and reports of undergraduate research may be included. May be repeated for credit. (P/NP grading only.)

160L. Principles of Genetics Laboratory (4)
Laboratory—6 hours; lecture—2 hours. Prerequisite: Biological Sciences 101. Laboratory work in basic and molecular genetics including gene mapping and isolation of mutants. Not open for credit to students who have completed Genetics 100L.—I, II, III, I, II, III.) Brits, Burtis, Kiger, Sanders

161. Molecular Genetics (3)
Lecture—3 hours. Prerequisite: Biological Sciences 101; Biological Sciences 103 (may be taken concurrently); Molecular genetics including DNA structure and replication, restriction analysis, sequencing, transcription, translation and gene regulation. Not open for credit to students who have completed course 121 or 141.—(I, I, II, III.) Brits, Powers

162. Human Genetics (3)
Lecture—3 hours. Prerequisite: Biological Sciences 101 or the equivalent. Human molecular genetic variation, molecular basis of metabolic disorders, chromosomal aberrations and consequences, diseases associated with the immune system, and statistical techniques for estimating genetic and environmental effects. GE credit: SciEng, Wrt.—II. (II.) Hawley

163. Developmental Genetics (3)
Lecture—3 hours. Prerequisite: Biological Sciences 101, 102; course 150 recommended. Current aspects of developmental genetics. Historical background and current genetic approaches to the study of development of higher animals.—II. (II.) Natzie

164. Advanced Eukaryotic Genetics (3)
Lecture—3 hours. Prerequisite: Biological Sciences 101. Concentration on the five basic operations of genetic analysis: mutation, segregation, recombination, complementation, and regulation. Special emphasis will be placed on the theory and practice both of isolating new mutations and of analyzing existing mutations.—III. (III.) Brits, Hawley

178. Undergraduate Seminar in Molecular Genetics (1)
Seminar—1 hour. Prerequisite: upper division standing, completion of Biological Sciences 101, course 160L, and completion or concurrent enrollment in course 161. Discussion of current topics in molecular genetics to show advanced applications of basic principles and to highlight professional career opportunities. May be repeated for credit. (P/NP grading only)—I, II, III, I, II, III.) Hawley, Rodriguez, Sanders, Schmid

190C. Undergraduate Research Conference (1)
Discussion—1 hour. Prerequisite: upper division standing and consent of instructor; concurrent enrollment in course 193 or 199. Presentation and discussion of current research by faculty and students. May be repeated for credit. (P/NP grading only)—I, II, III, I, II, III.)

191. Introduction to Research (1)
Seminar—1 hour. Prerequisite: Biological Sciences 102 (may be taken concurrently) or consent of instructor. Various topics in molecular and cellular biology including biochemistry, genetics, and cell biology will be discussed, along with ways undergraduates can participate in research projects of faculty members. May be repeated for credit. (P/NP grading only)—I, II, I, II, III.) L. Segel

192. Internship (1-12)
Internship—3-36 hours. Prerequisite: completion of 84 units and consent of instructor. Technical and/or practical experience on and off campus, supervised by a member of the Section of Molecular and Cellular Biology faculty. (P/NP grading only.)

193. Advanced Research (3)
Laboratory—6 hours; discussion—1 hour. Prerequisite: upper division standing, completion of an upper division Molecular and Cellular Biology laboratory course and consent of instructor. Research project carried out under the supervision of a faculty sponsor. Discussion and analysis of results and proposed experiments on a weekly basis with faculty sponsor. May include presentation of a seminar to a research group. May be repeated for credit. (P/NP grading only.—I, II, I, III, I, III.)

194H. Research Honors (3)
Independent study—9 hours. Prerequisite: 6 units of course 193 and 199 with faculty director; senior standing; GPA of at least 3.25; consent of Section. Honors project. Continuation of an intensive, individual laboratory research project in biochemistry, genetics, or cell biology culminating with the presentation of the work in a written thesis and in a seminar. (P/NP grading only.)

197T. Tutoring (1-5)
Tutoring—1-5 hours. Prerequisite: upper division standing, completion of course to be tutored, and consent of instructor. To assist the instructor by tutoring students in one of the Section's regular courses. (P/NP grading only.)

198. Directed Group Study (1-5)
Variable—1-5 hours. Prerequisite: consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5)
Independent study—3-15 hours. Prerequisite: consent of instructor. (P/NP grading only.)

Graduate Courses

200A. Current Techniques in Cell Biology (2)
Lecture—2 hours. Prerequisite: graduate standing. Biological Sciences 104 and course 141 or the equivalent courses. Current techniques used in cell biology research including microscopy, spectroscopy, electrophysiology, immunohistochemistry, histology, organelle isolation, calorimetry, tissue culture and gel electrophoresis. Lectures are presented by experts on each technique, with an emphasis on pitfalls to avoid when using the technique. (Same course as Cell and Developmental Biology 200.) (SU grading only.)—I. (I.) Beck, Nuccitelli

200B. Current Techniques in Biochemistry (2)
Lecture—2 hours. Prerequisite: Biological Sciences 103 and course 120L or the equivalent courses. Current techniques used in biochemical research including protein and carbohydrate analysis, immunochemistry, recombinant DNA methods, electrophoretic and chromatographic methods.—II. (II.) Hedrick

200C. Current Techniques in Biophysics (2)
Lecture—2 hours. Prerequisite: graduate standing. Biological Sciences 102 or 104 or the equivalent. Current techniques in biophysics research including diffraction, magnetic resonance spectroscopy, calorimetry, optical spectroscopy, and electrophysiology. (Same course as Biophysics Graduate Group 200.) (SU grading only.)—III. (III.) Fairclough

220L. Advanced Biochemistry Laboratory Rotations (5)
Laboratory—15 hours. Prerequisite: course 221A (may be taken concurrently) and 120L or the equivalent. Two five-week assignments in biochemistry research laboratories. Individual research problems with emphasis on methodological/procedural experience and experimental design. May be repeated twice for credit.—I, II, III, II, III.) Kaplan, McNally

221A. Physical Biochemistry (4)
Lecture—4 hours. Prerequisite: Biological Sciences 103; Chemistry 107B-108 and 128C, 129C or 118C or the equivalents. Biochemical thermodynamics and chemical and physical properties of biomacromolecules, including enzyme kinetics and methods for determining size and shape of macromolecules.—I. (I.) Baldwin, Dieckmann, Schmid, Wilson

221B. Integration of Metabolism and Regulatory Phenomena (3)
Lecture—2 hours. Prerequisite: course 221A or consent of instructor. Regulatory phenomena that occur in control of metabolism: e.g., regulation at enzyme level; integration of metabolic pathways including homeostasis, hormonal influences, turnover of enzymes, comparative aspects of metabolism, regulation of amino acids and lipid metabolism in living systems.

221C. Molecular Biology (4)
Lecture—4 hours. Prerequisite: course 221A. Structure and organization of DNA and chromatin; DNA replication, repair and modification; transcription and RNA processing; protein biosynthesis and turnover; transcriptional and post-transcriptional control mechanisms; examples of the above from eukaryotic and prokaryotic cells, and viruses.—III. (III.) Baldwin, Brits, Hershey, Singer

221D. Cellular Biochemistry (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 221A. Molecular structure and biochemical function of cell membranes, cytoplasmic organization, organelle trafficking, signaling, mechanisms of intracellular transport, chromosome segregation and cell division with emphasis on biochemical principles.—II. (II.) Etzler, Privalsky, Scholy, Voss
241. Membrane Biology (3)
Lecture—3 hours. Prerequisite: Biological Sciences 102, 104, or consent of instructor. Advanced topics on membrane biochemistry and biophysics. How the unique properties of biomembranes relate to various roles in cell biology and physiology.—I. (I.) Crowe, Voss

242. Muscle Biophysics (4)
Lecture—2 hours; discussion—1 hour; term paper. Prerequisite: Biological Sciences 102, 103 and either Math 16B or 21B, or consent of instructor. The physical and chemical aspects of muscle function.—II. (II.) Baskin

248. Seminar in Cell Biology (2)
Seminar—2 hours. Prerequisite: consent of instructor. Discussion of recent literature on the physical and chemical aspects of organization and function of living systems, topics of current interest in ultrastructure and function of cells. Organization and functional properties of the cellular and molecular levels of biological systems. May be repeated for credit.—II. (II.) Scholery

251. Biology of Fertilization (3)
Lecture—2 hours; term paper. Prerequisite: Biological Sciences 104 or the equivalent, and consent of instructor. The morphology, physiology, and biochemistry of gametes, and the mechanism and consequences of their union. Offered in alternate years.—(I.) Hedrick, Nuclei, Nuclei

252. Cellular Basis of Morphogenesis (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 150, Development of form and structure: morphogenetic movement, mechanisms of cellular motility, cell adhesion, intercellular invasion, interaction of cells and tissues in development. Offered in alternate years.—(II.) Armstrong

253. Pattern Formation (4)
Lecture—3 hours; term paper. Prerequisite: course 150, Biological Sciences 104 or the equivalent, and consent of instructor. Morphology and mechanism of pattern formation beginning with the allocation of segregations. Emphasis will be on cell polarity, but some multicellular systems will also be covered. Offered in alternate years.

255. Molecular Mechanisms in Animal Development (3)
Lecture—1.5 hours; seminar—1.5 hours. Prerequisite: graduate standing or consent of instructor; introductory background in developmental biology and molecular genetics recommended. Analysis of the molecular mechanisms that control animal development, with a special focus on multiple levels of gene regulation. Experimental systems including Drosophila, amphibia, C. elegans, and mice will be discussed. Readings will be taken from current literature. Offered in alternate years.—III. Nakizl, L. Rose, Spicer

256. Cell and Molecular Biology of Cancer (2)
Lecture—1 hour; term paper. Prerequisite: course in cell or developmental biology (e.g., course 150, 141, 163, or Biological Sciences 104). Analysis at the cellular and molecular levels of the regulation of normal and neoplastic tissue growth; tumor dissemination; identification and characterization of oncogenic agents; characterization of oncogenes and tumor-suppressor genes.—I. (I.) Armstrong

257. Cellular Proliferation and Cancer Genes (5)
Lecture—3 hours; discussion—2 hours. Prerequisite: Biological Sciences 101, 103, 104 or the equivalent(s); Genetics 201C or course 221D recommended. Regulation of growth and division of animal cells. The cell cycle, oncogenes, retinoviruses and growth factors discussed in the context of normal and cancerous growth. Critical reading and writing are emphasized.—I. (I.) Oberbauer, Radke

258. Seminar in Development (2)
Seminar—2 hours. Prerequisite: consent of instructor. Reports and discussion on embryology, morphogenesis, and developmental mechanisms. May be repeated for credit.—II. (II.) Armstrong, Erickson

259. Literature in Developmental Biology (1)
Seminar—1 hour. Prerequisite: consent of instructor. Critical presentation and analysis of recent journal articles in developmental biology. May be repeated for credit. (SU grading only.)—I, II, III. (I, II, III.) Armstrong, Erickson

262. Transgenic Expression Systems (3)
Lecture—3 hours. Prerequisite: Biological Sciences 101 and course 161 or consent of instructor. The molecular biology underlying current transgenic expression systems. Strategies for achieving regulated expression and secretion of proteins. Survey of bacterial, yeast, insect cell, mammalian cell, plant and animal expression systems. Offered in alternate years.—II. Rodriguez

263. Biotechnology Fundamentals and Application (2)
Lecture—2 hours. Prerequisite: Biological Sciences 101, 102, Microbiology 102, graduate student in good standing. To train graduate students interested in a biotechnology career track; to learn recombinant DNA, rate processes of biological systems, organization of bioreactor performance, practical issues in biotechnology, and some case studies of the development of biotechnology products and processes. Offered in alternate years.—II. Doi, Privalsky, Ryu

282. Biotechnology Internship (1-12)
Internship/laboratory—3-36 hours. Prerequisite: graduate student in good academic standing or consent of instructor. Research at a biotechnology company for a minimum of three months as part of the Designated Emphasis in Biotechnology. (SU grading only.)—I, II, III. (I, II, III.) Doi, Privalsky, Ryu

290C. Research Conference (1)
Discussion—1 hour. Prerequisite: graduate standing and consent of instructor. Presentations and critical discussions of faculty and graduate student research in molecular and cellular biology including biochemistry, genetics, and cell biology. May be repeated for credit. (SU grading only.)—I, II, III. (I, II, III.)

291. Current Progress in Molecular and Cellular Biology (1)
Seminar—1 hour. Prerequisite: graduate standing or consent of instructor. Seminars presented by guest lecturers on subject of their own research activities. May be repeated for credit. (SU grading only.)—I, II, III. (I, II, III.) Dieckmann

294. Current Progress in Biotechnology (1)
Seminar—1 hour. Prerequisite: graduate standing or consent of instructor. Seminars presented by guest lecturers on subjects of their own research activities. May be repeated for credit. (Same course as Chemical Engineering 294.) (SU grading only.)—I, II, III. (I, II, III.) Doi, Ryu

295. Literature in Molecular and Cellular Biology (1)

298. Group Study (1-5)
Variable—1-5 hours. Prerequisite: consent of instructor. (SU grading only.)

299. Research (1-12)

Professional Course

390. Methods of Teaching (1)
Discussion—1 hour. Prerequisite: graduate standing and consent of instructor. Practical experience in the methods and problems of teaching biochemistry/genetics/cell biology. Includes analysis of texts and supporting materials, discussion of teaching techniques, preparing for and conducting discussion and laboratory sections, formulating examinations under supervision of instructor. Participating in the teaching program required for Ph.D. May be repeated for credit. (SU grading only.)—I, II, III. (I, II, III.)
Medical Informatics (A Graduate Group)

Richard F. Walters, Ph.D., Chairperson of the Group
Group Office: 3057 Engineering II (530-752-3241; medinfo@cs.ucdavis.edu)

Faculty

F. Gorin, M.D., Ph.D., Professor (Neurology)

Graduate Advisors: F. Gorin (Neurology).

Preparation. The Group encourages applications from health professionals who
have had experience in the manipulation of clinical information. Basic qualifications
include a degree in a health-related field or the equivalent in work experience.
Background in a programming language is desirable but not required. Applicants
with extensive computer background but little knowledge of clinical information
would need to gain practical experience in dealing with clinical information to be
competitive in applying to the program.

Graduate Advisors: J. Case (Veterinary Medicine), M. Gertz (Computer Science),
F. Gorin (Neurology).

Courses in Medical Informatics (MDI)

Graduate Courses

202. Computer-Based Patient Records (4)
Lecture/discussion—3 hours; laboratory—3 hours. Prerequisite: consent of instruc-
tor. Conversion from paper-based to computer-based medical records, advantages,
disadvantages, barriers to conversion. Storage and representation of medical data
to facilitate, interpretation. Review of current computer-based medical record mod-
els and standards in data storage and transmission.—I. (I.)

207. Decision Support System (4)
Lecture/discussion—2 hours; laboratory—2 hours; independent study—2 hours.
Prerequisite: consent of instructor. Decision support system for medical application.
Knowledge and computer representation, review of existing decision support sys-
tem.—I. (I.)

208. Electronic Medical Data (4)
Lecture/discussion—2 hours; laboratory—4 hours. Prerequisite: consent of instruc-
tor. Electronic resources for medical practice, review of existing resources and
development of materials.—I. (I.)

209. Data Acquisition in Medicine and Veterinary Medicine (4)
Lecture/discussion—2 hours; laboratory/discussion—6 hours. Prerequisite: basic
proficiency in computer operation. Overview of the nature of medical/veterinary
data, methods for capturing and storing data in electronic formats. Data validation,
retrieval considerations.—I. (I.)

215. Beginning and Intermediate Programming in M (MUMPS) (3)
World Wide Web virtual lecture—10 hours. Project-oriented approach to funda-
amentals of programming in ANSI Standard M (MUMPS) language. Basic syntax,
Hierarchical file structure; arrays and string subscripts, indirection and extrinsic
functions. (S/U grading only.)—I, II, III. (I, II, III.) Walters

289A-I. Special Topics in Medical Informatics (1-5)
Lecture, laboratory, or combination. Prerequisite: consent of instructor. Special top-
ics in (A) Data Acquisition, (B) Electronic Medical Information, (C) Computer Based
Patient Records, (D) Decision Support, (E) Medical Image Analysis, (F) Database
May be repeated for credit when topic differs.—I, II, III. (I, II, III.) Walters

Quarter Offered: I=Fall; II=Winter; III=Spring; IV=Summer; 2001-2002 offering in parentheses.

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
Medicine, School of

Joseph Silva, Jr., M.D., Dean of the School
James J. Castles, M.D., Associate Dean
Thomas F. Anders, M.D., Executive Associate Dean
Fitz-Roy Curry, Ph.D., Associate Dean
Faith T. Fitzgerald, M.D., Assistant Dean
Vijaya K. Kumari, M.B.B.S., Ph.D., Assistant Dean
Ernest L. Lewis, M.D., Associate Dean
Brian O'Neill, M.D., Assistant Dean
Dean's Office, Medical Sciences 1C (530-752-0331)
World Wide Web: http://www-med.ucdavis.edu

Faculty
Deborah Ablin, M.D., Associate Professor (Radiology)
Mark Agius, M.D., Associate Professor (Neurology)
Timothy Albertson, M.D., Ph.D., Professor (Internal Medicine, Pharmacology)
Michelle Algarin, M.D., Assistant Clinical Professor (Dermatology)
Roblee Allen, M.D., Associate Professor (Internal Medicine)
David Amaral, Ph.D., Professor (Psychiatry)
Eugenio Amparo, M.D., Associate Professor (Radiology)
Ezra A. Amsterdam, M.D., Professor (Internal Medicine)
Thomas L. Anders, M.D., Professor (Psychiatry)
John Anderson, M.D., Assistant Professor (Surgery)
Joseph Antognini, M.D., Associate Professor (Anesthesiology and Pain Medicine)
Thomas Aoki, M.D., Professor (Internal Medicine)
Horacio Asbun, M.D., Assistant Professor (Surgery)
Anitha Ayyalapu, M.B.B.S., Assistant Clinical Professor (Anesthesiology and Pain Medicine)
Sarah Babine, M.D., Assistant Clinical Professor (Psychiatry)
Huong Bach, M.D., Associate Clinical Professor (Internal Medicine)
Aaron Bair, M.D., Assistant Clinical Professor (Internal Medicine)
Naomi Balaban, Ph.D., Assistant Adjunct Professor (Pathology)
Peter Barglow, M.D., Professor (Psychiatry)
Peter Barry, Ph.D., Assistant Adjunct Professor (Pathology)
Sue Barton, Ph.D., Associate Clinical Professor (Family and Community Medicine)
Felix Battistella, M.D., Associate Professor (Surgery)
Brian Bay, Ph.D., Assistant Adjunct Professor (Orthopaedic Surgery)
Kathleen Baynes, Ph.D., Associate Professor (Neurology)
Blaine L. Beam, Ph.D., Professor (Medical Microbiology and Immunology)
Carol Beatty, M.D., Associate Clinical Professor (Radiology)
Kenneth Beck, Ph.D., Assistant Professor (Cell Biology and Human Anatomy)
Dennis J. Beckley, M.D., Associate Professor (Neurology)
Mahamoud Benbarka, M.D., Associate Professor (Internal Medicine)
Daniel R. Benson, M.D., Professor (Orthopaedic Surgery)
Ramón Berguer, M.D., Associate Professor (Surgery)
Herbert Berkoff, M.D., Professor (Surgery)
Robert Bernman, Ph.D., Professor (Neurology and Neurosurgery)
Klea D. Bertakis, M.D., Professor (Family and Community Medicine)
John Bishop, M.D., Associate Professor (Pathology)
F. William Blaisdell, M.D., Professor (Surgery), Academic Senate Distinguished Teaching Award
Dean Blumberg, M.D., Associate Professor (Pediatrics)
Nina Boe, M.D., Assistant Clinical Professor (Obstetrics and Gynecology)
James E. Bogdan, M.D., Professor (Neurological Surgery)
Hugo G. Bogren, M.D., Professor (Radiology, Internal Medicine)
Richard Bold, M.D., Assistant Professor (Surgery)
William J. Bummer, M.D., Professor (Internal Medicine)
Ann Bonham, Ph.D., Associate Professor (Internal Medicine, Pharmacology)
John Boone, Ph.D., Professor (Radiology)
Mark Borden, M.D., Assistant Clinical Professor (Internal Medicine)
Constance Bowe, M.D., Associate Professor (Neurology)
Christopher Bowles, M.D., Assistant Professor (Internal Medicine)
Stephen Boyers, M.D., Professor (Obstetrics and Gynecology)
E. Morton Bradbury, Ph.D., Professor (Biological Chemistry)
James Brandt, M.D., Associate Professor (Ophthalmology)
Catherine Brennan, M.D., Assistant Clinical Professor (Psychiatry)
Eileen Brenlin, R.N., D.N.S.C., Assistant Adjunct Professor (Internal Medicine)
Hilary Brodie, M.D., Ph.D., Associate Professor (Dentistry)
James Brunberg, M.D., Professor (Radiology)
Alan Buckpitt, Ph.D., Professor (Epidemiology and Preventive Medicine)
Michael Buonocore, M.D., Ph.D., Associate Professor (Radiology)
Lavijay Butani, M.D., Assistant Professor (Pediatrics)
Robert Byrd, M.D., M.P.H., Assistant Professor (Pediatrics)
Peter M. Cala, Ph.D., Professor (Human Physiology)
Edward J. Callahan, Ph.D., Professor (Family and Community Medicine)
Robert D. Cardiff, M.D., Ph.D., Professor (Pathology), Academic Senate Distinguished Teaching Award
Richard C. Carlsen, Ph.D., Professor (Human Physiology)
James R. Carlson, Ph.D., Associate Professor (Pathology, Internal Medicine)
Jeffrey Caspar, M.D., Assistant Clinical Professor (Ophthalmology)
James J. Castles, Jr., M.D., Professor (Internal Medicine)
Gabrielle Cerda, M.D., Assistant Clinical Professor (Psychiatry)
Celia Chang, M.D., Assistant Professor (Neurology)
Caroline Chantry, M.D., Assistant Professor (Pediatrics)
Anthony Cheung, Ph.D., Adjunct Professor (Pathology)
Philip Choo, M.D., Assistant Professor (Ophthalmology)
Michael Choy, M.D., Associate Professor (Pediatrics)
Scott Christensen, M.D., Assistant Clinical Professor (Internal Medicine)
Ronald Y. Chuang, Ph.D., Professor (Pharmacology)
Terry L. Coates, M.D., Assistant Professor (Radiology)
Stuart H. Cohen, M.D., Associate Professor (Internal Medicine)
Paul Cox, M.D., Assistant Clinical Professor (Psychiatry)
Carroll E. Cross, M.D., Professor (Internal Medicine, Human Physiology)
Fitz-Roy E. Curry, Ph.D., Professor (Human Physiology)
John Dainymple, M.D., Assistant Professor (Obstetrics and Gynecology)
Satya Dandekar, Ph.D., Professor (Internal Medicine)
Saki Das, M.D., Professor (Urology)
Robert C. Davidson, M.D., M.P.H., Associate Professor (Family and Community Medicine)
Brian Davis, M.D., Assistant Professor (Physical Medicine and Rehabilitation)
Michael De Gregorio, Pharm. D., Associate Professor (Internal Medicine)
Ralph Delius, M.D., Associate Professor (Surgery)
Sally J. DeNardo, M.D., Professor (Internal Medicine)
Thomas A. Depner, M.D., Professor (Internal Medicine)
Lawrence Derbes, M.D., Assistant Clinical Professor (Internal Medicine)
Linda Derbes, M.D., Assistant Professor (Surgery and Anesthesiology)
Robert W. Derlet, M.D., Professor (Internal Medicine)
Karl deVere White, M.D., Professor (Urology)
Deborah Diercks, M.D., Assistant Professor (Internal Medicine)
Robert Dimand, M.D., Associate Professor (Surgery)
Bori Don, M.D., Associate Clinical Professor (Internal Medicine)
Paul J. Donald, M.D., Professor (Otolaryngology)
Karen Doyle, M.D., Ph.D., Associate Professor (Otolaryngology)
Nina Drnkar, Ph.D., Associate Adjunct Professor (Psychology)
Jonathan Ducore, M.D., Associate Professor (Pediatrics)
John Earle, M.D., Professor (Radiation Oncology)
Jamie Eberling, Ph.D., Assistant Adjunct Professor (Neurology)
Benjamin Edwards, Ph.D., Associate Adjunct Professor (Neurosurgery)
Robert Elron, M.D., Professor (Neurology)
William G. Ellis, M.D., Professor (Pathology, Neurology)
Maria Enrione, M.D., Assistant Professor (Pediatrics)
Kent L. Erickson, Ph.D., Professor (Human Anatomy)
Amy Ernst, M.D., Associate Professor (Internal Medicine)
Christopher Evans, M.D., Assistant Professor (Anesthesiology)
Robert Fairclough, M.D., Associate Professor (Neurology)
Martina Falt, M.D., Assistant Clinical Professor (Psychiatry)
Kathy Feng, Ph.D., Assistant Professor (Dermatology)
Linda Ferris, M.D., Assistant Professor (Orthopaedic Surgery)
Susan Field, M.D., Associate Clinical Professor (Obstetrics and Gynecology)
Walter Finkbeiner, M.D., Ph.D., Professor (Pathology)
Christopher Finkemeier, M.D., Assistant Professor (Orthopaedic Surgery)
Scott Fishman, M.D., Associate Professor (Anesthesiology and Pain Medicine)
Faith T. Fitzgerald, M.D., Professor (Internal Medicine)
Paul G. FitzGerald, Ph.D., Professor (Human Anatomy), Academic Senate Distinguished Teaching Award
Neil Fleming, M.D., Ph.D., Associate Professor (Anesthesiology and Pain Medicine)
Neil M. Flynn, M.D., Professor (Internal Medicine)
David Foulke, M.D., Associate Professor (Surgery)
Garrett E. Fouke, M.D., Professor (Internal Medicine)
Dennis Fung, M.D., Professor (Anesthesiology and Pain Medicine)
Brian Gallay, M.D., Ph.D., Assistant Professor (Internal Medicine)
David R. Gandara, M.D., Professor (Internal Medicine)
Sauml Gang, M.D., Assistant Clinical Professor (Internal Medicine)
Regina Gandour-Edwards, M.D., Associate Professor (Obstetrics and Gynecology)
Robert J. Garcia, M.D., Assistant Professor (Internal Medicine)
Christopher Gardner, Ph.D., Assistant Adjunct Professor (Epidemiology and Preventive Medicine)
Rebecca Gelber, Ph.D., Assistant Clinical Professor (Internal Medicine)
Eugene Gerschovich, M.D., Associate Professor (Radiology)
M. Eric Gershwin, M.D., Professor (Internal Medicine)

Quarter Offered: I=Fall; II=Winter; III=Spring; IV=Summer, 2001-2002 offering in parentheses.

General Education (GE) credit: ArHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
Courses in the School of Medicine

Curriculum for the School of Medicine

The curriculum for the M.D. degree at the UC Davis School of Medicine is a four-year program providing comprehensive training for the practice of medicine. It offers a blend of basic science training and clinical experience with opportunities for research. While the first two years emphasize the basic science basis of medicine, the student is exposed even from the onset to questions of patient management, thus providing a natural transition from the entry pregraduate training into the clinical training of the final two years.

The first-year program is for three quarters, beginning in the fall. The basic sciences (anatomy, physiology, biochemistry, histology, endocrinology, neurosciences, immunology, general pathology) are blended with social sciences (the behavioral aspects of medicine), and students are introduced to the art of communicating with patients, and emergency medicine.

The second-year program is for four quarters, but with the Summer Quarter abbreviated to six weeks. The Summer Quarter provides a transition between basic and clinical sciences with the presentation of systematic pathology, and courses on the integumentary system and reproductive system. In the remaining three quarters, the students complete their training in basic sciences (pharmacology, microbiology) and are then, from an organ system approach, presented the pathophysiologic basis of disease (endocrine, hematopoietic/lymphoreticular, gastrointestinal, nutrition, musculoskeletal, neuromuscular, respiratory, nephrology). During the second year, students continue training in physical diagnosis and are presented with issues in community health, occupational medicine, psychopathology, and human sexuality.

The third-year program is comprised of required clerkship rotations in the clinical specialties: eight weeks each of surgery, medicine, obstetrics/gynecology, pediatrics, primary care plus (four- to six-week blocks, two weeks each for obstetrics and urology) and psychiatry. Either obstetrics/gynecology or psychiatry may be deferred until the fourth year.

The fourth year features built-in flexibility to allow students to begin to individualize their medical careers. All students are required to take two weeks of physical medicine and rehabilitation, two weeks of neurology, two weeks of ophthalmology, two weeks of otolaryngology, four weeks of emergency care and 18 weeks of clinical electives. A two-week course on responsibilities of medical practice (medical ethics, jurisprudence and medical economics) is also required. The fourth-year curriculum also provides 12 weeks of undesignated time.

To satisfy the M.D. degree program, the student must successfully complete the required course work and clerkships. Students who enter the program with advanced training in one of the areas required for the program are permitted to substitute required courses with electives of equal credit. In addition to the fourth-year elective program available, there is some opportunity for selecting electives during the first two years, in particular during the interim period between the first and second years.

Coordination with other Advanced Degree Programs

The curriculum for the M.D. degree provides flexibility and encourages coordination with other advanced degree programs (Ph.D., M.S., M.A., M.B.A., and M.P.H.). These programs offer a wide breadth of study areas and draw upon the considerable expertise of the entire campus faculty. In addition, the UC Berkeley School of Public Health offers an M.P.H. program in conjunction with the M.D. program.

School of Medicine administrators enthusiastically support students interested in pursuing advanced degree programs. The dual-degree program for the M.D./Ph.D., M.D./M.B.A. and M.D./M.P.H. is designed to train physicians to meet, respond to and solve the broad diversity of problems and dilemmas facing current and future health care. Students are encouraged to seek degrees in any of the campuswide Ph.D. programs, including those in social sciences and humanities. The UC Davis School of Medicine offers two competitive fellowships each year to students enrolled in the M.D./Ph.D. program.

The Sierra Health Foundations MD/MBA Fellows Program attracts academically outstanding students who are committed to a career in health care leadership and who desire to remain in Northern California. Selected students will embark upon a six-year course that will result in a degree in Medicine from the UC Davis School of Medicine and an M.B.A. in Health Services Management from the UC Davis Graduate School of Management. Students receive funding for tuition and fees for the full six years of the program.

Required Curriculum for the M.D. Degree

The following listing is the typical sequencing of all courses required for earning the M.D. degree. Course descriptions are given under the individual departmental course offerings.

First-Year Required Courses

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Biological Chemistry 410A, Molecular and Cell Biology</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td>Family Practice 400A, Introduction to Patient Evaluation</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Cell Biology and Human Anatomy 400, Developmental Anatomy</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Psychiatry 401, Medicine and the Mind</td>
<td>2</td>
</tr>
</tbody>
</table>

Quarter I: Fall

Quarter II: Winter

Quarter III: Spring

Quarter IV: Summer

Second-Year Required Courses

Quarter: Fall

Quarter: Spring

Quarter: Summer

Quarter: Winter

Third- and Fourth-Year Required Courses

Third-Year Clerkships

Fourth-Year Requirements

Clinical Selectives

The fourth-year curriculum also allows for 12 weeks of undesignated time (electives, interviews, free time).
Medical Sciences (MDS)

Lower Division Course

99. Special Study in Medicine for Undergraduates (1-5)
Independent study.—3-15 hours. Prerequisite: consent of instructor. Participate in research projects relating to medicine with faculty in the School of Medicine. (S/U grading only.)—I, II, III, IV, (I, II, III, IV) Kumari

Upper Division Course

192. Medical Education Internship for Advanced Undergraduates (1-12)
Internship.—3-36 hours. Prerequisite: competency with computers. Enrollment dependent on availability of intern positions. Participate in projects related to current curriculum in support of curriculum for M.D. degree. Gain work experience and appreciation for innovative approaches to learning in basic and clinical sciences of medical education. May be repeated for credit for up to 12 units. (P/NP grading only.)—I, II, III, IV, (I, II, III, IV) Kumari

Professional Courses

400. Application of Medical Principles (1)
Discussion.—1.5 hours. Prerequisite: student in the School of Medicine. Application of multidisciplinary basic, social, and clinical science concepts to clinical cases in small group discussions facilitated by medical school faculty. Evaluation of professional competencies, attitudes and skills needed in the practice of clinical medicine.—II, (II, III, IV)

400F. Application of Medical Principles (1)
Discussion.—1.5 hours. Prerequisite: second year medical student. Application of multidisciplinary basic, social and clinical science concepts to clinical cases in small group discussions facilitated by medical school faculty. Evaluation of professional competencies, attitudes and skills needed in the practice of clinical medicine.—IV (IV)

400J. Application of Medical Principles (1)
Discussion.—1.5 hours. Prerequisite: third year medical student. Application of multidisciplinary basic, social and clinical science concepts to clinical cases in small group discussions facilitated by medical school faculty. Evaluation of professional competencies, attitudes and skills needed in the practice of clinical medicine.—II, (II, III, IV)

400K. Application of Medical Principles (1)
Discussion.—1.5 hours. Prerequisite: third year medical student. Application of multidisciplinary basic, social and clinical science concepts to clinical cases in small group discussions facilitated by medical school faculty. Evaluation of professional competencies, attitudes and skills needed in the practice of clinical medicine.—III, (III)

401. Applications of Computers to Medical Practice (2)
Autotutorial.—2 hours. Prerequisite: enrollment in medical school. Proficiency in computer applications relative to practice of medicine, with emphasis on e-mail, literature searching, file transfer, and hospital information services. Course given online, at home or in lab, time and place determined by student. (SU grading only.)—I, II, III, IV, (I, II, III, IV) Huntley

413. Doctoring (1-2)
Fieldwork.—1-2 hours; independent study.—1-2 hours; discussion.—0.25 hours. Prerequisite: medical clearance for patient contact and consent of instructor. Clinically oriented experiential learning combined with mentor-directed discussion and self-directed research on a selected medical topic. Evaluation of professional competencies, attitudes and skills needed in the practice of clinical medicine as well as in-depth, self-directed learning. (SU grading only; deferred grading only pending completion of sequence.)—I, II, III, IV, (I, II, III, IV) Strong

440. Responsibilities of Medical Practice (3)
Lecture/discussion.—60 hours total. Prerequisite: approval by Committee on Student Evaluation and Promotion. Students will address nonbiological components of the patient-physician relationship (medical ethics, medical jurisprudence, medical economics, and social justice). Students will learn to critically explore social, ethical, and legal issues arising in medical practice. (SU grading only.)—I, II, III, IV, (I, II, III, IV)

441. Combined Ophthalmology and Otolaryngology Clerkship (6)
Clinical activity.—4 weeks. Prerequisite: approval by Committee on Student Promotion and Evaluation. Fundamental knowledge of ophthalmology and otolaryngology for the treatment of eye, ear, nose and throat problems at a level of training of general medical student. (SU grading only.)—I, II, III, IV, (I, II, III, IV) Brandt, Strong

450. Introduction to UCS Medical Center (1)
Seminar.—20 hours total. Prerequisite: second-year medical student. Designed to assist medical student in transition from classroom to hospital setting. (SU grading only.)—III, (III)

480. Insights in Clinical Research (1)
Lecture.—1 hour. Prerequisite: medical students in good standing. Clinical research presented by School of Medicine faculty; overview of pertinent issues, including medical ethics, human subjects protocols, case control methods, etc. May be repeated for credit when topic differs. (SU grading only.)—II, (II, Kumari

481. Insights into Clinical Specialties (1)
Lecture.—1 hour. Prerequisite: medical student in good standing. Exposure to various medical specialties, their residency programs and ways in which medical students can prepare for and improve their candidacy for such programs. (SU grading only.)—II, (II, Kumari

489. Directed Studies (9)
Independent study.—40 hours weekly. Prerequisite: individual directed studies in extended preparation for USMLE Part I, and/or as required by Promotion Board. Independent studies to review material from Years I and II in the curriculum in preparation for taking USMLE Part I in the fall, and for remediation course work directed by the Promotion Board. Students are expected to spend 8 to 12 hours per day on these studies. Faculty consultation and tutoring available on individual basis. May be repeated for credit. (SU grading only.)—I, II, III, IV, (I, II, III, IV) Lewis

495. Medicine Literature Review (1-9)
Discussion.—3-37 hours. Prerequisite: medical student in good academic standing and permission of the Associate Dean of Curricular Affairs. Independent study: topics for selection include, but are not restricted to, medical ethics, economics and jurisprudence, culture and medicine, ethnicity and medicine, gender and medicine, history of medicine, health manpower, and medical education. A prepared paper on the selected topic will be required. (SU grading only.)—I, II, III, IV, (I, II, III, IV) Kumari

499. Research in Medical Education and Curriculum Development (4-9)
Independent study.—10-36 hours. Prerequisite: medical student in good standing and competency with computers. Research and development of an independent project related to expanding computer-assisted resources in support of the M.D. curriculum at UC Davis. (SU grading only.)—I, II, III, IV, (I, II, III, IV) Kumari

Departmental Courses:

Anesthesiology and Pain Medicine (ANE)

Upper Division Course

192. Internship in Anesthesiology (1-6)
Internship.—3 to 18 hours; final report. Prerequisite: upper division standing; approval of project prior to period of internship by preceptor. Supervised work experience in anesthetists and related fields. (P/NP grading only.)—I, II, III, IV, (I, II, III, IV)

Professional Courses

460. Anesthesiology Clinical Clerkship (3-18)
Full-time clinical activity (3 full days per unit). Prerequisite: medical student. In-depth exposure to anesthesia through informal lectures and mentoring by anesthesiologists. Emphasis on understanding and applying anesthetic principles in managing administration of general, regional, and specialized areas.—I, II, III, IV, (I, II, III, IV)

462. Anesthesiology (3)
Clinical activity.—full time. Prerequisite: medical student (geared toward second and third-year students). Exposure to anesthesia through combination of informal lectures and mentoring by anesthesiologists. Anesthetic procedures, pharmacology, and basic anesthetic principles.—I, II, (II, III, IV) Kantor

463. Multidisciplinary Pain Management (6)
Clinical Activity.—30 hours; lecture/discussion.—10 hours. Prerequisite: senior medical student in good standing. Senior clerkship to expose students to all facets of treating pain in all aspects of clinical care: outpatient and inpatient settings, acute and chronic pain, end of life issues, pediatrics, rehabilitation, etc. Daily clinics, rounds, and lectures. (SU grading only.)—I, II, III, IV, (I, II, III, IV) Fishman

480. Brief Introduction to Clinical Anesthesiology and Chronic Pain Management (3)
Clinical activity.—25-30 hours (two weeks). Prerequisite: second-year medical student. Daily experience in clinical anesthesiology at the preoperative screening unit, operating room, post anesthesia care unit, chronic pain management clinic with daily clinical correlation case discussions, and one-on-one interaction with faculty anesthesiologists. (SU grading only.)—I, II, (II, III, IV) Jahn, Kantor

496. Individual or Group Study (1-5)
Discussion.—1-5 hours; laboratory.—2-10 hours. Prerequisite: interns and residents with consent of instructor. Directed reading and discussion and/or laboratory investigation on selected topics.—I, II, III, IV, (I, II, III, IV)

498. Anesthesiology Research (4-18)
Laboratory.—12-54 hours. Prerequisite: third- or fourth-year medical students, advanced standing undergraduate and veterinary medicine students; or consent of instructor. Problems in clinical and/or laboratory research. (SU grading only for medical students.)—I, II, III, IV, (I, II, III, IV)

Biological Chemistry (BCM)

Lower Division Course

92. Internship in Biological Chemistry (1-12)
Internship.—3-36 hours; final report. Prerequisite: consent of instructor. Supervised work experience in biological chemistry and related fields. (P/NP grading only.)

Upper Division Courses

192. Internship in Biological Chemistry (1-12)
Internship.—3-36 hours; final report. Prerequisite: upper division standing; approval of project prior to internship by preceptor. Supervised work experience in Biological Chemistry and related fields. (P/NP grading only.)

196. Group Study (1-5)
Prerequisite: consent of instructor. For undergraduate students desiring to explore particular topics in depth. Lectures and conferences may be involved. (P/NP grading only.)
198. Special Study for Advanced Undergraduates (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)

Graduate Courses
209. Prostaglandins/Leukotrienes and Related Lipids (2)

214. Molecular Medicine (1)
Discussion—1 hour. Prerequisite: course in molecular genetics, molecular and cellular biology, biochemistry or the equivalent. Series of lectures on current topics of molecular genetics related to medicine. Material stresses concepts derived from genetic research which have some potential clinical relevance. (Same course as course 414.) (SU grade only.)—II. (II.) Seldin

217. Molecular Genetics of Fungi (3)
Lecture—3 hours. Prerequisite: graduate standing in a biological science; Biochemistry 101B; Genetics 100, 102A, Botany 119, Plant Pathology 130, 215X. Microbiology 215 recommended. Advanced treatment of molecular biology and genetics of filamentous fungi and yeasts, including gene structure, organization and regulation; secretion; control of reproduction; molecular evolution; transformation; and gene manipulation. Offered in alternate years. (Same course as Plant Pathology 217.)—I. (II.) Holland, Tyler

222. Mechanisms of Translational Control (2)
Lecture—1 hour; discussion—1 hour. Prerequisite: Biochemistry 201C or consent of instructor. Molecular mechanisms of protein synthesis and translational control in eukaryotic cells, with emphasis on mammalian cells and their viruses. An advanced graduate-level treatment of topics of current interest, with readings and discussion of primary papers from the literature. Offered in alternate years.—II. Hershey

230. Practical NMR Spectroscopy and Imaging (1)
Lecture—1 hour. Prerequisite: Chemistry 107A-107B, Physics 5A-5B-5C or 9A-9B-9C, or consent of instructor. Basic theory, experimental methods, and instrumentation of NMR. Enables students to understand NMR spectroscopy and imaging experiments. (SU grade only.)—I. (I.)

231. Biological Nuclear Magnetic Resonance (3)
Lecture—3 hours. Prerequisite: Molecular and Cellular Biology 221A or the equivalent or consent of instructor. Principles and applications of magnetic resonance in biomedicine. Fundamental concepts and the biophysical basis for the magnetic resonance applications in areas of tissue characterization/imaging, metabolic regulation, and cellular bioenergetics. (Same course as Biophysics 231.)—II. (II.) Jue

232. Membrane Biochemistry and Biophysics (2)
Lecture—2 hours. Prerequisite: Molecular and Cellular Biology 221D. Advanced topics in membrane biochemistry with emphasis on the structure and function of membrane proteins and lipids. Offered in alternate years. Not open for credit to students who have completed Molecular and Cellular Biology 221D.—(III.) Voss

291. Seminar in Genetic Approaches to Pathogenesis of Human Disease (1)
Seminar—1 hour. Prerequisite: student in Genetics Graduate Group of consent of instructor. Current genetic approaches to understanding the pathogenesis of disease and mammalian development presented and critically discussed by faculty, fellows and students. Topics include Mendelian and non-Mendelian diseases, imprinting, homologous recombination, statistical methods, genetic epidemiology, cell cycle dependent expression. (Same course as course 291.) (SU grade only.)—I, II, III, IV. (I, II, III, IV.)

296. Group Study (1-5)
Prerequisite: consent of instructor. For graduate students desiring to explore particular topics in depth. Lectures and conferences may be involved.

299. Research (1-12)
Prerequisite: consent of instructor. (S/U grading only.)

Professional Courses
410A. Molecular and Cell Biology (4.5)
Lecture—5 hours. Prerequisite: approval by Committee on Student Evaluation and Promotion. Basic biochemistry of proteins and nucleic acids is presented, followed by molecular genetics, regulation of gene expression, enzymes and structural proteins. Applications to clinically relevant systems are emphasized, particularly sickle cell anemia, thalassemias, immunoglobulins and monoclonal antibodies, oncogenes, cell proliferation control. (Same course as course 414.)—I. (II, II, III, IV) Matthews, Holland

410B. Cell Biology and Metabolism (3.5)
Lecture—4 hours (for 9 weeks). Prerequisite: approval by Committee on Student Evaluation and Promotion. Introduction to transport of small molecules and ions across membranes followed by study of energy metabolism and biosynthetic processes in humans. Membrane receptors are considered as they relate to basic metabolic processes. Correlations to human disease are made throughout.—II. (II.) Jue, Troy

414. Molecular Medicine (1)
Discussion—1 hour. Prerequisite: course in molecular genetics, molecular and cellular biology, biochemistry or the equivalent. Series of lectures on current topics of molecular genetics related to medicine. Material stresses concepts derived from genetic research which have some potential clinical relevance. (Same course as course 214.) (SU grading only.)—II. (II.) Seldin

416. Mammalian Endocrinology and Homeostasis (4.5)
Lecture—4 hours; discussion—1 hour; student presentation. Prerequisite: approval by Committee on Student Evaluation and Promotion. Physiological and biochemical properties of the mammalian endocrine system at both the cellular and systemic level. Principles that regulate homeostasis, especially in organ-organ interrelationships, metabolites, and minerals. Reproductive endocrinology. (Same course as Human Physiology 418.)—III. (III.)

419. Introduction to Clinical Nutrition (3)
Lecture—5 hours; lecture/discussion—1.5 hours; laboratory/discussion—0.5 hour for 4 weeks. Prerequisite: approval by Committee on Student Evaluation and Promotion. 4-hour course that integrates basic and clinical concepts of human nutrition. The course emphasizes nutrient homeostasis and regulation and current perspectives on the role of nutrition in disease. Format is partly lectures, partly discussion/case study. (Same course as Internal Medicine 419.)—III. (III.) Primmey, Ruck Ke

491. Seminar in Genetic Approaches to Pathogenesis of Human Disease (1)
Seminar—1 hour. Prerequisite: student in Genetics Graduate Group of consent of instructor. Current genetic approaches to understanding the pathogenesis of disease and mammalian development presented and critically discussed by faculty, fellows and students. Topics include Mendelian and non-Mendelian diseases, imprinting, homologous recombination, statistical methods, genetic epidemiology, cell cycle dependent expression. (Same course as course 291.) (SU grade only.)—I, II, III, IV. (I, II, III, IV.)

497T. Tutoring in Biological Chemistry (1-5)
Tutoring—3-15 hours. Prerequisite: advanced standing or consent of instructor. Assist instructor by tutoring medical students in preparation for one of the departmental courses that is a component of the required curriculum of the School of Medicine. (SU grading only.)

498. Group Study (1-5)
Prerequisite: medical students with consent of instructor. (SU grading only.)

499. Research (1-12)
Prerequisite: medical students with consent of instructor. (SU grading only.)

Cell Biology and Human Anatomy (CHA)
Upper Division Courses
101. Human Gross Anatomy (4)
Lecture—4 hours. Prerequisite: Biological Sciences 1B; concurrent enrollment in course 101L strongly recommended. A detailed study of the gross anatomical structure of the human body, with emphasis on function and clinical relevance to students entering health care professions. GE credit: SciEng.—II. (II.) Gross

101L. Human Gross Anatomy (3)
Laboratory—6 hours; lecture/discussion—3 hours. Prerequisite: course 101 (may be taken concurrently). A detailed study of prosected human cadavers in small group format with extensive hands-on experience. GE credit with concurrent enrollment in 101L. Wrt.—II. (II.) Gross

192. Internship in Morphology (1-12)
Internship—3-36 hours; final report. Prerequisite: upper division standing; laboratory science experience including some chemistry; approval of project by preceptor prior to period of internship. Experience of supervised internship in research laboratories of members of the department. (P/NP grading only.)

197T. Tutoring in Cell Biology and Human Anatomy (1-5)
Discussion—1 hour; laboratory—6-9 hours. Prerequisite: completion of course 101 with a grade of B or better and consent of instructor. Provides laboratory instruction in gross and microscopic human anatomy, with small groups of undergraduates under the supervision of the instructor. (SU grading only.)

198. Directed Group Study (1-5)
Discussion—1-10 hours. Prerequisite: consent of instructor. Directed reading, discussion, and/or laboratory experience on selected topics. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)

Graduate Courses
200. Gross Anatomy—Graduate Courses (9)
Lecture—8 hours, laboratory—12 hours. Prerequisite: approval by committee on student evaluation and promotion. Integrated presentation of developmental, gross, and radiologic anatomy. Four students assigned to cadaver and dissect entire body. Embryology and radiology are correlated with the dissections. Embryology is covered from implantation to birth.—I. (I.) Tucker

202. Human Microscopic Anatomy (5)
Lecture—3 hours; laboratory—6 hours. Examines the normal microscopic structure of the basic cells, tissues, and organs of the body. Lectures emphasize morphology and structure-function relationships. Accompanying laboratories involve analysis and identification of sectioned material at the light microscopic and ultrastructural levels.—II. (II.) Meezel

Quarter Offered: I=Fall; II=Winter; III=Spring; IV=Summer. 2001-2002 offering in parentheses.
General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
203. Neurobiology (5)
Lecture—5 hours; laboratory—3 hours. Prerequisite: two upper division or one gradu-
ate course in Neurobiology; consent of instructor. Not open to undergraduate stu-
dents. Gross and microscopic anatomy of the central nervous system; motor and
sensory pathways; neurophysiology and cognitive functions.—Ill. (III.) Kumari

290. Seminar (1)
Seminar—1 hour. Prerequisite: consent of instructor. (SU grading only)—I, II, III, IV.

290C. Research Group Conference (1)
Discussion—1 hour. Prerequisite: graduate student with research experience (may be
taken concurrently); consent of instructor. Discussion of problems, progress and
literature relevant to current research undertaken by laboratory groups in Human
Anatomy. (SU grading only)—I, II, III, IV.

292. Fertilization and Gamete Laboratory Critique (1)
Discussion—1 hour. Prerequisite: consent of instructor. Critical evaluation of current
journal articles dealing with cell biology and biochemistry of gametes and fertiliza-
tion. Selected papers will be presented and discussed in detail by students and fac-
ulty. May be repeated for credit. (SU grading only)—I, II, III, IV. Meizel

298. Advanced Group Study (1-5)
Prerequisite: consent of instructor.

299. Research (1-12)
Prerequisite: consent of instructor. (SU grading only.)

Professional Courses

400. Developmental, Gross, and Radiologic Anatomy (9)
Lecture—6 hours; laboratory—12 hours. Prerequisite: approval by Committee on
Student Evaluation and Promotion. Integrated presentation of developmental, gross,
and radiologic anatomy. Four students are assigned to a cadaver and dissect the
entire body. Embryology and radiology are correlated with the dissections. Embry-
ology is covered from implantation to birth.—I. (I.)

402. Human Microscopic Anatomy (5)
Lecture—3 hours; laboratory—6 hours. Prerequisite: approval by Committee on
Student Evaluation and Promotion. Examines the normal microscopic structure of the
basic cells, tissues, and organs of the body. Lectures emphasize morphology and
structure-function relationships. Accompanying laboratories involve analysis and
identification of section material at the light microscopic and ultrastructural levels.—
II. (II.)

403. Neurobiology (5)
Lecture—4 hours; laboratory—3 hours. Prerequisite: approval by Committee on Student
Evaluation and Promotion. Physiology and anatomy of the normal human ner-
vous system in an integrated format. Focus on gross and microscopic brain
structure, functional neurounatomy, and the physiology, biochemistry, and pharma-
cology of the nervous system. (Same course as Human Physiology 403.)—III. (III.)

497T. Tutoring in Human Anatomy (1-5)
Tutoring—3-15 hours. Prerequisite: advanced standing or consent of instructor.
Assist instructor by tutoring medical students in preparation for one of the depart-
mental courses that is a component of the required curriculum for the School of
Medicine. (SU grading only.)

498. Advanced Group Study (1-12)
Prerequisite: medical students, interns, and residents with consent of instructor.
Directed reading and group discussion and/or laboratory experience on selected
topics. (SU grading only.)

499. Research (1-12)
Prerequisite: consent of instructor. (SU grading only.)

Clinical Psychology (CPS)

Graduate Course

299. Research (1-12)
Prerequisite: graduate student in Clinical Psychology or consent of instructor. Indi-
vidual or group research on selected topics. (SU grading only.)—Morrison

Dermatology (DER)

Upper Division Courses

192. Internship in Cutaneous Biology (1-4)
Internship—8-20 hours; final report. Prerequisite: upper division standing or consent
of instructor. Approval of project prior to internship by preceptor. Supervised work
experience involving research on the skin. (P/NP grading only.)—Isseroff

199. Special Study in Cutaneous Biology (1-4)
Prerequisite: advanced undergraduate standing and/or consent of instructor. Spe-
cial study by individual arrangement of specialized topics in biology of skin. May
be assigned readings, laboratory research or a combination. (P/NP grading only.)

Graduate Course

299. Research in Cutaneous Biology (1-12)
Laboratory—3-36 hours. Prerequisite: consent of instructor. Independent research
in cellular and biochemical mechanisms of cutaneous biology and pathology. (SU grading only.)

Professional Courses

420. Integumentary System (2)
Lecture/discussion—4 hours (for 6 weeks). Prerequisite: approval by Committee on
Student Evaluation and Promotion. Covers cell biology, pathology, and physical
diagnosis of the skin and is designed to prepare medical students for clinical ser-
vice. Recognition of normal variations, and common or important dermatoses is
emphasized. Patient demonstrations of select conditions are included.—IV. (IV.)

460. Dermatology Clinical Clerkship (6)
Clinical activity (patient/outpatient service)—40 hours for four weeks. Prerequisite:
completion of three years of medical school; or consent of instructor. Observation
and participation in dermatology clinics/practice and participation in Ward Rounds
and Dermatology Clinics at UC Davis Medical Center, Kaiser, and private practitioner

480. Insights in Dermatology (1-3)
Clinical activity—3-9 hours. Prerequisite: first- and second-year medical students in
good academic standing; consent of instructor. Clinical experience limited to
observation of delivery of dermatologic care and attendance at some conferences. (SU grading only)—I, II, III, IV. (I, II, III, IV.) Hutton

498. Special Topics in Clinical Dermatology (1-6)
Independent study—3-18 hours. Prerequisite: medical students with consent of
instructor. Individually arranged study of special topics in clinical dermatology deter-
mined by student and instructor. Assigned readings and/or clinical examination of
selected patients. (SU grading only.)

499. Research in Cutaneous Biology (1-12)
Laboratory—3-36 hours. Prerequisite: consent of instructor. Research, either labo-
atory or clinical, on ongoing projects within the department under supervision of
faculty. (SU grading only.)

Epidemiology and Preventive Medicine (EPP)
(Formerly courses in Community and International Health)

Lower Division Course

92. Internship in Community Health (1-12)
Internship—3-36 hours. Prerequisite: lower division standing; consent of instructor.
Students apply theory and concepts learned in the classroom through field work in
a community health agency. (P/NP grading only.)

Upper Division Courses

101. Perspectives in Community Health (3)
Lecture—3 hours. Prerequisite: undergraduate standing. Covers comprehensively the
responsibilities, obligations, roles and professional activities of various health
care disciplines in the community; provides students with perspectives on preven-
tive medicine in society.—Ill. (III.)

160. Health Education (1-5)
Lecture—1-3 hours; laboratory—3-15 hours. Prerequisite: consent of instructor.
Preparation for field work in the area of health education. Planning and presenta-
tion of programs on health issues. Peer counseling in the areas of sexuality and
alcohol/drug abuse. (P/NP grading only)—I, II, III, IV. (I, II, III, IV.)

180. Aging and Health (3)
Lecture—3 hours. Prerequisite: upper division standing and consent of instructor.
Emphasis on nature and determinants of health in the elderly. Current social and
personal strategies for enhancing and maintaining health in old age.—III. (III.)

188. Economics of Preventive Medicine (3)
Lecture—2 hours; discussion—1 hour. Assessment of the benefits and costs of propos-
sals to improve aggregate health of groups of people and the health of indi-
viduals. Issues include cigarette taxes, hazardous wastes, diet, exercise, and breast
cancer screening, among others.—III. (III.) Leigh

190C. Research Conference in Community and International Health (1)
Discussion—1 hour. Prerequisite: consent of instructor. Weekly conference on
research problems, progress, and techniques in Community and International
Health. Critical discussion of recent journal articles. May be repeated for credit. (P/NP grading only.)—I, II, III, IV. (I, II, III, IV.) Gold, Samuels, Haan

192. Internship in Community Health Practice (1-12)
Internship—3-36 hours. Prerequisite: upper division and graduate students; consent
of instructor. The student, through fieldwork in a community health agency, learns
to apply theory and concepts learned in the classroom. (P/NP grading only.)

198. Study in Community and International Health (1-5)
Prerequisite: undergraduate standing and consent of instructor. Study and experi-
ence for undergraduate students in any number of areas in community and inter-
national health. (P/NP grading only.)

199. Research in Community and International Health (1-5)
Prerequisite: undergraduate standing; consent of instructor. Student will work with
faculty member in areas of research interest, including but not limited to injury con-
trol, international health, health policy, occupational and environmental health, health
promotion and wellness, women’s health, and health demographics. (P/NP grading only.)
Graduate Courses

255. Human Reproductive Epidemiology (3)
Lecture—3 hours. Prerequisite: Preventative Veterinary Medicine 405, 406, Physics 220, Physiology 222 or equivalents, or consent of instructor. Human reproductive effects of risk factor disorders, examined from macro- and micro-environmental exposures in community and occupational settings, epidemiologic study designs and analyses. Offered in alternate years.—I (I.) Gold

288. Study in Community and International Health (1-5)
Prerequisite: graduate student in good academic standing and consent of instructor. Study and experience for graduate students in any number of areas in community and international health. (SU grading only.)

299. Research in Community and International Health (1-12)
Prerequisite: graduate standing; consent of instructor. Student will work with faculty member in areas of research interest, including but not limited to injury control, international health, health policy, occupational and environmental health, health promotion and wellness, women’s health, and health demographics. (SU grading only for graduate students.)

Professional Courses

402. Introductory Medical Spanish (2)
Lecture/discussion—2 hours. Prerequisite: medical student in good standing. Teaches the vocabulary needed to conduct a basic history and physical examination in Spanish. (SU grading only; deferred grading only, pending completion of sequence.)—I, II, III, IV Meizel

421. Principles of Epidemiology and Preventive Medicine (2.5)
Lecture—7.5 hours for 4 weeks; discussion—1.5 hours. Prerequisite: approval by Committee on Student Evaluation and Promotion. Fundamentals of epidemiologic and epideimiologic study design, including measures of morbidity, mortality, and risk. Occupational medicine component covers the evaluation of occupational illness, and specific examples of occupational diseases. Geriatrics component covers the comprehensive geriatric assessment, treatment issues, and the long-term care system.—I (I.) McCurdy

455. Multidisciplinary Clinical Preceptorship (4.5)
Clinical activity—full time (3 weeks). Prerequisite: second-year student in good academic standing. Students will be introduced to basic principals of geriatric health care and given opportunities for clinical observation and experience in a variety of facilities that serve older adults. Multidisciplinary nature of geriatrics will be emphasized. (SU grading only.)—IV (IV.)

460. Geriatrics in Community Health (6-12)
Discussion—4 hours; clinical activity—full time (4-8 weeks); clinical setting and community needs assessment. Prerequisite: fourth-year medical student. Opportunity to participate in state-of-the-art geriatric programs ranging from well elderly to severely infirm.—I, II, III, IV Haan

461. Clerkship in Community Health Group Practice (3-9)
Clinical activity—full time (6-8 weeks). Prerequisite: third- or fourth-year medical student. Overview of local community health in group practice situations. Students participate in treatment at several clinic sites in Yolo County. Topics include primary care, environmental health, maternal and child health, jail health, and preventive health care for the aged. (SU grading only)—I, II, III, IV (I, II, III, IV) Arevalo

465. Community Health Preceptorship (3-18)
Clinical activity—full time (2-12 weeks). Prerequisite: fourth-year medical student. Students participate at the California Department of Health Services in ongoing investigations into current public health problems, e.g., birth defects, cancer control, diabetes, hypertension, injury control, infectious diseases, aging, Alzheimer’s disease, and smoking and tobacco use control.—I, II, III, IV, I, II, III, IV (I, II, III, IV)

466. Occupational and Environmental Medicine Elective (6-12)
Clinical and laboratory experience—full time (4 to 8 weeks). Prerequisite: fourth-year medical student and consent of instructor. Participate in activities of Occupational and Environmental Health Unit. Major activity is involved in an epidemiologic research project of the University. Also participate in Ambulatory Occupational and Environmental Medicine Clinic at UCDMC Medical Center. (SU grading only)—I, II, III, IV (I, II, III, IV)

470. Clinical Selective in Occupational and Environmental Medicine (3)
Clinical activity—full time. Prerequisite: fourth-year medical students in good academic standing, with consent of instructor. Outpatient clinical experience in Occupational and Environmental Medicine at UCDCMC and in local industries. Participants will gain experience in evaluating occupational and environmental medical conditions, use of medical literature resources, the worker’s compensation system, and toxicological principles.—I, II, III, IV (I, II, III, IV)

480. Insights in Occupational and Environmental Medicine (1-3)
Clinical activity—3-9 hours. Prerequisite: first- or second-year medical student in good academic standing, consent of instructor. Students will observe and participate in research and clinical activities in occupational and environmental medicine which include conferences, occupational and environmental medicine clinical activities and field visits. Students develop and present small individual research projects. (Former course Occupational and Environmental Health 480.) (SU grading only)—I, II, III, IV (I, II, III, IV) Schenker

481. Senior Partnership (1-3)
Clinical activity—3-9 hours. Prerequisite: first- or second-year medical student or consent of instructor. Introduction to concepts of geriatric health care. Students are matched with elderly patients from the community for a project on health and aging; field experiences in clinical geriatrics; attendance at SOM lectures concerning geriatrics or the elderly patient. (Former course 480.) (SU grading only)—I, II, III, IV (I, II, III, IV)

495. International Health Care (1)
Lecture/discussion—1 hour. Prerequisite: medical student in good academic standing. Forum for learning health issues and health care systems in other countries. Topics include health care for refugees, the impact of political strife on health, the health care professional in international settings. (SU grading only)—I (I.) Schenker

498. Study in Community and International Health (1-5)
Prerequisite: medical student in good academic standing and consent of instructor. Study and experience for medical students in any number of areas in community and international health. (SU grading only.)

499. Research in Community and International Health (1-9)
Prerequisite: medical students with consent of instructor. Student will work with faculty member in areas of research interest, including but not limited to injury control, international health, health policy, occupational and environmental health, health promotion and wellness, women’s health, and health demographics. (SU grading only.)

Family and Community Medicine (FAP)

Lower Division Course

92C. Primary Care Clinics (2)
Clinical activity—6-8 hours; seminar—2 hours; lecture—1-2 hours. Prerequisite: consent of instructor, enrollment at UC Davis campus, for freshman and sophomore. Students must apply and interview with the Board of Clinica Tepati or Imani Clinic. Field experience exposes lower division students to health care delivery, patient histories, physical examinations, health promotion, disease prevention, diagnosis, treatment of episodic, acute, chronic illness; appropriate referral and follow-up. May be repeated for credit. (P/NP grading only.)—I, II, III, IV (I, II, III, IV) Arevalo

Upper Division Courses

192A. Internship in Family Practice (1-12)
Internship—3-36 hours. Prerequisite: upper division standing and consent of instructor. Work experience supervised in the Department of Family Community Medicine. Upper division students provided an opportunity to acquire research experience in a clinical laboratory setting. (P/NP grading only.)

192C. Primary Care Clinics (2)
Clinical activity—6-8 hours; seminar—2 hours; lecture—1-2 hours. Prerequisite: consent of instructor, enrollment at the UC Davis campus, upper division standing. Students must apply and interview with the Board of Clinica Tepati or Imani Clinic. Field experience introduces students to health care delivery, patient histories and physical examinations; health promotions and disease prevention; diagnosis and treatment of episodic, acute, and chronic illness; basic laboratory testing, appropriate referral and follow-up. May be repeated for credit. (P/NP grading only.)—I, II, III, IV (I, II, III, IV) Arevalo, Day

195. Health Care to Underserved Populations (1)
Lecture—1 hour. Prerequisite: sociology, political science, or applied behavioral science course as recommended for registration in medical school. Discusses sociocultural perspectives of underserved populations in California impacting their health; roles of family/interpersonal relationships in making health care decisions; and clinician’s perspectives in treating people of cultures which are unfamiliar and/or uncomfortable with Western medicine. (P/NP grading only.)—II (II.) Nesbit

Graduate Courses

The following courses are for students enrolled in the Family Nurse Practitioner/Physician Assistant (FNP/PA) program.

240A-240B-240C-240D-240E-240F. Clinical Preceptorship (1-13)
Clinical activity—9-36 hours. Prerequisite: enrollment in the Master’s Track of the FNP Certificate Program, and successful completion of each preceding 240A-F section. Diagnosis and treatment of patients of all ages in an ambulatory care setting, under direct supervision of a preceptor. May be repeated twice for credit. (P/NP grading only.)—I, II, III, IV (I, II, III, IV) Hess, DeAmicas

242A-242B. Clinical Role Seminar (1.5-1.5)
Seminar—1.5 hours. Prerequisite: course 240 concurrently and student in the Master’s Track of the FNP certificate program. Accompanies course 240 and provides a small group forum for students to explore role development and clinical management issues based on nursing theories and research. (Deferred grading only, pending completion of sequence.)—I, II, III, IV (I, II, III, IV) Hess, DeAmicas, Trolinger

252A. Professional Role Development (1.5)
Lecture/discussion—1.5 hours. Prerequisite: enrollment in the Master’s Track of the FNP Certificate Program. Provides opportunity to discover strategies for promoting role development and role satisfaction via discussion of pertinent issues, theory, and research. (Deferred grading only, pending completion of sequence.)—I, II, III, IV (I, II, III, IV) DeAmicas
252B. Nurse Practitioner as Leader (1.5)
Lecture/discussion—1.5 hours. Prerequisite: course 252A and concurrent enrollment in Master’s Track of the FNP Certificate Program. Study of advanced practice role of nurse practitioner. An examination of legal and regulatory issues, as well as ethical decision making and critical thinking skills related to nurse practitioner role development and applied legislation through community involvement. Deferred grading only, pending completion of sequence.—I, II, III, IV (I, II, III, IV) DeAmicis

264. Psychosocial Concepts and Issues in Primary Care (2)
Lecture/discussion—2 hours. Prerequisite: B.S. degree in nursing and enrollment in the Master’s Track of the FNP Certificate Program. Introduces the principles of effective communication in establishing the therapeutic provider-patient relationship. Provides an examination of relevant psychosocial concepts and issues related to primary care. Research and theory are emphasized.—I, II, III, IV. Trollering, Hass

266A. Health Maintenance/Promotion (2)
Lecture—2 hours. Prerequisite: B.S. degree in nursing and enrollment in the Master’s Track of the FNP Certificate Program. Focuses on the health and wellness of individuals throughout the lifespan. Critical analyses of nursing interventions in health promotion and maintenance based on nursing and other theoretical frameworks and research data are emphasized.—I (I) DeAmicis

266B. Family Nursing Theory (1)
Lecture—1 hour. Prerequisite: enrollment in master’s track of the FNP Certificate Program or consent of instructor. Exploration of family theories as related to advanced primary care nursing practices.—I, II, III, (I, II, III)

266C. Family Nursing Interventions (2)
Lecture—1 hour. Prerequisite: course 266B and enrollment in the Master’s Track of the FNP Certificate Program. Course integrates family theoretical and therapeutic concepts to focus on nursing assessment and intervention strategies for family problems in health and illness.—III (III)

266D. Community Assessment and Intervention (1)
Lecture—1 hour. Prerequisite: enrollment in the Master’s Track of the FNP Certificate Program. The relationship between advanced primary care nursing practice and community is explored. Community assessment and intervention strategies appropriate for the family nurse practitioner are discussed. May be repeated twice for credit.—I, II (I, II) Trollering

Professional Courses

The following courses are for students enrolled in the Family Nurse Practitioner/Physician Assistant (FNP/PA) Program.

300. Health Assessment for Advanced Practice (4.5)
Lecture/discussion—4.5 hours. Prerequisite: enrolled in the FNP/PA Certificate Program, or consent of instructor. Advanced concepts and skills in health and physical assessment essential to the clinical decision making and caring process for the FNP, PA or advance practice nurse. Emphasis on eliciting an accurate and thorough history and performing a physical examination.—I, II, III, IV (I, II, III, IV) White, Steward, DeAmicis

331A. Scientific Basis of Diseases—A (4)
Independent study—3 hours; lecture/discussion—1 hour. Prerequisite: registered student in the FNP/PA Certificate Program or consent of instructor. Anatomy, physiology and concepts of pathophysiology.—I, II, III, IV (I, II, III, IV) Hoody, Fraser

331B. Scientific Basis of Diseases—B (1)
Independent study—0.5 hours; lecture/discussion—0.5 hours. Prerequisite: course 331A. Course integrates knowledge and application in the FNP/PA Certificate Program or consent of instructor. Neurological and renal diseases and abnormalities of adrenal function. Builds on concepts covered in prior coursework; Web-enhanced course.—I, II, III, IV (I, II, III, IV) Hoody, Fraser

340. Clinical Preceptorship for FNP/PA Students (22)
Clinical activity—15 hours. Prerequisite: registered student in the Family Nurse Practitioner/Physician Assistant Program. Student spends 15 hours per week in an approved preceptorship in patient care developing clinical skills necessary to assess and manage patients with common problems seen in primary care. May be repeated twice for credit (P/NP grading only, deferred grading only, pending completion of sequence).—I, II, III, IV (I, II, III, IV)

341. Advanced Clinical Preceptorship for FNP/PA Students (23)
Clinical activity—16 hours. Prerequisite: registered student in Family Nurse Practitioner/Physician Assistant Program and successful completion of course 340A. Student spends 16 hours per week in a clinical setting to develop the preceptorship role in the preceptorship setting. May be repeated twice for credit (P/NP grading only, deferred grading only, pending completion of sequence).—I, II, III, IV (I, II, III, IV)

343. Inpatient Clinical Experience for FNP/PA Students (5)
Clinical activity—15 hours. Prerequisite: registered student in the FNP/PA Program, successful completion of course 340A-340B-340C, and consent of instructor. Student clerkships in the inpatient setting in Family Practice, Surgery, and Medical/Surgical. Includes orientation to UCDMC and/or affiliated institutions. Exposes students to inpatient management and acquaints students with FNP/PA role in the inpatient setting. May be repeated for credit. (P/NP grading only; Deferred grading only, pending completion of sequence).—I, II, III, IV (I, II, III, IV) Ensing, Rios

346. Clinical Geriatrics (3)
Clinical activity—90 hours. Prerequisite: registered student in the FNP/PA program and successful completion of course 340A-340B-340C and 345A-354A-354B and 366A. Includes orientation to geriatric medicine and concepts of primary health care in the outpatient, nursing home, acute hospitals and community settings that provide services for the elderly, including visits to patients’ homes. (P/NP grading only; Deferred grading only, pending completion of sequence).—I-II-III-IV (I-II-III-IV) Ensing, Rios

350. Ethics and Trends in Health Care for FNP/PA Students (2)
Lecture/discussion—2 hours. Prerequisite: registered student in the FNP/PA Program. Trends and ethical issues in health care, review of the process and policies for ethical decision making in patient care. These issues, trends, and processes will be related to the role of the Family Nurse Practitioner/Physician Assistant. —II (II) Smith, Hass

353. Geriatric Medicine for FNP/PA Students (1)
Lecture—1 hour. Prerequisite: registered student in the FNP/PA Program. Introduction to advanced concepts in geriatric medicine. Comprehensive assessment, decision making, and management of selected medical problems encountered in primary care. Appropriate consultation and referral are discussed. May be repeated twice for credit.—I, II, III, IV (I, II, III, IV) Trollering, Rios

354A-354B-354C. Fundamentals of Primary Health Care for FNP/PA Students (4-5-4)
Lecture/discussion—4-5 hours. Prerequisite: registered student in FNP/PA Program. Study of anatomy and physiology, pathophysiology, diagnostic criteria, approaches to assess and manage common medical problems seen in primary care health. May be repeated for credit.—I-II-III-IV-I-II-III-IV Ensign, Hooy, Hass, Ramke

355A. Advanced Principles of Health Care for FNP/PA Students (4)
Lecture/discussion—4 hours. Prerequisite: registered student in the FNP/PA Program; course 354A-354B-354C. Study of anatomy and physiology, pathophysiology, diagnostic criteria and approaches to assess and manage patients with complex and/or multiple health care problems in primary care settings, and to learn the management of patients in inpatient settings. May be repeated for credit.—I (I)

355B. Advanced Principles of Primary Health Care (5)
Lecture/discussion—5 hours. Prerequisite: registered student in the FNP/PA Program; successful completion of course 354A-354B-354C. Analysis of clinical, pathophysiology, diagnostic criteria, approaches to assessment and management of patients with complex and/or multiple health care problems in primary care settings.—I, II, III, IV (I, II, III, IV)

355C. Advanced Principles of Health Care for FNP/PA Students (4)
Lecture/discussion—4 hours. Prerequisite: registered student in the FNP/PA Program; course 354A-354B-354C. Study of anatomy and physiology, pathophysiology, diagnostic criteria and approaches to assess and manage patients with complex and/or multiple health care problems in primary care settings, and to learn the management of patients in inpatient settings. May be repeated for credit.—I (I)

355D. Advanced Principles of Health Care for FNP/PA Students (4)
Lecture/discussion—4 hours. Prerequisite: registered student in the FNP/PA Program; course 354A-354B-354C. Study of anatomy and physiology, pathophysiology, diagnostic criteria and approaches to assess and manage patients with complex and/or multiple health care problems in primary care settings, and to learn the management of patients in inpatient settings. May be repeated for credit.—I (I)

358. Pharmacology (6)
Lecture/discussion—6 hours. Prerequisite: registered student in the Family Nurse Practitioner/Physician Assistant Program. Study of drug actions and mechanisms, pharmacodynamics, and clinical therapeutics necessary to develop rational and optimal therapeutic plans in ambulatory settings. (Deferred grading only, pending completion of sequence).—I, II, III, IV (I, II, III, IV)

361. Family Theory and Assessment (1)
Lecture—1 hour. Prerequisite: registered student in the FNP/PA Program. Examines the family using a family system framework within the context of its internal dynamics, relationships to community and cultural variations. May be repeated twice for credit.—I (I) Trollering, Stewart

367A. Family Practice and Community Health for FNP/PA Students (2)
Lecture/discussion—2 hours. Prerequisite: registered student in the FNP/PA Program. Examines pediatric and adolescent concepts of growth and development as related to primary health care. Primary health care issues and needs will be assessed with attention to historically and culturally diverse groups, as well as complex problems seen in primary care. May be repeated twice for credit.—I, II, III, IV (I, II, III, IV)

367B. Family Practice and Community Health for FNP/PA Students (1)
Lecture/discussion—1 hour. Prerequisite: registered student in the FNP/PA Program. Examines concepts of adult growth and development as related to primary health care. Primary health care issues and needs of the adult are examined in relationship to family and community, health promotion, disease prevention and wellness concepts. May be repeated twice for credit.—I, II, III, IV (I, II, III, IV)

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
368A. Behavioral Science for FNP/PA Students (1)
Lecture/discussion—1 hour. Prerequisite: registered student in the FNP/PA Program. Principles of effective communication in therapeutic and nontherapeutic relationships. History taking, interviewing, and physical examination skills. Biopsychosocial model of health care.—I, II, III, IV (I, II, III, IV) Stewart, Ensign

368B. Behavioral Science (1)
Lecture/discussion—1 hour. Prerequisite: completion of course 368A and registered student in the Family Nurse Practitioner/Physician Assistant Program. Exploration into a variety of addictive behaviors within diverse populations. Utilization of clinical case studies to develop skills in the identification, interview and management of these patients and recognition of how these behaviors impact the family system.—I, II, III, IV, (I, II, III, IV)

368C. Behavioral Science (1)
Lecture/discussion—1 hour. Prerequisite: registered student in the Family Nurse Practitioner/Physician Assistant Program. Multicultural perspectives of health. Traditional health beliefs and healing practices of several California cultures.—I, II, III, IV (I, II, III, IV)

368D. Behavioral Science for FNP/PA Students (1)
Lecture—1 hour. Prerequisite: registered student in the FNP/PA Program. Basic principles of assessment, counseling and treatment of individual patients, their families and support systems as they experience the effects of chronic illnesses, chronic pain, terminal diseases, death and grieving. Students are strongly encouraged to explore coping styles. May be repeated twice for credit.—I, II, III, IV (I, II, III, IV) Stewart

370A-B-370C-370D-370E-370F. Clinical Case Seminars for FNP/PA Students (1.5-1-1.5-1.5-1.5-1.5)
Seminar—1.5 hours. Prerequisite: registered student in the FNP/PA Program. Designed to increase critical thinking by utilizing the development and processing of the differential diagnoses of several cases based on the topics covered in the medicine course (course 354, 355) taught the same quarter. May be repeated twice for credit. (P/NP grading only)—I, II, III, IV, (I, II, III, IV) Trolinger, Stewart

372A. Professional Development for FNP/PA Students (1.5)
Lecture/discussion—1.5 hours. Prerequisite: registered student in the Family Nurse Practitioner/Physician Assistant Program. Role of the Family Nurse Practitioner (FNP) and Physician Assistant (PA) including legal and regulatory issues affecting practice, licensing requirements, elements of negotiating a job, legislative and political awareness, and community involvement. (Deferred grading only, pending completion of sequence.)—I, II, III, IV (I, II, III, IV) Ensign, Hasselbach

372B. Professional Development for FNP/PA Students (1.5)
Lecture/discussion—1.5 hours. Prerequisite: registered student in the Family Nurse Practitioner/Physician Assistant Program. Roles of the Family Nurse Practitioner (FNP) and Physician Assistant (PA) including legal and regulatory issues affecting practice, licensing requirements, elements of negotiating a job, legislative and political awareness, and community involvement. (Deferred grading only, pending completion of sequence.)—I, II, III, IV (I, II, III, IV) DeAngelis, Hasselbach

390. Health Care of the Western Farmworkers (2)
Independent study—1-2 hours. Prerequisite: permission of instructor. Exploration of clinic care of farmworkers with an emphasis on the provision of medical care for migrant and seasonal agricultural workers. (Deferred grading only, pending completion of sequence.)—I, II, III, IV (I, II, III, IV)

399. Special Study (1-12)
Prerequisite: enrollment in the Family Nurse Practitioner/Physician Assistant Program. Research in selected areas of the FNP/PA field. (Deferred grading only, pending completion of sequence.)—I, II, III, IV (I, II, III, IV)

Professional Courses

400A-400B-400C. Introduction to Patient Evaluation (2-2-2)
Lecture/discussion—18 hours total; clinical activity—8 hours total; conference or seminar—1 hour. Prerequisite: registered student in the Family Nurse Practitioner/Physician Assistant Program. Exploration into a variety of addictive behaviors within diverse populations. Utilization of clinical case studies to develop skills in the identification, interview and management of these patients and recognition of how these behaviors impact the family system.—I, II, III, IV (I, II, III, IV)

407. Davis Community Clinic (3)
Clinical activity—8 hours. Prerequisite: second-year medical student in good academic standing. Students learn to diagnose and treat common medical problems as seen at a community clinic, under the direct supervision of a physician. (SU grading only)—I, II, III, IV (I, II, III, IV)

421. Understanding the Healthcare System of the U.S.A. (1)
Seminar—2 hours (5 weeks). Prerequisite: medical student in good standing, graduate student or undergraduate with consent of instructor. Seminar series provides insights into the present structure and future of the health care system of the United States, including history development, health care economics, managed care, and the future of medical care delivery.—I (I) Chapman

430. Primary Care Plus Clerkship (12)
Clinical activity—45 hours; lecture, workshop or research—2 hours. Prerequisite: completion of first and second year curriculum in medical education. Required eight-week primary-care clerkship for third year medical students. Four-week primary care experience with additional two weeks each in Orthopaedics and Urology clinics, providing a primary care focus.—I, II, III, IV, (I, II, III, IV) Morgan, Day

433. Primary Care Plus Continuum Clerkship (6)
Clinical activity—45 hours (4 weeks). Prerequisite: completion of all required course work of the first-year and second-year medical curriculum. Four week experience in primary care or in Ophthalmology, Otolaryngology, Orthopaedics and Urology clinics (each providing a primary care focus).—I, II, III, IV, (I, II, III, IV) Morgan

434. Primary Care Clinics (3-12)
Clinical activity—32-36 hours; seminar—0-2 hours; lecture—1-2 hours. Prerequisite: open to medical students in all four years of medical school. Medical students will learn counseling, diagnosis and treatment of patients with chronic and acute disease under supervision of physician. Provides exposure to special health care needs of various ethnic and poverty-level populations. May be repeated for credit. (SU grading only)—I, II, III, IV, (I, II, III, IV) Arevalo, Day

440. Ambulatory Care Clerkship (3-12)
Clinical activity—40 hours. Prerequisite: third year primary care plus clerkship. Ambulatory medicine experience in a family practice setting. Acquisition skills to evaluate and develop a treatment plan for patients with common medical problems seen by primary care physicians in an outpatient setting.—I, II, III, IV, (I, II, III, IV) Morgan

452. Advanced Preceptorship in Family Medicine (3-18)
Clinical activity—full time. Prerequisite: completion of third year of medical school or medical student with consent of instructor. Preceptors with primary care physicians in a variety of settings. Involvement in direct patient care and daily activities under supervision of preceptor. (Deferred grading only, pending completion of sequence.)—I, II, III, IV (I, II, III, IV) Morgan

457. Interncluded Readings in Family Practice (1-9)
Discussion—3-27 hours. Prerequisite: medical student in good academic standing. Increase understanding of family practice through assigned reading and thorough discussion with faculty member.—I, II, III, IV (I, II, III, IV)

465. International Preceptorship in Family Practice (6-18)
Clinical activity—40 hours (4-10 weeks). Prerequisite: completion of first year of medical school. Preceptorship with a family practitioner in a foreign country (arranged by student contact or with assistance of the Department of Family and Community Medicine). Participation in clinical activities, analysis and report characteristics of the practice.—I, II, III, IV (I, II, III, IV)

469. Clerkship in Family Practice Residency (6-18)
Clinical activity—40 hours (4-10 weeks). Prerequisite: completion of third year of medical school or consent of instructor. Comprehensive primary medical care of patients in a family practice hospital or residency. Usually includes inpatient and outpatient experience.—I, II, III, IV, (I, II, III, IV)

480. Insights in Family Practice (1-3)
Clinical activity—3 to 9 hours; required readings. Prerequisite: first- and second-year medical students in good academic standing; consent of instructor. Exposure to family practice in outpatient clinic or setting. Three to nine hours per week spent with a community physician preceptor who is a member of the clinical faculty. (SU grading only)—I, II, III, IV, (I, II, III, IV)

489. Directed Group Study in Family Practice (1-9)
Discussion—3-27 hours. Prerequisite: medical students with consent of instructor. Directed study on selected topics relating to family medicine and primary health care delivery; visits to and written analysis of selected innovative health care programs. (SU grading only.)

499. Research (1-12)
Prerequisite: medical students with consent of instructor. Research in various aspects of the health care delivery system. (SU grading only.)

Human Physiology (HPH)

Upper Division Courses

192. Internship in Human Physiology (1-12)
Internship—3-36 hours; final report. Prerequisite: upper division standing; approval of project prior to period of internship by preceptor. Supervised work experience in physiology and related fields. (P/NP grading only.)

194. Directed Group Study (1-5)
Directed study on selected topics relating to human physiology. May be repeated for credit. (SU grading only.)

199. Special Study for Advanced Undergraduates (1-5)
Laboratory—3-15 hours; undergraduate research project. Prerequisite: senior standing in biology, chemistry, physics, psychology, and/or engineering. (P/NP grading only.)
Graduate Courses

200. Human Physiology (6)
Lecture—48 hours total; discussion—12 hours total. Prerequisite: standing consent of instructor. General cellular and organ system physiology, including nervous, cardiovascular, respiratory, gastrointestinal and urinary systems in the human. Lectures concurrent with course 400; research/discussion and laboratory/demonstration sessions, and examinations separate.—II. (III.) Carlson, O’Donnell

210A. Advanced Physiology (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: Physiology Ph.D. program, or consent of instructor. Advanced course in general principles of physiology, surveying homeostasis, cellular and selected topics, and neurophysiology. (Same course as Physiology 210A I, II, III, IV.) Gray, O’Donnell

285. Peripheral Circulation (3)
Lecture—1 hour; discussion—2 hours. Prerequisite: Physiology 111A, 113, or course 200 and consent of instructor. Lectures and critical analysis of papers on peripheral vascular function, including: structure/function and pressure/flow/relationships, innervation, receptor pharmacology, endothelial and smooth muscle interactions, signal transduction, ion transport, permeability, paracrine mediators and disease mechanisms. Offered in alternate years.—(III.) Gray, O’Donnell

298. Group Study (1-5)
Prerequisite: consent of instructor. For graduate students desiring to explore particular topics in depth. Lectures and conferences may be involved.

299. Research (1-12)
Prerequisite: consent of instructor. (SU grading only.)

Professional Courses

400. Human Physiology (8)
Lecture—6 hours; laboratory—6 hours. Prerequisite: approval by Committee on Student Evaluation and Promotion. General, cellular and systemic physiology of cardiovascular, respiratory, gastrointestinal and urinary systems.—II. (III.)

403. Neurobiology (5)
Lecture—4 hours; laboratory—3 hours. Prerequisite: approval by Committee on Student Evaluation and Promotion. Physiology and anatomy of the normal human nervous system in an integrated format. Focus on gross and microscopic brain structure, functional neuroanatomy, and the physiology, biochemistry, and pharmacology of the nervous system. (Same course as Cell Biology and Human Anatomy 403) I, II, III. Vijayan, Carlens, Watson

418. Mammalian Endocrinology and Homeostasis (4.5)
Lecture—4 hours; discussion—1 hour; student presentation. Prerequisite: approval by Committee on Student Evaluation and Promotion. Physiological and biochemical properties of the mammalian endocrine system both at the cellular and systemic level. Principles that regulate homeostasis, especially in organ-organ interactions, metabolites, and minerals. Reproductive endocrinology. (Same course as Biological Chemistry 418.) I, II, III.

497T. Tutoring in Human Physiology (1-5)
Tutoring—3-15 hours. Prerequisite: advanced standing or consent of instructor. Assist instructor by tutoring medical students in preparation for one of the departmental courses that is a component of the required curriculum of the School of Medicine. (SU grading only.) Cala

498. Directed Reading and Group Study (1-4)
Discussion—2-8 hours. Prerequisite: medical student. Directed reading and discussion on selected topics in human physiology. (SU grading only.)

499. Research (1-6)
Prerequisite: medical students with consent of instructor. Laboratory investigation on selected topics. (SU grading only.)

Internal Medicine (IMD)

Lower Division Courses

92. Internship (1-4)
Internship—3-12 hours. Prerequisite: lower division standing and consent of instructor. Supervised internships in internal medicine and related fields. (P/NP grading only.)—Last

98. Directed Group Study (1-2)
Seminar—1-2 hours. Prerequisite: lower division standing and consent of instructor. Directed group study in medicine and related fields. (P/NP grading only.)—Last

99. Undergraduate Research in Medicine: Molecular and Cell Biology (1-3)
Prerequisite: consent of instructor. (P/NP grading only.)—Last

Upper Division Courses

192. Internship in Internal Medicine (1-12)
Internship—3-36 hours; final report. Prerequisite: upper division standing. Supervised work experience in internal medicine and related fields. (P/NP grading only.)

194. Practicum in Community Health Clinics (1-3)
Clinical activity—5-15 hours on Saturday mornings and during the week as necessary, excluding holidays. Prerequisite: consent of instructor. The undergraduate student, through active participation in the medical aspects of community health clinics, gains knowledge of the organization, administration, and problem-solving capabilities of these primary care facilities. May be repeated for credit. (P/NP grading only.) I, II, III, IV, (I, III, IV) Kumagai

198. Directed Group Study (1-2)
Seminar—1-2 hours. Prerequisite: consent of instructor. Directed group study in medicine and related fields. (P/NP grading only.)—Last

199. Special Study for Advanced Undergraduates (1-5)
Prerequisite: upper division standing, consent of instructor. (P/NP grading only.)

Graduate Course

220D. Cardiovascular System (3.5)
Lecture/discussion—4 hours. Prerequisite: graduate standing. Animal Physiology 113, Human Physiology 200 or the equivalent, and consent of instructor. Principles of etiology, mechanisms, diagnosis and management of the major diseases of the cardiovascular system, including ischemic, valvular, hypertensive, cardiomyopathic, pericardial and electrical disorders. (Same course as 420D.)—II. (III.) Laslett

Professional Courses

401A-401B-401C. Physical Diagnosis Practicum (1-3-3)
Fieldwork—2 hours; lecture/discussion—1 hour; practice—1 hour. Prerequisite: approval by Committee on Student Evaluation and Promotion. Provides second-year students with an overall framework for performance of a history and physical exam and with identification of abnormal findings. (Deferred grading only, pending completion of sequence.)—IV-I-II. (IV-I-II) Bonekat

419. Introduction to Clinical Nutrition (3)
Lecture—5 hours; lecture/discussion—1.5 hours, laboratory/discussion—0.5 hours (for 4 weeks). Prerequisite: approval by Committee on Student Evaluation and Promotion. 29-hour course that integrates basic and clinical concepts of human nutrition. The course emphasizes nutrient homeostasis and regulation and current perspectives on the role of nutrition in disease. Format is partly lectures, partly discussion/case study. (Same course as Biological Chemistry 419.)—I, II, III.

420A. Hematology (4)
Lecture—4 hours (for five weeks); laboratory—6 hours; discussion—2 hours. Prerequisite: approval by Committee on Student Evaluation and Promotion. Topics include normal hematopoiesis and basic disorders of blood cells, transfusion therapy, immunoglobulin disorders, and hemostasis. Laboratory exercises cover normal and abnormal blood cells and the interpretation of common laboratory tests and are staffed by clinical hematologists.—I. (I.)—Powell

420B. Gastrointestinal System (3.5)
Lecture/discussion—36 hours (over a 4-week period). Prerequisite: approval by Committee on Student Evaluation and Promotion and Basic pathophysiologic principles of digestive diseases on which clinical concepts and judgments can be developed. Emphasis on pathophysiologic basis of gastroenterological and hepatic disorders with discussion of major disorders and their diagnosis and management.—II. (III.) Lee

420C. Respiratory System (4)
Lecture—36 hours; discussion—10 hours (48 hours total). Prerequisite: approval by Committee on Student Evaluation and Promotion. Lectures, demonstrations and small group case discussions of respiratory pathophysiology. Includes review of certain clinical aspects of respiratory anatomy, physiology and pathology, introduction to diagnostic procedures, and description of the major respiratory diseases.—II. (II.) Louie

420D. Cardiovascular System (3.5)
Lecture—28 hours; discussion—8 hours (36 hours total). Prerequisite: medical student and approval by Committee on Student Evaluation and Promotion; or graduate advanced and Animal Physiology 113, Human Physiology 200, or the equivalent, and consent of instructor. Introduction to principles of etiology, mechanisms, diagnosis and management of the major diseases of the cardiovascular system, including ischemic, valvular, hypertensive, cardiomyopathic, pericardial, and electrical disorders. Lectures and small group discussions are employed. (Same course as 220D.)—II. (III.)

420E. Nephrology (2.5)
Lecture—4 hours; laboratory—2 hours (over a 6-week period). Prerequisite: approval by Committee on Student Evaluation and Promotion. Emphasis on critical aspects of renal physiology and function. Fundamental aspects of (a) disorders of body water, electrolytes and acid/base balance; (b) major categories and mechanisms of parenchymal renal diseases; (c) urinary tract infections.—I, II, III, Kayser

420F. Metabolic Regulatory System (3.5)
Lecture—4 hours; discussion—2 hours (over 8-week period). Prerequisite: approval by Committee on Student Evaluation and Promotion and Basic understanding of pathophysiological processes in organs and tissues primarily involved in metabolic regulation and sufficient factual base so that clinical and laboratory diagnosis, and elementary management of patients with endocrinological disorders can be rationalized.—II. (III.) Prescott

430. Medicine Clerkship (12)
Clinical activity—45 hours. Prerequisite: medical students with approval by Committee on Student Evaluation and Promotion. Clerkship is divided into two four-week blocks: a block at UCDMC and at Kaiser Hospitals. Time is spent in direct patient care situations under the guidance of faculty. Ongoing patient write-ups, rounds, conferences are required.—I, II, III, IV, (I, II, III, IV) Prescott

433. Internal Medicine Continuum Clerkship (6)
Clinical activity—full time (for 4 weeks). Prerequisite: completion of all required course work of first- and second-year medical curriculum. Four-week internal medicine clerkship at either UCDMC or Kaiser Hospitals. Direct patient care situations under the guidance of faculty. Ongoing patient write-ups, rounds, conferences are required.—I, II, III, IV, (I, II, III, IV) Prescott
459. Oncology: Research and Treatment of Cancer (2)
Lecture/discussion—2 hours. Prerequisite: second-, third-, or fourth-year medical student and/or consent of instructor. Comprehensive review of current treatment practices of cancer and state-of-the-art research impacting treatment and prevention of cancer. Emphasis on epidemiology, molecular biology, and pharmacology. (S/U grading only.)—I, II DeGreggio

460. Correctional Health Care Clerkship (1-4)
Clinical activity—full time. Prerequisite: fourth-year medical student in good acade-
mic standing. Covers Correctional Health delivery and the effects of detention and incarceration on health status. Special emphasis on problems unique to health care delivery in a prison setting. Student will spend time in clinical settings at three prison facilities.—I, II, III, IV. Silva

462. Extensh in Medicine (1-21)
Clinical activity—40 hours. Prerequisite: Medical Sciences 431; demonstrated ability to accept responsibility; consent of instructor. Student assumes role of acting intern and will be primary physician on medical ward under direction of medical resident and staff. Responsibility for patients admitted to acting intern. Teams I-V take call every fifth night. Team VI students assume role of acting intern and will be primary physician on the medical hospitalist service under direct supervision of the hospitalist staff. Responsibility for patients admitted to acting intern in hospital daily dialysis call. Emphasis on evidence-based inpatient care. Limited enrollment.—I, II, III, IV, (II, II, III, IV) Meyers

463. Acting Internship in Medicine Intensive Care Unit (MICU) (9)
Clinical activity—full time. Prerequisite: completion of third year in medical school; consent of Director of MICU. At UCSDMC, student functions as acting intern on MICU service under direction of medical resident and staff. Responsibility for patients admitted to MICU. On call in hospital every third night. Limited enrollment.—I, II, III, IV, (II, II, III, IV) Albertson

494. Practicum in Community Health Clinics (1-3)
Clinical activity—15-40 hours. Prerequisite: medical student with consent of instruc-
tor. Students are assigned to clinical settings that demonstrate ethnic, urban/rural, or other related aspects of community clinical health. Through active participation in health care delivery, students are able to relate conceptual with practical aspects of primary health care. May be repeated for credit.—I, II, III, IV, (II, II, III, IV) Kumagai

496. Group Study in Internal Medicine (1-18)
Prerequisite: consent of instructor. Special study for medical students which may involve laboratory or library research, ambulatory or inpatient care responsibility on campus, at UCSDMC or off campus by specific arrangement. (S/U grading only.)—I, II, III, IV, (I, II, III, IV)

Internal Medicine—Cardiology (CAR)

Upper Division Courses

192. Internship in Cardiology (1-12)
Internship—3-36 hours; final report. Prerequisite: upper division standing; approval of project by preceptor prior to internship. Supervised work experience in cardiology. May be repeated for credit up to 12 units. (P/NP grading only.)

199. Cardiology Research (1-5)
Prerequisite: consent of instructor. Special study by individual arrangement in car-
diovascular medicine. Work will include directed readings, laboratory and discus-
sions. (P/NP grading only.)

Graduate Courses

220. Basic Science in Cardiology (1)
Lecture—1 hour. Prerequisite: graduate or medical student status. Fundamentals underlying cardiovascular medicine. Including hemodynamics, neural control of the circulation, biochemistry and some experimental design and statistics. Experts in each of these fields will give current information in their areas. Offered in alternate years. (S/U grading only.)—III. Kaufman

299. Cardiology Research (2-3.5)
Prerequisite: consent of instructor. Research or special studies. (S/U grading only.)—Bonham, Longhurst

Professional Courses

401. Clinical Cardiology Clerkship: Kaiser (3-18)
Clinical activity (4 weeks)—8-12 hours (hospital); 1-5 hours (clinics). Prerequisite: third- and fourth-year medical students with advance approval by Division of Cardiology. Emphasis placed on history taking and physical examination of pediatric and adult patients with congenital and acquired cardiovascular disease. Hospital rounds in CCU and elsewhere. The roles of ECG, PCG, and cardiac fluoroscopy, etc., in office cardiology will be evaluated. May be repeated for credit. Limited enrollment.—I, II, III, IV, (I, II, III, IV)

409. Cardiology Clinical Clerkship (3-18)
Clinical activity—full time (2-12 weeks). Prerequisite: Internal Medicine 430, third- and fourth-year medical students in good academic standing with consent of instructor. Participation with members of subspecialty consultation service in initial clinical evaluation, work-up, management, and follow-up of patients with cardiologic disorders. Two outpatient clinics per week. May be repeated for credit. Limited enrollment.—I, II, III, IV

461. Management of Coronary Artery Disease: Coronary Care Unit (3-18)
Clinical activity (inpatient service)—full time (4 weeks). Prerequisite: completion of second year of medical school and advance approval by Division of Cardiology. Research in laboratory and exercise testing to be determined by instructor. Current methods of clinical research involving certain aspects of diagnosis and treatment. Includes acute coronary care, hemodynamic monitoring, stress testing, cardiac catheterization, pathologic correlations and discussion of modern approach to therapy, both medical and surgical, based on pathophysiologic mechanisms. May be repeated for credit. Limited enrollment.—I, II, III, IV, (I, II, III, IV)

464. Preventive Cardiology (3-6)
Seminar—2 hours (for 2-4 weeks); clinical activity—full time (2-4 weeks). Prerequi-
site: completion of third year of medical school. Clinical experience, weekly seminar and reading on primary and secondary prevention of cardiovascular disease. Will be carried out in Lipid and Hypertension Clinics, Exercise Laboratory, Cardiac Care Unit, Cardiac Catheterization, and Cardiac Surgery services.—I, II, III, IV, (I, II, III, IV) Amsterdam

480. Insights in Cardiology (1-3)
Clinical activity—3-9 hours. Prerequisite: medical student in good academic standing and approval by Division of Cardiology. Students attend one or more cardio-

498. Special Group Study: EKG Unit (1-12)
Special study—2-week sessions. Prerequisite: medical students with advance approval by monthly attending faculty. Special study group in cardiology for medical students in EKG unit. May involve lectures, directed reading, and/or discussion groups. May be repeated for credit. Limited enrollment. (S/U grading only.)

499. Research (1-12)
Prerequisite: approval by Division of Cardiology. (S/U grading only.)

Internal Medicine—Clinical Nutrition and Metabolism (NCM)

Upper Division Course

192. Internship in Clinical Nutrition (1-12)
Internship—3-36 hours; final report. Prerequisite: upper division standing; approval of project by preceptor prior to internship. Supervised work experience in nutrition. May be repeated for credit up to 12 units. (P/NP grading only.)

Graduate Course

290C. Clinical Nutrition Research Conference (1)
Seminar—1 hour. Weekly seminar presented by a graduate student, taking the form of research completed or in progress, topic review or journal review from current journal. (S/U grading only.)—I, II, III, (I, II, III) Halsted, Davis

Professional Courses

461. Nutrition Clinical Clerkship (3-18)
Lecture—2 hours; clinical activity—full time (2 to 12 weeks). In-depth experience in assessment and monitoring of nutritional support of adult patients at UCD Medical Center whose illnesses are complicated by malnutrition, and of patients attending the Nutrition Clinic with problems in under-nutrition due to various illnesses.—I, II, III, IV, (I, II, III, IV)

480. Insights in Clinical Nutrition (1-3)
Clinical activity—3-9 hours. Prerequisite: student in good standing; consent of instructor. Student will attend weekly clinical nutrition consult rounds (four evenings) and Nutrition Clinic (one day). Introduction to diagnosis and treatment of common nutritional problems. (S/U grading only.)—I, II, III, IV, (I, II, III, IV)

499. Research in Nutrition (9-18)
Prerequisite: medical student in good standing; consent of instructor. Participation in ongoing clinical or basic nutrition research. Student may devise own project depending upon time commitments.—Halsted, Davis

Internal Medicine—Emergency Medicine (EMR)

Professional Courses

401. Preceptorship in Emergency Medicine (1-4)
Clinical activity—6 hours; tutorials—2 hours. Prerequisite: consent of instructor and completion of first year of medical school. Exposure to the specialty of Emergency Medicine and observation of a wide array of patients in the Emergency Department. A literature review of an Emergency Medicine topic of interest to the student must be performed and discussed. (S/U grading only.)—I, II, III, IV, (I, II, III, IV) Lee

430. Introduction to Medical Toxicology (3)
Independent study—24 hours; lecture/discussion—4 hours; fieldwork—12 hours. Prerequisite: fourth-year medical student with consent of instructor. Student will become familiar with the resources available to manage exposure and poison cases. Hands-on training in the use of Poisindex® computer database. Additional readings from medical literature required.—I, II, III, IV, (I, II, III, IV) Bar
440. Emergency Medicine Required Clerkship (6)
Clinical activity—46 hours; lecture/discussion—8 hours. Prerequisite: satisfactory completion of Medicine, Surgery, and Pediatric Clerkship. Student will see patients primarily in the Emergency Department under the supervision of an Emergency Medicine Attending. Emphasis will be on the recognition and management of acute lifethreats, as well as the treatment of common medical and surgical conditions.—I, II, III, IV (I, II, III, IV) Lee

450. Ambulatory Care Clerkship (6)
Clinical activity—full time (4 weeks). Prerequisite: Medicine, Surgery, and one month of Emergency Medicine Clerkship. Ambulatory care experience in the “fast track” area of the Emergency Department. Exposure to patients with minor illnesses and injuries. Emphasis will be on management and treatment of orthopaedic injuries. (Former course Internal Medicine 440.)—I, II, III, IV (I, II, III, IV) Lee

465. Acting Internship in Emergency Medicine (6)
Clinical activity—36 hours; lecture/discussion—4 hours. Prerequisite: satisfactory completion of Medicine, Surgery, Pediatric and Emergency Medicine Clerkship. The student will function as an Acting Intern and treat a wide variety of patients and problems under the supervision of the Emergency Medicine Attending.—I, II, III, IV (I, II, III, IV) Lee

499. Research (2-18)
Laboratory—full time (1 to 12 weeks). Prerequisite: consent of instructor. Elective where topics may be selected in either basic or clinical research areas of Emergency and/or Critical Care Medicine. The goals will be tailored to each individual student. Enrollment requires prior discussion and consent of instructor. (SU grading only.) Kupperman

Internal Medicine—Endocrinology and Metabolism (ENM)
Upper Division Course
192. Internship in Endocrinology (1-12)
Internship—3-36 hours; final report. Prerequisite: upper division standing; approval of project by preceptor prior to internship. Supervised work experience in endocrinology. May be repeated for credit up to 12 units. (P/NP grading only.)

Graduate Course
299. Research (1-12)
Prerequisite: consent of instructor. Endocrinology research. (SU grading only.)

Professional Courses
460. Endocrinology Clinical Clerkship (3-18)
Clinical activity (inpatient-outpatient service)—full time (3 days per unit). Prerequisite: Internal Medicine 430 and/or consent of instructor. Participation with members of subspecialty service in the initial evaluation, work-up, management and follow-up of patients with endocrinologic disorders. Limited enrollment.—I, II, III, IV (I, II, III, IV)

480. Insights in Endocrinology (1-3)
Clinical activity—3-9 hours; oral presentation. Prerequisite: student in good academic standing and consent of instructor. First- or second-year students observe in morning Endocrine and Diabetes clinics and attend bi-weekly noon and afternoon endocrine conferences. They also give brief endocrine physiology oral presentation to the endocrine group. (SU grading only.)—I, II, III, IV (I, II, III, IV)

499. Research (1-12)
Prerequisite: consent of instructor. (SU grading only.)

Internal Medicine—Gastroenterology (GAS)
Upper Division Course
192. Internship in Gastroenterology (1-12)
Internship—3-36 hours; final report. Prerequisite: upper division standing; approval of project by preceptor prior to internship. Supervised work experience in gastroenterology. May be repeated for credit up to 12 units. (P/NP grading only.)

Graduate Course
299. Research (1-12)
Research in gastroenterology. (SU grading only.)—Boxlus

Professional Courses
460. Clinical Clerkship (3-18)
Clinical activity—full time (2 to 12 weeks). Prerequisite: completion of third year of medical school. Work-up, manage, and follow-up new patients on active inpatient consulting service. Gastroenterology/Hepatology patients. Daily rounds with attending physician.—I, II, III, IV (I, II, III, IV)

480. Insights in Gastroenterology (1-3)
Clinical activity—3-9 hours. Prerequisite: student in good academic standing and consent of instructor. To gain insight in clinical activities of Gastroenterology Division through attendance at any of the following: endoscopic procedures, ward rounds, outpatient clinic, and G.I. grand rounds. (SU grading only.)—I, II, III, IV (I, II, III, IV) Leung, Hsu

499. Research (1-12)
Clinical activity—varied. Prerequisite: medical student status; consent of instructor. Part-time participation in active clinical and basic research projects. Some will involve both patient care and relevant laboratory procedures. Basic research includes liver metabolism, cancer markers, porphyrias diet and cancer, folate metabolism. May be repeated for credit. (SU grading only.) Leung, Bowlus, Primestone, Pindvillian, Lee, Hsu

Internal Medicine—General Medicine (GMD)
Upper Division Course
192. Internship in General Medicine (1-12)
Internship—3-36 hours; final report. Prerequisite: upper division standing; approval of project by preceptor prior to internship. Supervised work experience in general medicine. May be repeated for credit up to 12 units. (P/NP grading only.)

Graduate Course
291. Seminars in Human Health Services Research and Clinical Epidemiology (1)
Seminar—1 hour. Critical review, evaluation, and discussion of research in health services and clinical epidemiology. Presentation of statistical, epidemiologic, and econometric methods. Students present their own research and critique the work of others. May be repeated for credit. (Same course as Epidemiology 291.) (SU grading only.)—I, II, III, IV (I, II, III, IV)

Professional Courses
460. General Medicine Consults (1-18)
Clinical activity (inpatient-outpatient service)—40 hours. Prerequisite: fourth-year medical students with consent of instructor; a general medicine clerkship. Supervised opportunity to see entire spectrum of medical problems encountered by a general intern. Student spends time in General Medicine Clinic and on the General Medicine Consult Service. Consultation Service is particularly concerned with medical evaluation of surgical patients. Limited enrollment.—I, II, III, IV (I, II, III, IV)

470. Health Care Ethics (3-9)
Discussion and conference—full time (2-6 weeks). Prerequisite: consent of instructor. Guided independent study of issues in biomedical ethics, with discussion of readings that are based on student interests and needs. Student participation in ethics rounds. (SU grading only.)—I, II, III, IV (I, II, III, IV) Loewy

480. Insights in General Medicine (1-3)
Clinical activity—one to nine 4-hour sessions; rounds—one to nine 2- to 4-hour sessions. Prerequisite: student in good academic standing and consent of instructor. Student will observe work-up, diagnostic evaluation and management of common general internal medicine problems in ambulatory and inpatient settings; be supervised by attending physician while attending General Medicine Clinic and/or Consult Rounds; and make brief presentations to consult service. (SU grading only.)—I, II, III, IV (I, II, III, IV) Robbins

485. Introduction to Health Care Ethics (1)
Lecture—10 weeks. Prerequisite: medical student in good standing. Introduction to concepts and methods of healthcare ethics. Emphasis on problems and methods. (SU grading only.)—I (I) Loewy

499. General Medicine Research (1-18)
Discussion—3 hours; clinical research—8-40 hours. Prerequisite: consent of instructor. Student will be involved in a clinical research problem within the area, interest and experience of members of Division of General Internal Medicine. Alternatively, the research effort will be directed toward investigation of a clinical problem of general medical interest. May be repeated for credit.

Internal Medicine—Hematology-Oncology (HON)
Upper Division Course
199. Research in Hematology–Oncology (1-5)
Laboratory—hours variable. Prerequisite: upper division standing and consent of instructor. Experience in laboratory research. (P/NP grading only.)—I, II, III, IV (I, II, III, IV)

Graduate Courses
298. Topics in Hematology (1-4)
Prerequisite: one year of graduate work and/or consent of instructor. Basic concepts of the physiology of the hematopoietic organ, the pathophysiology of hematopoietic disease, and concepts of therapeutics will be offered for study. The specific topics to be dictated by the interest and background of the students.

299. Research (1-12)
Prerequisite: consent of instructor. Laboratory investigation contributing to the dissertation for a graduate degree. (SU grading only.)

Professional Courses
460. Hematology–Oncology Acting Internship (6-18)
Clinical activity—full time (4-12 weeks). Prerequisite: fourth-year medical student in good academic standing. Acting intern on inpatient hematology/oncology ward service. May be repeated for credit. Limited enrollment.—I, II, III, IV (I, II, III, IV)
461. Hematology–Oncology Consult Clerkship (6-12)
Clinical activity—full time (4-8 weeks). Prerequisite: fourth-year medical student in good academic standing. Prerequisite for a four-year medical student in good academic standing. Prerequisite: permission from the instructor. May be repeated for credit. Limited enrollment.—I, II, III, IV.

462. Hematology–Oncology Ambulatory Clerkship (6-18)
Clinical activity (inpatient/outpatient service)—full time (4 weeks). Prerequisite: fourth-year medical student in good academic standing. Outpatient rotations in related clinics. Participation with members of the subspecialty service in the initial clinical evaluation, work-up, management and follow-up of the patient with hematologic or oncologic disorders. May be repeated for credit. Limited enrollment.—I, II, III, IV.

490. Practicum in Care for the Terminally Ill (3-6)
Clinical activity—full time (2-4 weeks); three-hour seminars included. Prerequisite: fourth-year medical student and an interview with Program Medical Director. Work with hospice interdisciplinary team. Direct experience in the care of patients with illnesses where no cure is possible. Emphasis on symptom relief, end of life issues, physician-assisted suicide. Fulfills the Ambulatory Care requirement.—I, II, III, IV.

499. Research (1-12)
Prerequisite: consent of instructor. (SU grading only.)

Internal Medicine—Infectious Diseases (IDI)

Upper Division Courses

141. Infectious Diseases of Humans (1)
Lecture—1 hour. Prerequisite: introductory knowledge in biology and chemistry recommended. Course integrates information on infectious disease, modern diagnostics, treatment and prevention strategies, and the role of infectious diseases in contemporary society and throughout human history. (P/NP grading only.)—I. (I.) Dandeker

192. Research Internship in Internal Medicine (1-12)
Internship—3-36 hours; final report. Supervised work experience in the division of Infectious Diseases. Undergraduates will have an opportunity to acquire research experience in clinical settings. May be repeated for credit up to 12 units. (P/NP grading only.)

199. Infectious Diseases Research (1-5)
Prerequisite: chemistry through organic chemistry (in addition, physical and biochemistry preferred), biology through basic bacteriology (in addition, microbiology and immunology preferred); and consent of instructor. Discrete problem requiring reading and actual manual effort in solution will be assigned to each student. Progress and results will be reviewed at intervals with instructor and via seminar presentation. (P/NP grading only.)

Graduate Courses

280. Molecular Pathobiology for Diagnosis and Therapy of Human and Animal Diseases (3)
Lecture—3 hours. Prerequisite: graduate standing. Presentation of molecular pathobiology of human and animal viruses. Emphasis on molecular diagnostics at cellular/issue level, and therapy including vaccines and gene transfer using recombinant DNA technology. Offered in alternate years.—(I.III) Dandeker

299. Research in Infectious Diseases (1-12)
Prerequisite: consent of instructor. Laboratory investigation contributing to the dissertation for a graduate degree. (SU grading only.)

Professional Courses

440. Introduction to AIDS and Related Disorders (2)
Clinical activity—30 hours; discussion—10 hours. Prerequisite: first- and second-year medical students in good academic standing and consent of instructor. Familiarizes students with the diagnosis and treatment of individuals infected with the human immunodeficiency virus. Students will interview patients, observe patient care and participate in ongoing clinic research as well as examine alternative lifestyle changes. May be repeated for credit. (SU grading only.)—I, II, III, IV. (I, II, III, IV) Flynn

450. Clinical and Social Care of the Injection Drug User (1-4)
Lecture—1 hour; clinical activity—3 hours. Prerequisite: first and second-year medical students in good academic standing. Lecture and guided clinical practice in a supervised clinical setting, focusing on the social and medical aspects of health care for injection drug users. May be repeated for credit up to 24 units. (SU grading only.)—I, II, III, IV. (I, II, III, IV)

460. Infectious Diseases Clinical Clerkship (3-6)
Clinical activity. Prerequisite: successful completion of two years of study in an accredited medical school. Limited enrollment with priority to fourth-year medical students. Patients with infectious diseases, including AIDS, will be evaluated and presented at rounds and case conferences. Patients are also seen in the Infectious Diseases Clinic. Instruction in clinical microbiology and the proper use of the laboratory will be provided.—I, II, III, IV. (I, II, III, IV)

499. Research Topics in Infectious Disease (2-12)
Prerequisite: successful completion of the first year of study in School of Medicine, graduate students (approved for graduate credit), and/or consent of instructor. Discrete problem requiring reading and actual manual effort in solution will be assigned to each student. Progress and results to be reviewed at intervals with instructor and via seminar presentation. (SU grading only.)

Internal Medicine—Nephrology (NEP)

Upper Division Course

192. Internship in Nephrology (1-12)
Internship—3-36 hours; final report. Prerequisite: upper division standing; approval of project by preceptor prior to internship. Supervised work experience in nephrology. May be repeated for credit up to 12 units. (P/NP grading only.)—I, II, III, IV.

Professional Courses

460. Nephrology and Fluid Balance (6-12)
Clinical activity—full time. Prerequisite: completion of third year of medical school; consent of instructor. Active participation in all inpatient/outpatient clinical activities, attendance at specific lectures and conferences at UC Davis Medical Center covering the field of nephrology and fluid-electrolyte disorders. Limited enrollment.—I, II, III, IV.

499. Research in Nephrology (3-18)
Prerequisite: individual arrangement and consent of instructor. Independent laboratory research on a specific problem related to biochemical or immunologic causes of renal disease and/or uremic disorders in humans or animals. (SU grading only.)—Kayser

Internal Medicine—Pulmonary Medicine (PUL)

Upper Division Course

192. Internship in Pulmonary Medicine (1-12)
Internship—3-36 hours; final report. Prerequisite: upper division standing; approval of project by preceptor prior to internship. Supervised work experience in pulmonary medicine. May be repeated for credit up to 12 units. (P/NP grading only.)

Graduate Courses

299. Pulmonary Disease Research (1-12)
Laboratory. Prerequisite: by arrangement only. Pulmonary disease research activity with focus on inhalation toxicology, oxidants or lung biochemistry, and cell and molecular biology. (SU grading only.)—Cross

Professional Courses

460. Pulmonary and Critical Care Medicine Clinical Clerkship (6-18)
Clinical activity—full time (4-12 weeks). Prerequisite: Medical Sciences 431. At UC Davis Medical Center participating and rounding with Pulmonary/Critical Care Medicine fellows and consultation staff. Also includes pulmonary function test interpretation, outpatient assignments in outpatient clinic and preparation and presentation of material at weekly conferences.—I, III, IV. (I, II, III, IV)

462. Pulmonary Clinical Clerkship (3-12)
Clinical activity—full time (2-8 weeks). Prerequisite: completion of second year of medical school and/or consent of instructor. Participation at the Sacramento VA clinic with members of the subspecialty service in initial clinical evaluation, workup, management, and follow-up of patients with pulmonary disorders. Includes experience in Pulmonary Function Laboratory, and pulmonary diagnostic processes. Limited enrollment.—I, II, III, IV.

480. Pulmonary-Critical Care Medicine Insights (1-3)
Clinical activity—3-9 hours. Prerequisite: student in good academic standing and consent of instructor. Student will attend respiratory outpatient clinics and in-patient pulmonary consultation rounds and medical intensive care rounds. Introduction to diagnosis and treatment of common pulmonary problems. (SU grading only.)—I, II, III, IV.

499. Research (1-12)
Prerequisite: consent of instructor. (SU grading only.)

Internal Medicine—Rheumatology-Allergy (RAL)

Lower Division Course

99. Directed Research in Immunology (1-5)
Laboratory. Prerequisite: consent of instructor. Independent research will be encouraged in basic immunology, including the role of the cellular immune system in oncogenesis. (P/NP grading only.)—I, II, III, IV.

Upper Division Courses

192. Internship in Rheumatology-Allergy (1-12)
Internship—3-36 hours; final report. Prerequisite: upper division standing; approval of project by preceptor prior to internship. Supervised work experience in rheumatology-allergy. May be repeated for credit up to 12 units. (P/NP grading only.)

199. Directed Research in Immunology (1-5)
Laboratory. Prerequisite: consent of instructor. Independent research will be encouraged in basic immunology, including the role of the cellular immune system in oncogenesis. (P/NP grading only.)—Gershwin
Graduate Courses

281. Clinical Immunology and Immunopathology (4)
Lecture—4 hours. Prerequisite: Medical Microbiology 107 or Veterinary Microbiology 270, or consent of instructor. Descriptive analysis of animal and human pathologic processes that interact with the immune system. Emphasis on infections, genetics, transplantation, allergy and autoimmunity. Offered in alternate years.—(III.) Gershwin, Leung

298. Topics in Rheumatology and Clinical Immunology (1-5)
Laboratory. Prerequisite: consent of instructor. Library and/or laboratory work as required. (SU grading only.)—Gershwin

299. Research in Autoimmune Disease (1-12)
Laboratory. Prerequisite: consent of instructor. Independent research will be encouraged in both animal models of human disease (including congenitally athymic [nude], asplenic, and New Zealand mice) and the cellular immune system of patients with systemic lupus erythematosus, Sjögren's syndrome, polymyositis and drug hypersensitivity. (SU grading only)—Gershwin

Professional Courses

460. Rheumatology Clinical Clerkship (1-18)
Clinical activity (inpatient-outpatient service)—full time. Prerequisite: Medical Sciences 431 and consent of instructor. Participation with members of the subspecialty service in the diagnosis and therapeutic management of patients with rheumatologic diseases.—I, II, III, IV. (I, II, III, IV.)

461. Allergy Clinical Clerkship (3-18)
Clinical activity (inpatient-outpatient service)—full time (2 to 12 weeks). Prerequisite: completion of second year of medical school and consent of instructor. Student will work with practicing allergist in daily work with patients and participate in weekly allergy clinic and teaching conferences. Study of the literature. Will see patients with problems in clinical immunology, immunodeficiency, asthma, allergic rhinitis.—I, II, III, IV. (I, II, III, IV.)

460P. Insights in Rheumatology (1-2)
Clinical activity—3–9 hours. Prerequisite: student in good academic standing and consent of instructor. Participation in rheumatology consultation rounds, rheumatic disease clinics and conferences with supervised readings in rheumatology. (SU grading only)—I, II, III, IV. (I, II, III, IV.) Leek

499. Research (1-12)
Prerequisite: medical student with consent of instructor. Part-time participation in active clinical and basic research projects which can involve both patient care and relevant laboratory procedures. Students can gain experience in clinical medicine and clinical investigation. (SU grading only.)

Medical Microbiology (MMI)

Upper Division Courses

107. Chemical and Cellular Immunology (4)
Lecture—4 hours. Prerequisite: Biological Sciences 101 and 102 or consent of instructor. Chemical and cellular basis of immunity: structure-function relationship of antigens, antibodies and their interactions; molecular basis of antibody diversity; cellular basis of immunity; immunochmecial and cellular aspects of hypersensitivity; immunogenetics and regulation of the immune response. (Same course as 407)—II, III, IV. (II, III, IV.)

115. Ecological Parasitology (3)
Lecture—3 hours. Prerequisite: upper division standing or consent of instructor. Emphasis on the role infectious diseases play in wildlife dynamics. Lectures and demonstrations on techniques and methods for examining wild animals for evidence of infectious diseases, methods used in preserving and identifying parasites of wildlife, as well as cases known about their pathogenesis.—III. (III.)

130. Medical Mycology (2)
Lecture—2 hours. Prerequisite: a course in pathogenic microbiology and consent of instructor. Various aspects of pathogenic fungi, particularly affecting humans, will be discussed including epidemiology, pathogenesis and pathology, diagnosis and therapy. Offered in alternate years. (Same course as 430.)—II. Pappagianis

192. Internship in Medical Microbiology (1-12)
Internship—3–36 hours; final report. Prerequisite: upper division standing. Approval of project prior to period of internship. Supervised work experience in medical microbiology and related fields. (P/NP grading only.)

198. Group Study in Medical Microbiology (1-5)
Prerequisite: upper division standing and consent of instructor. Directed reading and discussion and/or laboratory investigation on selected topics. (P/NP grading only.)

199. Research in Medical Microbiology (1-5)
Prerequisite: upper division standing and consent of instructor. Independent research. (P/NP grading only.)

Graduate Courses

200. Mechanisms for Microbial Interactions with Hosts (3)
Lecture/discussion—3 hours. Prerequisite: Microbiology 200A or consent of instructor. Study of mechanisms involved in microbial interactions within a host environment. The following principles are basic to understanding these interactions: host recognition, invasion, competition and growth, and host defense.—II. (II.)

209. Current Immunology (2)
Discussion—2 hours. Prerequisite: consent of instructor. Current developments in various aspects of immunology and their interrelationships. May be repeated for credit. (Same course as 409.) (SU grading only.)—I, II, III. (I, II, III.) Van der Water

215. Medical Parasitology (5)
Lecture—3 hours; laboratory—6 hours. Prerequisite: graduate student with consent of instructor. Epidemiological, pathogenesis, diagnostic methods and laboratory studies of protozoa, helminths and arthropods of medical importance. Offered in alternate years. (Same course as 415.)—I. Theis

220. Current Concepts in Bacterial Ultrastructure (2)
Discussion—2 hours; student presentations; term paper. Prerequisite: Microbiology 105 or consent of instructor. Critical evaluation of current literature dealing with all aspects of bacterial ultrastructure. Discussion of selected and assigned reading and formal student presentations of assigned topics.—III. (III.)

298. Group Study in Medical Microbiology and Immunology (1-5)
Prerequisite: consent of instructor; open to graduate students. Directed reading and discussion and/or laboratory investigation on selected topics. (Sections 1, 2, 4, 5. SU grading only.)

299. Research (1-12)
Prerequisite: consent of instructor; open to graduate students. Laboratory investigation contributing to the dissertation for a graduate degree. (SU grading only.)

Professional Courses

407. Chemical and Cellular Immunology (4)
Lecture—4 hours. Prerequisite: medical student with consent of instructor. Chemical and cellular basis of immunity: structure-function relationship of antigens, antibodies and their interactions; molecular basis of antibody diversity; cellular basis of immunity; immunochmecial and cellular aspects of hypersensitivity; immunogenetics and regulation of the immune response. (SU grading only.)—II, III, IV. (II, III, IV.)

409. Current Immunology (2)
Discussion—2 hours. Prerequisite: consent of instructor. Current developments in various aspects of immunology and their interrelationships. (Same course as 209.) May be repeated for credit. (SU grading only.)—I, II, III. (I, II, III.)

415. Medical Parasitology (5)
Lecture—3 hours; laboratory—6 hours. Prerequisite: medical student with consent of instructor. Approved for graduate degree credit. Epidemiological, pathogenesis, diagnostic methods and laboratory studies of protozoa, helminths and arthropods of medical importance. Offered in alternate years. (Same course as 215.)—I. Theis

420. Current Concepts in Bacterial Ultrastructure (2)
Discussion—2 hours; formal presentation or term paper. Prerequisite: medical student with consent of instructor. Evaluation of current status of bacterial ultrastructure with an emphasis on host-parasite interactions through discussions and assigned readings. (SU grading only.)—II, III. (II, III.)

430. Medical Mycology (2)
Lecture—2 hours. Prerequisite: a course in pathogenic microbiology and consent of instructor. Various aspects of pathogenic fungi, particularly affecting humans, will be discussed including epidemiology, pathogenesis and pathology, diagnosis and therapy. Offered in alternate years. (Same course as 430.)—II. Pappagianis

480A. Medical Immunology (2.5)
Lecture—7 hours (four weeks only). Prerequisite: approval by Committee on Student Evaluation and Promotion. Presents the structure and function of the molecules, cells, and tissues involved in immunity, and their interactions in health and disease.—III. (III.)

480B. Pathogenic Microbiology (6.5)
Lecture—7 hours (for 9 weeks), laboratory—20 hours per quarter. Prerequisite: approval by Committee on Student Evaluation and Promotion. The biology of pathogenic microorganisms with emphasis on their role in human disease.—I. (I.)

497T. Tutoring in Medical Microbiology (1-5)
Tutoring—3–15 hours. Prerequisite: appropriate preparation in subject matter and consent of instructor. Assist instructor by tutoring medical students in one of the departmental courses that is a component of the required curriculum of the School of Medicine. (SU grading only.)

498. Group Study in Medical Microbiology and Immunology (1-5)
Prerequisite: medical students with consent of instructor. Directed reading and discussion and/or laboratory investigation on selected topics. (SU grading only.)

499. Research (1-12)
Prerequisite: medical students with consent of instructor. (SU grading only.)
Medical Pharmacology and Toxicology (PHA)

Lower Division Courses

92. Internship in Pharmacology (1-12)
 Internship—3-36 hours; final report. Prerequisite: lower division student with good academic standing; approval of project prior to period of internship. Supervised work experience in pharmacology and related fields. (P/N grading only.)

99. Special Study for Undergraduates (1-5)
 Prerequisite: lower division standing. (P/N grading only.)

Upper Division Courses

192. Internship in Pharmacology (1-12)
 Internship—3-36 hours; final report. Prerequisite: upper division standing; approval of project prior to period of internship. Supervised work experience in pharmacology and related fields. (P/N grading only.)

198. Directed Group Study (1-5)
 Prerequisite: consent of instructor. (P/N grading only.)

199. Special Study for Advanced Undergraduates (1-5)
 Prerequisite: consent of instructor. (P/N grading only.)

Graduate Courses

200A. Advanced General Pharmacology (3)
 Lecture—3 hours. Prerequisite: upper division courses in biochemistry (101A-101B) and mammalian physiology (111A-111B and 112-113) or the equivalent (may be taken concurrently). Core course in human pharmacology designed for graduate and medical students. Principles in pharmacology, including pharmacokinetics and drug metabolism and the actions, use and toxicity of the major classes of drugs.—I. (I.)

200B. Advanced General Pharmacology (4)
 Lecture—4 hours. Prerequisite: upper division courses in biochemistry (101A-101B) and mammalian physiology (111A-111B and 112-113) or the equivalent (may be taken concurrently). Core course in human pharmacology designed for graduate and medical students. The actions, use and toxicity of major classes of drugs. Continuation of course 200A.—II. (II.)

206. Pharmacokinetics (2)
 Lecture—2 hours. Prerequisite: courses 200A, 200B. Phsyiochemical and physiological factors affecting absorption, distribution, metabolism and excretion of drugs. Mathematical and graphical methods for determining pharmacokinetic parameters. Calculation of dose regimens. Offered in alternate years.—(I.) Henderson

298. Group Study (1-5)
 Prerequisite: consent of instructor.

299. Research (1-12)
 Prerequisite: consent of instructor. (SU grading only.)

Professional Courses

400A. Principles of Pharmacology (2.5)
 Lecture—6 hours (for 4 weeks); discussion—2 hours. Prerequisite: approval by Committee on Student Evaluation and Promotion. Principles in pharmacology, including pharmacokinetics, drug metabolism and the actions, uses and toxicities of the major classes of drugs.—I. (I.)

400B. Principles of Pharmacology (6)
 Lecture—38 hours total; discussion—28 hours total. Prerequisite: approval by Committee on Student Evaluation and Promotion. The actions, uses and toxicities of the major classes of drugs. Continuation of 400A.—II. (II.)

445. Introduction to Integrative Medicine (1)
 Lecture/discussion—1 hour. Prerequisite: medical student in good standing. Basic principles of alternative medical systems (e.g., traditional Chinese, Ayurvedic, Tibetan), alternative practices (e.g., chiropractic, osteopathy, naturopathy, homeopathy, herbalism, guided imagery/meditation, massage therapy), and mindbody connection are presented as introduction to integrating alternative treatments into traditional medical practice. (SU grading only.—II. (II.) Harkey

490. Seminar in Pharmacology for Medical Students (1)
 Seminar—1 hour. Prerequisite: consent of instructor. Seminar in pharmacology for medical students.—I, II, III, IV (I, II, III, IV)

497T. Tutoring in Pharmacology (1-5)
 Tutoring—3-15 hours. Prerequisite: advanced standing or consent of instructor. Assist instructor by tutoring medical students in preparation for one of the departmental courses that is a component of the required curriculum of the School of Medicine. (SU grading only.)

498. Special Study for Medical Students (1-5)
 Lecture, directed reading, and/or discussion groups—3-15 hours. Prerequisite: consent of instructor. Special study in pharmacology for medical students. (SU grading only.)

499. Directed Research for Medical Students (1-12)
 Laboratory—3-36 hours. Prerequisite: consent of instructor. Directed research in pharmacology for medical students. (SU grading only.)

Neurology (NEU)

Upper Division Courses

198. Individual Special Study and Research (1-4)
 Prerequisite: consent of instructor. Individual special study in neurophysiology and biomedicale engineering is offered to qualified students. Studies on psychophysics, single-unit electrophysiology and instrumentation are offered in Davis. (P/N grading only.)

Graduate Courses

201. Human Behavioral Neurobiology (2)
 Lecture/discussion—2 hours. Prerequisite: Cell Biology and Human Anatomy 203; Psychology 108 or 136. Neurobiology of normal and abnormal behavior of humans, based on specific neuroanatomical, neurophysiological, and cognitive parameters. Evaluation of these parameters will be, for example, by application of clinical neural-neurological and neuromaging tests.—I. (I.) Robertson

202. Visual Motor Neurobiology (2)
 Seminar—2 hours. Prerequisite: course 201, Cell Biology and Human Anatomy 203. An overview of neural mechanisms of visually guided behavior in humans will examine the integration of visual attention and eye movements. Performance of normal humans and neurologic patients in reflexive orienting, visual search, reading and reaching will be considered. Offered in alternate years.—(I, II) Ratal

290. Seminar in Selected Topics (1)
 Seminar—1 hour. Prerequisite: consent of instructor. Selected topics in Neuroscience will be offered. (SU grading only.) Gorin

298. Group Study (1-5)
 Prerequisite: consent of instructor. For graduate students desiring to explore particular topics in depth. Lectures and conferences may be involved. (SU grading only.)

299. Individual Special Study and Research (1-12)
 Laboratory—3-36 hours. Prerequisite: consent of instructor. Individual special study and research in Neurophysiology and Biomedical engineering is offered at both Davis and Sacramento Medical Center. (SU grading only.)

Professional Courses

420. Clinical Neurosciences (4)
 Lecture—6 hours; laboratory/discussion—5 hours (for five weeks total). Prerequisite: medical student with approval by Committee on Student Evaluation and Promotion. Lectures and case discussions of pathophysiology underlying neurological disorders including disorders of development, muscle, nerve, cerebral circulation, meninges, myelin, cortical function, movement, cerebrospinal fluid, autonomic function and special senses. Anatomical basis of clinical testing, nervous system infection, neoplasia and trauma will be discussed.—II. (II.)

450. Clinical Neurology Clerkship (3-6)

451. Clinical Neurology Clerkship (3-6)
 Clinical activity—full time (2-4 weeks at Highland General Hospital, Oakland). Prerequisite: fourth-year medical student. Essentials of detailed neurological examination and principles of differential neurological diagnosis. Emphasis on common neurological disorders encountered in practice.—I, II, III, IV (I, II, III, IV)

452. Advanced Clinical Neurology (6)

453. Advanced Clinical Neurology (6)
 Clinical activity—full time (4 weeks at Highland General Hospital, Oakland). Prerequisite: completion of four-week Neurology selective and consent of instructor. Extension of basic Neurology clerkship. Designed for students with special interest in medical disorders of the nervous system. By arrangement with department, student may serve as an acting intern. Principles of neurological differential diagnosis and therapeutics emphasized.—I, II, III, IV (I, II, III, IV)

454. Electroencephalography and Evoked Potentials (3-18)
 Clinical activity—full time (2-12 weeks) technique and interpretation. Prerequisite: four-week Neurology clerkship and consent of instructor. Principles of electroencephalographic diagnosis including technical basis of electroencephalography and evoked potentials. Emphasis placed on how these studies are applied to neurological diagnosis.—I, II, III, IV (I, II, III, IV) Gabor, Seyal

455. Child Neurology (6)
 Clinical activity—full time (4 weeks). Prerequisite: satisfactory completion of Internal Medicine 430, Obstetrics and Gynecology 430, Pediatrics 430 and consent of instructor. Student exposed to children with disorders of the nervous system, both in outpatient and inpatient services. Cases presented to a member of full-time faculty who will discuss clinical findings, differential diagnosis, management and therapy. This course satisfies the fourth year neuroscience requirement.—I, II, III, IV (I, II, III, IV) Gospe.
Neurosurgery (NSU)

Upper Division Course

199. Special Study in Neurosurgery for Advanced Undergraduates (1-5)
Prerequisite: advanced undergraduate standing with consent of instructor. Students may participate in ongoing neurosurgical projects or may pursue and design independent projects. (PINP grading only.)

Graduate Course

299. Neurosurgery Research (3-12)
Prerequisite: graduate student with consent of instructor. Student may participate in ongoing neurosurgical projects or may pursue and design independent projects. (S/U grading only.)

Professional Courses

451. Neurosurgical Critical Care Clerkship (3)
Clinical activity—full time (2 weeks). Prerequisite: third- or fourth-year medical student having completed a neurosurgical clerkship or consent of instructor. Students participate in the care of neurosurgical patients in the NSICU and in the admission and surgical management of patients admitted through the Emergency Room.—I, II, III, IV

455. Clinical Pediatric Neurosurgery (6)
Clinical activity—full time (4 weeks). Prerequisite: third- or fourth-year medical students who have satisfactorily completed course 460; consent of instructor. Admission and follow-up of pediatric patients. Neurological history, examination, and diagnostic procedures are emphasized. Students will participate in surgical procedures and are required to attend all pediatric neurosurgery conferences.—I, II, III, IV, (I, II, III, IV, Pang)

460. Clinical Neurosurgery (6-16)
Clinical activity—full time (3 days per week, 4 weeks minimum). Prerequisite: third- and fourth-year medical students; consent of instructor. Approved for graduate degree credit. Admission and follow-up of patients. Neurological history, examination and further diagnostic procedures emphasized. Students participate in meaningful aspects of surgical procedures and attend listed conferences, rounds, and seminars.—I, II, III, IV, (I, II, III, IV)

464. Externship (6-18)
Clinical activity—full time (4-12 weeks). Prerequisite: fourth-year medical student having completed a neurosurgical clerkship or consent of instructor. Clerkship in neurosurgery to be arranged at another institution with accredited residency program in neurosurgery under proper supervision.—I, II, III, IV, (I, II, III, IV)

470. Advanced Clinical Neurosurgery (6-18)
Clinical activity—full time (4-12 weeks). Prerequisite: fourth-year medical student in good academic standing. Student will function as acting intern on neurosurgery service. Admission and management of patients. Neurological history, examination, diagnostic procedures, and surgical management are emphasized. Students participate in meaningful aspects of surgical procedures and attend required conferences and rounds.—I, II, III, IV, (I, II, III, IV)

480. Insights in Neurosurgery (1-3)
Clinical activity—3 to 9 hours. Prerequisite: first- and second-year medical students in good academic standing; consent of instructor. Observation of neurosurgical care in emergency room, operating room and hospital floors, including manner of treatment of a variety of chronic and acute neurological diseases. (S/U grading only.)—I, II, III, IV

499. Neurosurgery Research (1-18)
Prerequisite: medical student with consent of instructor. Student may participate in ongoing neurosurgical projects or may pursue and design independent projects. (S/U grading only.)

Obstetrics and Gynecology (OBG)

Upper Division Courses

190. Seminar in Early Mammalian Development (1)
Seminar—1 hour. Short paper. Prerequisite: Zoology 100 or the equivalent. Each student will present paper from the recent scientific literature on various research topics in early mammalian development. Short paper will be required at the end of course.—I, II, III, IV, (I, II, III, IV) Bowe

191. Current Topics in Research (1)
Seminar—1 hour. Prerequisite: graduate standing and consent of instructor. Selected topics in reproductive biology. (S/U grading only.)—I, II, III, IV, (I, II, III, IV) Wile

291. Seminar in Early Mammalian Development (1)
Seminar—1 hour. Prerequisite: graduate standing and consent of instructor. Student may participate in ongoing neurosurgical projects or may pursue and design independent projects. (S/U grading only.)—I, II, III, IV, (I, II, III, IV) Wile

298. Group Study (1-5)
Prerequisite: graduate standing; consent of instructor.—Overstreet

299. Research (1-12)
Prerequisite: graduate standing; consent of instructor. (S/U grading only.)—Overstreet

Professional Courses

420. Genetics and Reproduction (2)
Lecture—20 hours; conference—4 hours. Prerequisite: Endocrinology. Introduction to medical genetics and the clinical consequences of genetic abnormalities. Aspects of reproduction including gametogenesis, development of the conceptus, maternal adaptation to pregnancy, labor and delivery and menopause.—IV (IV) Wile

430. Obstetrics and Gynecology Clerkship (12)
Clinical activity—45 hours. Prerequisite: medical students with approval by Committee on Student Evaluation and Promotion. Obstetric, gynecologic and gynecological oncology experience in the delivery room, operating room, clinic and wards at UCDMC and affiliated sites. Rounds, conferences, interactive student presentations and seminars ongoing.—I, II, III, IV, (I, II, III, IV) Birdsong

433. Obstetrics and Gynecology Continuum Clerkship (6)
Clinical activity—full time (4 weeks). Prerequisite: completion of all required course work of first and second year medical curriculum. Obstetric, gynecologic and gynecological oncology experience in the delivery room, operating room, clinics and wards at UCDMC and affiliated sites. Rounds, conferences, interactive student presentations and seminars ongoing.—I, II, III, IV, (I, II, III, IV) Birdsong

465. Elective Clerkship (4-18)
Clinical activity—full time (3 days per week). Prerequisite: third- and fourth-year medical student; course 430 or the equivalent; consent of instructor. Active participation in inpatient and outpatient care. Attendance at specified conferences; student-faculty member informal conferences. May be repeated for credit.—I, II, III, IV, (I, II, III, IV) Birdsong
470. Acting Internship in Obstetrics and Gynecology (6-8)
Clinical activity—full time (4-6 weeks). Prerequisite: third- and fourth-year medical students who have completed course 430; consent of instructor. Student will perform as intern and attend the following experience: Obstetrics and Gynecology, 2 weeks each; perform inpatient care; be on call every third night; attend scheduled conferences one half-day per week. Round daily with attending.—I, II, III, IV. (I, II, III, IV.) Leiserowitz

471. Ambulatory Gynecology and Obstetrics (6-8)
Clinical activity—full time (4-6 weeks). Prerequisite: third- and fourth-year medical students who have completed course 430; consent of instructor. Student to participate in following clinics each week: General Gynecology, New and Return Obstetrics, Post-Partum, High-Risk Obstetrics, Pre-Operative Clinic, other specialty clinics as assigned. Student will conduct examinations, present patients to staff and will be able to discuss treatment regimens. Night call in Labor and Delivery Suite every third night.—I, II, III, IV. (I, II, III, IV.)

499. Research in Obstetrics and Gynecology (4-18)
Prerequisite: consent of instructor with consent of instructor. Student will pursue a research problem of her/his own choosing, selected with help of the faculty. Integration with ongoing faculty research projects recommended. (SU grading only.)

Ophthalmology (OPT)
Upper Division Courses
192. Research Internship (1-12)
Internship—3-36 hours. Prerequisite: upper division standing; approval of project prior to period of internship by preceptor. Supervised work experience in ophthalmology research. Research staff in Ophthalmology have programs in cell biology, electron microscopy, biochemistry, immunology and visual psychophysics. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)

Graduate Course
298. Group Study (1-5)
Prerequisite: consent of instructor. (SU grading only.)

Professional Courses
440. Ophthalmology Required Clerkship (3)
Clinical activity—full time (2 weeks). Prerequisite: consent by Committee on Student Evaluation and Promotion. Fundamental knowledge of ophthalmic diagnosis and principles; basic ophthalmic instruments; understanding of treatment for eye problems manageable by a primary care physician; knowledge of what patients should be referred for ophthalmic care.—I, II, III, IV. (I, II, III, IV.) J. Brandt

461. Basic Clinical Ophthalmology (4.5)
Clinical activity—to be arranged (2 weeks). Prerequisite: medical students who have completed either Medical Sciences 430 or course 440 (in third or fourth year), consent of instructor. Provides acquaintance with the fundamentals of routine clinical ophthalmology.—I, II, III, IV. (I, II, III, IV.) J. Brandt

465. Advanced Subspecialty Ophthalmology (6 or 9)
Clinical activity—to be arranged (4 weeks off campus or 6 weeks at UCD Medical Center). Prerequisite: medical students who have completed internal Medicine 430 (in third or fourth year), consent of instructor. Participation in didactic, neuro-ophthalmology/pediatric ophthalmology, diseases of the cornea and external eye, glaucoma and retina. Rotations at UCD Medical Center may be arranged in 6-week units of one service alone, or in combination, as arranged with instructors.—I, II, III, IV. (I, II, III, IV.) Mannis, Keltner, J. Brandt

480. Insights in Ophthalmology (1-3)
Clinical activity—3-9 hours. Prerequisite: first- and second-year medical students in good academic standing; consent of instructor. Clinical exposure in ophthalmology/pediatric ophthalmology, retina, and related fields. Student must provide own transportation.—I, II, III, IV. (I, II, III, IV.) J. Brandt

481. History of Medicine for Medical Students (1.5)
Lecture/discussion—2.5 hours (for six weeks). Prerequisite: third- or fourth-year students in the School of Medicine or second-year students with consent of instructor. Overview of the history of medicine throughout the world to introduce medical students to landmark accomplishments and key figures in the development of health care and to provide an expanded philosophical perspective on the ever-changing field of modern medicine. (SU grading only.)—I, II, III, IV. (I, II, III, IV.) Szabo

489. Orthopaedics Research (1-12)
Clinical activity—3 hours to full time (to be arranged with individual faculty). Prerequisite: third- or fourth-year medical student in good academic standing; consent of instructor. Laboratory or clinical investigation on selected topics. May be repeated for credit. (SU grading only.)

Otolaryngology (OTO)
Lower Division Courses
192. Internship in Otolaryngology (1-12)
Internship—3 to 36 hours. Prerequisite: upper division standing; approval of project prior to period of internship by preceptor. Supervised work experience in otolaryngology and related fields. Final project report. (P/NP grading only.)

198. Directed Group Study (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)

199. Special Study in Otolaryngology for Advanced Undergraduates (1-5)
Prerequisite: advanced undergraduate with consent of instructor. (P/NP grading only.)

Graduate Courses
290C. Research Conference in Otolaryngology (1)
Lecture/discussion—1 hour. Prerequisite: graduate students; medical students; advanced graduate students with consent of instructor. Presentation and discussion of faculty and student research in otolaryngology. (SU grading only.)—I, II, III, IV. (I, II, III, IV.)

291. Principles of Speech, Hearing and Equilibrium (3)
Lecture/discussion—3 hours. Prerequisite: graduate students; medical students; advanced undergraduates with consent of instructor. Presentations by faculty and graduate students on anatomy, physiology, and behaviors involved in speech production, hearing, and equilibrium. Each student will be expected to make one class presentation.—I, II, III, IV. (I, II, III, IV.)

298. Group Study (1-5)
(SU grading only.)

299. Individual Study in Otolaryngology for Advanced Graduate Students (1-12)
Prerequisite: advanced graduate student with consent of instructor. (SU grading only.)

Orthopaedic Surgery (OSU)
Lower Division Course
99. Special Studies for Undergraduates (1-4)
Prerequisite: lower division standing and consent of instructor. (P/NP grading only.)

Upper Division Course
199. Special Study for Advanced Undergraduates (1-5)
Prerequisite: upper division standing; consent of instructor. (P/NP grading only.)

Professional Courses
421. The Musculoskeletal System (2.5)
Lecture—5 hours (for 5 weeks); laboratory/discussion—1 hour. Prerequisite: approval by Committee on Student Evaluation and Promotion. An introduction to the basic and clinical science of orthopaedic surgery and rheumatology.

428. Ambulatory and Emergency Room Orthopaedics (3-6)
Clinical activity—full time (2-4 weeks). Prerequisite: fourth-year medical student in good academic standing and consent of instructor. Introduction to general orthopaedic problems and trauma and their management in an outpatient environment, including the emergency room. Student will conduct orthopaedic examinations, present patients to staff rotating through trauma, hand, pediatrics, adult and foot clinics. Orthopaedic physical examination and interpretation of x-rays. Limited enrollment—I, II, III, IV. (I, II, III, IV.) Moehring

462. Community Preceptorship (3-6)
Clinical activity—full time (2-4 weeks). Prerequisite: fourth-year medical student in good academic standing with consent of instructor. Acquaints student with private practice of orthopaedics in the community setting. Opportunity to observe and assist private practitioners in office, emergency room, operating room and inpatient environment. Student must provide own transportation.—I, II, III, IV. (I, II, III, IV.) Moehring

464. Acting Internship (6)
Clinical activity—full time (4 weeks). Prerequisite: fourth-year medical student in good academic standing and consent of instructor. Rotation designed to increase basic knowledge of musculoskeletal abnormalities at clinical level. Attention focused on selective case material. For those students who demonstrate proficiency, responsibility will be similar to that of intern. Limited enrollment. May be repeated for credit.—I, II, III, IV. (I, II, III, IV.) Moehring

480. Insights in Orthopaedic Surgery (1-3)
Clinical activity—3-9 hours. Prerequisite: first- and second-year medical students in good academic standing; consent of instructor. Exposure to aims, methods and procedures in orthopaedic surgery via attendance at grand rounds, patient care conferences, and group discussions. (SU grading only.)—I, II, III, IV. (I, II, III, IV.)

481. History of Medicine for Medical Students (1.5)
Lecture/discussion—2.5 hours (for six weeks). Prerequisite: third- or fourth-year students in the School of Medicine or second-year students with consent of instructor. Overview of the history of medicine throughout the world to introduce medical students to landmark accomplishments and key figures in the development of health care and to provide an expanded philosophical perspective on the ever-changing field of modern medicine. (SU grading only.)—I. (I.) Benson

489. Orthopaedics Research (1-12)
Clinical activity—3 hours to full time (to be arranged with individual faculty). Prerequisite: third- or fourth-year medical student in good academic standing; consent of instructor. Laboratory or clinical investigation on selected topics. May be repeated for credit. (SU grading only.)
Professional Courses

401. Clinical Examinations in Otolaryngology (1)
Lecture—1 hour; laboratory—1 hour; practical—1 hour total. Prerequisite: second-year medical students with consent of instructor; open to graduate students. Approved for graduate degree credit. Obtaining the history, applied anatomy of the regions, and the art of the examination. Head mirror required.—I, II, III, IV. (I, II, III, IV.) Kendall

402. Otolaryngology in Family Practice (1)
Lecture—10 hours total. Prerequisite: fourth-year medical students and family prac- titioners with consent of instructor; open to graduate students. Approved for Graduate degree credit. Planned as a refresher course for those already possessing a background of knowledge in the specialty.—I, II, III, IV. (I, II, III, IV.)

403. Basic Principles of Reconstructive Surgery (1)
Lecture—four 2-hour sessions; laboratory—one 2-hour session (4 weeks). Prerequi- site: third- or fourth-year medical student with consent of instructor. Formal presen- tations covering basic principles of reconstructive surgery, including wound healing, treatment of lacerations, skin and bone grafts, flaps, Z-plasties and revision of scars. Laboratory session utilizing animal tissues.—II. (II.) Donald

404. Otolaryngology Required Clerkship (3)
Clinical activity—full time (2 weeks). Prerequisite: consent by Committee on Student Evaluation and Promotion. To provide fundamental knowledge of otorhinolaryngology, major disease processes, and techniques. Clinical activity open to medical students with consent of instructor. Approved for graduate degree credit. Total involvement in clinical activities of the department.—I, II, III, IV. (I, II, III, IV.) Strong

460. Clinical Otolaryngology Elective (3-18)
Clinical activity—full time. Prerequisite: third- and fourth-year medical students with consent of instructor; open to graduate students. Approved for graduate degree credit. Total involvement in clinical activities of the department.—I, II, III, IV. (I, II, III, IV.) Strong

480. Insights in Otolaryngology (1-3)
Clinical activity—3 to 9 hours. Prerequisite: first- and second-year medical students in good academic standing; consent of instructor. Individualized activities (depend- ing upon time available and previous exposure to Ear, Nose and Throat) including observing patient exams, ward rounds and attendance at lectures and grand rounds. (SU grading only)—I, II, III, IV. (I, II, III, IV.) Strong

490. Journal Seminar (1)
Lecture/discussion—10 hours total (course given three times per quarter). prerequi- site: fourth-year medical students with consent of instructor; open to graduate stu- dents. Approved for graduate degree credit. Monthly review of current otorhinolaryngology and related literature and recent advances.—I, II, III, IV. (I, II, III, IV.) Strong

498. Individual or Group Study (1-5)
Lecture/discussion—1-2 hours; laboratory—1-4 hours. Prerequisite: consent of instructor. Introduction to basic research in Otolaryngology. Lectures, discussion and laboratory study of sensory and motor systems. (SU grading only.)

499. Research (1-12)
Prerequisite: medical students with consent of instructor; open to graduate students. Approved for graduate degree credit. Participation in ongoing projects. (SU grading only.)

Pathology (PMD)

Upper Division Courses

192. Internship in Human Pathology (1-12)
Internship—3-36 hours; final project report. Prerequisite: upper division standing; approval of project prior to period of internship by preceptor. Supervised work expe- rience in pathology and related fields. (P(NP grading only.)

199. Special Study in Pathology for Advanced Undergraduates (1-5)
Prerequisite: advanced undergraduates and consent of instructor. (P(NP grading only.)

Graduate Courses

210. Introduction to Human Pathology (4.5)
Lecture/discussion—8 hours; laboratory—4 hours (5 weeks). Prerequisite: graduate or upper division students with background in gross and microscopic anatomy, physiology and biochemistry. Lectures, laboratory, and computer-assisted learning. Introduces basic human disease processes. Stresses mastery of pathophysiology and vocabulary. Examining gross and microscopic tissue sections is taught. (Course given second five weeks of spring and taken with first-year medical stu- dents enrolled in course 410A.) Course not intended for veterinary or medical stu- dents. (I, II, III, IV.) C. Miller

298. Advanced Group Study (1-5)
Prerequisite: consent of instructor.

299. Research (1-12)
Prerequisite: consent of instructor. (SU grading only.)

Professional Courses

404. Forensic Pathology (2)
Laboratory—3-10 hours. Prerequisite: medical student or consent of instructor. Systematic study of current forensic cases with emphasis on differential diagnosis, procedure of evidence, and medical-legal procedures. Introduction to histopatho- logic diagnosis, ballistics, and toxicology. (SU grading only)—I, II, III, IV. (I, II, III, IV.) Finkbeiner

405. Brain Cutting Conference (1-4)
Seminar—1-4 hours. Prerequisite: third- and fourth-year medical students or con- sent of instructor. Current specimens are sectioned, discussed, and clinical correla- tions proposed.—I, II, III, IV. (I, II, III, IV.) Ellis

407. Advanced Neuropathology (1-12)
Discussion and laboratory. Prerequisite: consent of instructor. Study of pathologic reaction in human central and peripheral nervous systems and skeletal muscle by microscopic, light and electron microscopic examination of current and archival material. Discussions of clinical correlations and current medical literature. Individualized experience in neuropathologic techniques. (SU grading only)—I, II, III, IV. (I, II, III, IV.) Ellis

410A-410B. General/Systemic Pathology (4.5, 7.5)
Lecture—30, 30 hours total; laboratory/discussion—25, 90 hours total; autotutorial— 0, 5 hours total. Prerequisite: approval by Committee on Student Evaluation and Pro- motion. Includes both lecture, laboratories and small group discussions that emphasizes an in-depth study of pathophysiological mechanisms of disease. Gross organ and microscopic study of disease is presented on an organ system basis. (Deferred grading only; pending completion of sequence.)—III-IV. (III-IV.) Miller, Jensen, Gandour-Edwards

464. Anatomic Pathology (5-12)
Clinical activity—full time (4-8 weeks). Prerequisite: third- or fourth-year medical stu- dent and consent of instructor. Experience in anatomic pathology with emphasis on surgical pathology and applications to clinical practice. Students participate in specimen grossing, frozen sections, microscopic sign-out and conferences. If desired, opportunities in autopsy and cytopathology are available. (SU grading only)—I, II, III, IV. (I, II, III, IV.) Gandour-Edwards

465. Applied Clinical Laboratory Medicine (6-9)
Clinical activity—full time (4-6 weeks). Prerequisite: consent of instructor. Emphasis upon laboratory techniques, procedures, and interpretation of laboratory results. Students will be expected to participate fully and in all laboratory operations including bench techniques, laboratory management and quality control.—I, II, III, IV. (I, II, III, IV.) Kost

497T. Tutoring in Pathology (1-5)
Tutoring—3-15 hours. Prerequisite: advanced standing or consent of instructor. Assist instructor by tutoring medical students in preparation for one of the depart- mental courses that is a component of the required curriculum of the School of Medi- cine. (SU grading only.)

498. Advanced Group Study (1-5)
Prerequisite: medical student and consent of instructor. Group study in variety of advanced topics in general, special, experimental, or comparative pathology. (SU grading only.)

499. Research (1-18)
Prerequisite: medical student with consent of instructor. Research in experimental, molecular, comparative, and applied pathology. Limited enrollment. (SU grading only.)

Pediatrics (PED)

Upper Division Course

199. Special Study in Pediatric Research (1-5)
Prerequisite: undergraduate student with consent of instructor based upon ade- quate preparation as determined by instructor. (P(NP grading only.)

Graduate Course

299. Pediatric Research (1-12)
Prerequisite: graduate students who are candidates for a degree in some area of biology or behavioral sciences; consent of instructor. (SU grading only.)

Professional Courses

401. Preceptorship in Pediatrics (2)
Preceptorship—half time. Prerequisite: second-year medical student or first-year medical student with consent of instructor. Opportunity to observe and participate in primary medical care in a practicing pediatrician’s office. Participation in history-taking and physical examination will be at discretion of preceptor and dependent on student’s experience. Evaluation by student.—I, II, III, IV. (I, II, III, IV.)

402. Clinical Experience in Private Practice (1-18)
Clinical activity—full time (2 to 12 weeks). Prerequisite: third- or fourth-year medical student; course 430; consent of preceptor and Chairperson. Opportunity to partici- pate in practice of preceptor, performing such tasks as history taking, physical examination, and patient management.—I, II, III, IV. (I, II, III, IV.)
430. Pediatric Clerkship (12)
Clinical activity—45 hours. Prerequisite: medical students with approval by Committee on Student Evaluation and Promotion. Eight-week clinical clerkship providing students with a broad background in the specialty of caring for the pediatric patient by participating in the nursery, ambulatory and inpatient services at UCDMC and affiliated clinical sites. Rounds, conferences, student presentations ongoing.—I, II, III, IV. (I, II, III, IV.) Hansen

431. Pediatric Continuum Clerkship (6)
Clinical activity—full time (for 4 weeks). Prerequisite: completion of all required course work of first and second year medical curriculum. Four-week clinical clerkship providing opportunity to learn fundamentals of caring for the pediatric patient by participating in the nursery/ambulatory or inpatient services at UCDMC and affiliated clinical sites. Rounds, conferences, student presentations ongoing.—I, II, III, IV. (I, II, III, IV.) Hansen

460A. Acting Internship: General Inpatient Pediatric Clerkship (6-18)
Clinical activity—full time (4 to 12 weeks). Prerequisite: completion of course 430 with grade of B or better; letter of recommendation from Pediatrics faculty member. The Ward Acting Intern functions in a manner similar to that of a pediatric intern. The Acting Intern takes admissions in the regular sequence and is expected to take night call. The Acting Intern can expect to manage between six and ten patients at a time. Limited enrollment.—I, II, III, IV. (I, II, III, IV.) Conners

460B. Acting Internship: Outpatient Pediatrics (3-18)
Clinical activity—full time (2 to 12 weeks). Prerequisite: completion of course 430 with grade of B or better, letter of recommendation from Pediatrics faculty member. The Action Acting Intern takes admissions in the regular sequence and is expected to take night call. The Action Acting Intern can expect to manage between six and ten patients at a time. Limited enrollment.—I, II, III, IV. (I, II, III, IV.) McDonald

461. Elective in Hematology/Oncology (3-18)
Clinical activity—full time (2 to 12 weeks). Prerequisite: satisfactory completion of course 430; consent of instructor. Inpatient and outpatient experience in diagnosis and management of hematologic disorders in children. Laboratory experience and participation in clinical investigation may be arranged. Limited enrollment.—I, II, III, IV. (I, II, III, IV.) McDonald

462. Elective in Pediatric Endocrinology (3-18)
Clinical activity—full time (2 to 12 weeks). Prerequisite: completion of second-year study or the equivalent; consent of instructor. Inpatient and outpatient experience in diagnosis and management of endocrine disorders in children. Limited enrollment.—I, II, III, IV. (I, II, III, IV.) McDonald

463. Pediatric Specialty Clinic Elective (3-18)
Clinical activity—full time (2 to 12 weeks). Prerequisite: satisfactory completion of course 430; consent of instructor. Supervised experience in a variety of pediatric subspecialty clinics. Limited enrollment.—I, II, III, IV. (I, II, III, IV.) McDonald

466. Elective in Pediatric Cardiology (3-18)
Clinical activity—full time (2 to 12 weeks). Prerequisite: satisfactory completion of course 430; consent of instructor. Inpatient and outpatient experience in diagnosis and management of cardiorespiratory disorders in children. Inpatient and outpatient experience in diagnosis and management of neurologic and musculoskeletal disorders. Laboratory experience and participation in clinical investigation may be arranged. Limited enrollment.—I, II, III, IV. (I, II, III, IV.) McDonald

467. Elective in Pulmonary Medicine (3-18)
Clinical activity—full time (2 to 12 weeks). Prerequisite: satisfactory completion of course 430; consent of instructor. Inpatient and outpatient experience in diagnosis and management of neuromuscular disorders in children. Laboratory experience and participation in clinical investigation may be arranged. Limited enrollment.—I, II, III, IV. (I, II, III, IV.) McDonald

471. Elective in Pediatric Gastroenterology (3-18)
Clinical activity—full time (2 to 12 weeks). Prerequisite: completion of course 430 with grade of A or consent of instructor of record; letter of recommendation from Pediatrics faculty member. Inpatient and outpatient experience in diagnosis and management of gastroenterology disorders in children. Laboratory experience and participation in clinical investigation may be arranged. Limited enrollment.—I, II, III, IV. (I, II, III, IV.) McDonald

476. Acting Internship in Pediatric Intensive Care (6-18)
Clinical activity—full time (4 to 12 weeks). Prerequisite: completion of course 430 with grade of A or consent of instructor of record; letter of recommendation from Pediatrics faculty member. Inpatient and outpatient experience in diagnosis and management of gastroenterology disorders in children. Laboratory experience and participation in clinical investigation may be arranged. Limited enrollment.—I, II, III, IV. (I, II, III, IV.) McDonald

499. Research Topics in Pediatrics (1-18)
Prerequisite: student in Medical School with consent of instructor. Individual research project in pediatric subspecialty areas (cardiology, endocrinology, hematology, metabolism, newborn physiology and others) may be arranged with faculty member. Independent research by student will be emphasized and long-term projects are possible. (SU grading only.)

Physical Medicine and Rehabilitation (PMR)

Upper Division Courses

198. Directed Group Study (1-5)
Prerequisite: advanced standing and consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5)
Prerequisite: advanced standing and consent of instructor. (P/NP grading only.)

Graduate Course

299. Research (1-12)
Prerequisite: consent of instructor. (SU grading only.)

Professional Courses

440. Rehabilitation Medicine Clerkship (3)
Clinical activity—full time (2 weeks). Prerequisite: third- or fourth-year medical student; approval by Committee on Student Evaluation and Promotion. Rehabilitation medicine and geriatrics relating to comprehensive care of the physically disabled and the physical medicine management of neurologic and musculoskeletal disorders. Physiological effects, indications and contraindications of the therapeutic modalities and their application to common musculoskeletal disorders.—I, II, III, IV. (I, II, III, IV.) McDonald

461. Rehabilitation Medicine Clinical Elective (5-18)
Clinical activity—full time. Prerequisite: completion of third year in Medical School; completion of third year in Medical School. Emphasis on evaluation of patients with neurological or orthopaedic problems requiring rehabilitative techniques for their management. Introduction to management of such patients. Fourth-year student may function as acting intern on Physical Medicine and Rehabilitation service.—I, II, III, IV. (I, II, III, IV.) McDonald

462. Rehabilitation Medicine Clinical Elective (5-18)
Clinical activity—full time. Prerequisite: Internal Medicine 430, Surgery 430; completion of third year in Medical School. Emphasis on evaluation of patients with neurological or orthopaedic problems requiring rehabilitative techniques for their management. Introduction to management of such patients. Physical Medicine and Rehabilitation at off-campus facility must be approved by Chairperson.—I, II, III, IV. (I, II, III, IV.) McDonald

498. Advanced Group Study (1-5)
Prerequisite: consent of instructor. Study and experience for medical students in any of a number of areas in physical medicine and rehabilitation. (SU grading only.)

499. Research for Medical Students (1-12)
Prerequisite: consent of instructor. Research on any of a variety of topics in physical medicine and rehabilitation. (SU grading only.)

Plastic Surgery (PSU)

Professional Courses

460. Clinical Plastic Surgery Elective (1-18)
Clinical activity—full time (approximately 40 hours per week). Prerequisite: third- or fourth-year medical students; Surgery 430; consent of instructor. Total involvement in patient care involving surgical preparation, treatment, operative care, and follow-up. Developing and understanding reconstruction and aesthetic plastic surgery. Microsurgical surgery included. Student rotation.—I, II, III, IV. (I, II, III, IV.) Stevenson

461. Dentistry for Future Physicians and Surgeons (6-8)
Discussion/seminar—3 hours; laboratory—2 hours; clinical activity—full time (4-6 weeks). Prerequisite: third- or fourth-year medical students. General practitioners must recognize dental-related problems, have the ability to alleviate potential pain, and be able to refer these problems for further definitive evaluation and treatment. Students will have basic knowledge of dentistry; recognize potential dental problems; provide emergency care; have knowledge of where to refer these problems. (SU grading only.)—I, II, III, IV. (I, II, III, IV.) Thaler

Quarter Offered: I=Fall; II=Winter; III=Spring; IV=Summer, 2001-2002 offering in parentheses.

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
Psychiatry (PSY)
Upper Division Courses
198. Directed Group Study (1-5)
Prerequisite: advanced standing and consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5)
Prerequisite: advanced standing and consent of instructor. (P/NP grading only.)

Graduate Courses
298. Directed Group Study For Graduate Students (1-5)
Prerequisite: graduate standing and consent of instructor.

299. Special Study for Graduate Students (1-12)
Prerequisite: graduate standing and consent of instructor. (Su grading only.)

Professional Courses
401. Medicine and the Mind: An Introduction to Psychiatry (2)
Lecture/discussion—3 hours. Prerequisite: approval by Committee on Student Evaluation and Promotion. Introduction to concepts and clinical applications of psychiatry throughout the human life cycle. Includes tutorials tailored to individual student interests which will explore the biological, psychological, social, and cultural factors influencing health and illness. Includes lecture and video presentations as well as group discussion.—I. (I.) Servis

402. Human Sexuality (1)
Lecture—2 hours; discussion—2 hours (4 weeks). Prerequisite: approval by Committee on Student Evaluation and Promotion. Normal and variant human sexuality. The focus will be on understanding human sexual function in health and illness. (Su grading only) I—IV. (IV.) Keasey

403. Fundamentals of Clinical Psychiatry (3.5)
Lecture—5 hours; discussion—2 hours. Prerequisite: courses 401 and 402. Teaches principles and techniques of psychiatric interviewing, Mental Status Exam and diagnosis. Covers major child and adult disorders, including substance abuse and dependence. Lectures, patient presentations, AV materials, along with weekly student interviews of psychiatric patients in small group format.—II. (II.) Leamon

412. Psychiatry Grand Rounds (1)
Lecture—1 hour. Prerequisite: medical students or staff or other qualified mental health professionals with consent of instructor. Off-campus conference at UCDMC for presentation of selected clinical cases, presentation of lecture and research reports.—II, III, IV. (III, IV.)

413. Outpatient Psychiatry Clerkship (6-12)
Clinical activity—full time (4 to 6 weeks). Prerequisite: course 430 (Psychiatry Core Clerkship) and/or consent of coordinator. Experience in clinical management/treatment of adult outpatients with psychiatric and substance abuse disorders; crisis management/intervention, evaluation/development of diagnosis and treatment plan; emphasis on outpatient psychopharmacology/brief psychotherapy; observation of group therapy. Individual supervision by faculty. Students will present weekly case presentations for psychiatric patients in small group format.—I, II, III, IV. (I, II, III, IV.)

414. Consultation-Liaison Clerkship (6-12)
Clinical activity—full time (4 to 8 weeks). Prerequisite: course 430 (Psychiatry Core Clerkship) and/or consent of instructor. Students function as member of the team in evaluation, management, and psychiatric liaison with other medical specialties. Intensive supervision from senior staff and psychiatric residents.—I, II, III, IV. (I, II, III, IV.)

415. Substance Abuse: Diagnosis and Treatment (3)
Clinical activity—20 hours; independent study—15 hours; lecture/discussion—5 hours. Prerequisite: medical student with consent of instructor. Two-week selective offering supervised contact with patients addicted to alcohol, opioids, cannabis, or psychostimulants. Sites: Travis Air Force Base and regional Methadone and Alcohol Treatment Programs. Pharmacological, psychosocial, “12-step” and behavioral treatment strategies will be demonstrated.—I, II, III, IV. (I, II, III, IV.)

416. Child Psychiatry Clerkship (6-12)
Clinical activity—full time (4 to 8 weeks). Prerequisite: course 430 (Psychiatry Core Clerkship) and/or consent of instructor. Didactic and clinical inpatient, outpatient, and consultation-liaison experiences with children, adolescents and families. Clinical observations, diagnostic assessment, and treatment will be undertaken with close supervision. Literature review and case conferences presented on a regular basis.—I, II, III, IV. (I, II, III, IV.)

417. Jail Psychiatric Clerkship (6 or 12)
Clinical activity—full time (4 to 6 weeks). Prerequisite: course 430 (Psychiatry Core Clerkship) and/or consent of course coordinator. Experience in clinical management/treatment of psychiatric patients in jail. Students will gain exposure to forensic psychiatry and be introduced to the concepts involved in clinical management/treatment of psychiatric patients in jail.—I, II, III, IV. (I, II, III, IV.)

418. Off-Campus Clinical Experience (6 or 12)
Clinical activity—full time (4 to 12 weeks). Prerequisite: consent of instructor. Clinical or research elective in off-campus medical school or mental health setting. To be arranged with advance approval of instructor and individual in charge of off-campus setting.—I, II, III, IV. (I, II, III, IV.)

420. Acting Internship in Psychiatry (6-12)
Clinical activity—full time (4 to 6 weeks). Prerequisite: course 430 (Psychiatry Core Clerkship) and/or consent of course coordinator. Acting intern position with close faculty supervision with emphasis on biological psychiatry, psychopharmacology and psychodynamic aspects appropriate to diagnostic and long-term patient management.—I, II, III, IV. (I, II, III, IV.)

422. Readings in Psychiatry (1-3)
Readings/discussion—3 to 9 hours. Independent reading of a selected topic in psychiatry. Supervision and discussion with a psychiatry faculty member. (Su grading only) I—II, III, IV. (I, II, III, IV.)

430. Psychiatry Clinical Clerkship (12)
Clinical activity—45 hours. Prerequisite: medical students with approval by Committee on Student Evaluation and Promotion. Students are assigned to clinical settings building upon the skills gained in preclinical years; emphasis on diagnostic, therapeutic and interpersonal skills. Focus on patient management, interviewing skills, mental status exam, differential diagnosis, basic psychopharmacology, crisis assessment and intervention.—I, II, III, IV. (I, II, III, IV.)

433. Psychiatry Continuum Clerkship (6)
Clinical activity—full time (6 to 8 weeks). Prerequisite: completion of all required course work of first and second year medical curriculum. Practice in clinical settings, building upon the skills gained in preclinical years, with an emphasis on diagnostic, therapeutic, and interpersonal skills. Areas of focus: patient management, interviewing skills, mental status exam, differential diagnosis, basic psychopharmacology, crisis assessment, and intervention.—I, II, III, IV. (I, II, III, IV.)

480. Insights in Psychiatry (1-3)
Clinical activity—3 to 9 hours. Prerequisite: first- or second-year medical student in good academic standing; consent of instructor. On individual basis, student provided with an opportunity for gaining insight into various clinical activities in the practice of psychiatry. (Su grading only) I—II, III, IV. (I, II, III, IV.)

498. Directed Group Study (1-5)
Prerequisite: consent of instructor. Approved for graduate degree credit. Medical students desiring to explore particular topics in depth. (Su grading only for graduate or medical students.)

499. Research (1-12)
Prerequisite: consent of instructor. Approved for graduate degree credit. Individual research on selected topics or research projects. (Su grading only for graduate or medical students.)

Radiation Oncology (RON)
Graduate Course
299. Independent Study and Research (1-12)
Clinical activity—full time (2-8 weeks). Prerequisite: enrolment with Biomedical Engineering Group for Ph.D. candidacy and consent of Group Advisor and Sponsor. Research under supervision of Radiation Oncology faculty. Work must be appropriate to fulfill the requirements for the Ph.D. degree. (Su grading only.)—Kubo

Professional Courses
461. Clinical Clerkship in Diagnostic Radiology (1-18)
Clinical activity—full time (3 days per unit). Prerequisite: completion of third year of medical school, consent of instructor. Experience in clinical management/treatment of adult patients with various types of cancers. Includes daily individual teaching sessions with faculty radiologists, radiology learning laboratory, and all radiology conferences and seminars. Limited enrollment.—I, II, III, IV. (I, II, III, IV.)

463. Clinical Clerkship in Radiation Biology (1-12)
Clinical activity—full time (2-6 weeks). Prerequisite: completion of Medical Sciences courses 430, 431; third-year clinical clerkship, consent of instructor required. Introduction to radiation oncology. Students will participate in workup and treatment planning for radiation oncology patients and will be introduced to the concepts involved in clinical radiation oncology, radiation biology, and radiation physics.—I, II, III, IV. (I, II, III, IV.)

498. Group Study in Therapeutic Radiology (1-12)
Prerequisite: consent of instructor. Approved for graduate degree credit. (Su grading only for medical students.)

499. Research in Radiobiology (3-12)
Clinical activity—full time (2-8 weeks). Prerequisite: consent of instructor. Laboratory investigation on selected topics involving response of biological molecules, cells, tissues or animals to ionizing radiation. (Su grading only.)—Leigh

Radiology—Diagnostic (RDI)
Professional Courses
413. Radiological Diagnosis II (Physics of Diagnostic Radiology) (5)
Lecture—49 hours total; laboratory—6 hours total. Prerequisite: consent of instructor. Physics of diagnostic imaging: x-ray production and interaction; image formation; modulation transfer function; fluoroscopy; cine fluoroscopy; stereoscopy; xeroradiography; computerized and geometric tomography; magnetic resonance and ultrasound. Principles of radiation protection in imaging will be covered. (Su grading only.) I—II, III, IV. (I, II, III, IV.)

414. Medical Radiation Biology (3)
Lecture—27 hours total. Prerequisite: consent of instructor. Medical radiation biology; molecular, cellular and organismal response to acute and chronic irradiation; radiation carcinogenesis and genetic effects; radiation risk assessment; diagnostic ultrasound and magnetic resonance imaging health effects. Medical/legal considerations of radiation exposure. Offered in alternate years. (Su grading only.)—III, IV. (III, IV.)

461. Clinical Clerkship in Diagnostic Radiology (1-18)
Clinical activity—full time (3 days per unit). Prerequisite: completion of third year of Medical School; consent of instructor. Student works with radiologists at UCD Medical Center in film reading sessions and radiological procedures; includes fluoroscopy, mammography, radiological and special investigations. Includes daily individual teaching sessions with radiology faculty, radiology learning laboratory, and all radiology conferences and seminars. Limited enrollment.—I, II, III, IV. (I, II, III, IV.)

Quarter Offered: I—Fall; II—Winter; III—Spring; IV—Summer. 2001-2002 offering in parentheses.

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
Clinical activity—full time (for 4 weeks). Prerequisite: completion of all required course work of first and second year medical curriculum. Four-week general surgery clerkship which may include GI, Oncology, Plastic, Vascular, Cardiothoracic, Consult, Transplant and Trauma. Clerkship assignments are at UC Davis Medical Center and Highland. Daily core material presentations and reading assignments. Student involvement includes work-up and care of surgical patients.—I, II, III, IV (I, II, III, IV) Holcroft

460A. Clinical Surgical Elective (6-18)
Clinical activity—full time. Prerequisite: fourth-year medical student or third-year medical student with completion of course 430. Rotation through Surgery Specialty Clinics: Vascular, GI, GU, Thoracic, Plastic, Radiotherapy. Student works up one new and two return visit patients. Presents consult to on-site faculty weekly. Review with preceptor and course director. Reading assignments to add perspective for in-depth discussions.—I, II, III, IV (I, II, III, IV) Follette

461. Surgery Burn Unit Clerkship (6 or 9)
Clinical activity—full time (4 or 6 weeks). Prerequisite: fourth-year medical student, or third-year medical student with completion of course 430. Externship in the eight-bed Burn Unit, and the 80 bed Shriners Hospital for Children. Principles of critical care, fluid and electrolyte resuscitation and management of surgical wounds in both adults and children.—I, II, III, IV (I, II, III, IV)

462. Surgery Trauma Service Clerkship (6 or 9)
Clinical activity—full time (4 or 6 weeks). Prerequisite: fourth-year medical student, or third-year medical student with completion of course 430. Student works as an extern on one of the two general surgery Trauma teams, participating in resuscitation and management of critically injured patients. Team hours consist of 24 hours on and 24 hours off.—I, II, III, IV (I, II, III, IV)

463. Surgery Intensive Care Unit (6 or 9)
Clinical activity—full time (4 or 6 weeks). Prerequisite: fourth-year medical student, or third-year medical student with completion of course 430. Student participates in direct supervision of critically ill surgical patients in a twelve-bed surgery ICU. Each student is closely supervised. Provides in-depth experience with management of critically ill patients.—I, II, III, IV (I, II, III, IV)

464. General Surgery Clerkship: Kaiser Hospital (6 or 9)
Clinical activity—full time (4 or 6 weeks). Prerequisite: fourth-year medical student, or third-year medical student with completion of course 430. Students actively participate in management of patients requiring surgery for cancer, endocrine disease and selected general surgical problems. Cases include malignant melanoma, sarcomas, gastrointestinal cancer, heart and neck pathology, and metastatic malignancies. Attending rounds daily. Four teaching conferences weekly.—I, II, III, IV (I, II, III, IV)

467. Surgical Oncology (3-9)
Clinical activity—full time (2 to 6 weeks). Prerequisite: fourth-year medical student, or third-year medical student with completion of course 430. Student participates in care of patients with University residents on the teaching services at Kaiser Hospital, Sacramento. Opportunity to see larger number of practical, general surgical problems and participate in their care.—I, II, III, IV (I, II, III, IV)

468. Cardiothoracic Surgery Clerkship (6-9)
Clinical activity—full time (4 to 6 weeks). Prerequisite: fourth-year medical student, or third-year medical student with completion of course 430. Student works as an extern on the Cardiothoracic Surgery Service, participating in perioperative management and operations on the heart, lungs, mediastinum, and other thoracic structures. Regularly scheduled teaching conferences are conducted.—I, II, III, IV (I, II, III, IV) Benfield

469. Trauma Service: East Bay (6-9)
Clinical activity—full time. Prerequisite: fourth-year medical student, or third-year medical student with completion of course 430 and Internal Medicine 430. Student works as an extern on the Trauma Service at Highland General Hospital (Oakland) participating in resuscitation and management of critically injured patients. Team hours consist of 24 hours on and 24 hours off.—I, II, III, IV (I, II, III, IV)

470. General Surgery: East Bay (6-9)
Clinical activity—full time. Prerequisite: fourth-year medical student or third-year medical student with completion of course 430. Student will work as an extern on one of the two general surgery services and participate in the pre-operative evaluation, intra-operative management, and post-operative care of surgical patients.—I, II, III, IV (I, II, III, IV) Organ

471. Gastrointestinal Surgery Clerkship (3-9)
Clinical activity—full time. Prerequisite: fourth-year medical student or third-year medical student with completion of course 430. Student participates on the GI Surgery Service, working under the immediate supervision of the faculty and surgical housestaff, involving the full spectrum of gastrointestinal diseases performed by the medical student.—I, II, III, IV (I, II, III, IV) Wolfe

472. Vascular Surgery (3-9)
Clinical activity—full time. Prerequisite: fourth-year medical student or third-year medical student with completion of course 430. Student participates on the vascular surgery service and in the management and operations of arterial and venous system, exclusive of diseases that require cardiopulmonary bypass for treatment. Includes patient care responsibilities with appropriate supervision.—I, II, III, IV (I, II, III, IV) Holcroft

Quarter Offered: I=Fall; II=Winter; III=Spring; IV=Summer; 2001–2002 offering in parentheses.

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
473. Surgical Intensive Care Unit—East Bay (6-9)
Clinical activity—full time. Prerequisite: fourth-year medical student or third-year medical student with completion of course 430 and Internal Medicine 430. Externship on surgical ICU service, clinical management of critically ill patients in the SICU, ICU procedures with appropriate supervision. An eight-lecture didactic series.—I, II, III, IV. (I, II, III, IV.) Organ

474. Breast Disease (6)

475. Pediatric Surgery (6-9)
Clinical activity—full time (4-6 weeks). Prerequisite: fourth-year medical student or third-year medical student with completion of course 430. Care of patients with neonatal congenital surgical problems. Fluid and electrolyte management in infants. General experience with acquired surgical diseases in children.—I, II, III, IV. (I, II, III, IV.) Marr, Clifford

476. Surgical Consult Service (6-9)
Clinical activity—full time (4-6 weeks). Prerequisite: fourth-year medical student or third-year medical student with completion of course 430. Students function as acting interns working in parallel with the interns on the service. They consult on all non-trauma patients in the emergency room and on the wards and also participate in the operating room.—I, II, III, IV. (I, II, III, IV.) Blaisdell

478. Surgical Preceptorship: Off Campus (6-18)
Clinical activity—full time. Prerequisite: fourth-year medical student and consent of instructor. Student participates in the preoperative, operative and postoperative care of surgical patients under the supervision of attending staff.—I, II, III, IV. (I, II, III, IV.) Holcroft

480. Insights in Surgery (1-3)
Clinical activity—3 to 9 hours. Prerequisite: medical student in good academic standing and consent of instructor. Individualized activities, including ward rounds, subspecialty clinics and conferences, grand rounds, and observation of a variety of surgical procedures. (S/U grading only).—I, II, III, IV. (I, II, III, IV.)

494H. Fourth-Year Surgical Honors Program (18)
Prerequisite: completion of third year of medical school with superior performance on course 430; consent of instructor. To provide intensive and comprehensive training in surgery to students interested in a postgraduate surgical career, that would enable them to succeed during the internship and residency training. (S/U grading only).—I, II, III, IV. (I, II, III, IV.) Holcroft

498. Group Study (1-5)
Prerequisite: medical student; consent of instructor. Directed reading and discussion and/or laboratory investigation on selected topics. (S/U grading only).—I, II, III, IV. (I, II, III, IV.)

499. Laboratory Research (1-12)
Laboratory—3-36 hours. Prerequisite: completion of second year of medical school; consent of instructor. Laboratory research on surgically related problems. Participation in projects to include the following: burn, nutrition, oncology, transplant and others. (S/U grading only).—I, II, III, IV. (I, II, III, IV.)

Urology (URO)
Upper Division Course
199. Special Study for Advanced Undergraduates (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)—deVere White

Professional Courses
400. Office Urology (1)
Clinical activity—4 hours in afternoons (6 weeks). Prerequisite: fourth-year medical students with consent of instructor. Introduction to ambulatory care of urologic patients including basic therapeutic and diagnostic procedures from case material referred to private clinic. Management of urinary tract infection will be emphasized.—I, II, III, IV. (I, II, III, IV.) deVere White

460. Urology Clinical Clerkship (5-18)
Clinical activity—full time. Prerequisite: second-year medical student; physical diagnosis or the equivalent; consent of instructor. Clinical experience in diagnosis and treatment of urologic disease. Student will work closely with house staff, participate in conferences and surgery, and perform initial patient evaluation on new patients. May be repeated for credit. Limited enrollment.—I, II, III, IV. (I, II, III, IV.) deVere White

461. Externship in Urology (5-18)
Clinical activity—full time. Prerequisite: fourth-year medical students with consent of instructor. Under supervision, student acting as intern will assume full inpatient responsibility including admission history, physical examination, management of hospitalization, and participate in surgical procedures, outpatient clinic and learning diagnostic and therapeutic procedures. May be repeated for credit.—I, II, III, IV. (I, II, III, IV.) deVere White

499. Research in Urology (1-12)
Research—3-36 hours. Prerequisite: medical or veterinary medical students with consent of instructor. Research in oncology, male infertility, urodynamics, neurogenic bladder. Unique opportunity to apply recent technologies (nuclear medicine resonance, flow cytometry, recombinant DNA) in investigation, diagnosis and treatment of GU cancer, infectious disease, male infertility and development of genitourinary bioprosthescis. (S/U grading only).—I, II, III, IV. (I, II, III, IV.) deVere White
Master of Education (M.Ed.) (A Graduate Group)

James Grieshop, Ph.D., Chairperson of the Group
Group Office, 1303 Hart Hall (530-752-1926)

Faculty
Curt Acredolo, Ph.D., Adjunct Associate Professor (Human and Community Development)
Rina Alcalay, Ph.D., Associate Professor (Communication)
Robert A. Bell, Ph.D., Professor (Communication)
Marc Braverman, Ph.D., 4-H Cooperative Extension Specialist (Human and Community Development)
Isao Fujimoto, M.A., Sr. Lecturer Emeritus
Barbara G. Goldman, Ph.D., Lecturer (Education, Human and Community Development)
James I. Grieshop, Ph.D., Lecturer (Human and Community Development)
Glenn Hawkes, Ph.D., Professor Emeritus
Susan B. Kaiser, Ph.D., Professor (Textiles and Clothing)
George C. Longfish, M.F.A., Professor (Native American Studies)
E. Dean MacCannell, Ph.D., Professor (Environmental Design)
Martha J. Macri, Ph.D., Associate Professor (Native American Studies)
Margaret H. Rucker, Ph.D., Professor (Textiles and Clothing)
Robert Sormer, Ph.D., Professor (Psychology)
Orville E. Thompson, Ph.D., Professor Emeritus
Karen A. Watson-Gegeo, Ph.D., Professor (Education)
Joan Wright, Ph.D., Lecturer (Human and Community Development)
Frank Zalom, Ph.D., Lecturer (Entomology)

Graduate Study. The Master of Education Graduate Group is housed in the Department of Human and Community Development. Master of Education (M.Ed.) degree students are preparing for leadership and professional roles in community and development education related to planning, organizational change, and evaluation. Areas of study include health education planning; community services planning and program management; community and non-formal education; international development education; program design and evaluation; organizational decision-making; leadership development, communication and change; extension education; environmental education; agricultural development education; and consumer behavior.

Requirements. The M.Ed. degree requires 36 units minimum of upper division and graduate courses. A minimum of 18 of these units must be graduate level courses, and at least eight units must be related to research methods and/or statistics. Students submit a required Program of Study Plan in the area of intended specialization by the end of the first quarter of graduate study. A research-based field project and comprehensive oral examination are required for completion of this degree.

Graduate Adviser. Contact Group office.
Management, Graduate School of

Robert H. Smiley, Ph.D., Dean
Paul A. Griffin, Ph.D., Associate Dean
Donald Blodger, M.A., Assistant Dean
School Office, 106 ACB IV (530-752-7399)

Faculty
Brad M. Barber, Ph.D., Associate Professor
Nicole W. Biggert, Ph.D., Professor (Management, Sociology)
George Bittingmayer, Ph.D., Professor
Eyali Biyalogorsky, Assistant Professor
David S. Bunch, Ph.D., Associate Professor
Richard P. Castarias, II, Ph.D., Associate Professor
Peter K. Clark, Ph.D., Professor
Kimberly D. Elsbach, Ph.D., Associate Professor
Eitan Gerstner, Ph.D., Professor
Michael R. Hargen, Ph.D., Associate Professor
Prasad Naik, Ph.D., Assistant Professor
Michael Maher, Ph.D., Professor
Terrance Odean, Ph.D., Assistant Professor
Donald A. Palmer, Ph.D., Professor
Srinivasan P. Rangan, Ph.D., Assistant Professor
David M. Rocke, Ph.D., Professor
Anand Swaminathan, Assistant Professor
Donald M. Topkis, Ph.D., Professor
Chi-Hung Tsai, Ph.D., Professor
Gary M. Walton, Ph.D., Professor (Management, Economics)
David Woodruff, Ph.D., Associate Professor

Emeriti Faculty
Richard C. Dorf, Ph.D., Professor Emeritus
Jerome J. Suran, B.S., Ph.D. (hon.), Senior Lecturer Emeritus

Courses in Management (MGT, MGP)

Lower Division Courses
11A. Elementary Accounting (4)
Lecture—3 hours, discussion—1 hour. Basic concepts of accounting; interpreting and using financial statements; understanding accounting principles.—I. II. (I, II.)

11B. Elementary Accounting (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 11A. Product costing; using accounting information for decision making; planning and performance evaluation.—III. (III.)

Upper Division Course
100. Introduction to Financial Accounting (3)
Lecture—3 hours. Course is open to all upper division undergraduate and graduate students, except those in the Graduate School of Management. Introduction to the concepts, methods, and uses of accounting and financial reporting. Preparation of financial statements, including balance sheet and statements of income and cash flow, as well as their analysis by investors and managers.

Graduate Courses
(Core Courses)

200A. Financial Accounting (3)
Lecture—3 hours. Prerequisite: graduate student in the Graduate School of Management. Analysis of corporate financial statements; preparation of financial statements; topics include understanding the accounting cycle, measurement and valuation, and associated with financial statement components, consideration of the usefulness of financial statements in the analysis of a corporation’s operations.—I. (I.)

200B. Managerial Accounting (3)
Lecture—3 hours. Prerequisite: graduate student in the Graduate School of Management. Information managers should know to be effective, including: product costing, motivating people, and differential analysis for decision making. Includes team projects and written and oral presentations.—II. (II.)

201A. The Individual and Group Dynamics (3)
Lecture—3 hours. Prerequisite: graduate student in the Graduate School of Management. Examines basic psychological and social psychological processes shaping human behavior and applies knowledge of these processes to the following organizational problems: motivation, job design, commitment, socialization, culture, individual and group decision making, and team building.—I. (I.)

201B. Organizational Structure and Strategy (3)
Lecture—3 hours. Prerequisite: graduate student in the Graduate School of Management. Examines structural properties of organizations including differentiation and vertical and horizontal integration. Alternative structural arrangements including functional, divisionalized, matrix, and hybrid structures. Relationship between environment, structure, and strategic objectives. Organization life cycle and changes.—II. (II.)

202A. Markets and the Firm (3)
Lecture—3 hours. Prerequisite: graduate student in the Graduate School of Management. Examines the interaction of consumers, firms, and government, and the effect this interaction has on the use of resources and firm profitability. Fundamental economic concepts such as marginal analysis, opportunity cost, pricing, and externalities are introduced and applied.—I. (I.)

202B. Business, Government, and the International Economy (3)
Lecture—3 hours. Prerequisite: course 202A. Examines the influence of government and international factors on business. Topics include distribution of income, business cycles, inflation and interest rates, the federal debt, monetary policy and international trade and finance.—II. (II.)

203A. Data Analysis for Managers (3)
Lecture—3 hours. Prerequisite: graduate student in the Graduate School of Management MBA program or consent of instructor. Introduction to statistics and data analysis for managerial decision making. Descriptive statistics, principles of data collection, sampling, quality control, statistical inference. Application of data analytic methods to problems in marketing, finance, accounting, production, operations, and public policy.—I. (I.)

203B. Forecasting and Managerial Research Methods (3)
Lecture—3 hours. Prerequisite: course 203A. Practical statistical methods for managerial decision making covers regression analysis, time series analysis and forecasting, design and analysis of experiments in managerial research and contingency table analysis. Application of these methods to marketing, finance, accounting, production, operations, and public policy.—II. (II.)

204. Marketing Management (3)
Lecture—3 hours. Prerequisite: graduate student in the Graduate School of Management. Analysis of market opportunities, elements of market research, development of marketing strategies, market planning and implementations, and control systems. Consumer and industrial markets, market segmentation, pricing strategies, distribution channels, promotion, and sales.—III. (III.)

205. Financial Theory and Policy (3)
Lecture—3 hours. Prerequisite: graduate student in the Graduate School of Management. Development of basic financial management principles for investments with long-lived and risky cash-flows, and extends these to derivative securities, asset portfolios, investment management and hedging.—III. (III.)

206. Decision Making and Management Science (3)
Lecture—3 hours. Prerequisite: graduate student in the Graduate School of Management MBA program or consent of instructor. Develops decision-making and problem-solving skills in conjunction with a quantitative model-building approach. Emphasizes how structured modeling techniques, probability forecasts, simulations, and computer optimization models are used in the overall process of making decisions in an uncertain environment.—II. (II.)

207. Management Information Systems (3)
Lecture—3 hours. Prerequisite: graduate student or consent of instructor. Introduction to computer programming and data handling skills. Use of computer in organizations, emphasis on managerial aspects of computing. Standard and nonstandard uses of data files, centralization versus decentralization of computing, office automation, computer security.—II. (II.)

(Selective Courses)

Elective Courses
Students must complete the Management core course requirement before enrolling in any of the following courses, or petition with consent of the instructor.

215. Business Law (3)
Lecture—3 hours. Prerequisite: completion of Administration core requirements or petition with consent of instructor. Introduction to law and legal process in the United States. Sources of law. Structure and operation of courts, federal-state relationships, fundamentals of administrative law, fundamentals of business law.

216. Managing Professionals, Budgets, Controls and Ethics (3)
Lecture—3 hours. Prerequisite: graduate standing. Performance measures, budgetary controls and ethical pressures which occur at middle management levels in service-type operations. Addresses such organizations as engineering, medical groups, law offices, management consultants.—I. (I.)

Quarter Offered: I—Fall; II—Winter; III—Spring; IV—Summer. 2001-2002 offering in parentheses.

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
223. Power and Influence in Management (3)
Seminar—3 hours. Prerequisite: consent of instructor. Investigation of the bases of power in organizations and the tactics used to translate power into influence. Topics include the control of resources (including information), social psychological processes (including commitment), the construction of meaning, and ethics. Palmer

224. Human Resources Management (3)
Lecture—3 hours. Problems of recruiting, training, motivating, compensating, and separating workers in contemporary organizations. Topics include design of incentive systems, career management, professionalization, alienation, worker burnout, organizational deviance, and current issues such as affirmative action and the unionization of public employees. Elsbach

240. Management Policy and Strategy (3)
Lecture—3 hours. First-year core courses of M.B.A. program. Examines the scope of missions, objectives strategies, policies, structures, measurements and incentives which bear on the management of an organization. Real “client” organizations in the private and public sectors, are assigned to student teams as the subjects of study.—I. (I.) Suran, Hagerty

242. Marketing Communications (3)
Lecture—3 hours. Issues in designing a marketing communications strategy. Topics include mass and direct communications, institutional aspects of advertising consumer behavior, evaluating ad effectiveness, determining ad budget, creative strategy, and use and abuse of promotions.—Naik

244. New and Small Business Ventures (3)
Lecture—3 hours. Emphasizes starting a new business venture or managing a small, ongoing business during its formative stages. The business plan. Legal forms, financial considerations, the management team. The entrepreneur. Students develop a detailed business plan.—Dorf

246. Negotiation and Team Building (3)
Lecture—3 hours. Prerequisite: courses 202, 205. Teaches basic theory of negotiation; applies theory to process of building teams to achieve business purposes. Covers distributive and integrative strategies of claiming value, how to recognize bargaining tricks, uncovering hidden agendas, brainstorming to extend Pareto frontier.—III. (III.) Elsbach

247. Customer Service as a Marketing Tool (3)
Lecture—3 hours. Understanding the distinct features of services, how to create value through service, methods of building strong relationships with customers, methods of measuring and building customer satisfaction, and measuring the financial impact of service improvement.—I. (I.) Gerstner

248. Marketing Strategies (3)
Lecture—3 hours. Examines process by which organizations develop strategic marketing plans. Includes definition of activities and products, marketing audits, appraising market opportunities, design of new activities and products, and organizing marketing planning function. Applications to problems in private and public service industries.—Geringer

249. Marketing Research (3)
Lecture—3 hours. Course addresses the managerial issues and problems of systematically gathering and analyzing information for making private and public marketing decisions. Covers the cost and value of information, research design, information collection, measuring instruments, data analysis, and marketing research applications.—Hagerty

250. Technology Management (3)

251. Management of Innovation (3)
Lecture—3 hours. Managing innovative enterprise in changing and uncertain environments. Covers technology forecasting and assessment, program selection and control, financial management, regulation, and ethics.—Biggert

252. Production and Operations Management (3)
Lecture—3 hours. Explores methods of increasing operational efficiency in production and service organizations through planning and scheduling, materials management, inventory control, quality control, and distribution. Methodologies employed include such techniques as programming, simulation, systems analysis, queuing, and network models.—Woodruff

260. Financial Management (3)
Lecture—3 hours. Focuses on planning, acquiring, and managing a company’s financial resources. Includes discussion of financial aspects of mergers, swaps, and financial futures contracts. Price determination in options and futures markets is also examined.—Clark

264. Business Taxation (3)
Lecture—3 hours. Theories, strategies, and skills necessary for effective communication in management. Students will learn to improve their business writing, and deliver business presentations orally.—Kennedy

268. Management Communications (3)
Lecture—3 hours. Analysis of the impact of business taxation on investment, production, and finance decisions. Discussion of the relationship between business organization and tax liability. Course is not intended for tax specialists.—Griffin

269. Accounting and Budgeting for Management Control (3)
Lecture—3 hours. Examines concepts and techniques of accounting and budgeting for management decision making in the private sector. Topics include cost control, capital budgeting, performance evaluation, and the effects of uncertainty in achieving management objectives.—Mother

271. Accounting and Reporting for Government Nonprofit Entities (3)
Lecture—3 hours. Concepts, methods, and uses of accounting and financial reporting by governmental and nonprofit entities. Introduction to budgeting and performance evaluation, and accounting for entities such as hospitals, universities, and welfare agencies.—Darrough

274. Auditing, Internal Control, and Public Accounting (3)
Lecture—3 hours. Concentrate on role of the independent public accountant as auditor and consultant, from the perspective of an enterprise manager. Auditing standards, auditing procedures, and auditing control techniques are discussed. Emphasis is also given to current issues confronting the accounting profession.

276. Real Estate, Finance and Development (3)
Lecture—3 hours. Prerequisite: course 201A and 207. Focus on single family, attached, detached, multi-family, and light commercial development. Students will study factors which make up successful real estate developments. Course will consider financial aspects involved in land acquisition, land development, construction, and project lending.

281. Systems Analysis and Design (3)
Lecture—3 hours. Design and specification of computer-based information systems. Applications systems development life cycle, user requirements and feasibility assessment, logical and physical design, program development and testing, conversion and implementation.

284. Applied Linear Models for Management (3)
Lecture—3 hours. Covers regression analysis, variance, and multivariate analysis. Topics will focus on applications to management and policy problems.—Tsai

285. Time Series Analysis and Forecasting (3)
Lecture—3 hours. Considers application of time series methods to evaluation and forecasting problems, Covers univariate and multivariate ARIMA models and transfer function models. Applications will be in such areas as economics, finance, budgeting, program evaluation, and industrial process control.—Tsai

286. Telecommunications and Computer Networks (3)
Lecture—3 hours. Prerequisite: course 280. Communication system components; common carrier services; design and control of communications networks, network management and distributed environment; local area networks; data security in computer networks.—Topkis

287. Database Systems (3)
Lecture—3 hours. Prerequisite: course 280. Hierarchical, network, and relational models for database systems. Design and implementation of models. Performance evaluation and benchmarking. Query structures and languages. Data security and integrity. Application to managerial decision making and decision support systems.—Topkis

288. Special Topics in Management of Information Systems (3)
Lecture—3 hours. Managerial aspects of information systems. Topics stressing applications in organizations chosen from: economics of computers and information systems, decision support systems, management of computer-based information systems, office automation.—Topkis
291. Topics in Organizational Behavior (3)
Seminar—3 hours. Prerequisite: completion of all first-year graduate courses at the Graduate School of Management or the equivalent. Advanced topics in social psychology and sociology of organizations. Varied topics to cover more extensively issues discussed in courses 201A and 201B, or current business interest topics in fields of organization design, strategy, development, or workplace processes. May be repeated for credit.—I. (L.)

292. Topics in Finance (3)
Seminar—3 hours. Prerequisite: completion of all first-year graduate courses at the Graduate School of Management or the equivalent. Contemporary and emerging issues in finance. Application of modern techniques of finance to business problems. Use of appropriate electronic database and research techniques. May be repeated for credit.—I. (L.)

293. Topics in Marketing (3)
Seminar—3 hours. Prerequisite: completion of all first-year graduate courses at the Graduate School of Management or the equivalent. Advanced topics in marketing, which may include marketing research, new product development, brand management, pricing, distribution management, service marketing, hi-tech marketing, advertising, sales promotions, marketing through the Web. May be repeated for credit.—I. (L.)

294. Topics in Accounting (3)
Seminar—3 hours. Prerequisite: completion of all first-year graduate courses at the Graduate School of Management or the equivalent. Contemporary and emerging issues in financial management accounting. Application of modern techniques of evaluation and analysis of financial information. Use of appropriate electronic database and research techniques. May be repeated for credit.—I. (L.)

295. Topics in Information Technology (3)
Seminar—3 hours. Prerequisite: completion of all first-year graduate courses at the Graduate School of Management or the equivalent. Applications of information technology to management and management of information technology. Adaptation to the dynamic nature of the field. May be repeated for credit.—I. (L.)

296. Topics in Technology Management (3)
Seminar—3 hours. Prerequisite: completion of all first-year graduate courses at the Graduate School of Management or the equivalent. Cyclical nature of innovation and technological change, features of innovative firms and industries, national innovation systems, and impact of information technologies on innovation processes. May be repeated for credit.—I. (L.)

297. Topics in International Management (3)
Seminar—3 hours. Prerequisite: completion of all first-year graduate courses at the Graduate School of Management or the equivalent. The broader environment in which U.S. firms and their foreign competitors operate. Integration of material from other topics courses (marketing, strategy, finance, accounting, information technology, technology management) into the international setting. May be repeated for credit.—I. (L.)

298. Directed Group Study (1-5)
Prerequisite: consent of instructor.

299. Individual Study (1-12)
Prerequisite: consent of instructor. (S/U grading only.)
Microbiology (A Graduate Group)

Linda F. Bisson, Ph.D., Chairperson of the Group
Group Office, 156 Hutchison Hall (Microbiology Section), (530-752-0262)

Faculty
Stanley W. Arzt, Ph.D., Professor (Microbiology)
Naomi Balaban, Ph.D., Assistant Adjunct Professor (Pathology)
Enoch P. Baldwin, Ph.D., Assistant Professor (Molecular and Cellular Biology)
Stephen W. Barthold, Ph.D., Professor (Pathology, Microbiology, and Immunology)
Paul Baumann, Ph.D., Professor (Microbiology)
Blaine L. Beamann, Ph.D., Professor (Medical Microbiology and Immunology)
Linda F. Bisson, Ph.D., Professor (Viticulture and Enology)
Richard M. Bostock, Ph.D., Professor (Plant Pathology)
George E. Bruening, Ph.D., Professor (Plant Pathology)
Sean M. Burgess, Ph.D., Assistant Professor (Molecular and Cellular Biology)
Robert D. Cardiff, Ph.D., Professor (Medical Pathology)
James R. Carlson, Ph.D., Professor (Medical Pathology)
Anthony T. W. Cheung, Ph.D., Professor (Medical Pathology)
Ronald Y. Chuang, Ph.D., Professor (Medical Pharmacology and Toxicology)
Dean O. Oliver, Ph.D., Professor (Population Health and Reproduction)
Patricia A. Conrad, Ph.D., Professor (Pathology, Microbiology, and Immunology)
James S. Cullor, Ph.D., Associate Professor (Population Health and Reproduction)
Michael E. Dalhaus, Ph.D., Professor (Molecular and Cellular Biology)
Sathy Dandekar, Ph.D., Professor (Internal Medicine)
Roy H. Doi, Ph.D., Professor (Molecular and Cellular Biology)
Laurel J. Gershwin, Ph.D., Professor (Pathology, Microbiology, and Immunology)
M. Eric Gershwin, Ph.D., Professor (Internal Medicine)
Bruce D. Hammock, Ph.D., Professor (Entomology)
Ronald P. Hedrick, Ph.D., Professor (Medicine and Epidemiology)
John W. B. Hershey, Ph.D., Professor (Biological Chemistry)
Dwight C. Hirsh, Ph.D., Professor (Pathology, Microbiology, and Immunology)
Michael J. Holland, Ph.D., Professor (Biological Chemistry)
Michele M. Igo, Ph.D., Associate Professor (Microbiology)
George W. Jordan, Ph.D., Professor (Internal Medicine)
Clarence I. Kado, Ph.D., Professor (Plant Pathology)
Kenneth B. Kaplan, Ph.D., Assistant Professor (Molecular and Cellular Biology)
Daniel J. Klionsky, Ph.D., Professor (Microbiology)
Stephen C. Kowalczykowski, Ph.D., Professor (Microbiology)
Hsing-Jien Kung, Ph.D., Professor (Biological Chemistry)
Rance B. LeFebvre, Ph.D., Professor (Pathology, Microbiology, and Immunology)
Patrick S. C. Leung, Ph.D., Associate Adjunct Professor (Internal Medicine)
Paul Luciv, Ph.D., Associate Professor (Medical Pathology)
N. James MacLachlan, Ph.D., Professor (Pathology, Microbiology, and Immunology)
JaRue S. Manning, Ph.D., Professor (Microbiology)
Karen A. McDonald, Ph.D., Professor (Chemical Engineering and Material Science)
John C. Meeks, Ph.D., Professor (Microbiology)
Christopher J. Miller, Ph.D., Associate Professor (Pathology, Microbiology, and Immunology)
David A. Mills, Ph.D., Assistant Professor (Viticulture and Enology)
David W. Morris, Ph.D., Assistant Adjunct Professor (Pathology)
Douglas C. Nelson, Ph.D., Professor (Microbiology)
Thomas W. North, Ph.D., Professor (Center for Comparative Medicine)
Jodi Nunnari, Ph.D., Assistant Professor (Molecular and Cellular Biology)
David M. Ogrydziak, Ph.D., Professor (Food Science and Technology)
Bennie I. Ostburn, Ph.D., Professor (Pathology, Microbiology, and Immunology)
Demosinthes Pappajani, Ph.D., Professor (Medical Microbiology and Immunology)
Niel C. Pedersen, Ph.D., Professor (Medicine and Epidemiology)
Donald A. Phillips, Ph.D., Professor (Agronomy and Range Science)
Edmund R. Powers, Ph.D., Assistant Professor (Molecular and Cellular Biology)
Chester W. Price, Ph.D., Professor (Food Science and Technology)
Martin L. Privalis, Ph.D., Professor (Microbiology)
Kathryn Radke, Ph.D., Associate Professor (Animal Science)
Gary H. Rhodes, Ph.D., Associate Adjunct Professor (Pathology)
Dewey D. Y. Ryu, Ph.D., Professor (Chemical Engineering and Material Science)
Robert J. Scibionski, Ph.D., Associate Professor, (Medical Microbiology and Immunology)
Kate M. Scow, Ph.D., Associate Professor (Land, Air, and Water Resources)
Irwin H. Segel, Ph.D., Professor (Molecular and Cellular Biology)
C.-K. James Shen, Ph.D., Professor (Molecular and Cellular Biology)
Kazuhiro Shiozaki, Ph.D., Assistant Professor (Microbiology)
Mitchell H. Singer, Ph.D., Assistant Professor (Microbiology)
Jay V. Solnick, Ph.D., Assistant Professor (Internal Medicine)
Valley J. Stewart, Ph.D., Professor (Microbiology)
Jeffrey L. Stott, Ph.D., Professor (Pathology, Microbiology, and Immunology)
Michael Syvanen, Ph.D., Professor (Medical Microbiology and Immunology)
Jose V. Torres, Ph.D., Assistant Professor (Medical Microbiology and Immunology)
Frederic A. Troy II, Ph.D., Professor (Biological Chemistry)
Tilahun D. Yitma, Ph.D., Professor (Pathology, Microbiology, and Immunology)
Glenn M. Young, Ph.D., Assistant Professor (Food Science and Technology)
Yuan Chung Zee, Ph.D., Professor (Pathology, Microbiology, and Immunology)

Affiliated Faculty
Marta L. Marthas, Ph.D., Assistant Adjunct Professor (California Regional Primate Research Center)
Earl T. Sawai, Ph.D., Assistant Adjunct Professor (Medical Pathology)
Ellen E. Sparger, Ph.D., Adjunct Professor (Medicine and Epidemiology)

Graduate Study. The Graduate Group in Microbiology offers study and research leading to the M.S. and Ph.D. degrees. Strong preference is given to doctoral applicants. The group offers study in general microbiology, microbial physiology, microbial genetics, molecular mechanisms of microbial regulation, molecular mechanisms of microbial pathogenesis, immunology, virology, and recombinant DNA technology. For information on the graduate study and undergraduate preparation for the program contact a graduate adviser or the Chairperson of the Group.

Graduate Advisers. R.B. LeFebvre (Pathology, Microbiology and Immunology), K. Shiozaki (Microbiology), D.M. Ogrydziak (Food Science and Technology), K.M. Scow (Land, Air and Water Resources), J.V. Solnick (Infectious and Immunologic Diseases).

Courses in Microbiology (MIB)

Graduate Courses
290C. Advanced Research Conference (1)
Discussion/conference—1 hour. Prerequisite: graduate standing and/or consent of instructor. Presentation and critical discussion of staff research activities. Designed for advanced graduate students. May be repeated for credit. (SU grading only.)—I, II, III. (I, II, III.)

299. Research (1-12)
Research under the guidance of dissertation committee. (SU grading only.)
Pertinent entomological background information will be included. Taxonomy, physiology, pathogenesis, and molecular biology of insect pathogens. Basis of pathogenic and symbiotic associations between procaryotes and insects.

Lecture—3 hours. Prerequisite: course 102; Biological Sciences 102. Physiological relationships among groups. Isolation and characterization of bacterial strains from the role of microbes in infectious disease.—I, II, III. (I, II, III.) Artz, Wheelis

Laboratory—6 hours. Prerequisite: course 102 (may be taken concurrently); consent of instructor. Study of prokaryotic microorganisms from certain habitats. One-half of laboratory effort will consist of organized experiments on ecologically important microbial activities. For remaining one-half, research projects will be done on student selected specific habitats of microorganisms. Limited enrollment.—II, III. (I, II, III) Meeks

140. Bacterial Physiology (3)

Lecture—3 hours. Prerequisite: Biological Sciences 101, 102; course 102 (may be taken concurrently); course 102B (may be taken concurrently). Fundamentals of bacterial growth and bacterial responses to environmental stresses. Topics will include carbon and nitrogen regulation, growth rate control, post-exponential growth, and motility and chemotaxis. Not open for credit to students who have completed course 130A.—I. (I.) Singer

150. Bacterial Genetics (3)

Lecture—3 hours. Prerequisite: Biological Sciences 101 and 102; course 102 (may be taken concurrently) recommended. Fundamentals of bacterial and phage genetics. Topics will include generating mutations, phage genetics, classical bacterial genetics, molecular techniques to generate mutations and physical mapping techniques. Not open for credit to students who have completed course 130A.—I. (I.) Stewart

155L. Bacteriology Physiology Laboratory (3)

Laboratory—9 hours. Prerequisite: course 140 or 150; course 102L; consent of instructor. Physiology and genetics of bacteria. Isolation and characterization of mutant strains. Mapping of mutations by conjugation and transduction studies of control of enzyme synthesis by induction, repression, and catabolite repression. Former course 130L. Not open for credit to students who have taken course 130L.—I, II, III. (I, II, III.) Artz

160. Bacterial Regulatory Mechanisms (3)

Lecture—3 hours. Prerequisite: course 140 or 150 recommended. Fundamentals of bacterial regulatory mechanisms. Topics will include control of DNA, RNA, and protein synthesis, global regulatory mechanisms, recombination, DNA repair systems, and cell cycle control with emphasis on bacterial systems. Not open for credit to students who have taken course 130B. (Former course 130B.)—II, III. (II, III.) Stewart

162. General Virology (4)

Lecture—4 hours. Prerequisite: Biological Sciences 1A, 1B, and 1C; consent of instructor. Physiology and genetics of viruses, including viral structure, metabolism, physiology, genetics, and evolution; viral structure and replication; the role of viruses in global element cycles; and the role of microbes in infectious diseases.—I, II, III. (I, II, III.) Artz, Baumann

102L. General Bacteriology Laboratory (2)

Laboratory—6 hours. Prerequisite: course 102 (may be taken concurrently) and consent of instructor. Introduction to principles and laboratory methods employed in working with microorganisms. For students planning to continue study of microbiology, or use microorganisms as tools for study of genetics and biochemistry.—I, II, III. (I, II, III.) Artz, Baumann

102. General Bacteriology (4)

Lecture—4 hours. Prerequisite: Biological Sciences 1A and Chemistry 8B or Chemistry 118B (may be taken concurrently). Survey of the biology of bacteria and viruses, including bacterial structure, metabolism, physiology, genetics, and evolution; viral structure and replication; the role of bacteria in global element cycles; and the role of microbes in infectious diseases.—I, II, III. (I, II, III.) Artz, Baumann

105. Bacterial Diversity (5)

Lecture—3 hours; laboratory—6 hours. Prerequisite: courses 102, 102L, Biological Sciences 102 and consent of instructor; Biological Sciences 103 recommended. Survey of the major groups of bacteria emphasizing diversity of energy metabolism, morphology and natural history. Includes methods for determination of evolutionary relationships among groups, isolation and characterization of bacterial strains from various habitats.—I, II, III. (I, II, III.) Wheelis

107. Laboratory—6 hours. Prerequisite: courses 102, 102L, Biological Sciences 102 and consent of instructor; Biological Sciences 103 recommended. Survey of the major groups of bacteria emphasizing diversity of energy metabolism, morphology and natural history. Includes methods for determination of evolutionary relationships among groups, isolation and characterization of bacterial strains from various habitats.—I, II, III. (I, II, III.) Wheelis

110. Bacteriology of Insects (3)

Lecture—3 hours. Prerequisite: course 102; Biological Sciences 102. Physiological basis of pathogenic and symbiotic associations between procaryotes and insects. Taxonomy, physiology, pathogenesis, and molecular biology of insect pathogens. Insect immunity; nutritional associations between microorganisms and insects. Pertinent entomological background information will be included.
Graduate Courses

200A. Biology of Prokaryotes (3)
Lecture—3 hours. Prerequisite: course 102 or the equivalent. Intended for first year graduate students in microbiology and closely related fields. Overview of prokaryotic biology, with emphasis on phylogeny, physiology, and diversity of bacteria.——I. (I.) Stewart, Baumann

200B. Advanced Bacteriology (3)
Lecture—3 hours. Prerequisite: course 200A. Intended for first year graduate students in microbiology and closely related fields. Advanced topics in phylogeny, physiology, and diversity of bacteria. Not offered every year.—II.

201L. Advanced Microbiology Laboratory Rotations (5)
Laboratory—15 hours. Prerequisite: course 200A (may be taken concurrently). Two five-week assignments in microbiology research laboratories. Individual research problems with emphasis on methodological/procedural experience and experimental design. May be repeated twice for credit.—I, II, (I, II.)

210. Molecular Mechanisms in Microbial Pathogenesis (3)
Lecture—3 hours. Prerequisite: course 105 or Veterinary Microbiology 127 and course 162 or Veterinary Microbiology 128 or the equivalent. Study of the molecular mechanisms involved in cytopathogenesis of higher eukaryotic organisms. Emphasis on the alteration or inhibition of cellular metabolism and function by bacteria and animal viruses.

215. Recombinant DNA (3)
Lecture—3 hours. Prerequisite: Biological Sciences 101, 102, 103 or the equivalent. Application of recombinant DNA technology to modern problems in biology, biochemistry, and genetics, emphasizing molecular cloning strategies, choice of vectors, preparation of insert DNA, and selection procedures.—I, (I.) Privalsky

250. Biology of Yeasts (5)
Lecture—3 hours; discussion—2 hours. Prerequisite: Biological Sciences 102, 103; course 102, 102L; course 215 recommended. Survey of the genetics, physiology, metabolism, regulatory mechanisms, structure, cell biology, ecology and diversity of yeasts and related organisms. Offered in alternate years.—II, (II.) Blisson

260. Bacterial Genetic Regulatory Mechanisms (3)
Lecture/discussion—3 hours. Prerequisite: general knowledge of nucleic acid biochemistry and bacterial genetics. Analysis at the molecular level of genetic regulation in selected bacterial systems. Specific systems discussed will include the following types of regulation: control of transcription initiation and termination; translational controls; tRNA modification effects; autoregulation; control circuits in bacterial viruses; supercontrols. Offered in alternate years.—I.

262. Advanced General and Molecular Virology (3)
Lecture—3 hours. Prerequisite: graduate standing. Advanced integrated presentation of animal, bacterial, and plant viruses, including their structure, modes of regulation, expression and replication, and effects on host cells and organisms.—(III.) Manning Luciw, Brunening

263. Principles of Protein–Nucleic Acid Interactions (3)
Lecture—3 hours. Prerequisite: advanced graduate standing and completion of one year of basic graduate course work in biochemistry, biophysics, chemistry, genetics, microbiology, or molecular biology. Physical basis of protein–nucleic acid interaction. Topics include nucleic acid recognition by proteins, thermodynamics of protein–nucleic acid stability, and kinetics of binding process for both non-specific and sequence-specific nucleic acid binding proteins. Emphasis on systems that represent paradigms in protein–nucleic acid interactions. Offered in alternate years.—(III.) Kowalczykowski

274. Seminar in Genetic Recombination (1)
Seminar—1 hour. Prerequisite: graduate standing; consent of instructor. Biochemical and genetic aspects of genetic recombination in prokaryotes and eukaryotes. Mechanisms of recombination and biochemical and genetic characteristics of recombination proteins. Proteins include DNA strand exchange, DNA helicases, and Holliday junction resolving proteins. May be repeated for credit. (S/U grading only.)—I, II, (I, II, III.) Kowalczykowski

290C. Advanced Research Conference (1)
Discussion/conference—1 hour. Prerequisite: graduate standing and/or consent of instructor. Presentation and critical discussion of staff research activities. Designed for advanced graduate students. May be repeated for credit. (S/U grading only.)—I, II, III, (I, II, III.)

291. Selected Topics in Microbiology (1)
Seminar—1 hour. Prerequisite: graduate standing and consent of instructor. Current progress in microbiology and cellular and molecular biology. May be repeated for credit. (S/U grading only.)—I, II, III, (I, II, III.) Singer

292. Seminar in Bacterial Physiology and Genetics (1)
Seminar—1 hour. Prerequisite: consent of instructor, graduate standing in microbiology or closely related field. Review and discussion of current research and literature in bacterial physiology and genetics, with presentations by individual students. (S/U grading only.)—I, II, III, (I, II, III.)

294. Seminar in Advanced Microbial Molecular Biology (3)
Seminar—2 hours. Prerequisite: consent of instructor. Seminar in advanced microbial molecular biology with an emphasis on the biochemistry, genetics, and molecular biology of microorganisms. Offered in alternate years.—II, (II.)

296. Seminar in Animal Virology (1)
Seminar—1 hour. Prerequisite: consent of instructor. Discussion of current topics in animal virology. (Same course as Pathology, Microbiology and Immunology 292A.) May be repeated for credit. (S/U grading only.)—II, (II.)

298. Group Study (1-5)
Prerequisite: consent of instructor. (S/U grading only.)

299. Research (1-12)
(S/U grading only.)

Professional Course

396. Teaching Assistant Training Practicum (1-4)
Prerequisite: graduate standing. May be repeated for credit. (S/U grading only.)—I, II, III, (I, II, III.)
The School of Veterinary Medicine offers a program of study and research leading to the Master's degree in Preventive Veterinary Medicine (M.P.V.M.). Detailed information on this program may be obtained by writing the Director, Office of the Dean, School of Veterinary Medicine.

Courses in Preventive Veterinary Medicine (MPM)

Professional Courses

402. Medical Statistics I (4)
Lecture—3 hours; laboratory—2 hours. Statistics in clinical, laboratory and population medicine; graphical and tabular presentation of data; probability; binomial, Poisson, normal, t-, F-, and Chi-square distributions; elementary nonparametric methods; simple linear regression and correlation; life tables. Microcomputer applications of statistical procedures in population medicine.—IV. (IV.) Farver

403. Medical Statistics II (4)
Lecture—3 hours; laboratory—2 hours. Prerequisite: course 402 or the equivalent. Continuation of course 402. Analysis of variance in biomedical sciences; nonparametric methods; multiple regression; biomedical applications of statistical methods. Microcomputer applications to reinforce principles that are taught in lecture.—I. (I.) Farver

405. Principles of Epidemiology (4)
Lecture—4 hours. Prerequisite: course 402 or consent of instructor. Basic epidemiologic concepts and approaches to epidemiologic research, with examples from veterinary and human medicine, including outbreak investigation, infectious disease epidemiology, properties of tests, and an introduction to epidemiologic study design and surveillance. (Same course as Epidemiology 205A.)—I. (I.) Hird

405L. Epidemiology Laboratory (3)
Laboratory—6 hours; lecture—1 hour. Prerequisite: grade of C or better in courses 402, 405, and 412 (may be taken concurrently). Course will integrate and reinforce concepts of epidemiology, statistics and microcomputer applications, using a problem-solving approach with examples from livestock health, public health, and wildlife health. Applications of the EPI Info, spreadsheet and database manager software programs.—I. (I.) Case

406A. Epidemiologic Study Design (3)
Lecture—1.5 hours; discussion—0.9 hours; laboratory—1.8 hours. Prerequisite: course 405/Epidemiology 205A, Epidemiology 205B. Builds on concepts presented in course 405. Concepts of epidemiologic study design—clinical trials, observational cohort studies, case control studies—introduced in course 405 and covered in more depth, using a problem-based format. Discussion of published epidemiologic studies. (Same course as Epidemiology 206.)—II. (II.) Hird

406B. Communication of Epidemiologic Study Results (1)
Lecture—0.6 hours; laboratory—1.2 hours. Prerequisite: course 405/Epidemiology 205A, Epidemiology 205B; course 406A/Epidemiology 206 (may be taken concurrently). Statistical methods pertinent to material from course 406A. Techniques for effective oral presentation of research results. Design and delivery of short presentation and discussion of effectiveness in communicating research results. (S/U grading only.)—II. (II.) Hird

408. Veterinary Research: Planning and Reporting (3)
Lecture—26 sessions; laboratory—4 sessions. Prerequisite: course 405L/Epidemiology 205A, Epidemiology 205B, course 406A/Epidemiology 206 (may be taken concurrently). Provides M.P.V.M. students and graduate students with guidelines of critical thinking, logistics, and organization that will help them undertake and communicate their research project.—I. (I.) Thurmond

412. Introduction to Information Management (3)
Lecture—1 hour; laboratory—6 hours. Basic knowledge and skills in microcomputer hardware, DOS commands, word processing, spreadsheets and communications packages. (S/U grading only.)—IV. (IV.) Sischo

426. Applied Epidemiologic Problem Solving (1)
Laboratory—3 hours. Prerequisite: grade of C or better in course 405L. Integration of epidemiologic and statistical methodology in a problem-solving approach to contemporary animal population health issues. Data validation and manipulation; descriptive statistical analysis using spreadsheets, database management, and Epi Info software. Builds on skills learned in courses 405L and 406.—II. (II.) Gardner

Quarter Offered: I—Fall; II—Winter; III—Spring; IV—Summer; 2001-2002 offering in parentheses.

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
Mathematical and Physical Sciences

(College of Letters and Science)
Winston Ko, Ph.D., Program Director
Program Office, 1201 Social Sciences and Humanities Building

Committee in Charge
David R. Britt, Ph.D. (Chemistry)
Wesley O. Johnson, Ph.D. (Statistics)
Louise H. Kellogg, Ph.D. (Geology)
Claude F. Meares, Ph.D. (Chemistry)
Motohico Mulase, Ph.D. (Mathematics)
Bruno Nachtergaele, Ph.D. (Mathematics)
Richard Scalettar, Ph.D. (Physics)
Dawn Sumner, Ph.D. (Geology)
Jane-Ling Wang, Ph.D. (Statistics)

The Program of Study
The Division of Mathematical and Physical Sciences teaches students to use experimental studies and theoretical analyses to find solutions to real world problems. Students learn to address issues such as cleaning up the environment, preserving natural resources and creating innovative materials for the future. From the study of atoms to the examination of distant galaxies, from abstract number theory to the development of new chemical compounds, the division provides students with the skills to build the world of tomorrow.

The program in Mathematical and Physical Sciences provides an organizational structure within the College of Letters and Science for facilitating the development of innovative curricular initiatives across the mathematical and physical sciences, including offering broadly conceived, integrative undergraduate- and graduate-level courses. The program also may house resident faculty pursuing interdepartmental research and teaching in this area of inquiry.

Courses in Mathematical and Physical Sciences (MPS)

Lower Division Course
11A-11B. Mathematical and Physical Sciences Seminar (2–2)
Lecture—2 hours. Prerequisite: open to Minority Undergraduate Research Participation in the mathematical and physical sciences (MURPPS) students only. Research and writing in the mathematical and physical sciences. Presentations by various science faculty members.—I-II. (I-III.)
Military Science

(Reserve Officers’ Training Corps (ROTC), Army

John V. Scudder, Lt. Col., Chairperson of the Department

Department Office, 125 Hickey Gymnasium (530-752-5211)

Faculty

Major Sandra L. Fusco, Associate Professor

Major Paul S. Ague, Assistant Professor

Captain Todd E. Kramer, Assistant Professor

Program of Study

The Military Science Department offers hands-on training in management and leadership through the following leadership dimensions: oral and written communications, oral presentations (formal briefings), initiative, sensitivity, influence, planning and organizing, delegation, administrative control, problem analysis, judgement, decisiveness, physical stamina, mission accomplishment, and follower-ship. Also stressed are current events, national and international politics, military affairs, ethics training, and human relations with emphasis on eliminating racial and gender discrimination. Management and leadership are taught using the U.S. Army as a model. Military skills (such as drill and ceremonies, map reading, and squad tactics) are taught to the extent necessary to create an environment where students can enter leadership positions and apply theories taught in the classroom. Students learn by doing. The program assists students in all academic fields to prepare for positions of leadership in military or civilian careers.

The program offers two program tracks: (1) a purely academic track, and (2) a precommissioning track for those desiring a commission in the U.S. Army. The academic track entails no obligation to the military and is open to all students. Students pursuing the academic track do not wear a uniform or otherwise participate in extra-curricular activities designed as part of the precommissioning process. Activities for all students include the Ranger Club (a club designed for adventure activities such as rappelling, white-water rafting, orienteering, and patrolling) and intramural sports teams.

Students who desire a commission in the U.S. Army participate in both the academic portion of the program and in the leadership laboratories and extra-curricular activities designed to enhance their leadership and technical skills. They wear uniforms to leadership laboratories and selected classes and become ROTC cadets. Students may be cadets in the lower division courses without incurring a military obligation. Students participating in the upper division precommissioning program incur a military obligation. See below for details. Extra-curricular activities for cadets include an intercollegiate sports team (Ranger Challenge), the university color guard, a military honor society, a rifle/pistol team, and opportunities to participate in field training exercises.

Department Programs

Students are enrolled in military science under one of two programs.

Four-Year Program

Students are enrolled in the basic course (lower division) for the first two years on a voluntary basis. There is no military obligation associated with attendance in lower division courses. Admission to the advanced course (upper division) is by application from second-year lower division students who meet the academic, physical, and military aptitude requirements. Qualified veterans can enter the advanced course immediately because of their military service experience, upon approval by the Department Chairperson.

Upper division students receive $200 subsistence per month after executing a contract agreeing to complete the course and accept a commission if offered. During the course, all military science text books, uniforms and equipment are provided without cost. Students are given leadership development experience at summer camp (advanced camp) between their third and fourth years of the course. Emphasis is on individual participation, leadership development and the capability to function effectively in positions of significant responsibility.

Two-Year Program

The two-year program is for students who have not attended lower division Military Science classes. In lieu of lower division courses an applicant attends a six-week summer camp (basic camp) which is voluntary and carries no military obligation. Applicants are paid for camp attendance and transportation costs. Applications are accepted during the winter and spring terms of the year preceding enrollment in the two-year program. All other provisions explained above for the upper division course apply to the two-year program.

Scholarship Program

The U.S. Army offers four-, three-, and two-year Active Duty and two-year Reserve Forces Duty scholarships to students planning to attend or attending UC Davis. The U.S. Army ROTC scholarship package pays tuition and educational fees. Also included in all scholarships is a flat rate of $450 per year for textbooks, up to $400 per year for miscellaneous fees such as laboratory, student activity, transcript, and graduation fees, and a subsistence allowance of $200 a month for 10 months for each year that the scholarship is in effect. The Army Reserve Officers' Training Corps four-year Active Duty merit scholarships are awarded to qualified high school seniors in a national competition each year. There are two cycles available for submission of the four-year scholarship application. High school juniors can compete for an Early Cycles scholarship by submitting their application complete and postmarked by July 15 between their junior and senior years. As high school seniors, students compete for the Regular Cycle scholarship by submitting their application complete and postmarked by December 1. Those applicants not selected in the Early Cycle are considered in the Regular Cycle competition. Interested applicants should apply online (www.monroe.armymil) or contact UC Davis, Department of Military Science at 530-752-7682.

The three-year Active Duty and two-year Reserve Forces Duty scholarships are awarded to college students who are already attending UC Davis or transferring from a junior college to UC Davis, and have three or two years remaining before graduating with a baccalaureate. Students interested in competing for these scholarships can submit their application beginning in November of each school year. The deadline for submission of an application is April 15 for the two-year scholarship and March 1 for the three-year scholarship. Students apply for and are awarded these Army scholarships through the Military Science Department.

Leadership Laboratory

During the course of the school year, several weekends and two hours per week are spent in the conduct of practical exercises. Classes emphasize adventure activities including offense, defense and patrolling techniques, weapons familiarization, rappelling, rope bridging, obstacle courses, leadership reaction course, and land navigation. All cadets are required to attend leadership laboratories for practical leadership experience and to prepare for attendance at the Army ROTC Advanced Camp, held at Fort Lewis, Washington.

Military Qualifications Standards (MQS) System

During the program of study, students will become familiar with the MOS System, which is designed to articulate skills and knowledge that are required of ROTC commissionees to begin military service. The components of the MQS System include: military skills, professional knowledge, and a professional military education. The military skills component consists of 73 military skills which are categorized into 12 subject areas. They are basic soldiering tasks fundamental to the military professional and serve as the basis for future branch-directed specialty training. The 24 professional knowledge subjects familiarize cadets with the history, customs and traditions, leadership and ethics, administration, organization, and training of the U.S. Army.

The professional military education component consists of two essential parts—a baccalaureate degree and at least one undergraduate course from each of five designated fields of study. Cadets must take a course in written communication, military history, human behavior, math reasoning, and computer literacy.

Academic Credit

College of Letters and Science. The Bachelor of Arts degree requires the completion of 180 units. Military Science courses are counted in the allowance for electives.

College of Agricultural and Environmental Sciences. The Bachelor of Science degree in agriculture requires the completion of 180 units. Military Science courses are counted in the unit allowance for electives.

College of Engineering. Military Science units are acceptable toward the requirements for the Bachelor of Science degree to the extent of the unrestricted elective units available in the curriculum being followed.

School of Veterinary Medicine. The number of Military Science units acceptable toward the Bachelor of Science degree in Veterinary Medicine is on an individual program basis approved by the Dean of the School. Graduates with the D.V.M. degree may apply for direct commission in the United States Army Veterinary Corps.

Quarter Offered: I–Fall; II–Winter; III–Spring; IV–Summer; 2001-2002 offering in parentheses.

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.

Courses in Military Science (MSC)

Lower Division Courses

11. Roles and Organizations of the U.S. Army (1)
Lecture—2 hours. Prerequisite: lower division standing. Constitutional and legal basis of the Army, organization and strategic roles in times of war and peace, and “total Army” concept. Impact of civil-military relations and Soviet military power on role of Army studied in context of current issues.—II. (I.)

12. Introduction to Military Leadership (2)
Lecture—2 hours. Prerequisite: lower division standing, and consent of instructor. Introduction to leadership theories used in military organizations. Course surveys the duties and responsibilities of junior Army officers, the general environment in which they work, and leadership roles performed. Introduces military map reading skills.—I. (I.)

13. Introduction to Basic Military Operations (1)
Lecture—1 hour. Prerequisite: lower division standing. Basic military tactical theories and their application at the individual and squad level. Course introduces military tactical operations, and covers military first aid. Principles of war as introduced in course 11 are applied to offensive and defensive tactics.—III. (II.)

14A. Introduction to Military Leadership Skills (0.5)
Laboratory—2 hours. Prerequisite: lower division standing and consent of instructor; completion of all previous laboratories. Personal and organizational leadership skills introduced in leadership laboratory. Extensive supervised leadership experiences conducted in a military environment. Basic military skills necessary to function in a leadership role are also covered. (P/NP grading only)—I. (I.)

14B. Introduction to Military Leadership Skills (0.5)
Laboratory—2 hours. Prerequisite: lower division standing and consent of instructor; completion of all previous laboratories. Development of leadership and military skills introduced in course 14A is continued with emphasis on the individual’s role in the squad, the basic organizational element of the Army. As students gain capabilities, supervisory controls are reduced. (P/NP grading only)—II. (II.)

14C. Introduction to Military Leadership Skills (0.5)
Laboratory—2 hours. Prerequisite: lower division standing and consent of instructor; completion of all previous laboratories. Students demonstrate skill levels required for promotion to non-commissioned officer level. Use of chain of command from company through individual levels emphasized. Interrelationship of squad and platoon organizations is explored. (P/NP grading only)—III. (III.)

21. Military History (2)
Lecture—2 hours. Prerequisite: lower division standing; course 11 or consent of instructor. Survey of military history from 1900 to present, focusing on World War I, World War II, the Korean War, and the Vietnam War.—I. (II.)

22A. Intermediate Military Leadership and Operations I (2)
Lecture—2 hours. Prerequisite: lower division standing; course 12 or consent of instructor. Develops and exercises personal military leadership skills in extensive supervised leadership laboratories. Intermediate level military skills necessary for leadership roles as junior non-commissioned officers are developed. Students perform in role of junior non-commissioned officers.—I. (I.)

22B. Intermediate Military Leadership and Operations II (2)
Lecture—2 hours. Prerequisite: lower division standing; course 22A or consent of instructor. Continuation of course 22A. Individual leadership traits identified in course 22A are studied in more depth enabling each student to improve on targeted weaknesses. Instruction is presented in intermediate defensive tactics at the squad level.—II. (II.)

24A. Individual Military Leadership Skills (0.5)
Laboratory—2 hours. Prerequisite: lower division standing; courses 14A, 14B, 14C and 21, or consent of instructor. Develops and exercises personal military leadership skills in extensive supervised leadership laboratories. Intermediate level military skills necessary for leadership roles as junior non-commissioned officers are developed. Students perform in role of senior non-commissioned officers. (P/NP grading only)—I. (I.)

24B. Individual Military Leadership Skills (0.5)
Laboratory—2 hours. Prerequisite: lower division standing; courses 14A, 14B, 14C and 21, or consent of instructor. Personal supervisory and leadership styles are developed in a supervised laboratory environment. Students are rotated through squad and team-level supervisory positions, given responsibility commensurate with positions. (P/NP grading only)—II. (II.)

24C. Individual Military Leadership Skills (0.5)
Laboratory—2 hours. Prerequisite: lower division standing; courses 14A, 14B, 14C and 21, or consent of instructor. Students are prepared for transition from junior leader to senior non-commissioned officer. Chain of command and hierarchical responsibilities and reporting requirements are demonstrated in a laboratory setting. (P/NP grading only)—III. (III.)

Upper Division Courses

131. Advanced Military Leadership and Management (2)
Lecture—2 hours. Prerequisite: upper division standing. Course 22A or consent of instructor. Course addresses different types of power and influence a military leader may use, reviews counseling techniques, and introduces basic management skills. Instruction provided on the various branches in which a commissioned officer may serve.—III. (II.)

132A. Advanced Military Operations (2)
Lecture—2 hours. Prerequisite: upper division standing; course 22B or consent of instructor. First phase of advanced military tactical operations. Advanced work on topographical maps, navigation, and orienteering techniques. Instruction is also provided on resource planning techniques and military intelligence.—I. (I.)

132B. Advanced Military Operations (2)
Lecture—2 hours. Prerequisite: upper division standing; course 132A or consent of instructor. Continuation of course 132A. Military tactical theories and their application in offense and defense are presented at the platoon and company level. Course covers in-depth analysis of the principles of war related to offensive and defensive operations.—II. (II.)

134A. Military Organizational Leadership Skills (0.5)
Laboratory—2 hours. Prerequisite: upper division standing; courses 24A-24B-24C or consent of instructor. Students develop interpersonal and management skills by practical application of leadership of military organizations in a supervised leadership laboratory. Advanced-level military skills presented. Students fulfill the roles of senior non-commissioned officers. (P/NP grading only)—I. (I.)

134B. Military Organizational Leadership Skills (0.5)
Laboratory—2 hours. Prerequisite: upper division standing; courses 24A-24B-24C or consent of instructor. As more complex material is presented in classroom, the laboratory environment becomes more challenging. Students serve as senior non-commissioned officers in squad, platoon and company levels, given appropriate authority and responsibility. (P/NP grading only)—II. (II.)

141. U.S. Army Management Systems (2)
Laboratory—2 hours. Prerequisite: upper division standing and course 131. Army decision-making, personnel and equipment management. Includes command and staff functions, training, intelligence gathering, techniques for the conduct of meetings, and logistics management procedures at unit level.—III. (III.)

142. Military Law (2)
Lecture—2 hours. Prerequisite: upper division standing and course 141. Analysis of the American Military Justice System, the Uniform Code of Military Justice, the Hague and Geneva Conventions, and customary law of war. Includes detailed study of selected procedures of military justice system.—II. (II.)

143. Military Ethics and Professionalism (2)
Lecture—2 hours. Prerequisite: upper division standing and course 142. Exploration of arms, its characteristics, uniqueness, roles, and responsibilities. Discussion topics include the professional soldier’s responsibilities to the Army and the Nation, and the need for ethical conduct. Case studies are used to develop ethical decision making skills.—I. (I.)

144A. Military Training Leadership Skills (0.5)
Laboratory—2 hours. Prerequisite: upper division standing and course 141. Laboratory exercises prepare students for advanced summer training experience by extensive requirements to plan, organize and conduct military operations in field environments; individual leadership potential is closely assessed in the laboratory environment. (P/NP grading only)—II. (II.)

144B. Military Training Leadership Skills (0.5)
Laboratory—2 hours. Prerequisite: upper division standing and course 141. Analysis of the American Military Justice System, the Uniform Code of Military Justice, the Hague and Geneva Conventions, and customary law of war. Includes detailed study of selected procedures of military justice system.—II. (II.)

144C. Military Training Leadership Skills (0.5)
Laboratory—2 hours. Prerequisite: upper division standing; courses 143A, 143B, 143C, and 141. Requires for training of all other levels of the cadet corps are given to students for conduct in laboratory environment (under supervision). Students placed in realistic role of junior officer with appropriate level of responsibility. Students perform as cadet staff officers. (P/NP grading only)—II. (II.)

191. Special Studies in Military Science (2)
Independent study.-6 hours. Prerequisite: consent of department chair, and courses 131, 132A, 132B, 141, 142, 143. Intensive examination of one or more special problems in military science. Possible areas of study include leadership dimensions, principles of war, air-land battle imperatives, military strategy, the operational art and professional ethics. May be repeated twice for credit when topic differs. (P/NP grading only)

Aerospace Studies (Air Force)
The Air Force Reserve Officer’s Training Corps (AFROTC) is an educational program providing training in leadership, management, communications and military proficiency on college and university campuses. It also provides an opportunity to obtain a commission as a second lieutenant in the Air Force and enter the active duty forces after you complete a bachelor’s or a graduate degree. The skills you acquire will become valuable assets for any subsequent career you choose.
The program is normally four years long, but a flexible design allows students to complete the curriculum in as little as two years. Undergraduate scholarships are available, but are not necessary for participation. Until you accept a scholarship or enter your junior year of the program, you have no obligation to join the Air Force. There are no costs for AFROTC uniforms, books, or classes.

UC Davis students have the option of taking the Air Force program on the UC Berkeley or CSU Sacramento campus.

Qualifications
Freshmen/Sophomore applicants must:
- be full-time college students in good academic standing
- have good moral character
- be in strong physical condition
- be at least 14 years old

Additionally, Juniors/Seniors/Scholarship recipients must:
- be United States citizens or in the process of applying for citizenship
- be 18 years old (or 17 years old with consent of parent or guardian)
- pass the Air Force Officer Qualifying Test
- pass a medical examination
- be under the age of 30 at time of graduation (may be waived)

Scholarships
Opportunities for four-year and three-year undergraduate scholarships are better than ever. Scholarships cover the full cost of tuition, books and required fees at the University of California and are available for eligible high school seniors. It also includes $150 monthly stipend during the school year. If you are a junior or senior in high school and plan on attending a college or university in Northern California, you can write, call or visit the local AFROTC detachments for a scholarship application. Applications are also available from local Air Force recruiters or your high school guidance counselors.

All scholarships are merit-based and consider a variety of factors: cumulative GPA, class standing, SAT/ACT scores, academic awards/achievements, leadership ability, athletic involvement, extracurricular activities, community service and letters of recommendation. All scholarship recipients must graduate and be commissioned before their 27th birthday (may be waived for prior military personnel). A personal interview with an Air Force officer is also part of the application process. Prior to activating a scholarship, students must meet AFROTC medical and physical fitness standards. All scholarships must be used at an accredited college or university that offers AFROTC on campus or through cross-registration. The program is available at more than 700 universities and colleges nationwide.

If you are already in college, contact our office directly and apply for enrollment into AFROTC as a cadet. Three- and two-year full tuition scholarships are available for all academic majors, especially scientific and technical majors such as engineering, atmospheric science, math, computer science, and physics. GPA Scholarship requirements for nontechnical majors are slightly higher. Applicants are primarily evaluated on their leadership ability and academic performance. Scholarship boards meet throughout the year for scientific and technical majors and in July for all academic majors. Scholarships also include a $150 monthly stipend throughout the school year, required books and fees. Other loans and grants may be used towards room and board costs.

Challenging Careers
All commissioned officers enter the Air Force as second lieutenants for a 4-year active duty service commitment. Pilots and navigators serve longer commitments, based on training requirements. Once on active duty, you’ll be given instant responsibility in one of 32 primary career fields. Opportunities to fly are better than ever. Whether you are piloting the F-22 fighter, supervising 150 aircraft maintainers on the flightline, or caring for sick personnel in the emergency room, you will be rewarded knowing that you are making a difference.

AFROTC at UC Berkeley
AFROTC Detachment 85
Hearst Gym, Berkeley, CA 94720-3610
(1-800-852-5747 or 510-642-3572);
e-mail: brown@clink45.berkeley.edu
World Wide Web: http://aadd.roc.berkeley.edu/main.html

The program is normally four years long, but a flexible design allows students to complete the curriculum in as little as two years. Undergraduate scholarships are available, but are not necessary for participation. Until you accept a scholarship or enter your junior year of the program, you have no obligation to join the Air Force. There are no costs for AFROTC uniforms, books, or classes.

UC Davis students have the option of taking the Air Force program on the UC Berkeley or CSU Sacramento campus.

Qualifications
Freshmen/Sophomore applicants must:
- be full-time college students in good academic standing
- have good moral character
- be in strong physical condition
- be at least 14 years old

Additionally, Juniors/Seniors/Scholarship recipients must:
- be United States citizens or in the process of applying for citizenship
- be 18 years old (or 17 years old with consent of parent or guardian)
- pass the Air Force Officer Qualifying Test
- pass a medical examination
- be under the age of 30 at time of graduation (may be waived)

Scholarships
Opportunities for four-year and three-year undergraduate scholarships are better than ever. Scholarships cover the full cost of tuition, books and required fees at the University of California and are available for eligible high school seniors. It also includes $150 monthly stipend during the school year. If you are a junior or senior in high school and plan on attending a college or university in Northern California, you can write, call or visit the local AFROTC detachments for a scholarship application. Applications are also available from local Air Force recruiters or your high school guidance counselors.

All scholarships are merit-based and consider a variety of factors: cumulative GPA, class standing, SAT/ACT scores, academic awards/achievements, leadership ability, athletic involvement, extracurricular activities, community service and letters of recommendation. All scholarship recipients must graduate and be commissioned before their 27th birthday (may be waived for prior military personnel). A personal interview with an Air Force officer is also part of the application process. Prior to activating a scholarship, students must meet AFROTC medical and physical fitness standards. All scholarships must be used at an accredited college or university that offers AFROTC on campus or through cross-registration. The program is available at more than 700 universities and colleges nationwide.

If you are already in college, contact our office directly and apply for enrollment into AFROTC as a cadet. Three- and two-year full tuition scholarships are available for all academic majors, especially scientific and technical majors such as engineering, atmospheric science, math, computer science, and physics. GPA Scholarship requirements for nontechnical majors are slightly higher. Applicants are primarily evaluated on their leadership ability and academic performance. Scholarship boards meet throughout the year for scientific and technical majors and in July for all academic majors. Scholarships also include a $150 monthly stipend throughout the school year, required books and fees. Other loans and grants may be used towards room and board costs.

Challenging Careers
All commissioned officers enter the Air Force as second lieutenants for a 4-year active duty service commitment. Pilots and navigators serve longer commitments, based on training requirements. Once on active duty, you’ll be given instant responsibility in one of 32 primary career fields. Opportunities to fly are better than ever. Whether you are piloting the F-22 fighter, supervising 150 aircraft maintainers on the flightline, or caring for sick personnel in the emergency room, you will be rewarded knowing that you are making a difference.

AFROTC at UC Berkeley
AFROTC Detachment 85
Hearst Gym, Berkeley, CA 94720-3610
(1-800-852-5747 or 510-642-3572);
e-mail: brown@clink45.berkeley.edu
World Wide Web: http://aadd.roc.berkeley.edu/main.html
To receive hands-on leadership and management practice, freshmen and sophomores take a one-hour academic course and a two-hour Leadership Laboratory each week; juniors and seniors take a three-hour course plus the lab. All units can be used as elective credit towards graduation. See the Military Sciences course listings in the UC Berkeley catalog. Classes are held during the fall and spring semesters and the curriculum includes the history of airpower, leadership and management topics, communication skills, and national security issues.

Between the sophomore and junior years, cadets compete to attend a four- or six-week field training program at a designated Air Force base. This competitive program consists of physical conditioning, outdoor survival training, career and aircraft orientation, and an evaluation of leadership potential. Additional optional training opportunities are available during the summer months and include the Royal Air Force Exchange Program, Pentagon Internships, Jump School and Glider Training at the Air Force Academy, and summer job shadowing. Students are also encouraged to participate in optional orientation flights, base visits, and community service projects throughout the school year.

Quarter Offered: I—Fall; II—Winter; III—Spring; IV—Summer, 2001-2002 offering in parentheses.

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.

AFROTC at CSU Sacramento
California State University Sacramento
Public Service Building, Room 208
6000 J. Street
Sacramento, CA 95819-6094
(530)-278-7315

The CSUS Department of Aerospace Studies offers two-, three-, or four-year programs leading to a commission in the U.S. Air Force. About 30 percent of the corps commute to CSUS from UC Davis. All course work (12 or 16 semester units) is completed on the CSUS campus. Drills and courses are normally offered on Tuesdays, Wednesdays, and Thursdays. Field training is conducted at an active Air Force base during part of the summer, normally between the student’s sophomore and junior years.

Upon completion of the program (integrated with UC Davis’ quarter system) and all requirements for a bachelor’s degree, cadets are commissioned as second lieutenants in the Air Force and serve a minimum of four years on active duty. Graduates who are qualified and are selected may enter pilot or navigator training after graduation, or serve in a specialty consistent with their academic major, individual goals, and existing Air Force needs. Graduates may request a delay of entry to active duty to continue their education or may apply for Air Force sponsored graduate study to begin immediately upon entry to active duty. Due to firm scheduling requirements for the AFROTC program, students are encouraged to work closely with their academic advisors in planning their academic program.

AFROTC offers 3-year and 2-year scholarships to qualified students. Applications are accepted in any academic discipline. Express scholarships are currently available for qualified students majoring in electrical engineering and meteorology. Express scholarships pay up to $15,000 annually in tuition and fees, $480 per year in textbooks, and $150 per month stipend.

Applications should normally be no later than the first quarter of a student’s sophomore year. Juniors, seniors, and graduate students may also apply under certain conditions. Contact the Unit Admissions Officer in the Aerospace Studies Department at CSUS (916-278-7315) for information.

Naval ROTC
Berkeley program:
Department of Naval Science
152 Hearst Gymnasium, UC Berkeley
Berkeley, CA 94270-3640
(510)-642-3551; World Wide Web: http://navyrotc.berkeley.edu

UC Davis students may participate in the Navy and Marine Corps ROTC program at UC Berkeley. The program is 4 years long and includes courses and weekly professional development laboratories (drill) at UC Berkeley. Students normally compete for national scholarships as high school seniors, although interested students may enroll as freshmen or sophomores and compete for scholarships based on successful participation in the program. A student who satisfactorily completes a ROTC program and is awarded a degree from UC Davis receives an active duty commission as a Second Lieutenant in the U.S. Marine Corps or an Ensign in the U.S. Navy.

Navy option students take the following courses:

Freshman year:
- NS 1 Introduction to Naval Science
- NS 2 Sea Power and Maritime Affairs

Sophomore:
- NS 3 Leadership and Management
- NS 10 Naval Ship Systems I

Junior:
- NS 12A Navigation and Naval Operations I
- NS 12B Navigation and Naval Operations II
- NS 401 Naval Ship Systems II
- NS 412 Leadership and Ethics

In lieu of NS401, NS10, NS12A and NS12B, Marine Corps students participate in Marine Seminars and complete MA154, History of Littoral Warfare and MA20, Evolution of Warfare (or a designated equivalent).

Scholarship students are required to complete a number of other courses at Davis, including one year each of calculus, physics, and English, and one quarter each of computer science, leadership and management, and military history or national security policy. Interested students should contact the Department of Naval Science at UC Berkeley at the address above to obtain information and apply.
Medieval Studies

(College of Letters and Science)
Winder McConnell, Ph.D., Program Director
Program Office, 176 Voorhees Hall (530-752-2257)
World Wide Web: http://medieval.ucdavis.edu

Committee in Charge
Georges Van Den Abbeele, Ph.D. (French, Italian)
Joan Cadden, Ph.D. (History)
Winder McConnell, Ph.D. (German)
Marijane Osborn, Ph.D. (English)
Larry Peterman, Ph.D. (Political Science)
Kevn Roddy, Ph.D. (Medieval Studies), Academic Federation Excellence in Teaching Award
Kathleen Stuart, Ph.D. (History)

Affiliated Faculty
Samuel G. Armistead, Ph.D., Professor (Spanish)
Dennis Dutschke, Ph.D., Professor (Italian)
Ingeborg Henderson, Ph.D., Senior Lecturer (German)
Patricia McKinnon, Ph.D. (Comparative Literature)
Peter Schaeffer, Ph.D., Professor (German)
Brenda Schildgen, Ph.D., Lecturer (Comparative Literature)
Winifred Scheiner, Ph.D., Professor (English)
Raymond Waddington, Ph.D., Professor (English)

The Major Program
The major in medieval studies introduces students to the main features of European civilization during the period from the fall of Rome to the beginnings of the Renaissance. The program involves studies in history, art, philosophy, literature, drama, music, national languages, religion, rhetoric, and political theory.

The Program. The major gives students a broad view of the period and allows the flexibility necessary to accommodate their individual interests. The program offers a series of medieval studies courses providing an excellent introduction to the major, and preparation for advanced work within the individual disciplines. On the upper division level, each student completes course work in specific areas of history (the fall of Rome to the Renaissance), literature (Old and Middle English, including English, French, German, Italian, Russian, Latin), philosophy and religion, arts and language, and political thought. In addition, each student may complete a senior thesis on some selected aspect of medieval culture.

Career Alternatives. The major in medieval studies is a liberal arts degree providing excellent preparation for the rigors of the professional schools as well as careers in law, literary science, museology, journalism, and teaching.

A.B. Major Requirements:

Preparatory Subject Matter

Language proficiency is a necessity; courses in Latin and other European languages are strongly recommended, particularly for students planning to pursue graduate studies in the medieval field.

Depth Subject Matter
At least 12 units from History 102B, 121A, 121B, 121C, 201B12
At least 16 units, including two courses from each of two of the following ..16
(a) English 111, 113A, 113B, 150A, 188, 189; (b) French 115, 141; (c) German 120, 121; (d) Italian 113, 115A, 115B, 139B, 140; (e) Latin 101, 102, 103, 104, 105, 106, 108, 109, 111, 112, 114, 115, 116, 125.
At least 8 units from Philosophy 105, 132, 145, 146, 190, Religious Studies 10, 110, 115, 121, 125, 130, 131, 1328
At least 8 units from Art History 176A, 176B, 176C, 177A, 178A, 178B, Dramatic Art 156, German 106; Music 121 (note prerequisite), 1998
At least one course from Political Science 115, 116, 118A4
Medieval Studies 190 ...4

Total Units for the Major ...52

Minor Advisers. K. Roddy (Medieval Studies).

Minor Program Requirements:

The minor in Medieval Studies is a coherent program of interdisciplinary study. Medieval Studies units may be taken in one or more of the traditional fields of concentration, including art, drama, history, literature, music, national languages, philosophy, political theory, religious studies and rhetoric. Courses must be upper division and chosen from at least two of these subject areas, and they must be within the three periods of Early Medieval Culture, culture of the High Middle Ages, and Medieval transformations. Students may also select a minor with a thematic emphasis.

There is no foreign language requirement for the minor, although knowledge of Latin or an European language is recommended. The minor must be designed in consultation with a Department Adviser.

Minor Advisers. Kevin Roddy (Medieval Studies).

Courses in Medieval Studies (MST)

Lower Division Courses
20A. Early Medieval Culture (4)
Lecture—3 hours; discussion—1 hour. Readings (in translation) in early medieval culture, such as the Codes of Justian, the Confessions of Saint Augustine, The Consolation of Philosophy of Boethius, Beowulf, the Nibelungenlied, and the Song of Roland. GE credit: ArtHum, Wrt.—I. (I.) Roddy

20B. The Culture of the High Middle Ages (4)
Lecture—3 hours; discussion—1 hour. Readings (in translation) in the culture of the high Middle Ages, such as the Summa Theologica of Thomas Aquinas, the Chronicles of Froissart, The Canterbury Tales of Chaucer, and the Divine Comedy of Dante. GE credit: ArtHum, Wrt.—II. (II.) Roddy

20C. Medieval Transformations (4)
Lecture—3 hours; discussion—1 hour. The great medieval transformations that took place before the Renaissance. Topics will be selected from various disciplines, such as literature, philosophy, religion, history, art, music, political thought, rhetoric, and other pertinent fields. GE credit: ArtHum, Wrt.—(II.) Roddy

98. Directed Group Study (1-5)
(P/NP grading only)

99. Special Study for Undergraduates (1-5)
(P/NP grading only)

Upper Division Courses
120A-E. The Medieval World (4)
Lecture—3 hours; discussion—1 hour; term paper. Course deals with selected themes from the Middle Ages: the Fall of Rome to the beginning of the Renaissance. Subjects will vary from year to year and cover such topics as:
(A) The Monastic Orders;
(B) Origins of Universities;
(D) Family and Society;
(E) Chivalry.
GE credit for 120A or 120D or 120E: ArtHum, Wrt.—I, II, III, (I, II, III.)

130A. Special Themes in Medieval Cultures (4)
Lecture—3 hours; discussion—1 hour. Each offering concentrates on an interdisciplinary aspect of medieval culture in the Middle East and Europe: the idea of the hero, mysticism, urban development. Extensive readings focused on medieval source material. May be repeated for credit. GE credit: ArtHum, Wrt.—III, (II.)

130B. Special Themes in Renaissance Culture (4)
Lecture—3 hours; discussion—1 hour. Each theme illuminates an interdisciplinary aspect of Renaissance culture in the eastern and western hemispheres: exploration, medical pathology, daily life, baroque culture. Immersion in source material from 1500-1650. May be repeated for credit. GE credit: ArtHum, Wrt.—(II.)

190. Senior Thesis (4)
Seminar—4 hours. Prerequisite: senior standing and major in Medieval Studies. Preparation of a research paper dealing with a selected aspect of medieval culture, under supervision of three members of the Committee in Charge.—I, II, III, (I, II, III.)

197T. Tutoring in Medieval Studies (1-4)
Seminar—2 hours. Prerequisite: courses 20A and 20B; upper division standing; consent of instructor and chairperson of curriculum committee. Tutoring in Medieval Studies 20A and 20B, including leadership in small discussion groups affiliated with the course. May be repeated for credit for a total of 6 units. (P/NP grading only)

198. Directed Group Study (1-5)
(P/NP grading only)

199. Special Study for Advanced Undergraduates (1-5)
(P/NP grading only)
Music

A.B. Major Requirements:

Preparatory Subject Matter: 9-12
Music 30, 31 (or the equivalent determined by consultation with major adviser), one year 3

Depth Subject Matter: 4
Music 104A, 104B, 104C .. 12
Music 124A, 124B ... 8
At least 16 units selected from Music 103 (Note: only 3 units of 103, com-
position, may be counted toward the major), 107A, 107B, 107C, 108A,
108B, 111, 112, 121, 122, 198, 199 (Note: at least 4 units must be in
Music 121 or 122, with 8 units preferred)................................. 16
At least 8 units in performance courses 8
Select from Music 130 or 131, 140, 141, 142, 143, 144, 145, 146,
147, 154. ... 9

Total Units for the Major ... 83-86

Minor Program Requirements:

Music .. 22
A minimum of 16 units of upper division Music courses ... 16
Courses chosen from: Music 105, 106, 107, 110, 126, 129
A minimum of six units in upper division music performance courses
(Music 140, 141, 142, 143, 144, 145, 146, 147, 154) may count toward the minor 6

Foreign Language Requirement. Attention is called to the requirements in foreign
languages for graduate degrees in music.

Beginning and transfer students must take an examination in piano playing. Suf-
ficient pianistic ability to perform four-part chorales and compositions comparable
in difficulty with The Little Preludes of Bach is prerequisite to upper division courses
in the major. Students with deficiencies will be required to pass Music 2A, 2B, 2C. All
majors in music will be expected to perform the compositions cited above before a
jury of faculty members prior to advancement into the upper division. Students
transferring from other colleges should take the Placement Examination and consult
with departmental major advisers before enrolling in any music course.

Student Performing Activities. The Department of Music presents over 100 con-
certs each year, offering performance opportunities for both majors and non-majors
in the UCSD Symphony Orchestra, University Chorus, Band, Early Music Ensemble,
Baroque Chamber Orchestra, Chamber Singers, University Jazz Band,
Gospel Choir, and numerous chamber ensembles. Also affiliated with the depart-
ment is the California Aggie Marching Band.
The large groups regularly present three concerts each year, while chamber ensem-
bles perform frequently in the weekly Thursday Noon Concerts. Performance
groups have collaborated with the Department of Dramatic Art in productions of
musical theater and opera. Study of instruments and voice with professional per-
formers and teachers is required of all majors. Similar opportunities exist for talented
non-majors.

Faculty and Facilities. The faculty is noted for its achievements in a variety of
areas. The musicologists are active in research, writing, and performance; the music
of the composers is performed and recorded nationally and internationally. Two
music journals are housed in the department, 19th Century Music and Beethoven
Forum.
The regular faculty is joined during one quarter each year by a visiting Artist-in-
Residence, a distinguished performer who gives public concerts and lectures and
who works with students informally. The Empyrean Ensemble, a professional new
music ensemble, is in residence at UC Davis. The American Bach Soloists, an
ensemble of professional singers and instrumentalists specializing in music of the
eighteenth and early nineteenth century, is affiliated with the Department of Music.
The department's facilities include a large collection of Renaissance, Baroque, and
modern instruments, the Computer and Electronic Music Studio, practice and
rehearsal rooms, and an excellent music library with some 20,000 recordings, CDs,
laser discs and videos. In addition, the library houses the Jan Popper Collection of
opera scores, books, and memorabilia.

Graduate Study. The Department of Music offers programs of study and research
leading to the M.A. degree in composition, theory, musicology/criticism, and
donducting, and the Ph.D. degree in composition/theory and musicology/criticism.
Detailed information regarding graduate study may be obtained from the Graduate
Adviser.

Graduate Adviser. D.A. Nutter.

Quarter Offered: I=fall; II=Winter; III=Spring; IV=Summer; 2001-2002 offering in parentheses.

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
Courses in Music (MUS)

Lower Division Courses

2A-2B-2C. Keyboard Competence (1-1-1)
Laboratory—1 hour. Prerequisite: concurrent enrollment in course 4A-4B-4C; keyboard diagnostic examination (not open for credit to students who have passed the exam). Designed to train students to meet the minimal piano requirements for the major in music. All music majors will be expected to perform scales, modulations, to realize figured basses, and to harmonize a given melody at sight.—I-II-III. (I-II-III) Tress

3A. Introduction to Music Theory (4)
Lecture—1 hour; recitation—3 hours. Fundamentals of music theory, ear-training, harmony, counterpoint, and analysis directed toward the development of listening and writing techniques. Intended for the general student.—I, II, III. (I, II, III)

3B. Introduction to Music Theory (4)
Lecture—3 hours; laboratory—1 hour. Prerequisite: course 3A. Continuation of course 3A. Intended for the general student.—II, III. (II, III.)

4A-4B-4C. Elementary Theory (4-4-4)
Lecture/discussion—3 hours; practice—2 hours. Prerequisite: keyboard competen- cies; keyboard diagnostic examination: students must pass the exam or take course 2A-2B-2C concurrently. Development of music writing and listening skills through the study of music fundamentals, tonal species counterpoint, harmony, score reading, analysis of repertoire. Intended primarily for music majors.—I-II-III. (I- II-III.) Bauer

5A-5B-5C. Intermediate Theory (4-4-4)
Lecture/discussion—3 hours; practicum—2 hours. Prerequisite: course 4C. Study of imitative tonal counterpoint and of harmony; keyboard harmony; analysis of reper- toire.—I-II-III. (I-II-III.) Bauer

10. Introduction to Musical Literature (4)
Lecture—3 hours; listening section—1 hour. An introduction to composers and major styles of Western music. Lectures, listening sections, and selected readings. For non-majors. GE credit: ArtHum, Wrt.—I, II, III. (I, II, III.) Elkus, Holoman, Nutter

24A. Introduction to the History of Music, I (4)
Lecture—3 hours; listening section—1 hour. Prerequisite: course 4A or 3A (concur- rently). Intended primarily for majors in music. History of music from the late Baroque to the Classical Period. GE credit: Wrt.—I, II, III. (I-II, III.) Busse Berger

24B. Introduction to the History of Music, II (4)
Lecture—3 hours; listening section—1 hour. Prerequisite: course 24A; course 4B or 3B (concurrently). Intended primarily for majors in music. History of music from the Classical Period to the nineteenth century. GE credit: Wrt.—II, III. (I-II, III.) Busse Berger

24C. Introduction to the History of Music, III (4)
Lecture—3 hours; listening section—1 hour. Prerequisite: course 4B or 3B; course 4C (concurrently). Intended primarily for majors in music. History of music from the nineteenth century to the present. GE credit: Wrt.—III. (II-III.) Reynolds

28. Introduction to Afro-American Music (4)
Lecture—3 hours; listening and discussion—1 hour. A study of the Afro-American rhythm, field hollers, work songs, spirituals, blues, gospel, and jazz; the contrast between West African, Afro-Caribbean, and Afro-Cuban musical traditions. GE credit: Div, Wrt.

30A-U. Applied Study of Music: Intermediate (1)
Performance instruction—1 hour. Prerequisite: open to music majors with ability to perform scales and short compositions from standard repertoire; admission by audition and consent of instructor. Class instruction, arranged by section. (A) Voice (pre- requisites of course 1 or the equivalent); (B) Piano; (C) Harmony, counterpoint (pre-requisite of course 1 or the equivalent); (D) Organ; (E) Violin; (F) Viola; (G) Cello; (H) Double Bass; (I) Flute; (J) Oboe; (K) Clarinet; (L) Bassoon; (M) French Horn; (N) Trumpet; (O) Trombone; (P) Tuba; (Q) Percussion, (R) Classical Guitar; (S) Lute; (U) Viola da gamba; (D) Recorder. May be repeated for credit. Offered as demand indicates.—I, II, III. (I, II, III.)

Performance instruction—0.5 hour; independent practice—5 hours. Prerequisite: open to Music majors only; admission by audition and consent of instructor. Individual instruction in (A) Voice (prerequisite of course 1 or the equivalent); (B) Piano; (C) Harmony, counterpoint; (D) Organ; (E) Violin; (F) Viola; (G) Cello; (H) Double Bass; (I) Flute; (J) Oboe; (K) Clarinet; (L) Bassoon; (M) French Horn; (N) Trumpet; (O) Trombone; (P) Tuba; (Q) Percussion; (R) Classical Guitar; (S) Lute; (U) Viola da gamba; (D) Recorder. May be repeated for credit. Offered as demand indicates.—I, II, III. (I, II, III.)

32. Singing for Actors (1)
Performance—1 hour. Prerequisite: consent of instructor. The elements of basic singing techniques, through selected exercises, vocalises, and songs. May be repeated for credit. (P/NP grading only.)—I, II, III. (I, II, III.) Friedman

40. University Jazz Band (2)
Rehearsal—4 hours. Prerequisite: consent of instructor. Open to students in any major. Rehearsal, study, and performance of modern jazz band music and full variety of jazz band styles, including swing, be-bop, and contemporary jazz styles. May be repeated for credit. (P/NP grading only.)—I, II, III. (I, II, III.) McMullen

41. University Symphony (2)
Rehearsal—4 hours. Prerequisite: subject admission to audition before the first class meeting. Open to any student in the University whose proficiency meets the require- ments of concert performance. Rehearsal and performance of music for band. May be repeated for credit. (P/NP grading only.)—II, III. (II, III.)

42. University Chamber Singers (2)
Rehearsal—3 hours, plus sectionals—at least 1 hour. Prerequisite: admission subject to audition before first class meeting. Rehearsal and performance of works for small choral group. May be repeated for credit. (P/NP grading only.)—I, II, III. (I, II, III.) Thomas

43. University Concert Band (2)
Rehearsal—4 hours. Prerequisite: admission subject to audition before first class meeting. Open to any student in the University whose proficiency meets the require- ments of concert performance. Rehearsal and performance of music for band. May be repeated for credit. (P/NP grading only.)—II, III. (II, III.)

44. University Chorus (2)
Rehearsal—4 hours. Prerequisite: subject admission to audition before first class meeting. Open to any student in the University. Rehearsal and performance of choral music. May be repeated for credit. (P/NP grading only.)—I, II, III. (I, II, III.)

45. Early Music Ensemble (2)
Rehearsal—4 hours. Prerequisite: admission subject to audition before first class meeting. Rehearsal and performance of Medieval, Renaissance and Baroque music for vocal ensemble and historical instruments. May be repeated for credit. (P/NP grading only.)—I, II, III. (I, II, III.) Nutter

46. Chamber Music Ensemble (1)
Rehearsal—2 hours; student practice—1 hour. Prerequisite: admission subject to audition before first class meeting. Open to any student in the University whose profi- ciency meets the requirements of concert performance. Study, rehearsal, and performance of ensemble music for strings, winds, voice, piano, harpsichord, and organ. May be repeated for credit. (P/NP grading only.)—I, II, III. (I, II, III.) Granger

47. University Wind Ensemble (2)
Rehearsal—4 hours. Prerequisite: consent of instructor. Open to students in any major. Rehearsal, study, and performance of a full variety of wind ensemble music; and to have students share their work in public performances. May be repeated for credit. (P/NP grading only.)—I, II. (I, II.)

54. University Gospel Choir (2)
Rehearsal—4 hours. Prerequisite: consent of instructor; open to any student in the university. Rehearsal, study, and performance of Gospel music. May be repeated for credit. (Same course as African American and African Studies 54.) (P/NP grading only)—I, II, III. (I, II, III.)

98. Directed Group Study (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)

99. Special Study for Undergraduates (1-5)
(P/NP grading only.)

Upper Division Courses

103. Workshop in Composition (3)
Workshop—3 hours. Prerequisite: course 4C. Workshop in musical composition for undergraduates who are interested in pursuing serious compositional studies. Course will allow students to explore the techniques and materials of musical composition. May be repeated for credit. (P/NP grading only.)—I, II, III. Nowlan

104A-104B-104C. Advanced Theory (4-4-4)
Lecture—4 hours. Prerequisite: course 5C. Techniques of orchestration from study and experience of modern composition.—I-II-III. (I-II-III.) Frank, Sawnson

105. History and Analysis of Jazz (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 3A or 10 or the equiv- alent. Jazz will be studied in its historical and cultural contexts; the evolution of jazz styles will be analyzed. Lectures, discussion/guided listening sections, and selected readings. Designed for non-majors. GE credit: ArtHum, Div, Wrt.—I, II, III. (I, II, III.)

106. History of Rock Music (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 3A-3B or 10 or consent of instructor. Rock studied in its musical, historical, and cultural contexts; analysis of the evolution of rock styles. Includes guided listening sections and selected readings. Designed for non-majors. GE credit: ArtHum, Div, Wrt.—II, III. (II, III.)

107A. Computer and Electronic Music (3)
Lecture—3 hours; laboratory—1 hour. Prerequisite: consent of instructor. Studies in electronic and computer music composition. The principles and procedures of com- position in various electronic media are explored through compositional exercises. Limited enrollment.—I. (I.) Ortiz

107B. Computer and Electronic Music (3)
Lecture—3 hours; laboratory—1 hour. Prerequisite: course 107A and consent of instructor. Continuation of course 107A. Limited enrollment.—(I.)

107C. Computer and Electronic Music (3)
Lecture—3 hours; laboratory—1 hour. Prerequisite: course 107B and consent of instructor. Continuation of course 107B. Limited enrollment.—(II.)

108A-108B. Orchestration (2-2)
Lecture—2 hours. Prerequisite: course 5C. Techniques of orchestration from study of basic instrumental techniques to analysis of orchestral scores and scoring for various instrumental combinations.—II, III. (II, III.) Frank, Ortiz

109. Masterworks in Performance (2)
Lecture—2 hours. Prerequisite: course 10 recommended. Thorough score study of a single masterwork to be performed on campus during the quarter. Guided listening, selected readings, analysis and study of composer’s milieu. Recommended espe- cially for members of the performing ensembles scheduled to present the work.
10A. The Music of a Major Composer: Beethoven (4) Lecture—3 hours; discussion—1 hour. Prerequisite: course 10 or 3A-3B. The work of Beethoven will be studied in the context of his time and his contemporaries. Lectures, discussion/guided listening sections, and selected readings. For non-majors. GE credit: ArtHum, Wrt.—II. (I.) Sawson

10B. The Music of a Major Composer: Stravinsky (4) Lecture—3 hours; discussion—1 hour. Prerequisite: course 10 or 3A-3B. The work of Stravinsky will be studied in the context of his time and his contemporaries. Lectures, discussion/guided listening sections, and selected readings. For non-majors. GE credit: ArtHum, Wrt.—I. (I.) Frank

10C. The Music of a Major Composer: Bach (4) Lecture—3 hours; discussion—1 hour. Prerequisite: course 10 or 3A-3B. The work of Bach will be studied in the context of his time and his contemporaries. Lectures, discussion/guided listening sections, and selected readings. For non-majors. GE credit: ArtHum, Wrt.

10D. The Music of a Major Composer: Mozart (4) Lecture—3 hours; discussion—1 hour. Prerequisite: course 10 or 3A-3B. The work of Mozart will be studied in the context of his time and his contemporaries. Lectures, discussion/guided listening sections, and selected readings. For non-majors. GE credit: ArtHum, Wrt.—II. Busse Berger

10E. The Music of a Major Composer: Haydn (4) Lecture—3 hours; discussion—1 hour. Prerequisite: course 10 or 3A-3B. The work of Haydn in the context of his time and his contemporaries. Lectures, discussion/guided listening sections, and selected readings. For non-majors. Offered in alternate years. GE credit: ArtHum, Wrt.

10F. American Masters (4) Lecture—3 hours; discussion—1 hour. Prerequisite: course 10 or 3A-3B. An overview of American concert music by master composers from Charles Ives to the present. Lectures, discussion/guided listening sections, and selected readings. For non-majors. Offered in alternate years. GE credit: ArtHum, Wrt.

111. Choral Conducting (2) Lecture—2 hours. Prerequisite: courses 4A-4B-4C and consent of instructor. Principl es and techniques of conducting choral ensembles.—(I) Thomas

112. Instrumental Conducting (2) Lecture—2 hours. Prerequisite: courses 4A-4B-4C and consent of instructor. Principl es and techniques of conducting instrumental ensembles. Offered in alternate years.—(I) Thomas

121. Topics in Music History and Criticism (4) Seminar—4 hours (includes selected listening). Prerequisite: courses 4A-4B-4C, 24A-24B-24C, and consent of instructor. Sources and problems of a historical period or musical style selected by the instructor and announced in advance. May be repeated for credit. GE credit: Wrt.—II. (II, I.) Elkus

122. Topics in Analysis and Theory (4) Seminar—4 hours (includes selected listening). Prerequisite: courses 5C and 25C. Analysis of works of a composer or musical style selected by the instructor and announced in advance. Consideration of theoretical issues. May be repeated for credit. GE credit: Wrt.—II. (II, I.) Nutter

124A. History of Western Music: Middle Ages to 1600 (4) Lecture—3 hours; listening—1 hour. Prerequisite: course 24C and 4C. Historical survey of composers and musical styles from the Middle Ages to the beginning of the 17th century. GE credit: Wrt.—II. (I.) Nutter

124B. History of Western Music: 1600 to 1750 (4) Lecture—3 hours; listening—1 hour. Prerequisite: course 124A. Historical survey of composers and musical styles from the late 1500s to the mid-18th century. GE credit: Wrt.—II. (II, I.) Nutter

126. American Music (4) Lecture—3 hours; listening—1 hour. Prerequisite: course 10 or 3A-3B or consent of instructor. Introductory survey of American music, including Native American music, Hispanic polyphony, New England psalmody, and selected 20th-century composers and styles. Offered in alternate years. GE credit: Div, Wrt.—II. (I.) Reynolds

127. Music from Latin America (4) Lecture—3 hours; discussion—1 hour. Prerequisite: Spanish 20 or 33. Examination of music from Latin America. Characteristic music (i.e., tango, bossa nova, salsa, musica nortena, musica andina) as well as its implications in other musical genres. Taught in Spanish. For non-majors. Offered in alternate years. (Former course 27) (Same course as Spanish 171.)—II. (II, I.) Ortiz

129. World Music (4) Lecture—3 hours; listening—1 hour; selected readings. Prerequisite: course 3A-3B or consent of instructor. Intended for non-majors. Studies in selected areas of non-western music, including appropriate instrumental and performing techniques, analysis of tonal systems, melody, rhythm and musical structures. Emphasis placed on cultural context of the music. GE credit: Div, Wrt.

130A-U. Applied Study of Music: Advanced (I) Prerequisite: open to Music majors with ability to perform scales and short compositions from standard repertoire; admission by audition and consent of instructor. Class instruction, arranged by section: (A) Voice (prerequisite of course 1 or the equivalent); (B) Piano; (C) Harpsichord; (D) Organ; (E) Violin; (F) Cello; (G) Double Bass; (I) Flute; (J) Oboe; (K) Clarinet; (L) Bassoon; (M) French Horn; (N) Trumpet; (O) Trombone; (P) Tuba; (Q) Percussion; (R) Classical Guitar; (S) Lute; (T) Viola da gamba; (U) Recorder. May be repeated for credit. Offered as demand indicates.—I, II, III, (II, I, III)

131A-U. Applied Study of Music: Advanced (Individual) (2) Performance instruction—0.5 hour; independent practice—5 hours. Prerequisite: open to Music majors only; admission by audition and consent of instructor. Individual instruction in (A) Voice (prerequisite of course 1 or the equivalent); (B) Piano; (C) Harpsichord; (D) Organ; (E) Violin; (F) Viola; (G) Cello; (H) Double Bass; (I) Flute; (J) Oboe; (K) Clarinet; (L) Bassoon; (M) French Horn; (N) Trumpet; (O) Trombone; (P) Tuba; (Q) Percussion; (R) Classical Guitar; (S) Lute; (T) Viola da gamba; (U) Recorder. May be repeated for credit.—I, II, III, (II, I, III)

132. Singing for Actors (1) Performance—1 hour. Prerequisite: consent of instructor. The elements of basic singing techniques, through selected exercises, vocalises, and songs. May be repeated for credit. (P/NP grading only)—I, II, III, (II, I, III) Freidman

140. University Jazz Band (2) Rehearsal—4 hours. Prerequisite: consent of instructor. Open to students in any major. Rehearsal, study, and performance of jazz band music and full variety of jazz band styles, including swing, bebop, and contemporary jazz styles. May be repeated for credit. (P/NP grading only)—I, II, III, (II, I, III) McMullen

141. University Symphony (2) Rehearsal—4 hours. Prerequisite: admission subject to audition before first class meeting. Open to any student in the University whose proficieny meets the requirements of concert performance. Sight-reading, rehearsal and performance of music from the orchestral literature. May be repeated for credit. (P/NP grading only)—I, II, III, (II, I, III) Holoman

142. University Chamber Singers (2) Rehearsal—3 hours, plus sections—at least 1 hour. Prerequisite: admission subject to audition before first class meeting. Rehearsal and performance of works for small choral group. May be repeated for credit. (P/NP grading only)—I, II, III, (II, I, III) Thomas

143. University Concert Band (2) Rehearsal—4 hours. Prerequisite: admission subject to audition before first class meeting. Rehearsal and performance of Medieval, Renaissance, and Baroque music for vocal ensemble and historical instruments. May be repeated for credit. (P/NP grading only)—I, II, III, (II, I, III) Nutter

146. Chamber Music Ensemble (1) Rehearsal—3 hours; student practice—1 hour. Prerequisite: admission subject to audition before first class meeting. Open to any student in the University whose proficiency meets the requirements of concert performance. Study, rehearsal, and performance of ensemble music for strings, winds, voice, piano, harpsichord, and organ. May be repeated for credit. (P/NP grading only)—I, II, III, (II, I, III) Granger

147. University Wind Ensemble (2) Rehearsal—4 hours. Prerequisite: consent of instructor. Open to students in any major. Rehearsal, study, and performance of a full variety of wind ensemble music; and to have students share their work in public performances. May be repeated for credit. (P/NP grading only)—I, II, III, (II, I, III) Granger

204. Advanced Conducting (3) Rehearsal—4 hours. Prerequisite: admission subject to audition before first class meeting. Rehearsal, study, and performance of music for band. May be repeated for credit. (P/NP grading only)—II, III, (II, I, II) Elkus

154. University Gospel Choir (2) Rehearsal—4 hours. Prerequisite: consent of instructor; open to any student in the university. Rehearsal, study, and performance of Gospel music. May be repeated for credit. (Same course as African-American and African Studies 154.) (P/NP grading only)—I, II, III, (II, I, III) Lyons

198. Directed Group Study (1-5) Prerequisite: consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) (P/NP grading only.)

Graduate Courses

200. Music Research (4) Seminar—3 hours; term paper. Introduction to problems and techniques of research. Practical application of music bibliography to questions about significant issues in musicology, music theory, and performance practice.

202. Seminar (4) Seminar—3 hours; term paper. Study of musical notation; investigation of techniques for editing Medieval and Renaissance music.—I. Busse Berger

203. Music Composition (4) Seminar—3 hours; term paper. Technical projects that explore compositional problems, the skill and techniques with which to solve them, and free composition. May be repeated for credit. —I, II, III, (II, I, III) Bauz:Berg

204. Advanced Conducting (3) Tutorial—2 hours; practicum—2 hours. Prerequisite: courses 111, 112, or the equivalent; keyboard skills appropriate to graduate standing. Technical aspects of conducting and the broader issues in music history and analysis that conductors must face before leading a rehearsal or performance.
207. Advanced Electronic and Computer Music (4)
Seminar—2 hours; plus individual student/instructor meeting—2 hours. Prerequisite: courses 107A-107B-107C. Advanced composition of computer and electronic music with the Sun 3-based computer-music system and associated facilities.

210A. Proseminar in Music (Theory and Analysis) (4)
Seminar—3 hours; term paper. Voice-leading analysis of tonal music derived from Schenker and pitch-class set theory. Recent work on compositional design, generalizations of the concept of interval, psychologically oriented music theory, and theories of durational structure and timbre.

210B. Proseminar in Music (Musicology and Criticism) (4)
Seminar—3 hours; term paper. Issues and concepts of music history, including performance practice questions for specific repertoires and periods; principles, aims, and methods of archival study; historical theory; evolution of musical styles; philosophical debates about goals and aims of the discipline in general.—I. (II.) Reynolds

210C. Proseminar in Music (Ethnomusicology) (4)
Seminar—3 hours; term paper. Intensive examination of major trends in ethnomusicology as exemplified by scholars working in several non-Western cultures. Ethnomusicaloical theory, ranging from ethnographic description to metamusicalogical study (Seegar) to analysis of individual genres to sociological study.—(III.)

221. Topics in Music History (4)
Seminar—3 hours. Studies in selected areas of music history and theory. May be repeated for credit.—III. (II.) Holoman

222. Techniques of Analysis (4)
Seminar—3 hours. Analysis and analytical techniques as applied to music of all historical style periods. May be repeated for credit.—II. (III.) Ortiz

223. Ethnomusicology (Pacific Cultures) (4)
Seminar—3 hours; term paper. Court music, religious music, and popular forms of China, Japan, Korea, Melanesia, and Indochina. Issues concerning history, theoretical constructs, performance practice, and cultural settings of the music will be stressed. May be repeated for credit.

299. Individual Study (1-12)
(S/U grading only.)

Teaching Methods Courses

396. Teaching Assistant Training Practicum (1-4)
Prerequisite: graduate standing. May be repeated for credit. (S/U grading only.)—I, II, III. (I, II, III.)
Nature and Culture

The Major Program

The Nature and Culture major is a coherent interdisciplinary set of studies that offers exploration of the complex relationships existing between human cultures and the natural world.

The Program. This program is the first of its kind in the country, providing a rigorous curriculum that interweaves courses in the natural sciences, the humanities, and the social sciences, supplemented by elective course work in these and other fields of study. There are at present three required core courses in Nature and Culture itself, a principal function of which is to tie together knowledge and experience gained in the various disciplines that students will work in as they progress through their studies.

Career Alternatives. Students completing an A.B. degree in Nature and Culture will be qualified to enter most professional schools, such as medicine and law, and many graduate programs in science and the humanities, especially those with an emphasis on interdisciplinary study. Students expecting to apply for highly specialized fields will need to plan their elective work carefully. The degree program provides excellent preparation for careers in business and government, as well as many graduate programs in science and the humanities on or off campus in which students use and improve their disciplinary skills and perspectives gained through the Nature and Culture curriculum. Supervised by a faculty member. May be repeated for credit. (P/NP grading only.)

A.B. Major Requirements:

Minor Program Requirements:

Courses in Nature and Culture (NAC)

Lower Division Courses

1. Intersections of Nature and Culture (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 1. Problems of nature and culture, with particular attention to integrative theoretical frameworks available for the investigation of specific issues. Case studies will vary with instructor. May be repeated once for credit when topic and instructor differ. GE credit: ArtHum or SciEng, Wrt.—I. (I.) Moores, McLean

98. Directed Group Study (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)

99. Individual Study (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)

Upper Division Courses

100. The Culture of Nature: Theoretical Frameworks and Case Studies (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 1. Ethical issues underlying environmental/ecological controversies, including anthropocentrism vs. ecocentrism, wilderness and species preservation, human population growth, animal rights, deep ecology, and ecofeminism. Emphasis is on critical examination of issues from cross-cultural, theoretical, and applied perspectives. GE credit: ArtHum, Wrt.—II. (II.) McLean, Moores

120. Environmental Ethics (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 1. Problems of nature and culture, with particular attention to integrative theoretical frameworks available for the investigation of specific issues. Case studies will vary with instructor. May be repeated once for credit when topic and instructor differ. GE credit: ArtHum or SciEng, Wrt.—III. (III.) McLean

180. Fieldwork in Nature and Culture (4)
Discussion—1 hour; fieldwork—70 hours/quarter; term paper. Prerequisite: course 100 and consent of instructor. Fieldwork: one week prior to the beginning of the quarter, plus two weekends. Natural scientific, social scientific, and literary/artistic approaches to the study of nature and culture in one place, which will vary with instructor—I. (I.) McLean, Moore, Robertson

192. Internship in Nature and Culture (1-12)
Internship—3-36 hours. Prerequisite: course 1. Internship in natural sciences, social sciences, or humanities on or off campus in which students use and improve their interdisciplinary skills and perspectives gained through the Nature and Culture curriculum. Supervised by a faculty member. May be repeated for credit. (P/NP grading only.)

197T. Tutoring in Nature and Culture (1-5)
Prerequisite: consent of instructor. Assist in field trips, lead study sessions with groups and individual students. (P/NP grading only.)

198. Directed Group Study (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)

199. Individual Study (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)

Quarter Offered: I—Fall; II—Winter; III—Spring; IV—Summer, 2001-2002 offering in parentheses.
Native American Studies

(College of Letters and Science)

Martha J. Macri, Ph.D., Chairperson of the Department
Department Office, 2401 Hart Hall (530-753-2337)
World Wide Web: http://cougar.ucdavis.edu/nas/home.html

Faculty

Steven J. Crum, Ph.D., Associate Professor
Inés Hernández-Avila, Ph.D., Associate Professor
George C. Longfish, M.F.A., Professor
Martha J. Macri, Ph.D., Professor
Zola Mendoza, Ph.D., Assistant Professor
Victor D. Montejo, Ph.D., Associate Professor
Stefano Varese, Ph.D., Professor

Emeriti Faculty

Jack D. Forbes, Ph.D., Emeritus
David Risling, M.A., Emeritus

The Major Program

Native American Studies provides a multi-disciplinary introduction to the indigenous cultures of North, Central, and South America. It challenges students to consider issues of cultural diversity, sovereignty, and indigenous knowledge systems in preparation for living in a world of constantly increasing social and cultural complexity.

The Program. Students electing a major in Native American Studies may complete Plan I, Plan II, or Plan III. Plan I enables students to concentrate chiefly upon the Native experience in North America (north of Mexico). Plan II encourages interested students to focus upon Meso-America with, however, some course work integrating Meso-America with North America and South America. Plan III focuses upon South America, with some course work integrating that region with areas to the north.

Career Alternatives. Native American Studies is excellent preparation for a scholarly career or professional career such as teaching, law, human services, health, tribal administration, social work, and inter-ethnic relations. Graduate schools and agencies in these and related areas are looking for students with broad interdisciplinary preparation and who possess knowledge and sensitivity relating to ethnic issues and cultural diversity.

A.B. Major Requirements:

Preparatory Subject Matter..20

Native American Studies 1, 10 ..8
One or two courses from Native American Studies 32, 33, 46, 558
One or two courses from African American and African Studies 12, 52, Anthropology 2, 3, Asian American Studies 1, Chicano/a Studies 10, History 17A ...4-8

Depth Subject Matter ..16

One course from Native American Studies 107, 115, 130B, 130C, 133, 156 ...4

Note: If a course is counted for either Plans I, II, or III (below), it cannot also be counted as part of the 16 units of Depth Subject Matter.

Areas of Specialization (complete one plan)

Plan I—North American Emphasis ...28

Two courses from Native American Studies 107, 115, 116, 117, 118, 122, 130C, 156 ...8
Two courses from Native American Studies 101, 181A, 181B, 181C8
One other upper division Native American Studies course, selected in consultation with adviser ...4

Plan II—Mexico-Central America Emphasis ..28

Native American Studies 107, 133 ..8
Three courses from History 161A, 166A, 166B, Anthropology 134, 145, 146, 174, 175, Chicano/a Studies 130, Native American Studies 122 ...12
Two courses from Spanish 155, 172, Art History 151, Native American Studies 101, 156, 181A, 181B, 181C, or, if student's work is specifically focused upon a Meso-American language or topic, from Native American Studies 198, 191 ..8

Plan III—South American Emphasis ..28

Native American Studies 107, 120 ..8
Two courses from History 161A, 161B, 162, 165A, 165B, 165C8
Three courses from Anthropology 134, 144, 174, 175, Native American Studies 101, 122, 156, 181A, 181B, 181C, or, if student's work is specifically focused upon a South American language or topic, from Native American Studies 198, 191 ..12

Total Units for the Major ..64

Major Adviser.

Minor Program Requirements:

The Native American Studies minor provides an introduction to the Native experience in the Americas by means of exposure to course work dealing with some of the major aspects of Indian life, including history, values, politics, literature, and art.

UNITS

Native American Studies ...24

Five upper division courses, at least one of which is chosen from each of the following groups: ..20

Ethno-History: Native American Studies 130A, 130B, 130C, or 133
Philosophy and values: Native American Studies 156, 157, or 180
Politics and current affairs: Native American Studies 115, 116, 117, 118, 120, 122
Art and literature: Native American Studies 101, 181A, 181B, or 181C
One other upper division course selected in consultation with adviser.

Study Off Campus. Majors have the option of spending one to three quarters elsewhere in the Americas or on near a reservation as part of the fulfillment of the Area of Specialization. Each student's plan must be approved by the student's adviser and by the chairperson and may fulfill from 12 to 20 of the 28 units required for the emphasis. The courses or field internship taken elsewhere must be focused upon indigenous peoples or indigenous languages and the institution of study shall be located in an area with substantial indigenous population. Students must have upper division standing and, for Plan I, course 107 or the equivalent should have been completed; for Plan II, courses 107 and 133 should have been completed, and for Plan III, courses 107 and 120 should have been completed prior to departure. Several options may be used for receiving academic credit, including course 195 and the Education Abroad Program.

Graduate Study. The Department offers a program of study leading to the M.A. and Ph.D. degrees in Native American Studies, as well as a designated emphasis in Native American Studies for graduate students in approved programs. Further information regarding graduate study may be obtained at the department office and at Graduate Studies.

Graduate Adviser: S. Varese.

Courses in Native American Studies (NAS)

Lower Division Courses

1. Introduction to Native American Studies (4)
Lecture—3 hours, discussion—1 hour. Introduction to Native American Studies with emphasis upon basic concepts relating to Native American historical and political development. GE credit: SocSci, Div—I, II, III. (I, II, III.) Crum, Montejo

5. Introduction to Native American Literature (4)
Lecture—4 hours. Discussion—4 hours. A four-course Subject A requirement. Study of selected Native American texts. Intensive focus on analysis of these texts, with frequent writing assignments to develop critical thinking and composition skills. GE credit: ArtHum, Div, Wrt (cannot be used to satisfy a college or university composition requirement and GE writing experience simultaneously).—I, II, III. (I, II, III.) Crum, Montejo

10. Native American Experience (4)
Lecture—3 hours; discussion—1 hour. Introduction to the diverse cultures of Native American peoples from North, Central, and South America. Emphasis on Native American voices in the expression of cultural views and in the experience of conflicting values. GE credit: ArtHum or SocSci, Div, Wrt—I, II, III. (I, II, III.) Hernández-Avila, Longfish, Varese
32. Native American Music and Dance (4)
Lecture/discussion—4 hours. Introduction to the music and dance of the native peoples of the Americas. Students will study secular native music and dance from a cross-section of regions and tribes. GE credit: Div.—I. (I.) Mendoza

33. Native American Art in the U.S. (4)
Lecture—4 hours. Comprehensive survey of Indian art forms with emphasis upon design, media, and function. Intent is to familiarize the student with a wide range of styles and techniques in art. ArtHum. Div.—I. (I.) Longfish

34. Native American Art Workshop (4)
Lecture—1 hour, laboratory—6 hours, 3 hours to be arranged. Prerequisite: consent of instructor; course 33 recommended. Studio projects in Native American art, design, and crafts. (PNP grading only.)—I. (I.) Longfish

46. Orientation to Research in Native American Studies (4)
Lecture/discussion—3 hours. Term paper. Prerequisite: Native American Studies major or minor, or consent of instructor. Introduces students to basic research resources pertinent to Native American subjects available in the region, including libraries, archives, museums, etc. Emphasis is upon learning to use documentary resources or other collections of data. Students will carry out individual projects. Limited enrollment. GE credit: SocSci, Div, Wrt.

55. Americanisms: Native American Contributions to World Civilization (4)
Lecture/discussion—4 hours. Prerequisite: course 1 or 10 recommended. American indigenous peoples' contributions to the contemporary world, with attention to forced participation of Indian societies in the development of Western dominance and resulting appropriation of cultural creations. Responses and initiatives of indigenous peoples will be analyzed. GE credit: SocSci, Div, Wrt.

99. Special Study for Undergraduates (1-5)
Prerequisite: consent of instructor. (PNP grading only.)

Upper Division Courses

101. Contemporary Indian Art (4)
Lecture—4 hours. Prerequisite: course 33. Historical review of contemporary Indian art from 1900 to the present by looking at the two art centers of Oklahoma and Santa Fe. Social pressures that have influenced the imagery that exists today will be examined. GE credit: ArtHum. Div.—II. (II.) Longfish

107. Special Topics in Native American Languages (4)
Lecture/discussion—4 hours. Prerequisite: consent of instructor. Investigation of various subjects in contemporary and historical Native American language studies. May be repeated for credit when a different topic is studied. GE credit: Div.—II. (II.) MacTr

115. Native Americans in the Contemporary World (4)
Lecture/discussion—4 hours. Prerequisite: course 1, 10, or 55. The sociocultural development of American Indian populations in modern times with emphasis upon North America. Attention will be given to contemporary Indian affairs and problems as well as to the background for present day conditions. Not open for credit to students who have completed Anthropology 141B. (Former course Anthropology 141B.) GE credit: SocSci, Div, Wrt.—II. Montejo

116. Native American Traditional Governments (4)
Lecture—4 hours. Prerequisite: course 1; Anthropology 2. Study of selected Native American Tribal Governments, confederations, leagues, and alliance systems. Offered in alternate years. GE credit: SocSci, Div.

117. Native American Governmental Decision Making (4)
Lecture—4 hours. Prerequisite: course 116, Political Science 2; Anthropology 123 recommended. Native American governmental and community decision making with emphasis on state and program, tribal sovereignty, current political trends and funding for tribal services. Offered in alternate years. GE credit: SocSci, Div.

118. Native American Politics (4)
Lecture—4 hours. Prerequisite: course 117. Examination of the various interest groups and movements found among Native people and how they relate to the determination of Indian affairs. Study of political action available to Native groups, and local communities, along with relevant theory relating to underdevelopment. Offered in alternate years. GE credit: SocSci, Div.

120. Ethnopolitics of South American Indians (4)
Lecture/discussion—4 hours. Prerequisite: course 1, 10 or 55. Social, political, cultural movements of indigenous South Americans in response to establishment, expansion of European colonialism, post-colonial nation-states. Ethnopolitical processes developed through interactions between Indians, Euro-Americans. Socioanthropographic analysis of main indigenous areas and the development of national societies. GE credit: SocSci, Div, Wrt.—I. (I.) Varese

122. Native American Community Development (4)
Lecture—4 hours. Prerequisite: course 1, Community and Regional Development 151A, 151B. Application of community development theories and techniques to the development problems of Native American communities. Offered in alternate years. (Former course 161.) GE credit: SocSci, Div, Wrt.—I. (I.) Varese

125. Performance and Culture Among Native Americans (4)
Lecture—3 hours; laboratory—3 hours. Prerequisite: upper division standing in division of humanities or social sciences or consent of instructor. Interdisciplinary study of public expressive forms among Native Americans. Comparative analysis of music, dances, rituals, and dramas from throughout the Americas in their social and cultural contexts. Offered in alternate years. Not open for credit to students who have completed Music 125.—I, II. (I, II.) Mendoza

130A. Native American Ethno-Historical Development (4)
Lecture—4 hours. Prerequisite: course 1 or 10; History 17A recommended. Study of Native American ethno-history in North America before 1770s. GE credit: SocSci, Div, Wrt.—I. (I.) Crum

130B. Native American Ethno-Historical Development (4)
Lecture—4 hours. Prerequisite: course 1; History 17A-17B recommended. Study of Native American ethno-history in North America, 1770-1890. GE credit: SocSci, Div, Wrt.—II. (II.) Crum

130C. Native American Ethno-Historical Development (4)
Lecture—4 hours. Prerequisite: course 1; History 17A-17B recommended. Study of Native American ethno-history in North America after 1890. GE credit: SocSci, Div, Wrt.—III. Crum

133. Ethnohistory of Native People of Mexico and Central America (4)
Lecture/discussion—4 hours. Prerequisite: course 1, 10 or 55. Ethnohistorical development of pre-colonial, colonial, post-colonial Mexican and Central American indigenous people; the impact of economic and political factors on the process of cultural adaptation. Attention is given to the questions of nation-building, forced assimilation, indigenous resistance, organized political responses. GE credit: SocSci, Div.—III. (III.) Varese

134. Race and Sex: Race Mixture and Mixed Peoples (4)
Lecture—4 hours. Prerequisite: one course chosen from Anthropology 1 or 2, Native American Studies 10, Chicano Studies 110, African American and African Studies 100 or Asian American Studies 110. The phenomena of racial, ethnic and interreligious intermixture and marriage, and of multi-ethnic peoples. Emphases on the Americas and upon the sociocultural effects of intermixture and on the lives of bicultural and multi-ethnic persons. (Same course as Anthropology 134) GE credit: SocSci, Div, Wrt.

156. Native American Ethics and Value Systems (4)
Lecture—4 hours. Prerequisite: upper division standing; course 1. Analysis of Native American systems of values and how these values translate into actual behavior; attempts to solve the problem of interpreting traditional values in the twentieth century and the possible impact of native values in modern societies. Offered in alternate years. GE credit: ArtHum, Div, Wrt.—II. Forbes

157. Native American Religion and Philosophy (4)
Lecture—4 hours. Prerequisite: upper division standing, course 1 or Anthropology 2. Religious and philosophical thinking of Native American people with emphasis upon North America. Offered in alternate years. GE credit: Div.—II. (II.) Hernández-Avila

180. Native American Women (4)
Lecture/discussion—4 hours. Prerequisite: course 1 or 10 or Women's Studies 50. Social and cultural foundations of the Native American women's personality, including the development of the Indian girl and the life phases of mature womanhood. Autobiographical and biographical texts are utilized. GE credit: SocSci, Div—Wrt.—II. (II.)

181A-181B-181C. Native American Literature (4-4-4)
Lecture—4 hours. Prerequisite: English 3, Comparative Literature 1, 2, 3, or any course from the General Education Literature Preparation List. Analysis of works by or about Native Americans including novels and autobiographies, analysis of Native American poetry, oral literature, songs, and tales. (A), the novel and fiction; (B), non-fiction works by native authors; (C), traditional literature and poetry. Offered in alternate years. GE credit: ArtHum, Div, Wrt.—II. (II.) Hernández-Avila, Montejo

188. Special Topics in Native American Literary Studies (4)
Lecture/discussion—3 hours; term paper. Prerequisite: upper division standing and consent of instructor. Special topics drawn from Native American literature. May be repeated for credit when a different topic is studied. GE credit: ArtHum, Div, Wrt.—II. (II.) Hernández-Avila, Montejo

190. Seminar in Native American Studies (2)
Discussion—2 hours. Prerequisite: senior standing. Seminar of critical issues faced by Native American people. (PNP grading only)—II. (II.)

191. Topics in Native American Studies (4)
Lecture/discussion—3 hours; term paper. Prerequisite: upper division standing and consent of instructor. Selected topics in Native American ethno-history, development, culture, and thought. May be repeated for credit when a different topic is studied. GE credit: ArtHum. Div.—I, II. (I, II.)

194A-194HB. Special Studies for Honors Students (4-4)
Independent study—12 hours. Prerequisite: senior qualifying for honors. Directed reading, research and writing culminating in the completion of a senior honors thesis or project under direction of faculty adviser. (Deferred grading only, pending completion of sequence.)

195. Field Experience in Native American Studies (12)
Field work—36 hours. Prerequisite: senior standing and major in Native American Studies, completion of lower division major requirements, and course 161. Field work with governmental and community groups, under supervision of faculty adviser and sponsor. Knowledge acquired in other courses to be applied in field work. (PNP grading only)—I, II, III, (I, II, III.)

196. Senior Project in Native American Studies (4)
Discussion—1 hour; independent study—3 hours. Prerequisite: senior standing and major in Native American Studies. Course 195 (may be taken concurrently), and consent of instructor. Guided research project that enables student to apply the theory and research principles from major course work. Final product is to be a major senior project or thesis. (PNP grading only)—I, II, III, (I, II, III.)
197 TC. Community Tutoring in Native American Studies (1-5)
Tutorial—3-15 hours. Prerequisite: consent of major committee; upper division standing with major in Native American Studies. Supervise tutoring in community. (P/NP grading only.)

198. Directed Group Study (1-5)
Prerequisite: upper division standing; consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)

Graduate Courses

200. Basic Concepts in Native American Studies (4)
Seminar—4 hours. Prerequisite: graduate standing and consent of instructor. Analysis of the characteristics of the discipline of Native American Studies. Concentration is on both traditional and contemporary native scholarship and thought as well as the theoretical and methodological consequences derived from application of these ideas. Offered in alternate years.—(I.) Hernández-Ávila

202. Advanced Topics in Native American Studies (4)
Seminar—4 hours. Prerequisite: graduate standing. Advanced study of selected topics or themes relevant to the field of Native American studies. Topics will be announced at the time of offering. May be repeated for credit when topic differs.—I. (I, III.) Hernandez-Avila

212. Community Development for Sovereignty and Autonomy (4)
Seminar—4 hours. Prerequisite: graduate standing and consent of instructor. Examines a sample of contemporary indigenous communities from south, central and north America with the goal of understanding and evaluating the strategies adopted by Native American communities to develop and implement forms of sovereignty or autonomous self-management. Offered in alternate years.—II. Varese

213. Native Criminality and “Deviance” in Native Communities (4)
Seminar—4 hours. Prerequisite: graduate standing. Examination of “deviance” in Native communities with focus on Native criminality in North America. Analysis of the concept of deviance from several different world views. Readings from a range of theories to incorporate varying theoretical perspective on criminality and deviance.

220. Colonialism/Racism and Self-Determination (4)
Seminar—3 hours; term paper. Prerequisite: graduate standing. Study of imperial/colonial systems and their psychosocial impacts upon oppressors and oppressed, of racism as the outgrowth of colonialism, and of nationalism, ethnic conflict and self-determination. Focus on indigenous peoples, but other groups will also be considered. Offered in alternate years.—(II.) Varese

224. Performance in the Americas (4)
Seminar—3 hours; term paper. Prerequisite: graduate standing. Ethnomusicological and anthropological approaches to study of public performance in the Americas. New ways of looking at music, dance, rituals and other forms of public expressive forms normally called “folklore” or “popular culture.” Offered in alternate years. Not open for credit to students who have completed Music 224. (Former course Music 224.)—(II.) Mendoza

250. Indigenous Critique of Classic Maya Ethnographies (4)
Seminar—4 hours. Prerequisite: graduate standing or consent of instructor. Construction of the Maya world through ethnographic writing during the present century. Deconstruction of ethnographies about the Mayans considering the modern theories and social/anthropological critiques of modern ethnographies. Offered in alternate years.—(II.) Montejo

280. Ethnohistorical Theory and Method (4)
Seminar—3 hours; term paper. Discussion of the ethnohistorical method; the utilization of diverse types of data, especially documentary sources, to reconstruct socio-cultural history. Particular attention to the applied area of ethnohistory in the solution of contemporary social problems. Offered in alternate years.—III. Crum

298. Group Study for Graduate Students (1-5)
Prerequisite: graduate standing, consent of instructor. (S/U grading only.)

299. Special Study for Graduate Students (1-12)
Prerequisite: graduate standing, consent of instructor. (S/U grading only.)

Professional Course

396. Teaching Assistant Training Practicum (1-4)
Prerequisite: graduate standing. May be repeated for credit. (S/U grading only.)—I, II, III. (I, II, III.)
Nematology

(College of Agricultural and Environmental Sciences)
Harry K. Kaya, Ph.D., Chairperson of the Department
Department Office, 354 Hutchison Hall (530-752-7567/6905)
World Wide Web: http://ucdnema.ucdavis.edu

Faculty
Edward P. Caswell-Chen, Ph.D., Associate Professor
Howard Ferris, Ph.D., Professor
Bruce A. Jaffee, Ph.D., Professor
Harry K. Kaya, Ph.D., Professor (Entomology)
Steven Nadler, Ph.D., Associate Professor
Valerie M. Williamson, Ph.D., Professor

Emeriti Faculty
Benjamin F. Lownsbery, Ph.D., Professor Emeritus
Armard R. Maggenti, Ph.D., Professor Emeritus
Dewey J. Ruks, Ph.D., Professor Emeritus

Affiliated Faculty
Becky B. Westerdahl, Ph.D., Associate Professor

Minor Program Requirements:

<table>
<thead>
<tr>
<th>Course</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nematology</td>
<td>18-20</td>
</tr>
<tr>
<td>Nematology 100, 110, and Soil Science 100</td>
<td></td>
</tr>
<tr>
<td>Two or three courses from one of the following areas:</td>
<td></td>
</tr>
<tr>
<td>(a) Plant Science:</td>
<td></td>
</tr>
<tr>
<td>Microbiology 102; Entomology 100, 135, 153,</td>
<td></td>
</tr>
<tr>
<td>156, 156L; Evolution and Ecology 112; Plant</td>
<td></td>
</tr>
<tr>
<td>Pathology 120; Soil Science 111, 112.</td>
<td></td>
</tr>
<tr>
<td>(b) Entomology:</td>
<td></td>
</tr>
<tr>
<td>One upper division Entomology course; Evolution and Ecology 112;</td>
<td></td>
</tr>
<tr>
<td>Microbiology 102; Plant Biology 121; Plant</td>
<td></td>
</tr>
<tr>
<td>Pathology 120; Soil Science 102, 111, 112.</td>
<td></td>
</tr>
</tbody>
</table>

Minor Adviser. H.K. Kaya.

Graduate Study. Graduate degrees specializing in Nematology are offered through the Departments of Entomology and Plant Pathology, and through various Graduate Groups (Biochemistry, Ecology, Genetics, Plant Protection and Pest Management). Refer also to the Graduate Studies chapter of this catalog.

Courses in Nematology (NEM)

Upper Division Courses

100. General Plant Nematology (4) Lecture—2 hours; laboratory—6 hours. Prerequisite: Biological Sciences 1A or 10. An introduction to the classification, morphology, biology, and control of the nematodes attacking cultivated crops.—I. (I.) Ferris

110. Introduction to Nematology (2) Lecture—2 hours. Prerequisite: Biological Sciences 1B or the equivalent or consent of instructor. The relationship of nematodes to human environment. Classification, morphology, ecology, distribution, and importance of nematodes occurring in water and soil as parasites of plants and animals.—I. (I.) Ferris

199. Special Study for Advanced Undergraduates (1-5)
Prerequisite: consent of instructor. (S/U grading only.)

Graduate Courses

201. Molecular and Physiological Plant Nematology (2) Lecture—1 hour; discussion—1 hour. Prerequisite: Biological Sciences 101; Plant Pathology 120, course 100 or 110. Molecular biology and physiology of nematodes using Caenorhabditis elegans as a model, but with emphasis on plant-parasitic species. Plant responses to nematodes. Discussion of current literature emphasized. Offered in alternate years.—II. (I.) Williamson

202. Nematodes and the Soil Environment (2) Lecture—1 hour; discussion—1 hour. Prerequisite: course 100 or 110. Plant Pathology 120, Soil Science 100 or 111. Consideration of how soilborne nematodes (parasites of plants and insects and microbivores) are affected by abiotic factors (especially soil porosity and water potential) and biotic factors (especially fungi and bacteria that parasitize nematodes). Offered in alternate years.—II. Jaffee

203. Ecology of Parasitic Nematodes (2) Lecture—1 hour; discussion—1 hour. Prerequisite: course 100 or 110 or Entomology 156; Evolution and Ecology 101 or Plant Biology 117. Major concepts in population and community ecology of animal- and plant-parasitic nematodes. Current advances in techniques, theory, and basic information about nematode-host dynamics, and application to management of nematode diseases. Offered in alternate years.—II. Caswell-Chen

204. Management of Plant-Parasitic Nematodes (2) Lecture—1 hour; laboratory—3 hours. Prerequisite: course 100 or 110. Theory, foundation, principles and practices of nematode management. Techniques and equipment used to manage nematodes and methods used to analyze their effectiveness. Offered in alternate years.—III. Westerdahl

205. Insect Nematology and Biological Control (2) Lecture—1 hour; discussion—1 hour. Prerequisite: courses 100 and 110, Entomology 100 or 110. The biology of insect-parasitic nematodes, their effect on the host, and their potential as biological control agents of insect and other invertebrate pests. Application of ecological theory in classical and augmentative biological control. Offered in alternate years.—I. Kaya

206. Nematode Systematics and Evolution (2) Lecture—1 hour; laboratory—3 hours. Prerequisite: course 100 or 110 or Entomology 156; Evolution and Ecology 100 recommended. Nematode diversity as revealed by morphological and molecular evidence. Laboratory experience focuses on structural features used in taxonomy. Phylogenetic relationships based on morphological and molecular data used to consider patterns of character change among taxa. Offered in alternate years.—II. Nadler

245. Field Nematology (1) Fieldwork—6 days. Prerequisite: course 100. Six-day demonstration and field study in applied nematology including diagnosis and prediction of nematode field problems, and management of nematode diseases. Offered in alternate years.—II. (I.) Nadler

290. Seminar (1)

II. Seminar—1 hour. (S/U grading only.)—II, III. (II, III.)

290C. Advanced Research Conference (1)
Discussion—1 hour. Prerequisite: graduate standing and consent of instructor. Planning and results of research programs, proposals, and experiments. Discussion and critical evaluation of original research being conducted by the group. Discussion led by individual research instructors for research group. (S/U grading only.)

298. Group Study (1-5)
(S/U grading only.)

299. Research (1-12)
(S/U grading only.)

Quarter Offered: I—Fall; II—Winter; III—Spring; IV—Summer; 2001-2002 offering in parentheses.

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
Biological Sciences: Neurobiology, Physiology, and Behavior

Leo M. Chalupa, Ph.D., Chairperson of the Section
Section Office, 196 Briggs Hall (530-752-0203)
World Wide Web: http://npb.ucdavis.edu

Faculty

Primary Section Members
Thomas F. Adamson, Ph.D., Lecturer, Academic Federation Excellence in Teaching Award
Marylynn S. Barkley, Ph.D., Associate Professor
Kenneth H. Britten, Ph.D., Associate Professor
Earl E. Carstens, Ph.D., Professor
Leo M. Chalupa, Ph.D., Professor
Ernest S. Chang, Ph.D., Professor (Animal Science)
Barbara Chapman, Ph.D., Assistant Professor
Nicola S. Clayton, Ph.D., Associate Professor
Charles A. Fuller, Ph.D., Professor
John D. Furlow, Ph.D., Assistant Professor
Jack M. Goldberg, Ph.D., Lecturer
Charles M. Gray, Ph.D., Associate Professor
Michael J. Guinan, Ph.D., Lecturer
Barbara A. Horwitz, Ph.D., Professor, Academic Senate Distinguished Teaching Award, UC Davis Prize for Teaching and Scholarly Achievement
Andrew T. Ishida, Ph.D., Professor
Brian Mulhoney, Ph.D., Professor
Gabrielle A. Nevitt, Ph.D., Assistant Professor
Panella A. Pappone, Ph.D., Professor
Gregg H. Recanzone, Ph.D., Assistant Professor
Grace L. Rosenquist, Ph.D., Assistant Adjunct Professor
Arnold J. Sillman, Ph.D., Professor, Academic Senate Distinguished Teaching Award
Mitchell L. Sutter, Ph.D., Assistant Professor
Martin W. Usrey, Ph.D., Assistant Professor
Craig H. Warden, Ph.D., Associate Professor (Pediatrics)
W. Jeff Weiner, Ph.D., Professor
John S. Werner, Ph.D., Professor (Ophthamology)
Martin Wilson, Ph.D., Professor
Charles M. Winget, Ph.D., Lecturer
Dorothy E. Woolley, Ph.D., Professor

Secondary Section Members
Ronald J. Baskin, Ph.D., Professor
John H. Crowe, Ph.D., Professor
Mark G. McNamee, Ph.D., Professor
Judy A. Stamps, Ph.D., Professor

Emeriti Faculty
James M. Boda, Ph.D., Professor Emeritus
Harry W. Colvin, Ph.D., Professor Emeritus
John M. Horwitz, Ph.D., Professor Emeritus, Academic Senate Distinguished Teaching Award
Frederick W. Lorenz, Ph.D., Professor Emeritus
Peter R. Marler, Ph.D., Professor Emeritus
Verne E. Mendel, Ph.D., Professor Emeritus
Arthur H. Smith, Ph.D., Professor Emeritus

Courses in Neurobiology, Physiology, and Behavior (NPB)

Lower Division Courses

10. Elementary Human Physiology (4)
Lecture—3 hours; discussion—1 hour. Introduction to physiology for non-science majors. Includes basic cell physiology and survey of major organ systems and how they function in homeostasis and human health. Not open for credit to students who have completed course 101. GE credit: SciEng.—III. (III.)

12. Human Nervous System (3)
Lecture—3 hours. Organization and function of the human nervous system for non-science majors. Brain function discussed in relation to cognition, learning and memory, and neurological diseases. Not open for credit to students who have completed courses 100, 112 or Psychology 108. GE credit: SciEng.—III. (III.) Recanzone

12G. Understanding the Human Nervous System (1)
Discussion—1 hour. Prerequisite: concurrent enrollment in course 12. For non-science majors. Scientific studies of brain function will be discussed in relation to ethical considerations, social, economic, and political implications and current and future research. GE credit with concurrent enrollment in course 12: Wrt.—III. (III.) Recanzone

90A. Lower Division Seminar: Issues in Body Weight Regulation (2)
Seminar—2 hours. Prerequisite: lower division standing, consent of instructor. Critical examination of issues in body weight regulation through shared readings, discussions, written assignments, debates and oral presentations. Limited enrollment.—II. (II.) Warden

92. Internship (1-12)
Internship—3 hours. Prerequisite: lower division standing and consent of instructor. Work experience off and on campus in all subject areas offered in the section of Neurobiology, Physiology, and Behavior: Internships supervised by a member of the faculty. (P/NP grading only.)

98. Directed Group Study (1-5)
Prerequisite: lower division standing and consent of instructor. (P/NP grading only.)

99. Special Study for Undergraduates (1-5)
Prerequisite: undergraduate standing and consent of instructor. (P/NP grading only.)

Upper Division Courses

100. Neurobiology (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: Biological Sciences 1A, 1B, Physics 5C or 7C recommended. Brains and nervous systems, neurons and neural circuits. Vision, hearing, and feature extraction by the central nervous system. Development of nervous systems. Coordination of movement. The cell biology of learning and memory. Perception, cognition, and disorders of the brain. Not open for credit to students who have completed course 112, 160, 161 or 162, or Neuroscience 221 or 222.—II, III. (II, III.) Adamson, Barkley, Fuller, Furlow, Ishida, Goldberg, Sillman, Weidner

101L. Systemic Physiology Laboratory (3)
Laboratory—3 hours; discussion—2 hours. Prerequisite: course 101 prior to taking 101L recommended, but 101 may be taken concurrently. Selected experiments to illustrate functional characteristics of organ systems discussed in course 101.—I, II, III. (I, II, III.) Adamson, Goldberg

102. Animal Behavior (3)
Lecture—3 hours. Prerequisite: Biological Sciences 1A, 1B, 1C. Basic principles of behavioral organization in vertebrate and invertebrate animals. Underlying physiological and ethological mechanisms. The evolution of behavior, with special emphasis on behavior under natural conditions. Not open for credit to students who have completed course 155. (Former course 155.)—II, III. (II, III.) Clayton, Nevitt

102L. Cellular Physiology/Neurobiology (3)
Lecture—3 hours. Prerequisite: Biological Sciences 103 and 104, Physics 7C recommended. Cellular physiology with emphasis on membrane transport processes and neuronal physiology. Fundamental physical-chemical and biological mechanisms of membrane transport will be considered in relation to cytoplasmic homeostasis, communication between cells, and the cellular mechanisms of sensory and motor transduction. Not open for credit to students who have completed course 100B. (Former course 100B)—II. (II.) Pappone

104L. Cellular Physiology/Neurobiology Laboratory (4)
Lecture—1 hour, laboratory—five 6-hour sessions and discussion—five 2-hour sessions to alternate weekly; extensive writing. Prerequisite: course 100 or 101 and Biological Sciences 103 and 104. Experiments in the physical and chemical processes of cells and tissues. GE credit: Wrt.—II. (II.) Horwitz

105. Introduction to Computer Models (4)
Lecture—3 hours; lecture/laboratory—1 hour. Prerequisite: Mathematics 16C or the equivalent, Physics 7C, Chemistry 2C, and course 100 or 101. Introduction to the ideas, mathematical techniques and computer tools required for developing models of cellular processes in physiology and neurobiology. Applications include membrane transport, ionic channels, action potentials, Ca2+ oscillations, respiration, and muscle contraction. Offered in alternate years.—(III.)
106. Experiments in Neurobiology, Physiology, and Behavior: Design and Execution (3)
Lecture—7.5 hours; discussion—0.5 hours. Prerequisite: course 100 or 101 and consent of instructor. Design and execution of experiments in neurobiology, physiology, and/or behavior. Students choose and design a project in consultation with the sponsoring faculty member. May be repeated once for credit to complete the project, with consent of instructor. An additional repeat is permitted for a different project under the guidance of another faculty member. (P/NP grading only.)—I, III, (I, II, III) Rosenquist

111C. Advanced Systemic Physiology Laboratory (3)
Lecture—1 hour; laboratory—6 hours. Prerequisite: courses 101, 101L, Statistics 13, and consent of instructor, recommended. Interfacing physiological recording equipment with microcomputers; data acquisition and analysis using the microcomputer; data interpretation within the framework of physiological concepts.—II. (I) Sutter

111D. Advanced Systemic Physiology Laboratory (3)
Lecture—1 hour; laboratory—6 hours; discussion—2 hours (laboratory and discussion alternate weekly). Prerequisite: courses 101, 101L. Selected comprehensive experiments in the autonomic nervous system, the cardiovascular, respiratory, and neuromuscular systems. Emphasis on conceptual and methodological approaches using several species in demonstrating the physiology of organ systems. Not open for credit to students who have completed courses 111A or 111B. (Former courses 111A, 111B.) GE credit: Wrt.—I, III, (I, III) Adamson

112. Neuroscience (3)
Lecture—3 hours. Prerequisite: course 100 or 101. Presentation of concepts in neuroscience including sensory systems, motor systems, and higher neural integration. Emphasis on mammalian nervous system.—I, III, (I, III) Carstens, Gray

113. Cardiovascular, Respiratory, and Renal Physiology (4)
Lecture—4 hours. Prerequisite: course 101. Chemistry 88B, Physics 7B and 7C recommended. An intense and advanced presentation of concepts in cardiovascular, respiratory, and renal physiology including discussion of acid-base balance.—II. (II) Goldberg

114. Gastrointestinal Physiology (3)
Lecture—3 hours; term paper. Prerequisite: course 101; Biological Sciences 103 recommended. Advanced gastrointestinal physiology covering absorption, secretion, motility, and special emphasis on endocrinology and innervation. Emphasis will be on physiology of the gastrointestinal tract; some pathology and nutritional items will be covered. GE credit: Wrt.—I. (I) Horwitz

117. Avian Physiology (3)
Lecture—3 hours. Prerequisite: course 101 or Biological Sciences 1B. Physiology of the various systems of birds with emphasis on digestion, respiration, excitation, and endocrine systems.—III. (III) Miliam

121. Physiology of Reproduction (3)
Lecture—3 hours. Prerequisite: course 101. Physiological mechanisms related to reproduction, breeding efficiency, and fertility, with special reference to domestic animals.—II. (II) Anderson

121B. Physiology of Reproduction Laboratory (1)
Lecture—3 hours; laboratory—2 hours. Prerequisite: course 101, or course 100 or 101. Overview of the neuroanatomy of the nervous system in a variety of mammals and non-mammalian vertebrates. Examine changes or modifications to neural structure as a result of morphological or behavioral specializations. (Same course as Psychology 124.)—II. (II) Krubitzer, Recanzone

125. Comparative Physiology: Neurointegrated Mechanisms (3)
Lecture—3 hours. Prerequisite: course 101. Comparisons of physiological functions in the animal kingdom: neurointegrated mechanisms of integration including aspects of phylogenetic development at both neuronal and systemic levels. Not open for credit to students who have completed course 120A. (Former course 120A.)—II. (II) Anderson

126. Comparative Physiology: Sensory Systems (3)
Lecture—3 hours. Prerequisite: course 100 or 101. Basic physiological mechanisms involved in sensory systems. Comparative approach to considerations of mechanosensitive systems (audition, lateral lines, touch, echolocation, equilibrium), chemosensitive systems (olfaction, taste, pheromones), photosensitive systems (vision, infrared detection, UV detection), electoreception, and pain. Emphasis on receptors. Not open for credit to students who have completed course 120F. (Former course 120F).—II. (II) Silman

127. Comparative Physiology: Circulation (3)
Lecture—3 hours. Prerequisite: course 101. Comparisons of physiological functions in the animal kingdom: circulation. Comparative approach to cardiovascular function in vertebrates and invertebrates.—II. (II) Weidner

128. Comparative Physiology: Endocrinology (3)
Lecture—3 hours. Prerequisite: course 101. Comparisons of physiological functions in the animal kingdom: animal hormones and their functions. Not open for credit to students who have completed course 120D. (Former course 120D).—II. (II) Motberg, Chang

129. Comparative Physiology: Respiration (3)
Lecture—3 hours. Prerequisite: course 101. Comparisons of physiological functions in the animal kingdom: respiration. Offered in alternate years. Not open for credit to students who have completed course 120E. (Former course 120E.)

130. Physiology of the Endocrine Glands (4)
Lecture—4 hours. Prerequisite: course 101. Advanced presentation of concepts in endocrinology with emphasis on the role of hormones in reproduction, metabolism, and disease.—I. (I) Adams

131. Physiological Genomics (3)
Lecture—3 hours. Prerequisite: Biological Sciences 1A, 1B, 1C, and 101, upper division standing. Genomics and its role in elucidating physiological and pathophysiological mechanisms; bioinformatics.—I. (I) Warden

138. Frontiers in Physiology (3)
Lecture—4 hours; discussion—1 hour. Prerequisite: courses 100 and 101; 102 (may be taken concurrently). Lectures by leading authorities and discussion of the latest research in newly emerging areas in physiology. Offered every third year.—(III)

140. Principles of Environmental Physiology (3)
Lecture—3 hours. Prerequisite: course 101; Biological Sciences 102 recommended. Physiological aspects of interactions of organisms and environmental, cellular, system, and organismal levels. Emphasis on regulatory responses/mechanisms to thermal, pressure, gravity and light environmental variables. Not open for credit to students who have completed course 140B. (Former course 148.)—II. (II) Fuller

141. Physiological Adaptation of Marine Organisms (3)
Lecture—2 hours; laboratory—3 hours. Prerequisite: Biological Sciences 103. Residence at Bodega Marine Laboratory required. Physiological adaptation to the environment among organisms in marine and estuarine habitats. (See Bodega Marine Laboratory Program.)—II. (II) Cizewski, Ciegg

141P. Physiological Adaptation of Marine Organisms' Advanced Laboratory Topics (5)
Lecture—12 hours; discussion—1 hour. Prerequisite: course 141 concurrently. Residence at Bodega Marine Laboratory required. Scientific research from hypothesis to publication, including training in methods of laboratory research. Research related to topic covered in course 141. Final presentation both oral and written. (See Bodega Marine Laboratory Program.)—III. (III) Chang, Ciegg

152. Hormones and Behavior (3)
Lecture—3 hours. Prerequisite: course 101, and either course 102 or Psychology 101. Endocrine physiology with an emphasis on the principles of behavior. Fundamental relationships between hormones and various behaviors engaged in by the organism during its lifetime. Role of hormones in behavioral homeostasis, social behavior, reproductive behavior, parent behavior, adaptation to stress. (Same course as Psychology 123.)—Barkey

159. Frontiers in Behavior (3)
Lecture—2 hours; discussion—1 hour. Prerequisite: courses 100, 101, 102. Lectures by leading authorities and discussion of the latest research in newly emerging areas in behavioral biology. Offered every third year.

160. Advanced Cellular Neurobiology (4)
Lecture—3 hours; independent study—1 hour. Prerequisite: Biological Sciences 102, 101, 104, course 100, or consent of instructor; Physics 7C recommended. Neuronal structure, ion channels, synapses, transmitters and transmitter pharmacology; receptors; neuronal modulation and circuit dynamics. Not open for credit to students who have completed course 143L. (Former course 143L.)

160L. Advanced Cellular Neurobiology Laboratory (4)
Laboratory—12 hours. Prerequisite: course 160, Physics 7C recommended. Students will learn to record neural activity, to interpret their recordings, and to label neurons with antibodies against neurotransmitters. Not open for credit to students who have completed course 143L. (Former course 143L.)

161. Developmental Neurobiology (3)
Lecture—3 hours. Prerequisite: course 100 or 101. Issues, theoretical concepts, and methodologies in developmental neurobiology. Topics include prenatal and postnatal differentiation of neurons, and plasticity in the mature and aging brain. Integration of neurochemical structure, physiological and behavioral perspectives.—III. (III) Chalupa

162. Neural Mechanisms of Behavior (3)
Lecture—3 hours. Prerequisite: course 100 or 101. The relationship between brain and behavior. Identification and analysis of the relevant neural circuits involved. Examples of systems to be considered are birdsong, locomotion, echolocation.—(III) Britten

163. Information Processing Models in Neuroscience and Psychology (4)
Lecture—3 hours; term paper. Prerequisite: course 102 or Psychology 101. Advanced integrative survey of biological principles of behavioral organization, emphasizing historical roots, current research directions, conceptual issues and controversies. Laboratory exercises on the description and analysis of the behavior of captive and free-living animals. (Same course as Psychology 122.)—Barley

164. Neural Mechanisms of Behavior (3)
Lecture—3 hours. Prerequisite: course 101. Comparisons of physiological functions in the animal kingdom: emotion. Offered in alternate years. Not open for credit to students who have completed course 143L. (Former course 143L.)

165. Neural mechanisms of Behavior (3)
Lecture—3 hours. Prerequisite: course 100 or 101. The relationship between brain and behavior. Identification and analysis of the relevant neural circuits involved. Examples of systems to be considered are birdsong, locomotion, echolocation.—(III) Britten

166. Information Processing Models in Neuroscience and Psychology (4)
Lecture—3 hours; term paper. Prerequisite: Mathematical 168, Physics 7B, course 102 or Psychology 101. Basic principles of neural modeling techniques used in neuropsychology. Specific topics include linear systems theory, Fourier transforms, neural networks, adaptive systems, probabilistic inference and information theory. Emphasis on understanding information processing in neural systems. (Same course as Psychology 126.)—II. (II) Sutter, Olshausen
186. Neurobiology of Addictive Drugs (3)
Lecture—3 hours. Prerequisite: course 101; a neurobiology course recommended. Neurobiological basis for the effects and mechanisms of action of drugs with addictive potential, including opiates (morphine, heroin, methadone), amphetamines, cocaine, nicotine, marijuana (cannabinoids), alcohol, caffeine and mind-altering drugs such as LSD.—II, III, (III.) Woolley

189. Frontiers in Neurobiology (3)
Lecture—2 hours; discussion—1 hour. Prerequisite: courses 100 and 101, course 102 (may be taken concurrently). Lectures by leading authorities and discussion of the latest research in newly emerging areas in neurobiology. Offered every third year.—III.

190C. Research Conference (1)
Discussion—1 hour. Prerequisite: upper division standing in Neurobiology, Physiology, and Behavior under the direction of the project. Course 194HB may be repeated for credit for a total of 8 units. (P/NP grading only.)—I, II, III. (I, II, III.)

192. Internship (1-12)
Internship—3-36 hours. Prerequisite: completion of 84 units and consent of instructor. Work experience off and on campus in all subject areas offered in physiology. (P/NP grading only.)

194HA-194HB-194HC. Neurobiology, Physiology, and Behavior—Honors (1-1-4-2)
Laboratory—3-12 hours. Prerequisite: senior standing; minimum 3.5 GPA in courses counted toward major; approval by the Master Adviser. Honors project in Neurobiology, Physiology and Behavior. Laboratory research on a specific question. The project is developed with the sponsoring faculty member and approved by the student’s Honors Thesis Committee. Honors thesis to be submitted upon completion of the project. Course 194HB may be repeated for credit for a total of 8 units. (P/NP grading only.)

197T. Tutoring in Neurobiology, Physiology, and Behavior (1-5)
Discussion—2-6 hours. Prerequisite: upper division standing and consent of instructor. Assisting in courses in neurobiology, physiology and behavior under the direction of the faculty. (P/NP grading only.)

198. Directed Group Study (1-5)
(P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5)
(P/NP grading only.)

Graduate Courses

221. Cellular and Molecular Neuroscience (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: graduate standing or consent of instructor. Advanced course dealing with the cellular and subcellular organization of the nervous system. Membrane channels, sensory transduction, synaptic transmission and cellular aspects of development and learning will be covered. (Same course as Neuroscience 221.)—II, III, (I, II, III.) Wilson

222. Systems Neuroscience (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: graduate standing or consent of instructor. Advanced course covering the integrative and information-processing aspects of nervous system organization. Specific topics to be covered include sensory systems, motor function, sensorimotor integration, the limbic system, and the neurobiology of learning and memory. (Same course as Neuroscience 222.)—II, (II.) Britten

245. Computational Models of Cellular Signaling (3)
Lecture—3 hours. Prerequisite: consent of instructor. Computational and mathematical techniques in modeling of regulatory and signaling phenomena in neurobiology and cell physiology, focusing on linear and nonlinear ordinary differential equation models. Applications include ion channel kinetics, electrical activity, signal transduction, calcium oscillations, and simple neural circuits.—II, (II.) Keizer

263. Modeling in Systems Neuroscience (4)
Lecture—3 hours; lecture/laboratory—1 hour. Prerequisite: consent of instructor. Modeling as a tool in systems neuroscience. Mathematical techniques will be introduced and used to explore advanced topics in echolocation, sound localization, electroreception, communications, and motor systems. Other topics include transforms, modeling assumptions, scales and linearity. Offered in alternate years.—II, (II.) Sutter

270. How to Write a Fundable Grant Proposal (3)
Lecture/discussion—3 hours. Prerequisite: graduate standing in a life science and consent of instructor. Familiarization with the skills required to craft a successful grant proposal submitted to extramural agencies such as NIH and NSF.—II, (II.) Britten

291. Auditory Neuroscience (1)
Seminar—0.5 hours; discussion—0.5 hours. Prerequisite: course 100 or 112 or Neuroscience 222 or the equivalent. Exploration of various important aspects of auditory physiology, behavior and psychophysics through review of original literature. New topic each quarter. May be repeated for credit with consent of instructor. (S/U grading only.)—I, II, III. (I, II, III.) Sutter, Recanzone

292. Cortical Plasticity and Perception (2)
Lecture/discussion—2 hours. Prerequisite: course 100 or 112 or equivalent or consent of instructor. Examination of research articles on cortical plasticity and changes in perception. Examples drawn from studies of the somatosensory, visual, auditory, and motor cortex. (Same course as Neuroscience 292.) Offered in alternate years. (S/U grading only.)—II, (II.)

Quarter Offered: I—Fall; II—Winter; III—Spring; IV—Summer, 2001-2002 offering in parentheses.
Neuroscience (A Graduate Group)

David Amaral, Ph.D., Chairperson of the Group
Group Office, 148 Center for Neuroscience (530-757-8845)

World Wide Web: http://neuroscience.ucdavis.edu/ngg

Faculty

David Amaral, Ph.D., Professor (Psychiatry)
Kathleen Baynes, Ph.D., Assistant Professor (Neurology)
Robert Berman, Ph.D., Professor (Neurological Surgery)
Ann Bonham, Ph.D., Associate Professor (Internal Medicine; Pharmacology)
Kenneth H. Britten, Ph.D., Assistant Professor (Neurobiology, Physiology, and Behavior)
Earl E. Carstens, Ph.D., Professor (Neurobiology, Physiology, and Behavior)
Leo M. Chalupa, Ph.D., Professor (Neurobiology, Physiology, and Behavior)
Barbara Chapman, Ph.D., Assistant Professor (Neurobiology, Physiology, and Behavior)
Nicola S. Clayton, Ph.D., Associate Professor (Neurobiology, Physiology, and Behavior)
Gino Cortopassi, Ph.D., Associate Professor (Molecular Biosciences)
Dorothy G. Gietzen, Ph.D., Professor (Anatomy, Physiology, and Cell Biology)
Fredric Gorn, M.D., Ph.D., Professor (Neurology)
Charles M. Gray, Ph.D., Associate Professor (Neurobiology, Physiology, and Behavior)
Linda Hall, Ph.D., Professor (Biochemical Pharmacology)
Andrew T. Ishida, Ph.D., Professor (Neurobiology, Physiology, and Behavior)
William Jaqlust, M.D., Professor (Neurology)
Edward G. Jones, M.D./Ph.D., Professor (Psychiatry)
Marc Kaufman, Ph.D., Professor (Internal Medicine)
Leah Krubitzer, Ph.D., Assistant Professor (Psychology)
Vijaya Kumari, Ph.D., Professor (Psychology)
Leah Krubitzer, Ph.D., Assistant Professor (Psychology)
Marc Kaufman, Ph.D., Professor (Internal Medicine)
Leah Krubitzer, Ph.D., Assistant Professor (Psychology)
Vijaya Kumari, Ph.D., Professor (Cell Biology and Human Anatomy)
Bruce Lyeth, Ph.D., Associate Professor (Neurological Surgery)
Kimberley McAlister, Ph.D., Assistant Professor (Neurology)
Mark G. McNamara, Ph.D., Professor (Biochemistry)
Brian Muloney, Ph.D., Professor (Neurobiology, Physiology, and Behavior)
Gabrielle A. Nivelt, Ph.D., Assistant Professor (Neurobiology, Physiology, and Behavior)
Bruno Olthuisen, Ph.D., Assistant Professor (Psychology)
Pamela A. Pappone, Ph.D., Professor (Neurobiology, Physiology, and Behavior)
Isaac N. Pessah, Ph.D., Associate Professor (Molecular Biosciences)
Gregg H. Recanzone, Ph.D., Assistant Professor (Neurobiology)
David Richman, M.D. Professor (Neurology)
Michael Russell, Ph.D., Assistant Professor (Anesthesiology)
Karen Sigvardt, Ph.D., Adjunct Professor (Neurology)
Mitchell L. Sutter, Ph.D., Assistant Professor (Neurobiology)
Diane Swick, Ph.D., Assistant Adjunct Professor (Neurology)
Martin Usey, Ph.D., Assistant Professor (Neurobiology, Physiology, and Behavior)
Richard Viumli, Ph.D., D.V.M., Professor (Molecular Biosciences)
Martin C. Wilson, Ph.D., Professor (Neurobiology, Physiology, and Behavior)
David Woods, Ph.D., Adjunct Professor (Neurology)
Andrew Yonelinas, Ph.D., Associate Professor (Psychology)
Tsung Yu Chen, Ph.D., Assistant Professor (Neurology)

Graduate Study. The Graduate Group in Neuroscience offers programs of study leading to the Ph.D. degree. Neuroscience is a broad, interdepartmental program with faculty interests ranging from molecular biophysics of channels to cortical organization and cognition. A major goal of the program is to prepare students for careers as research scientists. Details of the program may be obtained from the Group office.

Graduate Advisers. R. Berman (Neurological Surgery), E. Carstens (Neurobiology, Physiology, and Behavior), B. Chapman (Neurobiology, Physiology, and Behavior), K. Sigvardt (Center for Neuroscience).

Courses in Neuroscience (NSC)

Graduate Courses

200LA. Laboratory Methods in Neurobiology (6)
Laboratory—18 hours. Prerequisite: graduate standing in the Neuroscience Graduate Group. Individual research in the laboratory of a faculty member. Research problems emphasize the use of contemporary methods and good experimental design. May be repeated three times for credit. (SU grading only.)—I, II, III. (I, II, III.)

200LB. Laboratory Methods in Neurobiology (3)
Laboratory—9 hours. Prerequisite: graduate standing in the Neuroscience Graduate Group. Individual research in the laboratory of a faculty member. Research problems emphasize the use of contemporary methods and good experimental design. May be repeated for credit. (SU grading only.)—I, II, III. (I, II, III.)

221. Cellular and Molecular Neuroscience (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: graduate standing or consent of instructor. Advanced course dealing with the cellular and subcellular organization of the nervous system. Membrane channels, sensory transduction, synaptic transmission and cellular aspects of development and learning will be covered. (Same course as Neurobiology, Physiology, and Behavior 221.)—I, II. (III.) Wilson

222. Systems Neuroscience (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: graduate standing or consent of instructor. Advanced course covering the integrative and information-processing aspects of nervous system organization. Topics include sensory systems, motor function, sensorimotor integration, the limbic system, and the neurobiology of learning and memory. (Same course as Neurobiology, Physiology and Behavior 222.)—I, II. (III.)

223. Cognitive Neuroscience (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: graduate student standing in Psychology or Neuroscience or consent of instructor. Graduate core course for neuroscience. Neurobiological bases of higher mental function including attention, memory, language. One of three in three-quarter sequence. (Same course as Psychology 261.)—II, III.

234. Topics in Cellular and Behavioral Neurobiology (2)
Discussion—1 hour, seminar—1 hour. Prerequisite: consent of instructor. An advanced examination of several current problems in neuroscience. Topics will vary in different years; may be repeated for credit. (SU grading only.)—II, III. (I, III.) Ishida

250. Biology of Neuroglia (2)
Lecture/discussion—1.5 hours. Prerequisite: consent of instructor. The properties and functions of non-neuronal or neuroglial cells in the mammalian central nervous system with relevance to neuronal development, physiology and injury response. Offered in alternate years. (Same course as Cell Biology and Human Anatomy 250.) (SU grading only.)—III. (III.)

283. Neurobiological Literature (1)
Seminar—1 hour. Prerequisite: consent of instructor. Critical presentation and analysis of recent journal articles in neurobiology. May be repeated for credit. (SU grading only.)—I, II, III. (I, II, III.) Mulloney, Wilson

284. Development of Sensory Systems (1)
Seminar—1 hour. Prerequisite: consent of instructor. Presentation and discussion of recent literature on the development of sensory systems. May be repeated for credit. (SU grading only.)—II, III, (II, III.)

290C. Research Conference in Neurobiology (1)
Discussion—1 hour. Prerequisite: graduate standing in Neuroscience or consent of instructor; course 298 (concurrently). Presentation and discussion of faculty and graduate student research in neurobiology. May be repeated for credit. (SU grading only.)—I, II, III. (I, II, III.)

292. Cortical Plasticity and Perception (2)
Lecture/discussion—2 hours. Prerequisite: Neurobiology, Physiology, and Behavior 100 or 112 or equivalent or consent of instructor. Examination of research articles on cortical plasticity and changes in perception. Examples drawn from studies of the somatosensory, visual, auditory, and motor cortex. (Same course as Neurobiology, Physiology, and Behavior 292.) Offered in alternate years. (SU grading only.)—I, II, (I, II.)

298. Group Study (1-5)
(SU grading only.)

299. Research (1-12)
(SU grading only.)
Nutrition

(College of Agricultural and Environmental Sciences)
Carli L. Keen, Ph.D., Chairperson of the Department
Department Office, 3135 Meyer Hall (530-752-4630)
World Wide Web: http://nutrition.ucdavis.edu

Faculty
Lindsay H. Allen, Ph.D., R.D., Professor
Kenneth H. Brown, M.D., Professor
Andrew J. Clifford, Ph.D., Professor
Kathryn G. Dewey, Ph.D., Professor
Stephen R. Duquey, Ph.D., Assistant Researcher
Louis E. Grivetti, Ph.D., Professor (Nutrition, Geography)
Cari L. Keen, Ph.D., Professor (Nutrition, Internal Medicine)
Bo L. Lönnerdal, Ph.D., Professor (Nutrition, Internal Medicine)
Roger McDonald, Ph.D., Professor
Robert B. Rucker, Ph.D., Professor (Nutrition, Biological Chemistry)
Michael A. Sare, Ph.D., Assistant Professor
Barbara O. Schneeman, Ph.D., Professor (Nutrition, Food Science and Technology, Internal Medicine)
Francine M. Steinberg, Ph.D., R.D., Assistant Professor
Judith S. Stern, Sc.D., R.D., Professor (Nutrition, Internal Medicine)

Emeriti Faculty
Fredric W. Hill, Ph.D., Professor Emeritus
William C. Weir, Ph.D., Professor Emeritus
Francis J. Zeman, Ph.D., Professor Emeritus

Affiliated Faculty
Elizabeth A. Applegate, Ph.D., Lecturer, Academic Federation Excellence in Teaching Award
Paul A. Davis, Ph.D., Associate Researcher (Nutrition, Internal Medicine)
Robert M. Hackman, Ph.D., Associate Researcher
Charles Halsted, M.D., Adjunct Professor (Internal Medicine)
Peter Havel, Ph.D., D.V.M., Assistant Research Nutritionist
Mary Anne Heing, Ph.D., Assistant Research Nutritionist
Amy Block-Joy, Ph.D., Specialist in Cooperative Extension
Lucia Kaiser, Ph.D., R.D., Senior Lecturer
Janet King, Ph.D., Visiting Professor
Jo Ann Prophet, M.S., R.D., Lecturer
Barbara O. Schneeman, Ph.D., Professor (Nutrition, Biological Chemistry)
Roger McDonald, Ph.D., Professor
Bo L. Lönnerdal, Ph.D., Professor
Louis E. Grivetti, Ph.D., Professor (Nutrition, Internal Medicine)

Minor Program Requirements:
The Department of Nutrition offers four minor programs open to students majoring in other disciplines who wish to complement their study programs with a concentration in the area of food and nutrition.

Note: If the student's major program requires the same course in biochemistry and physiology, only one of the courses may duplicate credit toward the minor. Each program below lists replacement courses to fulfill the minimum unit requirement.

Community Nutrition ...24
Preparation: plan in advance to include the required course prerequisites.
Nutrition 101 and 111 ...9
Nutrition 118, 119, 120 ...6
Nutrition 120A or 120B ...4
Neurobiology, Physiology, and Behavior 1015

UNITs

Food Service Management ...25
Preparation: plan in advance to include the required course prerequisites.
Food Science and Technology 100A-100B, 101A-101B and 10813
Food Service Management 120, 120L, 122 ..8
Agricultural and Resource Economics 112 ..4

UNITs

Nutrition and Food ...24
Preparation: plan in advance to include the required course prerequisites.
Nutrition 101, 111 ..9
Nutrition 120A or 120B ...4
Food Science and Technology 100A, 100B6
Neurobiology, Physiology, and Behavior 1015

UNITs

Nutrition Science ..20
Preparation: plan in advance to include the required course prerequisites.
Animal Biology 102 and 103, or Biological Sciences 102 and 103 and Nutrition 101 ..8-11
Neurobiology, Physiology, and Behavior 1015
Nutrition 111 ..4
Replacement courses (see note above): Nutrition 114, 115, 116A-116B, 117, 120A or 120B, 122, 123, 124, 201, 204.

Minor Adviser, R.B. Rucker.

Graduate Study. Programs of study leading to the M.S. and Ph.D. degrees are available in Nutrition. For information on graduate study contact the Nutrition Graduate Group.

Courses in Nutrition (NUT)

Lower Division Courses
10. Discoveries and Concepts in Nutrition (3)
Lecture—3 hours. Nutrition as a science; historical development of nutrition concepts; properties of nutrients and foods. Not open for credit to students who have taken an upper division course in nutrition. GE credit: SciEng—I, II, III. (I, II, III.) Applegate

11. Current Topics and Controversies in Nutrition (2)
Discussion—1.5 hours; oral reports, written reports, term paper. Prerequisite: course 10 (may be taken concurrently). Assigned readings and discussion of topics of current concern and broad interest in contemporary nutrition. Coordinated with course 10. Not open for credit to students who have taken an upper division course in nutrition. GE credit: SciEng. WR—I, II, III. (I, II, III.) Applegate

20. Food and Culture: An Introduction to Culture, Diet, and Cuisine (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: Anthropology 2, Geography 2, and course 10 recommended. Historical and contemporary overview of culture, food habits, and diet; exploration of the major themes in food habit research; minority food habits; origins and development of dietary practices. GE credit: SciEng or SocSci.—II. (II.) Grivetti

99. Individual Study for Undergraduates (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)

Upper Division Courses
101. Introduction to Nutrition and Metabolism (5)
Lecture—4 hours; laboratory—3 hours. Prerequisite: Chemistry 8B, Neurobiology, Physiology and Behavior 101 or the equivalent. Introduction to the metabolism of protein, fat and carbohydrate; the biological role of vitamins and minerals; nutrient requirements during the life cycle; assessment of dietary intake and nutritional status. Diet project. Not open for credit to students who have taken course 110 or 111.—I. (II.) Lönnerdal

111. Human Nutrition (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 101, Animal Biology 102, 103. Nutrition of humans; critical study of nutrient requirements at various phases of life cycle.—II. (III.) McDonald

112. Nutritional Assessment (3)
Lecture—2 hours; laboratory—3 hours. Prerequisite: course 101, Animal Biology 102, 103, and 111 (may be taken concurrently). Methods of human nutritional assessment, including dietary, anthropometric, biochemical and hematological techniques as well as physical examination; Principles of precision, accuracy and interpretation of results for individuals and populations.—III. (III.) Brown

114. Developmental Nutrition (4)
Lecture—4 hours. Prerequisite: Animal Biology 102 and 103 or course 101; course 111. Role of nutritional factors in embryonic and postnatal development. GE credit: SciEng. WR—I, II. (II.) Keen, Stare

115. Animal Feeds and Nutrition (4)

Quarter Offered: I—Fall; II—Winter; III—Spring; IV—Summer; 2001-2002 offering in parentheses.

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; WR = Writing Experience.
116A–116B. Clinical Nutrition (3–3)
Lecture—3 hours. Prerequisite: courses 111, 112 and Neurobiology, Physiology and Behavior 101 or the equivalent. Biochemical and physiological bases for therapeutic diets. Problems in planning diets for normal and pathological conditions.—II (I-II) Allen, Stern, Clifford
116AL. Clinical Nutrition Practicum (3)
Lecture—1 hour, laboratory—3 hours, discussion—1 hour. Prerequisite: course 116A. Each laboratory session will include planning and conducting a protocol, carry out the project, analyze the results and report the findings. May be repeated for credit up to six times (limit of three times per instructor) with consent of instructor.—I (I) Allen
116BL. Clinical Nutrition Practicum (3)
Lecture—1 hour; laboratory—3 hours; discussion—1 hour. Prerequisite: courses 116AL and 116B (may be taken concurrently). Fundamental principles of planning and evaluating therapeutic diets and patient education for pathological conditions covered in 116B. Continuation of course 1166AL.—II (II) Steinberg
117. Experimental Nutrition (6)
Lecture—3 hours; laboratory—6 hours; extensive writing. Prerequisite: courses 111, Biological Sciences 102 and 103, and a laboratory course in nutrition or biochemistry. Methods of assessing nutritional status. Application of chemical, microbiological, chromatomic and enzymatic techniques to current problems in nutrition. GE credit: SciEng or SocSci, Div.—I (I) Clifford
118. Community Nutrition (4)
Lecture—4 hours. Prerequisite: course 101 or 111, and 116A. Nutrition problems in contemporary communities and of selected target groups in the United States and in developing countries. Nutrition programs and policy, principles of nutrition education.—II (II)
120A. Nutritional Anthropology (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 10; Anthropology 2 or Geography 2 recommended. Nutritional anthropology from historical and contemporary perspectives; the anthropological approach to food and diet; field work methods. Case histories that explore food patterns and their nutritional implications. Offered in alternate years. GE credit: SciEng or SocSci, Div.—I (I), Grivetti
120B. Nutritional Geography (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 10; Geography 2 recommended. Nutritional geography from historical and contemporary perspectives; the geographical approach to food and diet; cultural and environmental factors that influence dietary practices; food-related landscapes and patterns. Offered in alternate years. GE credit: SciEng or SocSci, Div.—I (I), Grivetti
122. Ruminant Nutrition and Digestive Physiology (4)
Lecture—3 hours; laboratory—3 hours. Prerequisite: upper division standing; Animal Biology 103. Comparative nutrition of non-ruminant vertebrate animals; including laboratory and companion animals, primates and wildlife. Relation of nutrition to metabolic adaptations and physiological state. Discussion/laboratory exercises leading to written group reports on establishment of nutritional requirements and formulating complete diets. GE credit: SciEng or SocSci, Div.—I (I).
123. Companion and Captive Animal Nutrition (4)
Lecture—3 hours; discussion/laboratory—3 hours. Prerequisite: Animal Biology 103. Comparative nutrition of non-ruminant vertebrate animals; including laboratory and companion animals, primates and wildlife. Relation of nutrition to metabolic adaptions and physiological state. Discussion/laboratory exercises leading to written group reports on establishment of nutritional requirements and formulating complete diets. GE credit: SciEng or SocSci, Div.—I (I), Fadel
124. Nutrition and Feeding of Finfishes (3)
Lecture—3 hours. Prerequisite: Biological Sciences 103 and Wildlife, Fish and Conservation Biology 121. Principles of nutrition and feeding of fishes under commercial conditions; implication of fish nutrition to the environment and conservation of endangered species.—I (I), Hung
129. Journalistic Practicum in Nutrition (3)
Lecture—2 hours; discussion—1 hour. Prerequisite: course 111; a course in written or oral expression or consent of instructor. Critical analysis and discussion of current, controversial issues in nutrition; the use of journalistic techniques to interpret scientific findings for the lay public. Students will be required to write several articles for campus media. Course may be repeated once for credit.—III (III) Stern
130. Experiments in Nutrition: Design and Execution (2)
Lecture—8 hours. Prerequisite: consent of instructor; course 101, 110, 111, or 114 and 116A (may be taken concurrently). Fundamental principles of planning and conducting experimental projects in current nutritional problems. Experimental design: students choose project and, independently or in groups of 2-3, design a protocol, complete the project, and report findings. May be repeated for credit up to six times (three times per instructor) with consent of instructors.—I, II, III (I, II, III, summer)
190. Proseminar in Nutrition (1)
Seminar—1 hour. Prerequisite: senior standing; course 111; Discussion of human nutrition problems. Each term will involve a different emphasis among experimental, clinical, and dietetic problems of community, national and international scope. May be repeated twice with consent of credit with consent of instructor.—I, II, III (I, II, III, fall)
190C. Nutrition Research Conference (1)
Discussion—1 hour. Prerequisite: upper division standing in Nutrition or related biological science; consent of instructor. Introduction to research findings and methods in nutrition by faculty and students. May be repeated for credit. (P/NP grading only.)—I, II, III (I, II, III)
192. Internship (1-12)
Internship—3-12 hours. Prerequisite: one upper division course in nutrition and consent of instructor. Work experience on or off campus in practical application of nutrition, supervised by a faculty member. (P/NP grading only.)
197T. Tutoring in Nutrition (1-2)
Discussion/laboratory—3 or 6 hours. Prerequisite: Nutrition Science, Clinical Nutrition or related major. Completion of course 101. Tutoring of students in nutrition courses, participation in campus laboratories, weekly conference with instructor in charge of course: written evaluations. May be repeated if tutoring a different course. (P/NP grading only.)
198. Directed Group Study (1-5)
(P/NP grading only.)
199. Special Study for Advanced Undergraduates (1-5)
(P/NP grading only.)
Graduate Courses
201. Vitamin and Coenzyme Metabolism (3)
Lecture—2 hours; discussion—1 hour. Prerequisite: one upper division nutritional biochemistry and physiology course. Review of studies and relationships involving the metabolic functions of vitamins. Comparative nutritional aspects and the metabolism and chemistry of vitamins and vitamin-like compounds.—II (II) Rucker, Steinberg
202. Advanced Nutritional Energetics (2)
Lecture—2 hours. Prerequisite: Animal Biology 102, 103, Neurobiology, Physiology and Behavior 101 or the equivalent. History of nutritional energetics. Evaluation of energy transformations associated with food utilization: Energy expenditures at cellular, tissue, and animal levels as affected by diet and physiological state. Current and future feeding systems.—I (I) Sainz
203. Advanced Protein and Amino Acid Nutrition (3)
Lecture—2 hours; discussion—1 hour. Prerequisite: one upper division nutritional biochemistry and physiology course. Nutritional significance of protein and amino acids, including studies of the influence of dietary protein on digestion, absorption, metabolism, resistance to disease, and food intake. Study of dietary requirements and interrelationships among amino acids.—III (III) Rogers
204. Mineral Metabolism (2)
Lecture—2 hours. Prerequisite: upper division nutrition or biochemistry course. Studies of metabolic functions and nutritional interrelationships involving minerals.—III (III) Lönnerdal, Keen
219A. International Nutrition (3)
Lecture/discussion—9 hours. Prerequisite: upper division course in nutrition or consent of instructor. Epidemiology, etiology, and consequences of undernutrition in developing countries. Offered in alternate years.—II, Brown, Dewey, Pollitt
219B. International Nutrition (3)
Lecture/discussion—3 hours. Prerequisite: upper division course in nutrition or consent of instructor. Nutrition policies and programs in developing countries. Offered in alternate years.—III, Brown, Dewey, Pollitt
230. Experiments in Nutrition: Design and Execution (2)
Lecture—8 hours. Prerequisite: consent of instructor; courses 201, 202, 203, 204, or the equivalent recommended. Student selected projects to enhance laboratory experience. Independently, or in groups of 2-3 students, design a protocol, carry out the project, analyze the results and report the findings. May be repeated for credit up to six times (limit of three times per instructor) with consent of instructor.—I, II, III (I, II, III, summer)
250. Metabolic Homeostasis (3)
Lecture—2 hours; discussion—1.5 hours. Prerequisite: passing the Nutrition Graduate Group Preliminary Examination or consent of instructor. Preference given to students with advanced standing in the Nutrition Graduate Group. Regulatory mechanisms of carbohydrate, lipid, and protein homeostasis; mechanisms of metabolic enzyme regulation and of the metabolic hormones; homeostatic mechanisms and interactions; fuel-fuel interactions; nutrition energy balance.—III (III) Walsh
251. Nutrition and Immunology (2)
Lecture/discussion—2 hours. Prerequisite: Pathology, Microbiology and Immunology 126, Medical Microbiology 107 or the equivalent. Animal Biology 102, Cellular and molecular mechanisms underlying interactions of nutrition and immune function, including modulation of immunocompetence by diet and effects of immune responses on nutritional needs. Lectures and discussion explore implications for resistance to infection, autoimmunity and cancer. Offered in alternate years.—II (II) Klaing, Erickson, Stephensen
252. Nutrition and Development (3)
Lecture—3 hours. Prerequisite: courses 201, 202, 203, 204. Relationship of nutrition to prenatal and early postnatal development.—II (II) Keen, Sattre
253. Control of Food Intake (3)
Lecture—2 hours; discussion—1 hour; 2 or 3 laboratory demonstrations per quarter. Prerequisite: course 201 or 202 or consent of instructor. Comprehensive study of the biochemical, nutritional, behavioral, and physiological mechanisms controlling food intake. Subject matter will be approached through lectures, laboratory demonstration and discussion where students will critically evaluate the literature. Offered in alternate years.—III (III) Stern, Gietzen

Quarter Offered: I=Fall; II=Winter; III=Spring; IV=Summer, 2001-2002 offering in parentheses.
254. Applications of Systems Analysis in Nutrition (3)
Lecture—2 hours; discussion—1 hour. Prerequisite: course 202, Physiological Sciences 205A-205B or the equivalent. Quantitative aspects of digestion and metabolism; principles of systems analysis. Evolution of models of energy metabolism as applied in current feeding systems. Critical evaluations of mechanistic models used analytically in support of nutritional research. Offered in alternate years.

257. Selected Topics in Nutritional and Hormonal Control of Nitrogen Metabolism (2)
Lecture—2 hours. Prerequisite: courses 201 through 204; Physiological Sciences 205A-205B or the equivalent. Quantitative and qualitative aspects of nitrogen metabolism; critical evaluation of dietary intake, hormones and diet-hormone interactions which affect nitrogen metabolism, including protein synthesis-degradation, amino acid synthesis-catabolism, nitrogen transport-excretion, depending on current literature. Offered in alternate years.—(I.) Klasing, Calvert

258. Field Research Methods in International Nutrition (3)
Lecture/discussion—3 hours. Prerequisite: graduate standing or consent of instructor. Issues and problems related to implementation of nutrition field research in less-developed countries, including ethics, relationships with local governments, communities, and scientists; data collection techniques and quality assurance; field logistics; research budgets; and other administrative and personal issues. Offered in alternate years.—(II.) Brown, Dewey, Pollitt

259. Nutrition and Aging (2)
Lecture—2 hours. Prerequisite: three of courses 201, 202, 203 and 204. Interaction between nutrition and aging. Topics include physiological/biochemical basis of aging, age-related changes affecting nutritional requirements, nutrition and mortality rate, assessment of nutritional status in the elderly, and relationship between developmental nutrition and the rate of aging. Offered in alternate years.—(I.) McDonald

290. Beginning Nutrition Seminar (2)
Lecture/discussion—1 hour; seminar—1 hour. Prerequisite: first year graduate standing. Discussion and critical evaluation of topics in nutrition with emphasis on literature review and evaluation in this field. Students give oral presentations on relevant topics.—I, II, III. (I, II, III.) Satre

290C. Research Conference (1)
Discussion—1 hour. Prerequisite: graduate standing and consent of instructor. Major professors lead research discussions with their graduate students. Research papers are reviewed and project proposals presented and evaluated. Format will combine seminar and discussion style. (SU grading only.)—I, II, III. (I, II, III.)

291. Advanced Nutrition Seminar (1)
Seminar—1 hour. Prerequisite: second-year graduate standing. Advanced topics in nutrition research. Multiple sections may be taken concurrently for credit. May be repeated for credit. (SU grading only.)—I, II, III. (I, II, III.)

293A. Current Topics in Obesity, Food Intake and Energy Balance (3)
Lecture—1 hour; seminar—1 hour; discussion—1 hour. Prerequisite: graduate standing or course 129. Undergraduates with upper division standing with at least one writing course may enroll with consent of instructor. Current research and its evaluation. Principles of experimental design and scientific background for given article. Articles summarized for posting on Internet for use by healthcare professionals. May be repeated for credit with consent of instructor.—I, II. (I.) Stern

293B. Current Topics in Obesity, Food Intake, and Energy Balance with Special Topics (3)
Lecture—1 hour; seminar—1 hour; discussion—1 hour. Prerequisite: graduate standing or consent of instructor. Practical experience in teaching nutrition at the university level; curriculum design and evaluation; preparation and presentation of material. Assistance in laboratories, discussion sections, and evaluation of student work. (SU grading only.)

297T. Supervised Teaching in Nutrition (1-3)
Teaching under faculty supervision—3-9 hours. Prerequisite: graduate standing in nutrition or consent of instructor. Practical experience in teaching nutrition at the university level; curriculum design and evaluation; preparation and presentation of material. Assistance in laboratories, discussion sections, and evaluation of student work. (SU grading only.)

299. Research (1-12)
(S/U grading only.)
Nutrition (A Graduate Group)

Kathryn G. Dewey, Ph.D., Chairperson of the Group
Group Office, 1202D Meyer Hall (530-754-7684)
World Wide Web: http://nutrition.ucdavis.edu/ggn

Faculty
Lindsay H. Allen, Ph.D., R.D., Professor (Nutrition)
Ransoms L. Baldwin, Jr., Ph.D., Sesnon Professor of Animal Science
Edward J. DePeters, Ph.D., Professor, (Animal Science)
C. Christopher Calvert, Ph.D., Professor (Animal Science)
Andrew J. Clifford, Ph.D., Professor (Nutrition)
Douglas E. Conklin, Ph.D., Associate Professor (Animal Science)
Andrea J. Fassett, V.M.D., Ph.D., Assistant Professor (Molecular Biosciences)
J. Bruce German, Ph.D., Professor (Food Science and Technology)
M. Eric Gershwin, M.D., Professor (Internal Medicine)
Dorothy W. Gietzen, Ph.D., Professor (Anatomy, Physiology, and Cell Biology)
Ralph Green, M.D., Professor (Pathology)
Louis E. Grivetti, Ph.D., Professor (Nutrition, Geography)
Jean-Xavier Guinard, Ph.D., Associate Professor (Food Science and Technology)
Charles H. Halsted, M.D., Professor (Internal Medicine, Nutrition)
Robert J. Hansen, Ph.D., Professor (Molecular Biosciences)
Silas S. O. Hung, Ph.D., Professor (Animal Science)
Sidka E. Kasim-Karakas, M.D., Associate Professor (Internal Medicine)
George A. Kaysen, M.D., Ph.D., Professor (Internal Medicine)
Carl L. Keen, Ph.D., Professor (Nutrition, Internal Medicine)
Kirk C. Klasing, Ph.D., Professor (Animal Science)
Bo L. Lönnerdal, Ph.D., Professor (Nutrition, Internal Medicine)
Stanley L. Marks, B.V.Sc., Ph.D, Assistant Professor (Medicine and Epidemiology)
Roger B. McDonald, Ph.D., Professor (Nutrition)
Paul A. Molé, Ph.D., Professor (Exercise Science)
Anthony F. Phillips, M.D., Professor (Pediatrics)
Emesto Pollitt, Ph.D., Professor (Pediatrics)
Quinton R. Rogers, Ph.D., Professor (Molecular Biosciences)
Robert B. Rucker, Ph.D., Professor (Nutrition, Biological Chemistry)
Roberto D. Sainz, Ph.D., Associate Professor (Animal Science)
Michael A. Saitre, Ph.D., Assistant Professor (Nutrition)
Barbara O. Schneeman, Ph.D., Professor (Nutrition, Food Science and Technology, Internal Medicine)
Francene M. Steinberg, Ph.D., R.D., Assistant Professor (Nutrition)
Judith S. Stern, Sc.D., R.D., Professor (Nutrition, Internal Medicine)
Donal A. Walsh, Ph.D., Professor (Biological Chemistry)
Craig H. Warden, Ph.D., Acting Associate Professor (Pediatrics)
Bruce M. Wolfe, M.D., Professor (Surgery)
Vincent A. Ziboh, Ph.D., Professor (Dermatology, Biological Chemistry)

Emeriti Faculty
Arthur L. Black, Ph.D., Professor Emeritus
Harry W. Colvin, Jr., Ph.D., Professor Emeritus
Robert E. Feeley, Ph.D., Professor Emeritus
Richard A. Freedland, Ph.D., Professor Emeritus
William N. Garrett, Ph.D., Professor Emeritus
C. Richard Grau, Ph.D., Professor Emeritus
Fredric W. Hill, Ph.D., Professor Emeritus
Jiro J. Kaneko, D.V.M., Ph.D., D.V.Sc (hc), Professor Emeritus
F. Howard Kratzer, Ph.D., Professor Emeritus
Verne E. Mendel, Ph.D., Professor Emeritus
James H. Meyer, Ph.D., Professor Emeritus
James G. Morris, Ph.D., Professor Emeritus
Howard G. Schutz, Ph.D., Professor Emeritus
Aloys L. Tappel, Ph.D., Professor Emeritus
Pran N. Vohra, Ph.D., Professor Emeritus
William C. Wer, Ph.D., Professor Emeritus
Frances J. Zeman, Ph.D., Professor Emeritus

Affiliated Faculty
Paul A. Davis, Ph.D., Associate Researcher (Internal Medicine)
Marti S. Golub, Ph.D., Adjunct Professor (Internal Medicine)
Peter J. Havel, D.V.M., Ph.D., Assistant Research Nutrionist (Nutrition)
Amy Block Joy, Ph.D., Nutrition Science Specialist (Nutrition)
Nancy L. Kein, Ph.D., R.D., Adjunct Professor (Nutrition)
Darshan S. Kelley, Ph.D., Adjunct Professor (Nutrition)
Janet C. King, Ph.D., Adjunct Professor (Nutrition)
Mary J. Kretsch, Ph.D., R.D., Associate Adjunct Professor (Nutrition)
Joshua W. Miller, Ph.D., Assistant Adjunct Professor (Pathology)
James W. Otjen, Ph.D., Lecturer (Animal Science)
Peter H. Robinson, Ph.D., Associate Extension Specialist (Animal Science)
Charles B. Stephens, Ph.D., Adjunct Professor (Nutrition)
Judith R. Turmulf, Ph.D., R.D., Adjunct Professor (Nutrition)
Marta D. Van Loan, Ph.D., Adjunct Professor (Nutrition)
Sheri A. Zidenberg-Cherr, Ph.D., Nutrition Science Specialist (Nutrition)

Graduate Study. The Graduate Group in Nutrition offers programs of study and research leading to the M.S. and Ph.D. degrees. The great diversity of research interests represented by the faculty members allows students to choose from a wide variety of themes: Nutritional biochemistry, animal nutrition, nutrition and development, nutrient bioavailability, human/clinical nutrition, nutrition and behavior, nutritional energetics, community nutrition, maternal and child nutrition, nutrition and endocrinology, international nutrition, obesity/body composition, physiology of digestion, nutrition and chronic disease, culture and nutrition, nutrition and gene expression, nutrition and aging, food preferences, nutrition and immunity, diet and exercise, dietary assessment, protein and lipid metabolism, food intake regulation, nutrition education.

Graduate Advisers. Consult the Nutrition Graduate Group Office.

Quarter Offered: I–Fall; II–Winter; III–Spring; IV–Summer; 2001-2002 offering in parentheses.

General Education (GE) credit: ArHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
Nutrition Science

(College of Agricultural and Environmental Sciences)

Faculty
See the Department of Nutrition

The Major Program

The study of nutrition encompasses all aspects of the consumption and utilization of food and its constituents. Key areas of study include the biochemical reactions important to utilization of nutrients and food constituents and to the impact of diet on health and disease, and nutrition-related policy and public health issues. The nutrition science major includes two options for studying these areas: nutritional biochemistry and community nutrition.

The Program. Nutrition as it is taught on the Davis campus is a biological science and requires a complete background in chemistry and biology, along with calculus and either physics (nutritional biochemistry option) or economics (community nutrition option). These courses are generally completed during the first two years, and along with biochemistry, must be completed before most nutrition classes can be taken. During their junior and senior years, students in the nutritional biochemistry option take additional course work in biochemistry, genetics, microbiology, physiology, immunology, and/or toxicology. Students in the community nutrition option take additional course work in social and health-related sciences.

Career Alternatives. Both options are excellent preparation for professional or graduate training in medicine, public health, or other health sciences. The nutritional biochemistry option also provides preparation for technical work in nutrition in the animal, food, and pharmaceutical industries. The community nutrition option prepares students for jobs in administrative, teaching, or public health/public service positions. Students who complete the additional academic requirements for an internship in dietetics are also qualified for careers in dietetics following completion of an internship.

B.S. Major Requirements:

UNITS

English Composition Requirement ..0-8
See College requirement

Preparatory Subject Matter ...60-66
Anthropology 2 or Geography 2 or Sociology 3 ...4
Biological Sciences 1A, 1B, 1C ..15
Mathematics 16A-16B ..6
Physics 1A-1B (Nutritional Biochemistry option) or Economics 1A-1B (Community Nutrition option) ...6-10
Sociology 46A or Psychology 41 ..4
Statistics 13 or Agricultural Systems and Environment 1204

Breadth/General Education ...24
Satisfaction of General Education requirement plus additional course work in social sciences and humanities

Depth Subject Matter ..52
Animal Biology 102, 103 ..8
Biological Sciences 101 ..4
Food Science and Technology 100A and 100B ..6
Neurobiology, Physiology, and Behavior 101, 101L ..8

Nutritional Biochemistry Option:
Nutrition 111, 116A, 116B, 117, 190 ...17
Additional nutrition ...9

Community Nutrition Option:
Nutrition 111, 112, 116A, 116B, 118, 190, 192 (2 units)20
Additional nutrition ...6

Restricted Electives ...20
Select one of the two options.

Nutritional Biochemistry option
Biochemistry laboratory (Molecular and Cellular Biology 120L or an alternative selected upon consultation and approval of the faculty adviser) ..6

Additional courses in genetics, biochemistry, microbial biology, physiology, immunology, or toxicology, chosen from the following list in consultation with the faculty adviser:

Community Nutrition option:
Economics 100, 101, or Agricultural and Resource Economics 100A, 100B ...8-10
Additional courses chosen from the following list in consultation with the faculty adviser ...10-12

Unrestricted Electives ...10-28
Total Units for the Degree ..180

Major Adviser. B. L. Lonnerdal.

Advising Center for the major is located in 1202E Meyer Hall (530-752-2512).

Dietetics Internship. To fulfill the academic requirements for an internship in Dietetics, choose the following courses from the categories in which they appear above: English 1 or 3, Psychology 1, Communication 1, Sociology 1 or 3 or Anthropology 2, Economics 1A or 1B, Nutrition 112, 116A-116L, 118. The following courses must be added: Agricultural and Resource Economics 112; Community and Regional Development 173 or Education 110; Food Science and Technology 101A, 105B, 106; Food Service Management 120, 120L, 122; Food Science and Technology 104, 104L or Microbiology 102, 102L. Students intending to apply for admission to a dietetic internship should contact the Advising Office no later than the first quarter of the junior year for information on procedures.

Graduate Study. The Department of Nutrition offers programs of study and research leading to the M.S. and Ph.D. degrees in Nutrition. For information on graduate study contact the graduate adviser. See also the Graduate Studies chapter of this catalog.
Population Biology (A Graduate Group)

John Gillespie, Ph.D., Chairperson of the Group
Group Office, 2320 Storer Hall (530-752-8523)
World Wide Web: http://www-eve.ucdavis.edu/pobjio.htm

Faculty
Louis W. Botsford, Ph.D., Professor
Tim Caro, Ph.D., Professor
Peter L. Chesson, Ph.D., Professor
Hugh Dingle, Ph.D., Professor
John M. Eadie, Ph.D., Associate Professor
John H. Gillespie, Ph.D., Professor
Leslie D. Gottlieb, Ph.D., Professor
James R. Griesemer, Ph.D., Professor
Richard K. Grosberg, Ph.D., Professor
Alexander H. Harcourt, Ph.D., Professor
Susan P. Harrison, Ph.D., Professor
Alan M. Hastings, Ph.D., Professor
Richard Karban, Ph.D., Professor
Charles H. Langley, Ph.D., Professor
Sharon P. Lawler, Ph.D., Assistant Professor
James R. Nuzhdin, Ph.D., Assistant Professor
Robert E. Page, Ph.D., Professor
Marcel Rejmánek, Ph.D., Professor
Kevin J. Rice, Ph.D., Professor
Jay A. Rosenberg, Ph.D., Professor
Michael J. Sanderson, Ph.D., Associate Professor
Thomas W. Schoener, Ph.D., Professor
Mark W. Schwartz, Ph.D., Assistant Professor
H. Bradley Shaffer, Ph.D., Professor
Arthur M. Shapiro, Ph.D., Professor
Thomas B. Smith, Ph.D., Professor, San Francisco State University
Judy A. Stamps, Ph.D., Professor
Maureen L. Stanton, Ph.D., Professor
Sharon Y. Strauss, Ph.D., Associate Professor
Donald R. Strong, Ph.D., Professor
Catherine A. Tolt, Ph.D., Professor
Michael Turelli, Ph.D., Professor
Geerat J. Vermeij, Ph.D., Professor
Peter C. Wainwright, Ph.D., Associate Professor
Philip S. Ward, Ph.D., Professor
Truman P. Young, Ph.D., Assistant Professor

Emeriti Faculty
Timothy G. Prout, Ph.D., Professor Emeritus

Graduate Study. The Graduate Group in Population Biology emphasizes programs of study and research leading to the Ph.D. degree. The Group concentrates on population biology as the broad discipline that blends ecology, evolution, population genetics and systematics into a unified field. The course curriculum consists of first-year core courses offered by the Group faculty, seminars, and advanced courses in population biology, and related disciplines, chosen in consultation with a guiding committee.

Graduate Adviser. Consult the Population Biology Graduate Group Office.

Courses in Population Biology (PBG)

Graduate Courses

200A. Principles of Population Biology (5)
Lecture—3 hours; discussion—2 hours. Prerequisite: course 231 concurrently and consent of instructor. Principles of single-species ecology and evolution. Topics include ecology of individuals, population growth models, structured populations, life history strategies, stochastic populations, basic population genetics theory, deleterious alleles in natural populations, and molecular population genetics. —I. (I.)

200B. Principles of Population Biology (6)
Lecture—5 hours; discussion—1 hour. Prerequisite: course 200A. 231. Principles of multi-species communities. Topics include competition, mutualism, metapopulations, food webs and trophic cascades, interactions between simple ecological communities, island biogeography, succession, and large-scale patterns.—II. (II.)

200C. Principles of Population Biology (6)
Lecture—5 hours; discussion—1 hour. Prerequisite: course 200B. Principles of microevolution and macroevolution. Topics include evolutionary quantitative genetics, analysis of hybrid zones, speciation, the fossil record, biogeography, and phylogeny reconstruction. —III. (III.)

203. Advanced Evolution (3)
Lecture—1 hour; discussion—2 hours. Prerequisite: graduate standing. Adaptation and speciation, and biochemical and morphological evolution in plants and animals with emphasis on the appropriateness of different methods of analysis. Offered in alternate years.—(II.) Gottlieb

206. Ecology of Insect Parasitoids (4)
Lecture—3 hours; seminar—1 hour. Prerequisite: introductory animal ecology or behavior. Insect parasitoids will be investigated as model systems to address current topics in behavioral, population, and evolutionary ecology. Theory will be synthesized and critical empirical tests of ecological hypotheses emphasized. (Same course as Entomology 236.) Offered in alternate years.—(II.)

207. Plant Population Biology (3)
Lecture—2 hours; laboratory/discussion—1 hour. Prerequisite: advanced undergraduate ecology course (e.g., Environmental Science and Policy 100, Evolution and Ecology 101, Entomology 104, Plant Biology 117), and advanced undergraduate course in genetics and/or evolution (e.g., Biological Sciences 101 or Evolution and Ecology 100). Introduction to theoretical and empirical research in plant population biology. Emphasis placed on linking ecological and genetic approaches to plant population biology. (Same course as Ecology 207.) Offered in alternate years.—II. Rice

212. Topics in Invertebrate Ecology (2)
Seminar—2 hours. Prerequisite: graduate standing or consent of instructor and Evolution and Ecology 112-112L; courses in evolutionary biology, systematics, and ecology highly recommended. Advanced seminar that critically examines problems relevant to evolutionary patterns among the invertebrates. May be repeated for credit when topic differs. (SU grading only.)—II, III. (II, III)

224. Field Reconnaissance for Population Biologists (2)
Fieldwork—6 hours. Prerequisite: graduate student in Population Biology, or consent of instructor. Biweekly field trips to acquaint students with plant and animal communities, biodiversity, and ecological and evolutionary research opportunities in northern and central California. May be repeated for credit. (SU grading only.)—I, II, III. (I, II, III)

225. Terrestrial Field Ecology (4)
Seminar—1 hour; field work—12 hours. Prerequisite: introductory ecology and introductory statistics, or consent of instructor. A field course conducted over spring break and four weekends at Bodega Bay emphasizing student projects. Ecological hypothesis testing, data gathering, analysis, and written and oral presentation of results will be stressed. (Same course as Ecology/Entomology 225.)—II, III. (II, III)

231. Mathematical Methods in Population Biology (3)
Lecture—3 hours. Prerequisite: Mathematics 16C or 21C or the equivalent. Mathematical methods used in population biology. Linear and nonlinear difference equations and differential equation models are studied, using stability analysis and qualitative methods. Partial differential equation models are introduced. Applications to population biology models are stressed. (Same course as Ecology 231.)—I. (I.)

270. Research Conference in Evolutionary Biology (1)
Seminar—1 hour. Prerequisite: consent of instructor. Critical presentation and evaluation of current literature and ongoing research in evolutionary biology. May be repeated for credit. (SU grading only.)—I, II, III. (I, II, III)

290. Seminar (1)
Seminar—1 hour. Prerequisite: graduate standing and consent of instructor. Seminars presented by visiting lecturers, UC Davis graduate and students. May be repeated for credit. (SU grading only.)—I, II, III. (I, II, III)

290C. Research Conference in Population Biology (1)
Discussion—1 hour. Prerequisite: graduate standing and consent of instructor; concurrent enrollment in course 299. Presentation and discussion of faculty and graduate student research in population biology. May be repeated for credit. (SU grading only.)—I, II, III. (I, II, III)

292. Topics in Ecology and Evolution (1)
Seminar—1 hour. Prerequisite: graduate standing. Seminar presented by visiting lecturers, UC Davis faculty and graduate students. May be repeated for credit. (Same course as Ecology 292.) (SU grading only.)—I, II, III. (I, II, III)

296. Seminar in Geographical Ecology (2)
Seminar—2 hours. Prerequisite: Evolution and Ecology 100 or 101 or consent of instructor. Recent developments in theoretical and experimental biogeography, historical biogeography and related themes in systematics, the biology of colonizing species, and related topics. May be repeated for credit. (SU grading only.)—II. (II)

298. Group Study (1-5)
Prerequisite: graduate standing and consent of instructor. (SU grading only.)

Quarter Offered: I-Fall; II-Winter; III-Spring; IV-Summer, 2001-2002 offering in parentheses.

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Writ = Writing Experience.
Plant Biology (A Graduate Group)

John Labavitch, Ph.D., Chairperson of the Group
Group Office, 101 Life Sciences Addition (530-752-7094; Fax: 530-752-5410)
World Wide Web: http://www-plb.ucdavis.edu/pbgg

Faculty
Steffan Abel, Ph.D., Assistant Professor (Vegetable Crops)
Douglas Adams, Ph.D., Associate Professor (Viticulture and Enology)
Michael Barbour, Ph.D., Professor (Environmental Horticulture)
Diane Barrett, Ph.D., Assistant Professor (Food Science)
David Bayer, Ph.D., Professor (Vegetable Crops)
Alan Bennett, Ph.D., Professor (Vegetable Crops)
Alison Berry, Ph.D., Associate Professor (Environmental Horticulture)
Caroline Bleidsoe, Ph.D., Professor (Land, Air and Water Resources)
Arnold Bloom, Ph.D., Professor (Vegetable Crops)
John Bowman, Ph.D., Assistant Professor (Plant Biology)
Kent Bradford, Ph.D., Professor (Vegetable Crops)
Anne Brit, Ph.D., Associate Professor (Plant Biology)
Patrick Brown, Ph.D., Professor (Pomology)
David Burger, Ph.D., Professor (Environmental Horticulture)
Judy Callis, Ph.D., Associate Professor (Molecular and Cellular Biology)
John Crowe, Ph.D., Professor (Molecular and Cellular Biology)
Abhayana Dandekar, Ph.D., Professor (Pomology)
Ted DeJong, Ph.D., Professor (Pomology)
Deborah Delmer, Ph.D., Professor (Plant Biology)
James Doyle, Ph.D., Professor (Evolution and Ecology)
Don Durzan, Ph.D., Professor (Environmental Horticulture)
Carolyn Ezte, Ph.D., Professor (Molecular and Cellular Biology)
Richard Fal, Ph.D., Professor (Plant Biology)
Albert Fischer, Ph.D., Assistant Professor (Vegetable Crops)
Charles Gasser, Ph.D., Professor (Molecular and Cellular Biology)
Paul Gepts, Ph.D., Professor (Agronomy and Range Science)
David Gilchrist, Ph.D., Professor (Plant Pathology)
Thomas Gradziel, Ph.D., Associate Professor (Pomology)
John Harada, Ph.D., Professor (Plant Biology)
James Harding, Ph.D., Professor (Environmental Horticulture)
Theodore Hsiao, Ph.D., Professor (Land, Air and Water Resources)
Louise Jackson, Ph.D., Associate Professor (Vegetable Crops)
Judy Jernstedt, Ph.D., Associate Professor (Agronomy and Range Science)
Adel Kader, Ph.D., Professor (Pomology)
Clarence Kado, Ph.D., Professor (Plant Pathology)
Daniel Klionsky, Ph.D., Associate Professor (Microbiology)
John Labavitch, Ph.D., Professor (Pomology)
Clark Lagarias, Ph.D., Professor (Molecular and Cellular Biology)
Andre Lauchli, Ph.D., Professor (Land, Air and Water Resources)
J. Heinrich Lieth, Ph.D., Professor (Environmental Horticulture)
Bo Liu, Ph.D., Assistant Professor (Plant Biology)
William Lucas, Ph.D., Professor (Plant Biology)
Mark Matthews, Ph.D., Assistant Professor (Viticulture and Enology)
Carole Meredith, Ph.D., Professor (Viticulture and Enology)
Richard Michelmore, Ph.D., Professor (Vegetable Crops)
Terence Murphy, Ph.D., Professor (Plant Biology)
Donald Nevin, Ph.D., Professor (Vegetable Crops)
Robert Norris, Ph.D., Associate Professor (Vegetable Crops)
Sharman O'Neill, Ph.D., Associate Professor (Plant Biology)
Kyaw Thaw Paw, Ph.D., Professor (Land, Air and Water Resources)
Robert Peary, Ph.D., Professor (Evolution and Ecology)
Donald Phillips, Ph.D., Professor (Agronomy and Range Science)
Vito Polito, Ph.D., Professor (Pomology)
Daniel Potter, Ph.D., Assistant Professor (Pomology)
Carlos Quiros, Ph.D., Professor (Vegetable Crops)
D. William Rains, Ph.D., Professor (Agronomy and Range Science)
Michael Reid, Ph.D., Professor (Environmental Horticulture)
Marcel Rejmankova, Ph.D., Professor (Evolution and Ecology)
Elsa Rejmankova, Ph.D., Associate Professor (Environmental Science and Policy)
Jeffrey Rice, Ph.D., Professor (Land, Air and Water Resources)
Raymond Rodriguez, Ph.D., Professor (Molecular and Cellular Biology)
Pamela Ronen, Ph.D., Assistant Professor (Plant Pathology)
Thomas Rost, Ph.D., Professor (Plant Biology)
Mikal Saltveit, Ph.D., Professor (Vegetable Crops)
Michael Sanderson, Ph.D., Associate Professor (Evolution and Ecology)
Mark Schwartz, Ph.D., Assistant Professor (Environmental Science and Policy)
Irwin Segel, Ph.D., Professor (Molecular and Cellular Biology)
Ken Shackel, Ph.D., Associate Professor (Pomology)
Wendy Sikk, Ph.D., Professor (Land, Air and Water Resources)
Neelima Sinha, Ph.D., Assistant Professor (Plant Biology)
Alan Stemler, Ph.D., Professor (Plant Biology)
Eilen Sutter, Ph.D., Associate Professor (Pomology)
Steve Throg, Ph.D., Professor (Plant Biology)
Robert Thornton, Ph.D., Senior Lecturer (Plant Biology)
Robert Travis, Ph.D., Professor (Agronomy and Range Science)
Brett Tyler, Ph.D., Professor (Plant Pathology)
M. Andrew Walker, Ph.D., Associate Professor (Viticulture and Enology)
Steve Weinbaum, Ph.D., Professor (Pomology)
Thea Wilkins, Ph.D., Associate Professor (Agronomy and Range Science)
Larry Williams, Ph.D., Professor (Viticulture and Enology)
Valerie Williamson, Ph.D., Associate Professor (Nematology)
Lin Wu, Ph.D., Professor (Environmental Horticulture)
John Yoder, Ph.D., Professor (Vegetable Crops)

Affiliated Faculty
Marita Cantwell-De Trejo, Ph.D., Lecturer (Vegetable Crops)
Carlos Crisosto, Ph.D., Associate Specialist (Pomology)
Joan DiTomaso, Ph.D., Lecturer (Vegetable Crops)
Richard Evans, Ph.D., Lecturer (Environmental Horticulture)
Teresa Fan, Ph.D., Assistant Research Biochemist (Land, Air and Water Resources)
Sham Goyal, Ph.D., Lecturer (Agronomy and Range Science)
Elizabeth Mitcham, Ph.D., Associate Specialist (Pomology)
Jeffrey Mitchell, Ph.D., Lecturer (Vegetable Crops)
Trevor Sutlow, Ph.D., Lecturer (Vegetable Crops)

Graduate Study: The Graduate Group in Plant Biology offers programs of study and research leading to the M.S. and Ph.D. degrees. The program prepares students for careers in teaching and research at colleges and universities, government or industrial laboratories. The graduate curriculum involves both a broad overview of the discipline and in-depth study and research in one of four areas of specialization: cell and molecular biology, ecology, systematics, and evolution; integrative plant and crop physiology; and plant development and structure. These areas of specialization permit individual study and research into diverse aspects of plant biology, including anatomy, biochemistry, cell biology, cytology, developmental biology, ecology, genetics, molecular biology, morphology, paleobotany, physiology, population biology, systematics, and weed science.

Preparation. For both the M.S. and Ph.D. programs, a level of scholastic development equivalent to a Bachelor's degree in biological sciences from a recognized college or university is required. Courses in the following areas are considered to be prerequisite to the advanced degrees in Plant Biology: inorganic chemistry, organic chemistry, introductory physics, genetics, structural botany, biochemistry, introductory plant physiology, introductory plant physiology laboratory, calculus, introductory statistics, plant ecology/systematics (if not major), plant cell/molecular biology. Limited deficiencies can be made up after admission. The graduate adviser, the major professor, and the student will design a program of advanced courses to meet individual academic needs within one of the specializations.

Graduate Adviser. Contact the Group office.

Courses in Plant Biology (PBI)

Graduate Courses

201. Plant Senescence: Cellular and Molecular Aspects (4)
 Lecture—4 hours. Prerequisite: Plant Biology 111, 112, Biological Sciences 102 and 103. Cellular and molecular phenomena associated with the senescence of plants and plant parts. Emphasis on principles and mechanisms. Offered in alternate years.—(I.)

202. Advanced Physiology of Cultivated Plants (2)
 Lecture—1 hour; discussion—1 hour. Prerequisite: graduate standing, Plant Biology 111 or the equivalent. Physiological processes as they pertain to growth and partitioning in higher plants. Background lectures on source-sink concepts and current areas of investigation followed by weekly round-table discussion led by students on focused sub-topics in the source-sink area. Offered in alternate years. (S/U grading only.)—I. Matthews, DeJong

205B. Advanced Plant Physiology (3)
 Lecture/discussion—3 hours. Prerequisite: Plant Biology 111, 112, and Biological Sciences 103. Photosynthesis, photosynthetic phosphorylation, chloroplast metabolism and biology. Offered in alternate years.—Th. Fong

205C. Advanced Plant Physiology/Biochemistry (3)
 Lecture—3 hours. Prerequisite: Plant Biology 111, 112, Biological Sciences 103. Integrative studies that combine physiological, biochemical and molecular approaches to study of plant metabolism. Fundamentals of basic metabolic pathways; extending use of mutants and genetic engineering to dissect such pathways; how pathways are integrated and respond to signals. Offered in alternate years.—I.
208. Plant Hormones and Regulators (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: Plant Biology 112. Chemistry, biochemistry and physiological activity of major classes of natural plant growth regulators. Primary consideration given to concepts that are of current research interest. Offered in alternate years. —II. Labavitch

210. Plant Ecophysiology (3)
Lecture—3 hours. Prerequisite: Plant Biology 111, 112, 117. Study of the mecha-
nisms of physiological adaptation of plants to their environment. Offered in alter-
nate years. —(III.)

211. Ecophysiological Methods (3)
Lecture—1 hour; laboratory—4 hours; individual project; one Saturday field trip to be arranged. Prerequisite: Plant Biology 111, 117, and consent of instructor. A lab-
oratory and lecture course covering basic concepts underlying the research meth-
ods and instrumentation useful in plant ecophysiology. —III. (III.) Peary

212. Physiology of Herbical Action (3)
Lecture—3 hours. Prerequisite: Plant Biology 112, 122. Study of the fundamental processes involved in the physiological action of herbicides. Detailed consideration of the fate of herbicides in plants. Offered in alternate years. —III. Beyer, Falk

214. Higher Plant Cell Walls (3)
Lecture—2 hours; discussion—1 hour. Prerequisite: Plant Biology 112, and a course in biochemistry. Lectures focus on the structure, analysis, synthesis, and develop-
ment-related metabolism of cell walls. Discussions center on analysis of scientific papers related to lecture topics. Offered in alternate years. —III. Labavitch, Delmer, Nevins

216. Advanced Topics in Mineral Nutrition (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: Plant Biology 135 or consent of instructor. Cellular compartmentation of mineral elements, new methods and results; selected topics in absorption, translocation, metabolism and function of mineral ele-
ments; nutrition and transport in plants adapted to special nutrient environments. Offered in alternate years. —III. Lachli

217. Membrane Biology of Plants (3)
Lecture—4 hours; discussion—1 hour. Prerequisite: Plant Biology 112 and Biologi-
cal Sciences 103, or consent of instructor. Structure, biogenesis, and function of plant cell membranes. Emphasis will be placed on the molecular basis of plant mem-
brane functions and on the role of membranes in selected physiological processes. Offered in alternate years. —III. Lucas

218A. Advanced Concepts in Plant Cell Biology: Cell Biogenesis (3)
Lecture/discussion—3 hours. Prerequisite: Biological Sciences 102, 103. Survey of molecular mechanisms underlying structural and functional differentiation of plant cell subcellular compartments. Topics include membrane and protein biosynthesis, protein targeting and turnover, and regulation of nuclear and organelar gene expression as related to the biogenesis of plant cell organelles. Offered in alternate years. —(III) Bennet, Thog

218B. Advanced Concepts in Plant Cell Biology: Signal Transduction and Intercellular Communication (3)
Lecture—3 hours. Prerequisite: Biological Sciences 102, 103 or consent of instruc-
tor. Intracellular signal transduction pathways in the plant cells as well as longer term, adaptive responses which involve signals transmitted between plant cells. Weekly lectures and student-led discussions on current literature. Offered in alter-
nate years. —III. O'Neill, Lucas

219. Reproductive Biology of Flowering Plants (3)
Lecture—2 hours; discussion—1 hour. Prerequisite: Plant Biology 111 and Biologi-
cal Sciences 101. Fundamental mechanisms of reproductive biology of flowering plants and their influence on genetic variation, evolution, and cultural practices. Offered in alternate years. (Former course Plant Science 270.) —(III)

220. Plant Developmental Biology (4)
Lecture—3 hours; discussion—1 hour; term paper. Prerequisite: plant anatomy, physiology, and biochemistry. A survey of the concepts of plant development and organization. Examines plant cells, tissues, and organs with special emphasis on experimental evidence for mechanisms regulating developmental processes. Offered in alternate years. —III. Bowman, Sinha

223. Special Topics in Scientific Method (2)
Discussion—2 hours. Examine the historical and philosophical background of the scientific method. Analyze the rational, perceptual, causal, and social aspects of scientific knowledge. Clarify the roles of reason, experimentation and creativity in scientific research. (SU grading only.) —I. Bradford

224. Water in Physiology and Ecology of Plants (4)
Lecture—2 hours; discussion—1 hour. Prerequisite: Hydrologic Science 124, or Plant Biology 111 and 117, or consent of instructor. Evapotranspiration and energy balance; water and component potentials; water transport to, within, and from plants; dynamics and regulation of water status; drought resistance; responses to water deficits and salinity; water use efficiency; adaptation to aridity; productivity in relation to water. Offered every fourth quarter. (Former course Plant Science 224.) —(III)

225. Methods and Instrumentation for Crop and Soil Science (3)
Lecture—1 hour; laboratory—3 hours; discussion—1 hour. Prerequisite: basic knowledge of plant physiology, soil science, chemistry and physics. Theory and prac-
tical in situ sampling and instrumentation methods for crop science (broadly defined to include tree crops) and related aspects of soil science (e.g., moisture and fertility) and laboratory analysis. Offered in alternate years. —III. (III)
Faculty

Thomas Adams, Ph.D., Professor (Animal Science)
Gary B. Anderson, Ph.D., Professor (Animal Science)
Steve E. Anderson, Ph.D., Professor (Human Physiology)
Joseph F. Antognini, Ph.D., Professor (Anesthesiology and Pain Medicine)
Marylynn S. Barkley, Ph.D., Professor (Neurobiology, Physiology, and Behavior)
Hilary P. Benton, Ph.D., Professor (Anatomy, Physiology, and Cell Biology)
Patricia Berger, Ph.D., Professor (Animal Science)
Edmund Bernauer, Ph.D., Professor (Exercise Science)
Ann Bonham, Ph.D., Professor (Internal Medicine)
Michael L. Bruss, Ph.D., Professor (Anatomy, Physiology, and Cell Biology)
Pete M. Caia, Ph.D., Professor (Human Physiology)
Richard Carlsten, Ph.D., Professor (Human Physiology)
Earl E. Carstens, Ph.D., Professor (Neurobiology, Physiology, and Behavior)
Joseph J. Jr, Cejch, Ph.D., Professor (Wildlife, Fish, and Conservation Biology)
Leo M. Chalupa, Ph.D., Professor (Neurobiology, Physiology, and Behavior)
Ernest S. Chang, Ph.D., Professor (Bodega Marine Laboratory)
Gary N. Cherr, Ph.D., Professor (Bodega Marine Laboratory)
Nicky Clayton, Ph.D., Professor (Neurobiology, Physiology, and Behavior)
Alan J. Conley, Ph.D., Professor (Population Health and Reproduction)
Carroll E. Cross, Ph.D., Professor (Internal Medicine)
John H. Crowe, Ph.D., Professor (Molecular and Cellular Biology)
Fitzyo E. Curry, Ph.D., Professor (Human Physiology)
Irwin Feinberg, Ph.D., Professor (Psychiatry)
Charles A. Fuller, Ph.D., Professor (Neurobiology, Physiology, and Behavior)
J. David Furlow, Ph.D., Professor (Neurobiology, Physiology, and Behavior)
Dorothy Gietzen, Ph.D., Professor (Anatomy, Physiology, and Cell Biology)
Jack M. Goldberg, Ph.D., Professor (Neurobiology, Physiology, and Behavior)
Michael Goodman, Ph.D., Professor (Endocrinology)
Sarah D. Gray, Ph.D., Professor (Human Physiology)
John H. Horowitz, Ph.D., Professor (Neurobiology, Physiology, and Behavior)
Barbara A. Horowitz, Ph.D., Professor (Neurobiology, Physiology, and Behavior)
Andrew Ishida, Ph.D., Professor (Neurobiology, Physiology, and Behavior)
James H. Jones, Ph.D., Professor (Surgical and Radiological Sciences)
Marc Kaufman, Ph.D., Professor (Internal Medicine)
George A. Kayes, Ph.D., Professor (Internal Medicine)
Nguyen D. Kien, Ph.D., Professor (Anesthesiology and Pain Medicine)
Mark Ktlesos, Ph.D., Professor (Medicine and Epidemiology)
Vijaya G. Kumari, Ph.D., Professor (Cell Biology and Human Anatomy)
Bill Lasley, Ph.D., Professor (Internal Medicine)
Irwin Lu, Ph.D., Professor
K.C. Kent Lloyd, Ph.D., Associate Professor (Anatomy, Physiology, and Cell Biology)
Roger McDonald, Ph.D., Professor (Nutrition)
Jim R. Rimall, Ph.D., Professor (Avian Sciences)
Paul A. Mox, Ph.D., Professor (Exercise Science)
Gabrielle Nevitt, Ph.D., Assistant Professor (Neurobiology, Physiology, and Behavior)
Richard Nuccitelli, Ph.D., Professor (Molecular and Cellular Biology)
Martha E. O’Donnell, Ph.D., Professor (Human Physiology)
Anita M. Oberschuck, Ph.D., Associate Professor (Animal Science)
James W. Overstreet, Ph.D., M.D., Professor
Pamela Pappone, Ph.D., Professor (Neurobiology, Physiology, and Behavior)
John A. Payne, Ph.D., Assistant Professor (Human Physiology)
Isaac N. Pessah, Ph.D., Associate Professor (Molecular Biosciences)
Michael P. Remmer, Ph.D., Professor (Neurology)
Eugene M. Renkin, Ph.D., Professor (Human Physiology)
Janet F. Roser, Ph.D., Professor (Animal Science)
John C. Rutledge, M.D., Professor (Internal Medicine)
Saul Schafer, M.D., Professor (Internal Medicine)
Edward S. Schelegle, Ph.D., Professor (Anatomy, Physiology, and Cell Biology)
Michael F. Seldin, Ph.D., M.D., Professor (Biological Chemistry)
Arnold J. Silman, Ph.D., Professor (Neurobiology, Physiology, and Behavior)
Charles Stebbins, Ph.D., Assistant Adjunct Professor (Internal Medicine)
E.P. (Gene) Steffey, Ph.D., Professor (Surgical and Radiological Sciences)
Judith S. Stern, Ph.D., Professor (Nutrition)
Frazier Stevenson, Ph.D., Professor (Internal Medicine)
J. David Symons, Ph.D., Assistant Adjunct Professor (Internal Medicine)
Alice Tarantal, Ph.D., Assistant Adjunct Professor (Internal Medicine)
W. Jeffrey Weidner, Ph.D., Professor (Neurobiology, Physiology, and Behavior)
Robert H. Weiss, Ph.D, Professor (Internal Medicine)

Barry W. Wilson, Ph.D., Professor (Avian Sciences)
Martin Wilson, Ph.D., Professor (Neurobiology, Physiology, and Behavior)
Dorothy Wooley, Ph.D., Professor (Neurobiology, Physiology, and Behavior)
Reen Wu, Ph.D., Professor

Graduate Study. The Graduate Group in Physiology offers programs of study and research leading to the M.S. and Ph.D. degrees and participates in joint Ph.D./M.D. and Ph.D./D.V.M. programs. The programs emphasize broad training in the fundamental principles of physiology and in-depth specialization in cardiorespiratory, cellular, comparative, endocrine, reproductive, exercise, metabolic, neurophysiology, systemic and domestic animal physiology. For information regarding these programs, address the Program staff person at the group office.

Graduate Advisers. D. Gietzen (Anatomy, Physiology, and Cell Biology), J. Roser (Animal Science), and Marc Kaufman (Cardiovascular Medicine).

Graduate Admissions Officer. P. Berger (Animal Science).

Courses in Physiology (PGG)

Graduate Courses

200L. Animal Cell Culture Laboratory (4)
Discussion—2 hours; laboratory—6 hours. Prerequisite: courses in undergraduate biochemistry, cell biology, or general physiology, or consent of instructor. Techniques of cell culture, with emphasis on cell physiology and the actions of drugs and toxicants on cultured somatic cells. Design, performance and interpretation of experiments with animal cells in vitro.—II. (II.) B. Wilson, R. Wu

210A-210B-210C. Advanced Physiology (4-6)
Lecture—2 hours (210A) or 5 hours (210B and 210C). Discussion—1 hour. Prerequisite: graduate student in the Physiology Graduate Group Ph.D. program, or consent of instructor. Advanced course on general principles of physiology, surveying homeostasis, cellular and selected topics, and neurophysiology. (Physiology 210A is the same course as Human Physiology 210A.—I-II-III. (I-II-III.)

214. Neurophysiology (4)
Lecture—4 hours. Prerequisite: Neurobiology, Physiology and Behavior 111B, 112; consent of instructor. Electrical activity of neurons and neuroeffector junctions; physiology of the nervous system as studied by its electrical activity.—II. (II.) Carstens

216. Neurophysiology Literature (3)
Lecture—1 hour; discussion—2 hours. Lectures covering experimental and theoretical methods in studying cell membrane ion channels and the resulting characterization of the physiological functions and structure/function relationships of some of the most important channel types. Discussion of classical and current original papers.—I. (I.) Pappone

217. The Vertebrate Eye (2)
Seminar—1 hour; lecture/discussion—1 hour. Prerequisite: graduate standing and a background in biology; Neurobiology, Physiology and Behavior 120F strongly recommended. Physiology, biochemistry, and biology of the vertebrate eye with emphasis on the retina, particularly photoreceptors. A comparative approach will be taken with adaptations in ocular function related to behavior and environment. May be repeated for credit with consent of instructor. Offered in alternate years.—II. R. Wu

218. Topics in Circulatory Pathophysiology (3)
Lecture—1 hour; discussion—2 hours. Prerequisite: graduate standing. Selected topic in circulatory or cardiopulmonary physiology will be addressed each offering. Topics will include pathophysiology. Lecture and discussion based on current research literature in the field. May be repeated with consent of instructor. Offered in alternate years.—II. Weidner

219. Muscle Growth and Development (3)
Lecture—2 hours; seminar—1 hour. Prerequisite: Biological Sciences 103, Biological Sciences 104 or Molecular and Cellular Biology 150, or consent of instructor. Integration of growth and development of skeletal muscle; morphology, biochemistry, control mechanisms, circulatory and nutritional factors. Prenatal and neonatal differentiation of fiber types. Experimental and hereditary myopathies. Offered in alternate years.—II. Carlsen

220. General and Comparative Physiology of Reproduction (3)
Lecture—3 hours. Prerequisite: Neurobiology, Physiology and Behavior 110, 110L; Biological Sciences 101, 103. Basic phenomena of sexual and asexual reproduction and comparisons of processes in a wide variety of animals; gamete formation, structure, and metabolism; fertilization; neuroendocrine mechanisms in mammalian behavior and reproductive cycles; behavioral aspects.—III. (II.) Anderson, Lasley

222. Mammalian Gametogenesis and Fertilization (3)
Lecture/discussion—3 hours. Prerequisite: Neurobiology, Physiology and Behavior 121 or the equivalent. Course will emphasize our current understanding of events in mammalian gametogenesis and the fertilization process. Published results, conclusions drawn from these results, and their contribution to our understanding will be discussed.—II. (II.) Berger
230. Advanced Endocrinology (2)
Lecture—2 hours. Prerequisite: Neurobiology, Physiology and Behavior 130 or the equivalent, and graduate standing. Focus on timely topic of endrocrine research. Critical review of current literature and discussion of future research strategies in the area. May be repeated for credit when topic differs.—II. (II.)

231. Neuroendocrinology (3)
Lecture—3 hours. Prerequisite: Neurobiology, Physiology and Behavior 110 or the equivalent course in systemic physiology; Neurobiology, Physiology and Behavior 130 or the equivalent course in endocrinology; Neural-endocrine interactions; neural regulation of the endocrine system, especially in relation to reproduction; the role of hormones and growth factors in sexual differentiation of the brain.—II. (II.)

234. Neurophysiological Basis of Neurotoxicology (3)
Lecture—3 hours. Prerequisite: Neurobiology, Physiology and Behavior 110 or the equivalent; basic understanding of neurophysiology. Mechanisms of action at the cellular and systemic level of a number of different neurotoxins and toxicants. Examples of ways toxins may act on the nervous system and techniques for study of neurotoxicology. (Same course as Environmental Toxicology 234.)—III. (III.) Wooley

242. Biological Rhythms (3)
Lecture—2 hours; lecture/discussion—1 hour. Prerequisite: Neurobiology, Physiology and Behavior 110 or the equivalent. General aspects and basic mechanisms of biological rhythms; the importance of rhythm desynchronization in areas of pharmacology and space medicine; telemetry; mathematical methods; chronometry; daily, reproductive, and annual periods; shift-work, jet lag and sleep disorders. Offered in alternate years.—(I.) Fuller

275. Neurohumoral Regulatory Mechanisms of Thermogenesis (3)
Lecture—2 hours; discussion—1 hour. Prerequisite: Neurobiology, Physiology and Behavior 110 or the equivalent; Biological Sciences 104 or the equivalent; Biological Sciences 102 or the equivalent; consent of instructor. Designed for graduate and advanced undergraduate students, this course will examine thermogenic systems in homeotherms (primarily mammals) with respect to regulation (hormonal and central nervous control) and effector mechanisms (basis of heat generation at the target cell).—II. (II.) Horwitz

290. Seminar (1)
Seminar—1 hour. Discussion and critical evaluation of advanced topics and current trends in research. (SU grading only.)—I, II, III, (I, II, III.)

290C. Research Conference in Physiology (1)
Discussion—1 hour. Prerequisite: graduate standing and consent of instructor. Presentation and discussion of faculty and graduate student research in physiology. May be repeated for credit. (SU grading only.)—I, II, III, (I, II, III.)

291B. Seminar in Cellular Mechanisms of Adaptation (1)
Discussion—0.5 hour; seminar—0.5 hour. Prerequisite: Neurobiology, Physiology and Behavior 100B; Biological Sciences 103; consent of instructor. Review and evaluation of current literature and research in cellular adaptations to the environment. May be repeated for credit when topic differs. (SU grading only.)—I, II, III, (I, II, III.) Horwitz

291D. Research Approaches in Physiology (2)
Seminar—2 hours. Prerequisite: graduate standing in Graduate Group in Physiology or consent of instructor. Current research in physiology. Overall design of experiments and particular research areas. (SU grading only.)—I, (I.)

293. Current Progress in Physiology (1)
Seminar—1 hour. Prerequisite: graduate standing and consent of instructor. Seminars presented by guest lecturers describing their current research activities. May be repeated for credit. (SU grading only.)—I, II, III, (I, II, III.)

298. Group Study (1-5)

299. Research (1-12)
(SU grading only.)

Professional Courses
300A-300B. Pedagogical Aspects of Physiology in Higher Education (3-3)
Lecture, discussion, or laboratory, or combination. Prerequisite: meet qualifications for teaching assistant in physiology. Participation as a teaching assistant for one quarter in a designated physiology course. Instruction in methods of leading discussion groups, leading laboratory sections, writing and grading quizzes, operation and use of laboratory equipment, and reading and grading laboratory reports. Course meets teaching requirements for Ph.D. program in Physiology. (SU grading only.)—I, II, III, (I, II, III.)

390. The Teaching of Physiology (1)
Discussion—1 hour. Prerequisite: Teaching Assistant assignment to a physiology lecture course and consent of instructor. Practical experience in methods and problems of teaching physiology lecture courses. May include analyses of texts and supporting material; discussion of teaching techniques, preparing for and conducting discussion sessions, and formulation of topics and questions for examinations under supervision of instructor. May be repeated for credit. (SU grading only.)—I, II, III, (I, II, III.)
Physical Education

(College of Letters and Science)
Suzanne C. Williams, M.S., Program Director
Program Office, 264 Hickey Gymnasium (530-752-1111)

Committee in Charge
G. Robert Biggs, B.A. (Physical Education)
Kathleen M. DeVyoung, B.A. (Physical Education)
Pamela L. Gill-Fisher, M.A. (Physical Education)
Raymond S. Goldbar, M.A. (Physical Education)
Albert A. Harrison, Ph.D. (Psychology)
Barbara A. Jahn, M.S. (Physical Education)
Melvin R. Ramey, Ph.D. (Civil and Environmental Engineering)
Deanne M. Vochatzer, M.S. (Physical Education)
Jon E. Vochatzer, M.S. (Physical Education)
Suzanne C. Williams, M.S. (Physical Education)

Faculty
G. Robert Biggs, B.A., Supervisor
Gary Colberg, M.A., Principal Recreation Supervisor
Kathleen M. DeVyoung, B.A., Supervisor
Pamela L. Gill-Fisher, M.A., Supervisor
Raymond S. Goldbar, M.A., Supervisor
Barbara A. Jahn, M.S., Supervisor
Deanne M. Vochatzer, M.S., Supervisor
Jon E. Vochatzer, M.S., Supervisor
Suzanne C. Williams, M.S., Supervisor

Affiliated Faculty
Stephen T. Bronzan, M.S., Lecturer/Coach
Mitchell Campbell, M.A., Student Affairs Officer/Lecturer
Brian Fogel, M.A., Lecturer/Coach
Stephanie Hasbecker, M.A., Lecturer/Coach
Jeff Hogan, B.A., Supervising Athletic Trainer/Lecturer
Daryl Lee, M.S., Lecturer/Coach
Bill Mize, M.B.A., Lecturer/Coach
Jill Radzinski, M.A., Athletic Trainer/Lecturer
Maryclaire Robinson, M.S., Lecturer/Coach
Dwayne Schaffler, M.A., Lecturer/Coach
Sandy Simpson, B.A., Lecturer/Coach
Phillip Swinley, M.A., Lecturer/Coach
Lisa Varnum, B.S., Athletic Trainer/Lecturer

The Program of Study
The Program in Physical Education facilitates the development and offering of non-major courses related to physical activities and education, fitness and health, athletic training, and organized sport. The Program is available as part of a student's general educational experience to enhance and broaden the understanding and experience of physical activity in the maintenance of lifetime health and fitness. The basic activities series includes Physical Education 1, beginning sports skills and knowledge, Physical Education 6 for students participating in intercollegiate athletics, and Physical Education 7 for students interested in a career in teaching/coaching in grades K-12.

Additional lower division courses include those in special skill areas, such as life-saving and water safety, scuba diving, and health and fitness. Upper division courses include advanced skills in scuba diving and a series of courses that meet the mandated requirements for students pursuing teacher preparation and certification.

Teaching Credential Subject Representative. S. Williams. See also the section on the Teacher Education Program.

Class and Recreational Use of Facilities. The incidental fee payable by all students at the time of registration entitles students to the use of the gymnasium, show- ers, Lockers, tennis courts, and athletic fields. Certain equipment for games and sports is available for exercise and recreation, either with or without instruction. Lockers must be turned in on the last day of class, i.e., before the final examination period. Fines are imposed for each formal transaction necessitated by failure of the student to comply with the regulations of the program.

Courses in Physical Education (PHE)

Lower Division Courses

1. Physical Activities (0.5)
Laboratory—2 hours. Sections in: (a) sports skills, rules and strategy; (b) physical fitness and personal health; (c) recreation; (d) aerobic dance. May be repeated along with course 6 for a combined total of 6 units. (P/NP grading only.)—I, II, III. (I, II, III.)

2. Principles of Basic Exercise Conditioning (2)
Lecture—1 hour; laboratory—2 hours. A survey of the basic concepts, facts, and accepted approaches current in selected exercise training regimens, e.g., theory of aerobic function and capacity, exercise and diet in weight control, muscular strength development and maintenance, and limitations of environment, age, and gender on fitness levels. (P/NP grading only.)—I, II, III.

6. Preparation and Participation in ICA Competition (1)
Discussion/lab—10-20 hours. Prerequisite: consent of instructor (coach). Preparation and participation in Intercollegiate Athletics. Development of fundamental and advanced individual and team skills. In-depth knowledge of rules and strategy. Advanced sports competition and Conference and NCAA levels. May be repeated along with course 1 for a combined total of 6 units. (P/NP grading only.)—I, II, III. (I, II, III.)

7. Professional Physical Education Activities: Men and Women (1)
Lecture—1 hour; or laboratory—2 hours. Fundamental skills for: (a) coaching competitive athletics; (b) classroom teaching and coaching; and (c) classroom teaching and officiating. May be repeated for a total of six units.—I, II, III. (I, II, III.)

15. Administration of Intramural Sports (2)
Lecture—2 hours. Planning and administering intramural sports programs at the high school and college level.—I. (I.)

25. Theory of Lifesaving and Water Safety (2)
Lecture—1 hour; laboratory—2 hours. Prerequisite: sound physical condition, and no physical handicap that would render student unable to perform the required skills and ability to pass preliminary swimming test. Provides the student with the knowledge, organizational procedures, and skill development necessary to provide for water safety and save his/her own life or the life of another in an aquatic emergency. (American Red Cross Advanced Lifesaving Certificate awarded upon successful completion of necessary requirements.)—I, II, III. (I, II, III.)

27. Training Course for Water Safety Instructors (2)
Lecture—1 hour; laboratory—2 hours. Prerequisite: Advanced swimming (course 1) or consent of instructor; course 5 and current Advanced Life-Saving Certificate. Theoretical knowledge and practical experience necessary for the organization and teaching of swimming and lifesaving classes. (American Red Cross Water Safety Instructor’s Certificate awarded upon successful completion of necessary requirements.)—I, II, III. (I, II, III.)

29. Basic Scuba (2)
Lecture—2 hours; laboratory—2 hours. Prerequisite: good physical condition, ability to pass preliminary swimming test. Introduction to basic knowledge required for scuba diving, function and maintenance of equipment, physics and physiology of diving, diver first aid and CPR, oceanography and marine life, and underwater communication. Pool and open water sessions available for certification. (P/NP grading only.)—I, II, III. (I, II, III.)

40. Drugs and Society (2)
Lecture—2 hours; fieldwork—2 hours total; film-viewing—5 hours total. Pharmacology, methods of use, and effects of use of psychoactive and performance-enhancing drugs. Historical overview of drug use. Introduction to behavior of “at-risk” and “use” populations. (P/NP grading only.)—I, II, III. (I, II, III.)

44. Principles of Healthful Living (2)
Lecture—2 hours. Application of scientific and empirical knowledge to personal, family, and community health problems. (P/NP grading only.)—II, III. (II, III.)

92. Physical Education Internship (1-5)
Internship—3-15 hours; written project proposal and evaluation. Prerequisite: consent of instructor; enrollment dependent on availability of intern positions, with priority given to Exercise Science majors. Work experience in the application of physical activity programs to teaching, recreational, clinical or research situations under department faculty supervision. May be repeated for credit once but no internship units will be counted toward Exercise Science major. (P/NP grading only.)

97T. Tutoring in Physical Education (1-5)
Tutorial—1-5 hours. Prerequisite: lower division standing and consent of Department Chairperson. Tutoring of students in lower division physical activity courses. Weekly meetings with instructor in charge of courses. Written reports on methods and materials required. May be repeated once for credit. (P/NP grading only.)

97TC. Tutoring in the Community (1-5)
Tutorial—2-15 hours; discussion—1 hour. Prerequisite: lower division standing and consent of Department Chairperson. Tutoring in the community in physical activity related projects under the guidance of the Physical Education faculty. Regular meetings with instructor in charge and written report required. May be repeated once for credit. (P/NP grading only.)

98. Directed Group Study (1-5)
Prerequisite: consent of instructor and Department Chairperson. (P/NP grading only.)
Upper Division Courses

100. Field Experience in Teaching Physical Education (2)
Discussion—1 hour; fieldwork—4 hours. Prerequisite: upper division standing and appropriate course 1 or 7. Tutoring or teacher's aide in physical education activities, including athletic coaching, in public schools under the guidance of a regular teacher with supervision by a departmental faculty person. May be repeated once for credit. (P/NP grading only.)—I, II, III. (I, II, III.)

128A. Intermediate Scuba Diving (4)
Lecture—3 hours; laboratory—3 hours; fieldwork—2 hours. Prerequisite: course 29 and consent of instructor. Lectures and practice in diver safety, rescue, accident management and patient care. Pool and open water sessions required for certification. (P/NP grading only.)—II. (II.) Fastenau

128B. Research Diving Techniques (4)
Lecture—3 hours; laboratory—3 hours. Prerequisite: course 128A; consent of instructor. Lectures and application on search and light salvage, night diving, research techniques, cold-water, low visibility diving, blue water, deep and attitude diving. Pool and open water sessions required for certification. (P/NP grading only.)—III. (III.) Fastenau

132. First Aid Leadership and Accident Management (3)
Lecture—2 hours; students assist in teaching course 5—1 hour to be arranged. Prerequisite: course 5 or American Red Cross Advanced First Aid Card. Administration, organization and supervision of safety and first aid programs in school and community sports, recreation and all types of group activities. The study and practice of first aid leadership skills. (The American Red Cross First Aid Instructor Card will be awarded upon successful completion of the course.)—I, II, III. (I, II, III.)

142. Physical Education in the Public Schools (3)
Lecture—3 hours. Analysis and study of the principles and methods basic to teaching physical education at the elementary and secondary levels.—II. (II.) S. Williams

143. Coaching Effectiveness (3)
Lecture—3 hours. Prerequisite: upper division standing; 3 units of courses 1 and 6 combined. Synthesis and application of basic components of sport psychology, sport pedagogy, and sport physiology and basic management and administration of athletics in public high schools. (P/NP grading only.)—II. (II.) Bronzan, King

144. Principles of Health Education (2)
Lecture—2 hours. Prerequisite: course 44 and upper division standing or consent of instructor. Principles of teaching health education in the public schools. (P/NP grading only.)—II. (II.)

145. Administration of Health/Fitness Programs (2)
Lecture—2 hours. Principles of organizing and directing health/fitness programs. Includes selection and training of personnel, methods of evaluating personnel and programs, and elements of planning.—III. (III.)

150. Recreation in the Community (3)
Lecture—2 hours; discussion—1 hour; two Saturday field trips—8 hours. The nature and scope of community recreation programs in California emphasizing low income, highly populated areas, and poor rural communities. Offered in alternate years.—(III.) John

192. Physical Education Internship (1-12)
Internship—3-36 hours; written project proposal and evaluation. Prerequisite: upper division standing and consent of instructor; enrollment dependent on availability of intern positions, with priority given to Exercise Science majors. Work experience in the application of physical activity programs to teaching, recreational, clinical or research situations under department faculty supervision. May be repeated for a total of 12 units (including course 92) but no internship units will be counted toward Exercise Science major. (P/NP grading only.)—I, II, III. (I, II, III.)

197T. Tutoring in Physical Education (1-5)
Tutorial—1-5 hours. Prerequisite: consent of chairperson. Tutoring of students in lower division physical activity courses. Written reports on methods and materials required. May be repeated once for credit. (P/NP grading only.)

197TC. Tutoring in the Community (1-5)
Tutorial—1-5 hours; discussion—1 hour. Prerequisite: upper division standing and consent of Department Chairperson. Tutoring in the community in physical education related projects under the guidance of the Physical Education faculty. Regular meetings with instructor in charge and written report required. May be repeated once for credit. (P/NP grading only.)

198. Directed Group Study (1-5)
Prerequisite: consent of instructor and Department Chairperson. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)

Professional Courses

300. The Elementary Physical Education Program (2)
Lecture—1 hour; laboratory—2 hours; field trips to selected programs. Prerequisite: senior standing or credential student. Introduction to principles, theories, material, and practices of elementary school physical education program.—III. (III.) Goldbar

380. Methods of Teaching Physical Education (3)
Lecture—1 hour; laboratory—6 hours. Prerequisite: course 142 and six units of course 7; or consent of instructor. The methods of teaching group and individual activities for grades K-12; program planning, class management, organization, and evaluation. (P/NP grading only.)—III. (III.) S. Williams
Philosophy

(General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience)

Preparatory Subject Matter ... 16

One course from any three of the following areas 12

(a) General Philosophy: Philosophy 1

(b) Ancient Philosophy: Philosophy 21

(c) Seventeenth Century Philosophy: Philosophy 22

(d) Eighteenth Century Philosophy: Philosophy 23

(e) Ethics: Philosophy 14, 15 or 24

(f) Philosophy of Science: Philosophy 21, 30, 32 or 33

(g) Metaphysics: Philosophy 101

(h) Theory of Knowledge: Philosophy 102

Philosophy 12 ... 4

Depth Subject Matter .. 36

Upper division units in Philosophy .. 36

Note: Philosophy 101 and 102 may not be counted toward both preparatory and depth subject matter units.

Total Units for the Major .. 52

Major Adviser. G.J. Mattey.

Minor Program Requirements:

Students wishing to minor in Philosophy may choose a general minor or a minor specializing in logic. There are no specific courses required for the general minor, so students may create a program to suit their own interests. The range of choice in the logic specialization is limited to the courses listed.

Philosophy—General ... 20

Twenty upper division units in philosophy. At most, 4 units may be lower division if the student has taken two lower division philosophy courses, one of which is drawn from the following: Philosophy 12, 21, 22, 23.

Philosophy—Logic .. 20

Philosophy 12 or Mathematics 108 ... 4

Philosophy 112 .. 4

Select units from Philosophy 113, 131, 132, 133, 134, 135 12

Honors Program. The department offers an honors program, which gives qualifying majors the opportunity to work closely with faculty and graduate students.

Courses for Non-Majors. Students majoring in most disciplines in the university will find courses relevant to their educational or career goals. Philosophy 1 is the introductory course for non-majors. Philosophy 5 teaches critical thinking. The following courses are recommended:

Department Activities. The Philosophy department sponsors a lecture-seminar series of well-known philosophers who present papers in their fields of expertise. The department also operates ongoing faculty and graduate student colloquia. Undergraduate students are welcome to attend and join these discussions. Information can be obtained in the department office.

Graduate Study. The Department of Philosophy offers programs of study leading to the M.A. and Ph.D. degrees. In association with the Program on Economy, Justice and Society, the department also offers the Ph.D. in Philosophy with designated emphasis in Economy, Justice and Society. Detailed information may be obtained by writing to the Graduate Adviser.

Graduate Adviser. R. Cummins.

Courses in Philosophy (PHI)

Lower Division Courses

1. Introduction to Philosophy (4) Lecture—3 hours; discussion—1 hour. Problems of philosophy through major writings from various periods. Problems are drawn from political, aesthetic, religious, metaphysical, and epistemological concerns of philosophy. GE credit: ArtHum, Wrt.—(I, II, III, (I, II, III)) King, Cummins

2. Critical Reasoning (4) Lecture—3 hours; discussion—1 hour. Criteria of good reasoning in everyday life and in science. Topics to be covered may include basic principles of deduction and induction; fallacies in reasoning; techniques and aids to reasoning, principles of scientific investigation; aids to clarity. Not open to students who have completed course 5. GE credit: Wrt.—(II.)

11. Philosophy East and West (4) Lecture—3 hours; discussion—1 hour. Comparative treatment of select theories in Eastern and Western philosophy, e.g., of self, God, being, knowledge, enlightenment. Topics selected from the following philosophies: Eastern—Buddhist, Confucian, Hindu, Taoist; and Western—Platonist, Aristotelian, Medieval Christian, Modern Rationalist/Epimrctic, Kantian, Hegelian, Existentialist. GE credit: ArtHum, Div, Wrt.—(III.)
105. Philosophy of Religion (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: one course in philosophy recommended. Logical, metaphysical, epistemological, and existential aspects of selected religious concepts and traditions. GE credit: ArtHum, Wrt.—(II.)

107. Philosophy of the Physical Sciences (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: one philosophy course or a science background recommended. Nature of testability and confirmation of scientific laws; nature of scientific facts, theories, explanations, and models. Problems of causality, determinism, induction, and probability; the structure of scientific revolutions. GE credit: ArtHum or SciEng, Wrt.—(I.) Teller

108. Philosophy of the Biological Sciences (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: one course in biology or one course in philosophy. Scientific method in biology. Nature of biological theories, explanations, and models. Problems of evolutionary theory, ecology, genetics, and sociobiology. Science and human values. GE credit: ArtHum or SciEng, Wrt.—(I.) Griesemer

109. Philosophy of the Social Sciences (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: one course in philosophy or a social science recommended. The nature of the social sciences, their subject matter and methods. Similarities to and differences from natural and life sciences. Predicting and explaining human behavior. Behaviorism, Reduction, holism, and individualism. Related moral issues. The social sciences and philosophy. GE credit: ArtHum or SocSci, Wrt.—(I.) Teller

111. Philosophy of Space and Time (4)
Lecture/discussion—3 hours; term paper. Prerequisite: one upper division philosophy course and basic knowledge of philosophy of space and time. The philosophical implications of space-time theories, such as those of Newton and Einstein. Topics may include the nature of geometry, conventionalism, absolutist versus relationalist views of space and time, philosophically important relativities. GE credit: ArtHum, Wrt.—(II.) Teller

112. Intermediate Symbolic Logic (4)
Lecture/discussion—4 hours. Prerequisite: course 12 or consent of instructor. Predicate logic syntax and semantics. Transcription between predicate logic and English. Proof techniques. Identity, functions, and definite descriptions. Introduction to concepts of metatheory.—(II.) Mattey

113. Advanced Logic (4)
Lecture/discussion—4 hours. Prerequisite: course 112 or Mathematics 108 or the equivalent. Topics will vary between metamathematics of First-Order logic through the completeness and Lowenheim-Skolem theorems; and Zermelo-Fraenkel set theory typically axiomatized as a First-Order theory. May be repeated once when subject area differs.—(III.) Jubien

114. History of Ethics (4)
Lecture/discussion—4 hours. Prerequisite: one philosophy course. Study of some classic texts from the history of philosophical writing on central problems of ethics, taking the form either of a survey or concentrated examination of selected historical figures. Readings from such philosophers as Aristotle, Butler, Hume, Kant, Mill, and others. GE credit: ArtHum, Wrt.—(II.)

115. Problems in Normative Ethics (4)
Lecture/discussion—3 hours; term paper. Prerequisite: one course in philosophy. Moral philosophy studied through examination of moral problems and the moral principles and common sense intuitions that bear on them. Problems discussed may include: animal rights, fetal rights, euthanasia, justice and health care, war, nuclear deterrence, world hunger, environmental protection. GE credit: ArtHum, Wrt.—(II.)

116. Ethical Theories (4)
Lecture/discussion—3 hours; term paper. Prerequisite: one course in philosophy; one course in ethics recommended. Study of fundamental concepts and problems in ethical theory through an examination of classical and contemporary philosophical theories of ethics. Among the theories that may be discussed are utilitarianism, virtue theory, theories of natural rights, Kantian ethical theory, and contractarianism.—(III.)

117. Foundations of Ethics (4)
Lecture/discussion—3 hours; term paper. Prerequisite: one of courses 114, 115, 116, 101, or 137. Advanced investigation of questions about the nature and foundations of morality. Among the topics that may be discussed are moral realism and anti-realism, cognitivism and non-cognitivism, types of relativism, moral skepticism, nonnatural language and normative belief.—(III.) Rosati

118. Political Philosophy (4)
Lecture/discussion—3 hours; discussion—1 hour. Prerequisite: one course in philosophy. Intensive examination of some central concepts of political thought such as the state, sovereignty, rights, obligation, freedom, law, authority, and responsibility. (Former course 117.) Not open for credit to students who have completed former course 117. GE credit: SocSci, Div, Wrt.—(III.) Rosati

119. Philosophy of Law (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: one course in philosophy or consent of instructor. Philosophical theories of the nature of law, legal obligation, the relation of law to morals. Problems of law involving liberty and justice: freedom of expression, privacy, rights, discrimination and fairness, responsibility, and punishment. (Former course 116.) GE credit: SocSci, Div, Wrt.—(III.) Rosati
121. Topics in Metaphysics (4) Lecture/discussion—4 hours. Prerequisite: course 101. Examination of up to three topics in metaphysics, e.g., fatalism; necessity; identity; ontological categories; minds, bodies, and persons; space and time; freedom and determinism. —II. (II.) Jubien

122. Topics in Theory of Knowledge (4) Lecture/discussion—4 hours. Prerequisite: course 102. Examination of one or more topics in theory of knowledge, such as belief, skepticism, justification. May be repeated for credit when topic differs. —III. (III.) Mattey

123. Aesthetics (4) Lecture/discussion—3 hours; term paper. Prerequisite: one course in philosophy recommended. Nature of art, of artistic creation, of the work of art, and of aesthetic experience; nature and validity of criticism; relations of art to its environment. GE credit: ArtHum, Wrt. —II. Wilson

131. Philosophy of Logic and Mathematics (4) Lecture/discussion—3 hours; term paper. Prerequisite: course 12 or one course for credit in mathematics. Nature of formal systems and mathematical theories. Selected topics include logical and semantical paradoxes; foundations of mathematics; set theory, type theory, and intuitionistic theory; philosophy of geometry; philosophical implications of Gödel's incompleteness results. —Jubien

132. History of Logic (4) Lecture/discussion—3 hours; term paper. Prerequisite: one course in philosophy or logic recommended. Overview of the chief developments in the history of logic.

133. Topics in Mathematical Logic (4) Lecture/discussion—4 hours. Prerequisite: course 113 or Mathematics 125 or consent of instructor. Topics to be taken typically from the following: metalogic and model theory; axiomatic set theory and independence results; Gödel's incompleteness theorems; computability and recursion theory.

134. Modal Logic (4) Lecture/discussion—4 hours. Prerequisite: course 112 or Mathematics 108 or the equivalent. Survey of the main systems of modal logic, including Lewis systems S4 and S5. "Possible worlds" semantics and formal proofs. Applications to epistemology, ethics, or temporality. —III. (III.) Mattey

135. Alternative Logics (4) Lecture/discussion—4 hours. Prerequisite: course 12, Mathematics 108, or the equivalent. Alternatives to standard truth-functional logic, including many-valued logics, intuitionistic logics, relevance logics, and non-monotonic logics. —Mattey

137. Philosophy of Language (4) Lecture/discussion—3 hours; term paper. Prerequisite: one course in philosophy or linguistics. Discussion of philosophical theories of how languages work and philosophical problems arising from thinking about language. Emphasis on modern (1973-present) philosophical views on language. —II. (II.) Wilson, King

145. Medieval Philosophy (4) Lecture/discussion—3 hours; written reports. Prerequisite: course 21. Study of major philosophers in the medieval period. GE credit: ArtHum, Wrt.

151. Philosophy of the Nineteenth Century (4) Lecture/discussion—4 hours. Prerequisite: courses 21, 22, or 23 recommended. Idealism of Hegel, the pessimism of Schopenhauer, Marxism, the irrationalism of Kierkegaard, Nietzsche and Dostoevsky. GE credit: ArtHum, Wrt. —III. (III.) Mattey

156. Contemporary Analytical Philosophy (4) Lecture/discussion—3 hours; term paper. Prerequisite: one course in philosophy. Consideration of central analytic issues such as meaning, reference, analyticity, synthetic, reductionism, formal and ordinary language, essential properties, ontological commitment, possible world semantics; influential works by philosophers such as Russell, Moore, Wittgenstein, Austin, Carnap, Quine, Putnam, Kripke, van Fraassen. —II. (II.) Mattey

157. Twentieth Century European Philosophy (4) Lecture/discussion—4 hours. Prerequisite: one course in Philosophy. Survey of the main movements in twentieth century philosophy on the European continent, including phenomenology, existentialism, structuralism and post-modernism. Philosophers covered include Husserl, Heidegger, Sartre, Levinas, Foucault. Offered in alternate years. GE credit: ArtHum, Wrt. —III. (III.) Mattey

160. Pre-Socratics (4) Lecture/discussion—3 hours; term paper. Prerequisite: course 21. Study of the metaphorical practices of such pre-Socratic figures as the Milesians, the Pythagoreans, Heraclitus, Parmenides, Empedocles, Anaxagoras, and the atomists. —III. (III.) Wedin

161. Plato (4) Lecture/discussion—3 hours; term paper. Prerequisite: course 21. Examines Plato's most important contributions in metaphysics, epistemology, psychology, cosmology, ethics, and political philosophy. Biographies selected from Plato's middle and later writings. Offered in alternate years. —Wedin

162. Aristotle (4) Lecture/discussion—3 hours; term paper. Prerequisite: course 21. An overview of Aristotle's most central and influential writings. Topics selected from fields such as metaphysics, physics, ethics, logic, and psychology. Offered in alternate years. —I. Wedin

168. Descartes (4) Lecture/discussion—4 hours. Prerequisite: course 22. Descartes' metaphysics, theory of knowledge, and philosophy of science. Readings from Meditations on First Philosophy and Principles of Philosophy. Offered in alternate years. —I. Mattey

169. Spinoza (4) Lecture/discussion—4 hours. Prerequisite: course 22.

170. Leibniz (4) Lecture/discussion—4 hours. Prerequisite: course 22. Survey of the philosophical writings of G. W. Leibniz. Topics include Leibniz's logic, the existence of God, human freedom, substance, and the relation between science and metaphysics. Offered in alternate years. —III.

172. Locke and Berkeley (4) Lecture—4 hours. Prerequisite: course 23. Examination of Locke's Essay Concerning Human Understanding and Berkeley's Principles of Human Knowledge and Three Dialogues. Topics include abstract ideas, existence of matter, primary and secondary qualities, the existence of God, and the nature of scientific knowledge. —(I.)

174. Hume (4) Lecture/discussion—4 hours. Prerequisite: course 23. Examination of David Hume's Treatise of Human Nature and related writings. Topics include space and time, necessity, induction, skepticism concerning the external world and concerning personal identity. Offered in alternate years. —(I.) Mattey

175. Kant (4) Lecture/discussion—4 hours. Prerequisite: course 23. Intensive examination of the Critique of Pure Reason. Topics include the extent and limitations of human cognition, space and time, substance and causality, freedom and determinism, and the existence of God. Offered in alternate years. —Mattey

190. Special Topics in the History of Philosophy (4) Lecture—3 hours; term paper. Intensive study of special topic, problem, or authors in the history of philosophy. May be repeated for credit. —I. (I.) Wedin

194HA-194HB. Honors Research Project (4-4) Tutoring—3 hours; term paper. Prerequisite: consent of instructor; open to students who are members of the honors program in Philosophy. Completion of honors research project under direction of an instructor. Consult departmental major adviser for list of instructors available in a given quarter.

198. Directed Group Study (1-5) (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) Prerequisite: consent of instructor. (P/NP grading only.)

Graduate Courses

201. Metaphysics (4) Seminar—3 hours; term paper. Topics vary from quarter to quarter. Sample topics include modality, truth, ontology, events, and causation. May be repeated for credit. —III. (III.) Jubien

202. Theory of Knowledge (4) Seminar—3 hours; term paper. Prerequisite: graduate standing in philosophy or consent of instructor. Topics vary from quarter to quarter. Sample topics include belief, skepticism, justification, externalism, naturalized epistemology. May be repeated for credit with consent of instructor. Not offered every year. —(III.) Mattey

208. Philosophy of Biology (4) Seminar—3 hours; term paper. Prerequisite: graduate standing in philosophy or consent of instructor. Intensive treatment of one or more general topics in the philosophy of biology, such as foundations of evolutionary theories, reductionism in biology, sociobiology, and cultural evolution. May be repeated for credit with consent of instructor. —(III.) Griesemer

210. Philosophy of Science (4) Seminar—3 hours; term paper. Prerequisite: graduate standing in philosophy or consent of instructor. Treatment of one or more general topics of current interest in the philosophy of science, such as scientific explanation, theories of confirmation, scientific realism, reduction in physics and biology. Course may be repeated for credit with consent of instructor. —(II.) Teller

214. Ethics (4) Seminar—3 hours; term paper. —II. (II.) Rosati

217. Political Philosophy (4) Seminar—3 hours; term paper. Prerequisite: graduate student standing. Advanced study of issues in political philosophy. May be repeated for credit with consent of instructor. —I. (I.) Dworkin

237. Philosophy of Language (4) Seminar—3 hours; term paper. Prerequisite: graduate standing in philosophy or consent of instructor. Study of philosophical issues raised by language, such as the nature of semantic content, proper semantics for verbs of propositional attitude, feasibility and limitations of formal semantics and pragmatics for natural languages. May be repeated for credit with consent of instructor when the content is sufficiently different. —III. (III.) King

261. Plato (4) Seminar—3 hours. —(I.) Wedin

262. Aristotle (4) Seminar—3 hours. —III. Wedin

Quarter Offered: I=Fall; II=Winter; III=Spring; IV=Summer; 2001-2002 offering in parentheses.

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
275. Kant (4)
Seminar—3 hours; term paper. Prerequisite: graduate standing in philosophy or consent of instructor. Intensive study of a topic in the philosophy of Kant, in such areas as metaphysics, theory of knowledge, ethics. May be repeated for credit with consent of instructor. Not offered every year.—Mattey

290. History of Philosophy (4)
Seminar—3 hours. Special topics in the history of philosophy.—II. Mattey

298. Group Study (1-5)
299. Research (1-12)
(S/U grading only.)

Professional Course

396. Teaching Assistant Training Practicum (1-4)
Prerequisite: graduate standing. May be repeated for credit. (S/U grading only.)—I, II, III. (I, II, III.)
Population Health and Reproduction

(School of Veterinary Medicine)
Robert H. Bondurant, D.V.M., Chairperson of the Department
Department Office, 1114 Tupper Hall (530-752-1358; Fax: 530-752-4278)

Faculty
Barry A. Ball, D.V.M., Ph.D., Professor, John Hughes Endowed Chair in Equine Reproduction
Robert H. BonQuart, D.V.M., Professor
Bruno B. Chomel, D.V.M., Ph.D., Professor
Dean O. Cliver, Ph.D., Professor
Alan J. Conley, D.V.M., Ph.D., Associate Professor
James A. Cullor, D.V.M., Ph.D., Professor
Thomas B. Farver, Ph.D., Professor
Lynette A. Hart, M.A., Ph.D., Associate Professor
Charles A. Holmberg, D.V.M., Ph.D., Professor
Philip H. Kass, D.V.M., Ph.D., Associate Professor
Kenneth M. Lam, Ph.D., Professor
Bill L. Lesley, Ph.D., Professor
Irwin K. M. Liu, D.V.M., Ph.D., Professor
Dale A. Moore, D.V.M., Ph.D., Assistant Professor in Residence
James Murray, Ph.D., Professor (Population Health and Reproduction, Animal Science)
Joan D. Rowe, D.V.M., Ph.D., Associate Professor
William M. Sischko, D.V.M., Ph.D., Assistant Professor
Jerold Tannenbaum, J.D., Professor
Patricia S. Wakenell, D.V.M., Ph.D., Associate Professor

Emeriti Faculty
Domenico Bernoco, D.V.M., Libera Docenza, Associate Professor Emeritus
Charles E. Franti, Ph.D., Professor Emeritus
Constantin Gengeorgis, D.V.M., Ph.D., Professor Emeritus
Charles A. Hjerpe, D.V.M., Professor Emeritus
Jack A. Howarth, D.V.M., Ph.D., Professor Emeritus
Richard H. McCapes, D.V.M, Senior Lecturer Emeritus
Margaret E. Meyer, Ph.D., Professor Emeritus
Hans P. Riemann, D.V.M., Ph.D., Professor Emeritus
Calvin W. Schwabe, D.V.M., M.P.H., Sc.D., Professor Emeritus
Clyde J. Stormont, Ph.D., Professor Emeritus
Richard Yamanoto, Ph.D., Professor Emeritus

Affiliated Faculty
Edward R. Atwill, D.V.M., Ph.D., Associate Agronomist/Associate Cooperative Extension Specialist
Ann Tronnherausen Bowling, Ph.D., Adjunct Professor
Carol J. Cardona, D.V.M., Ph.D., Assistant Agronomist/Assistant Cooperative Extension Specialist
Bruce R. Charlton, D.V.M., Ph.D., Assistant Professor of Clinical Diagnostic Microbiology
Richard P. Chin, D.V.M., Assistant Professor of Clinical Diagnostic Veterinary Medicine
Joan J. Jeffrey, D.V.M., M.S., Assistant Agronomist/Assistant Cooperative Extension Specialist
Jay F. Kirkpatrick, Ph.D., Associate Adjunct Professor
Donald J. Klingborg, D.V.M., Lecturer
Nicholas W. Lerche, D.V.M., M.P.V.M., Associate Adjunct Professor
George B. E. West, D.V.M., M.P.V.M., Lecturer
Peter R. Woolcock, B.Sc., Ph.D., Assistant Professor of Clinical Diagnostic Virology

Courses in Population Health and Reproduction (PHR)

Lower Division Course

92. Internship in Veterinary Science (1-4)
Discussion/laboratory—1-4 hours; clinic—3-36 hours; final report. Prerequisite: approval of project prior to period of internship by faculty sponsor. Supervised work experience in Reproduction. (P/NP grading only.)

Upper Division Courses

106. Human–Animal Interactions: Benefits and Issues (2)
Lecture—2 hours. Prerequisite: upper division standing or consent of instructor. The contributions of animals to human society, including historic, anthropologic, developmental, human health, and therapeutic perspectives, as well as effects of humans on animals.—II. (II) Hart

111. Animal Hygiene (3)
Lecture—3 hours. Prerequisite: Biological Sciences 1A or consent of instructor. Causes, prevention, and control of animal diseases important in economic agriculture and in public health, with emphasis upon animal management factors in disease.—II. (III) West

150. Food-Borne Infections and Intoxications (4)
Lecture—4 hours. Prerequisites: Food Science and Technology 104, Veterinary Microbiology and Immunology 127, Preventive veterinary medical services within these industries. Specific prevention and eradication programs pertaining to diseases of economic importance are covered.—II. (III) West

Graduate Courses

202. Sampling in Health-Related Research (3)
Lecture—3 hours. Prerequisite: Preventive Veterinary Medicine 403 or the equivalent; consent of instructor. A very thorough coverage of simple random sampling, stratified sampling, cluster sampling, systematic sampling and other sampling methods applied extensively in epidemiology and other health-related disciplines. Emphasis on application of the sampling methods. Offered in alternate years.—II. Farver

203. Multivariate Biostatistics (3)
Lecture—3 hours. Prerequisite: Preventive Veterinary Medicine 403 and 404, or the equivalent; consent of instructor. Multivariate procedures covered are principal component analysis, factor analysis, two-group and k-group multivariate ANOVA, multivariate regression, two-group and k-group discriminant analysis and repeated measures analysis, cluster analysis, and canonical analysis. Emphasis is on application of procedures. Offered in alternate years.—II. Farver

210A. Analytic Epidemiology I: Case Control Studies (3)
Lecture—2 hours; laboratory/discussion—3 hours. Prerequisite: Statistics 130B and Preventive Veterinary Medicine 406 or the equivalent or consent of instructor. Theory and practice of epidemiologic data analysis. Topics include confounding, stratification, matching, interaction, and logistic regression. (Same course as Epidemiology 210A.)—II. (II) Kass

210B. Analytic Epidemiology II: Cohort Studies (3)
Lecture/discussion—3 hours. Prerequisite: course 210A. Theory and practice of epidemiologic data analysis. Topics include rates, rate standardization, cohort analysis, Poisson regression, and survival/failure-time methods. (Same course as Epidemiology 210B.)—II. (III) Kass

212. Epidemiology of the Zoonoses (4)
Lecture—2 hours; discussion—2 hours. Prerequisite: graduate standing or third-year standing in School of Veterinary Medicine, or consent of instructor. Epidemiological, biological, and ecological features of some major infections shared by humans and other animals. Wildlife and domestic animals zoonoses of major health and economic significance are presented to illustrate how knowledge of zoonoses epidemiology is essential for implementing control measures.—II. (III) Lam

216A. Immunodiagnostic Techniques (2)
Lecture—10 sessions; laboratory—10 sessions. Prerequisite: MPVM student or consent of instructor. Applications of serologic techniques for diagnosis of animal diseases.—II. (III) Lam

216B. Research Methods in Avian Immunology (2)
Discussion—1 hour; laboratory—3 hours. Prerequisite: laboratory immunology background or consent of instructor. Laboratory techniques used in the study of avian immune systems and pathogenesis of avian disease.—II. (III) Lam

220. Advanced Avian Medicine (3)
Lecture—3 hours. Instruction on the methods of prevention of the major diseases of domestic poultry.—II. (III) Wakenell

222. Avian Immunology (3)
Lecture—3 hours. Prerequisite: basic immunology course or consent of instructor. Normal structure of the avian immune system, quick review of basic immunology, comparison between mammalian and avian immune systems and generation of immune responses, immunodiagnostics and vaccination.—II. (III) Wakenell

225. Preventive Avian Medical Practice (3)
Lecture—3 hours. Prerequisite: enrollment in avian medicine option of MPVM program, third- or fourth-year standing in School of Veterinary Medicine, or consent of instructor. Discussion of the economic structure of the broiler, commercial egg and turkey industries, and the delivery of preventive veterinary medical services within these industries. Specific prevention and eradication programs pertaining to diseases of economic importance are covered.—II. (II) West, Wakenell

Quarter Offered: I—Fall; II—Winter; III—Spring; IV—Summer, 2001-2002 offering in parentheses.

231. Pathophysiology of Mammalian Reproductive Processes (3)
Lecture—3 hours. Prerequisite: fourth-year standing in School of Veterinary Medicine or consent of instructor. Physiological and pathological aspects of reproductive failure in mammals, including gonadal function, fertilization, implantation, prenatal mortality, neonatal mortality, environmental factors, anatomical and hereditary defects, and hormone function. Offered in alternate years.—III. Conley

232. Advanced Reproductive Biology (3)
Lecture—4 hours. Prerequisite: course 432 concurrently. Lectures supplemented with field trips and laboratories to study the gametic complement, fertilization, development of the preimplantation embryo, and gonadal function. Offered in alternate years.—III. Conley

290A. Seminar (1)
Seminar—1 hour. Discussion of current topics in animal reproduction and medicine, as well as presentation of research findings by graduate students and faculty. May be repeated for credit. (SU grading only)—I, II, III, I, II, III. Liu

290B. Current Topics in Avian Medicine (1)
Seminar—1 hour. Prerequisite: consent of instructor. Topics from the current literature in avian medicine will be assigned to students for discussion and interpretation. May be repeated for credit.—I, II, III, I, II, III. Lam, Wakenen

292. Current Topics In Reproduction (1)
Seminar—1 hour. Prerequisite: consent of instructor. Discussion of current scientific literature in reproduction, as well as presentation of research findings by graduate students and faculty. (SU grading only)—Lasley

298. Group Study (1-5)
Seminar—1 hour. Discussion of current research. Designed for graduate or professional students who desire teaching experience, but are not teaching assistants. May be repeated for credit. (SU grading only)

Professional Courses

397T. Tutoring in Veterinary Population Health and Reproduction (1-5)
Lecture—1 hour, discussion—3 hours. Prerequisite: redesigned for graduate or professional students who desire teaching experience, but are not teaching assistants. May be repeated for credit. (SU grading only)

Professional Courses

404. Medical Statistics III (4)
Lecture—3 hours; laboratory/discussion—2 hours. Prerequisite: Preventive Veterinary Medicine 403. Continuation of Preventive Veterinary Medicine 403. Analysis of covariance, variable selection, analysis of multivariate frequency tables; logistic regression; discriminant analysis; time dependent variation and trends; biomedical applications.—II, III. Farver

406. Human-Animal Interaction in Veterinary Science (1)
Lecture—10 sessions. Prerequisite: first-year standing in the School of Veterinary Medicine. From the perspectives of veterinarians and their clients’ needs, human relationships with companion animals, and secondarily, on food, laboratory, and wild animals. Emphasis on the benefits of companion animals for human mental and physical well-being, the role of animals in the human life cycle, societal traditions in keeping animals, and types of specialized and more typical relationships with animals.—II, III. Hart

408. Behavior and Biology of Mice as Domestic Animals (1)
Lecture—10 sessions. Prerequisite: first-, second-, third-, or fourth-year standing in the School of Veterinary Medicine, graduate students in Veterinary Medicine, psychology, animal science, animal behavior, or consent of instructor. Background and current issues in laboratory mouse biology and welfare, including development and purposes of specialized strains of mice, the constraints for their care and environmental enrichment, relevant legislation and regulation, and the human benefits of their use.—II, III. Hart

420. Zoonoses of Non-Human Primates (2)
Lecture—2 hours. Prerequisite: second-, third-, or fourth-year standing in the School of Veterinary Medicine or Medicine or consent of instructor. Epidemiological, clinical, and biological features of zoonoses of non-human primates. Emphasis given to major zoonoses which are threatening to human health and their treatment and prevention. Focus also on management of non-human primates in research, zoological gardens and in the wild. Offered in alternate years.—II, III. Hart

421. Veterinary Public Health (2)
Lecture/discussion—2 hours. Broad coverage of the various functions of the veterinary profession towards human health with special emphasis on zoonoses and major livestock diseases prevention and control, food safety and hygiene and new environmental issues as well as animal welfare.—II, III. Chomel

422A. Dairy Herd Health Management (4)
Lecture—40 sessions; laboratory—6 sessions. Prerequisite: course 445, third-year standing in the School of Veterinary Medicine or consent of instructor. Practical systems for delivering veterinary services to dairy farms with emphasis on disease prevention and improved herd performance. Lectures supplemented with field trips and laboratories to practice skills in animal observations, facilities observations and use of the computer for nutrition services and dairy records analysis.—II, III. Moore

430. Issues in Animal Production and Resource Utilization (2)
Lecture—10 sessions; discussion/laboratory—five 3-hour sessions. Prerequisite: second-year standing in the School of Veterinary Medicine. Introduction to interfaces of food animal production and environmental protection, wildlife preservation, animal well-being, food safety and human nutrition. Site visits to wildlife preserves, livestock production and processing facilities. (SU grading only)—I, II

432. Reproductive Technology in Mammals and Birds (0.7)
Lecture—7 sessions. Prerequisite: first-year standing in the School of Veterinary Medicine or consent of instructor. Introductory course in the application of technology to the reproductive process in mammals and birds. Emphasis on domestic animals, but birds and non-domestic mammals discussed to a limited extent. A goal is to expose students to some of the “sexier” aspects of population/reproductive management. (SU grading only)—III, I, II, III. Conley

432L. Reproductive Technology in Mammals and Birds, Laboratory (0.3)
Laboratory—3 sessions. Prerequisite: course 432 concurrently. Laboratory demonstrations and exercises in gamete freezing, thawing, and handling; artificial insemination of cattle; artificial insemination and other applications of reproductive technology in small ruminants. (SU grading only)—III. Lasley

439. Beef Cattle Nutrition (1)
Lecture—10 hours. Prerequisite: third-year standing in the School of Veterinary Medicine or consent of instructor. Economically sound methods for meeting nutrient requirements of feedlot and pasture beef cattle (including computer-assisted methods). Strategies for presenting nutritional and ration-associated diseases of beef cattle.—II, III. Chilenski

442. Equine Theriogenology (2)
Lecture—2 hours. Prerequisite: third-year standing in School of Veterinary Medicine or consent of instructor. Discussions of abnormal conditions and physiologic function in equine reproduction with emphasis on methods of diagnosis and interpretation of clinical and laboratory findings associated with the abnormalities.—I, II. Liu

442L. Equine Theriogenology Laboratory (1)
Laboratory—3 hours. Prerequisite: third-year standing in School of Veterinary Medicine or consent of instructor. Hands-on diagnosis and implementation of techniques related to reproductive examination of horses. Routine and current procedures performed on the farms. Designed to maximize the opportunity for assessment of the normal reproductive anatomy, the diagnosis and interpretations of physiologic conditions and for becoming comfortable in performing the various routine procedures.—I, II. Liu

445. Food Animal Theriogenology and Reproductive Performance (2)
Lecture—1 hours. Prerequisite: Veterinary Medicine 446 with a grade of C+ or better, or consent of instructor. Physiological, pathophysiological, and management factors affecting reproductive health and performance of food animals, with emphasis on dairy and beef cattle, and sheep. Minor emphasis on swine and goats. Assessment of, and intervention strategies for, herd reproductive performance.—II, III. Chilenski

445L. Food Animal Theriogenology Laboratory (1)
Laboratory—3 hours. Prerequisite: course 445 concurrently. Obstetrical and gynecological diagnosis and treatment for food animals; breeding soundness examination of males; analysis and on-farm use of computerized reproductive records; embryo technology. (SU grading only)—II, III. Chilenski

446A. Food Animal Reproduction (1)
Lecture—16 hours; laboratory—4 three-hour sessions. Prerequisite: second-year standing in the School of Veterinary Medicine. Approved for graduate degree credit. Conditions affecting the reproductive system in the cow, sow, ewe, and goat, with emphasis on symptomatology, pathophysiology, treatment, control, prevention, and herd health applications.—II, III. Brown

446B. Equine Reproduction (1)
Lecture—6 hours; laboratory—4 three-hour sessions. Prerequisite: second-year standing in the School of Veterinary Medicine. Approved for graduate degree credit. Discussion of special problems of equine reproduction with emphasis on methods of diagnosis and the interpretation of clinical and laboratory findings.—II, III. Lasley

446C. Reproduction of Non-Domestic Animals (1)
Lecture—10 hours. Prerequisite: third-year standing in the School of Veterinary Medicine. Follows course 446A and provides information relating to reproduction in non-domestic mammals, birds, and reptile species. Concepts relating to the evaluation of reproductive status, diagnosis of infertility, assisted reproduction and contraception will be presented.—II, III. Lasley

450. HACCP and Risk Assessment in Pre- and Postharvest Food Safety (3)
Lecture/discussion—3 hours. Prerequisite: a first year course in microbiology or food science or consent of instructor. Application of the Hazard Analysis-Critical Control Point (HACCP) system in the food industry, for regulatory agencies; and in the preharvest area of food production. Development of HACCP plans. (SU grading only)—II, III. Cliver

452. On-Farm Food Safety (2)
Lecture/discussion—1.6 hours, laboratory—0.4 hours. Prerequisite: students in the Master’s degree in Preventive Veterinary Medicine, first-year standing in School of Veterinary Medicine or consent of instructor. Daily management of the farm for animal public health and environmental quality, along with the necessary consumer, producer, veterinarian, and regulatory interactions necessary to accomplish these goals.—II, III. Chilenski

457. Veterinary Business Management (2)
Lecture—20 sessions. Prerequisite: third- or fourth-year standing in School of Veterinary Medicine or consent of instructor. Information essential to the successful management of veterinary practice. Topics include basic accounting, medical recordkeeping, medical management, business and personal insurance, client relations and tax law. (SU grading only)—II, III. Klingbog
483. Pet Loss Support Rounds (1-2)
Discussion/laboratory—3-6 hours. Prerequisite: veterinary student status. Training and experience in responding to pet loss hotline callers who are experiencing grief associated with an animal's death. Students gain proficiency in supportive listening and referral to community resources and increase effectiveness in dealing with upset pet owners. (S/U grading only)—I, II, III, summer. (I, II, III, summer.) Hart

489. Personal, Financial and Professional Development (1)
Lecture—10 sessions. Prerequisite: third-year standing in the School of Veterinary Medicine. Skills essential for successful careers in Veterinary Medicine. Includes personal finance and investment strategies, understanding personal taxation, bookkeeping and accounting, insurance needs, and stress management. (S/U grading only)—II. (II.) Klingborg
Physics

(College of Letters and Science)
Winston T. Ko, Ph.D., Chairperson of the Department
Wendell H. Potter, Ph.D., Vice Chairperson of the Department (Administration and Undergraduate Matters)
Richard T. Scalettar, Ph.D., Vice Chairperson of the Department (Graduate Matters)
Department Office, 225 Physics/Geology Building (530-752-1500)
World Wide Web: http://info-physic.ucdavis.edu

Faculty
Andreas J. Albrecht, Ph.D., Professor
Robert H. Becker, Ph.D., Professor
Franklin P. Brady, Ph.D., Professor
Steven Carlip, Ph.D., Professor
Daniel A. Cebra, Ph.D., Professor
Ling-Lie Chau, Ph.D., Professor
Shirley Chiang, Ph.D., Professor
Lawrence S. Corollan, Ph.D., Professor, Academic Senate Distinguished Teaching Award
Linton R. Comuccini, Ph.D., Professor
Daniel L. Cox, Ph.D., Professor
Charles S. Faitley, Ph.D., Professor
Daniel Ferrero, Ph.D., Assistant Professor
Ching-Yao Fong, Ph.D., Professor
John F. Gunion, Ph.D., Professor
Joseph E. Kissik, Ph.D., Professor
Barry M. Klein, Ph.D., Professor
Richard T. Scalettar, Ph.D., Vice Chairperson of the Department (Graduate Chairperson of the Department, and the Bachelor of Science in Physics and in Applied Radiation therapy fights cancer.

The Department of Physics offers three degree programs: the Bachelor of Arts (A.B.), the Bachelor of Science in Physics and in Applied Physics. The A.B. degree provides a broad coverage of classical and modern physics while permitting a broader liberal arts education than is possible with the other two programs. The B.S. degree in either Physics or Applied Physics should be followed by the student who plans to enter physics as a profession. The B.S. in Applied Physics provides the student with a solid introduction to a particular applied physics specialty. For the student who plans to enter the job market on completing a B.S. degree, the applied physics orientation would be an asset. Either B.S. program provides a solid foundation in physics for the student interested in graduate work in either pure or applied physics.

Career Alternatives. Careers in physics and applied physics include research and development, either in universities, government laboratories, or industry; teaching in high schools, junior colleges, and universities; management and administration in industrial laboratories and in government agencies; and in production and sales in industry. A major in physics also provides a strong base for graduate-level work in such interdisciplinary areas as chemical physics, biophysics and medical physics, geophysics and environmental physics, astrophysics and astronomy, computer science, and materials science.

Physics

A.B. Major Requirements:

Preparatory Subject Matter

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics 9A, 9B, 9C, 9D or 9HA, 9HB, 9HC, 9HD, 9HE</td>
<td>16</td>
</tr>
<tr>
<td>Mathematics 21A, 21B, 21C, 21D, 22A, 22B</td>
<td>22</td>
</tr>
</tbody>
</table>

Depth Subject Matter

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>At least one course from 127, 140A, 129A, or 130A</td>
<td>4</td>
</tr>
<tr>
<td>At least one additional fixed-unit upper division Physics course excluding 137 and 160</td>
<td>4</td>
</tr>
<tr>
<td>Physics 105AL (1 unit) or an upper division computation course (e.g., Mathematics 128A or Applied Science Engineering 115)</td>
<td>1-3</td>
</tr>
</tbody>
</table>

Total Units for the Major | 79 |

B.S. Major Requirements:

Preparatory Subject Matter

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics 9A, 9B, 9C, 9D or 9HA, 9HB, 9HC, 9HD, 9HE</td>
<td>16</td>
</tr>
<tr>
<td>Mathematics 21A, 21B, 21C, 21D, 22A, 22B</td>
<td>22</td>
</tr>
<tr>
<td>Engineering 5 (or equivalent programming course)</td>
<td>3</td>
</tr>
<tr>
<td>Chemistry 2A or 2HA (or equivalent, highly recommended)</td>
<td>5</td>
</tr>
</tbody>
</table>

Depth Subject Matter

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>At least two courses from Physics 127, 140A and either 129A or 130A</td>
<td>8</td>
</tr>
<tr>
<td>At least three additional upper division Physics courses excluding 127 and 160</td>
<td>22</td>
</tr>
<tr>
<td>With prior departmental approval, one 3- or 4-unit course from mathematics, engineering, or natural science may be used to meet this requirement. May include only one course from 194H, 195, 198, 199</td>
<td>1-2</td>
</tr>
<tr>
<td>Physics 105AL (1 unit) or an upper division computation course (e.g., Mathematics 128A or Applied Science Engineering 115)</td>
<td>105</td>
</tr>
</tbody>
</table>

Total Units for the Major | 105 |

Applied Physics

B.S. Major Requirements:

Preparatory Subject Matter

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics 9A, 9B, 9C, 9D or 9HA, 9HB, 9HC, 9HD, 9HE</td>
<td>16</td>
</tr>
<tr>
<td>Mathematics 21A, 21B, 21C, 21D, 22A, 22B</td>
<td>22</td>
</tr>
<tr>
<td>Engineering 5 (or equivalent programming course)</td>
<td>3</td>
</tr>
<tr>
<td>Chemistry 2A or 2HA (2B-2C or 2HB-2HC highly recommended)</td>
<td>5</td>
</tr>
</tbody>
</table>

Depth Subject Matter

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>At least five courses from approved lists within one of the following concentrations chosen in consultation with a major adviser</td>
<td>19-20</td>
</tr>
<tr>
<td>Materials science, quantum optics, chemical physics, atmospheric physics, computational physics, geophysics, physical oceanography (List of approved courses is available from the Physics Department.)</td>
<td>11-12</td>
</tr>
</tbody>
</table>
Physics 105AL (1 unit) or an upper division computation course (e.g., Mathematics 128A or Applied Science Engineering 115) 0-1

Total Units for the Major .. 105

Recommended Electives

- **Astronomy:** 2 units
- **Computer and numerical analysis:** Mathematics 128A or Applied Science Engineering 115
- **Statistics:** Statistics 131A

Program Variance. Courses from other departments may be submitted for courses in the depth subject matter requirements by obtaining written permission from the Undergraduate Curriculum Committee Chairperson, as approved by the Department. **Major Advisers.** Contact Departmental Undergraduate Majors Office, 225 Physics/Geology Building, for advisor assignment.

Minor Program Requirements:

Two distinct minor emphases are offered, all requiring prerequisites equivalent to Mathematics 21A-21B-21C-21D and 22A-22B and Physics 9A-9B-9C-9D. Students considering the possibility of earning a Physics minor should consult with a Physics major adviser before beginning work in one of these minor programs.

Units

- **Classical Physics emphasis** .. 24

 (If the fall quarter courses, 104A, 105A, 110A, are taken in different years, 104A and 105A should be taken in the first year; course 105C does not require 105B.)

 - **Quantum Physics emphasis** .. 24

 (Physics 104A and 105A-105B must precede 115A-115B. Physics 110A recommended.)

Graduate Study. The Department of Physics offers programs of study and research leading to the M.S. and Ph.D. degrees and the Ph.D. degree with an Applied Physics Research Specialty. Further information regarding requirements for these three degrees, graduate research, teaching assistantships, and research assistantships may be obtained by writing to the Chairperson, Department of Physics, One Shields Avenue, University of California, Davis 95616.

Astronomy. There is no major program leading to a degree in Astronomy. Introductory courses are offered in general astronomy and astrophysics. Students who wish to use the observatory or the portable telescopes may do so through the Astronomy Club. The graduate program in physics provides research opportunities in observational astrophysics.

Courses in Astronomy (AST)

Lower Division Courses

2. **Introduction to Modern Astronomy and Astrophysics (4)**

Lecture—3 hours; laboratory/discussion—2 hours. Prerequisite: good facility in high school physics and mathematics (algebra and trigonometry). Description and interpretation of astronomical phenomena using the laws of modern physics. Modern astronomical instrumentation. Gravitation, relativistic electromagnetic radiation, atomic and nuclear physics in relation to the structure and evolution of stars, the solar system, galaxies, and the Universe. Not open to students who have received credit for course 10 or 11. (I, III, III.) Abrecht, Becker, Erickson

10. **General Astronomy (4)**

Lecture—3 hours; laboratory/discussion—2 hours. A nonmathematical description of modern astronomy with emphasis on the structure and evolution of stars, galaxies, and the Universe. The Sun and the solar system. Optional topics include pulsars, black holes, quasars, and extra-terrestrial communications. Not open to students who have received credit for course 2 or any physics course (except 10, 137, 140). GE credit: SciEng, Wrt.—I, II, III. (II, III.) Albrecht, Becker, Erickson

Courses in Physics (PHY)

Physics 10 is primarily a concept-oriented one-quarter lecture/discussion course requiring relatively little mathematical background. The course is taken by 1A alone of all students. Students who have completed one introductory quarter or semester of a traditionally taught physics course and want to continue with Physics 7, you should first take (and receive full credit for) Physics 7A. Then, either skip 7B, but self-study the last three weeks of material, or take 7B and receive reduced credit. Next, take 7C for full credit.

If you have taken two quarters of a year-long introductory physics course and have not had extensive work in optics, electricity and magnetism, and modern physics, you should not take Physics 7C. In no case should you take Physics 7B without first taking Physics 7A. All other situations should be discussed directly with a Physics 7 instructor.

Students not intending to take the entire sequence should take Physics 1. Physics 9 is a four-quarter sequence using calculus throughout and including laboratory work as an integral part. The course is primarily for students in the physical sciences and engineering.

Physics 9H is a five-quarter honors physics sequence, which may be taken instead of Physics 9. It is intended primarily for first-year students with a strong interest in physics and with advanced placement in mathematics. In course requirements and prerequisites, Physics 9H–9E can be substituted for Physics 9A–9D.

Lower Division Courses

1A. **Principles of Physics (3)**

Lecture—3 hours. Prerequisite: trigonometry or consent of instructor. Mechanics. Introduction to general principles and analytical methods used in physics with emphasis on applications in applied agricultural and biological sciences and in physical education. Not open to students who have received credit for course 5A, 7B, or 9A—I. (I.) McCollum

1B. **Principles of Physics (3)**

Lecture—3 hours. Prerequisite: course 1A or 9A. Continuation of course 1A. Heat, optics, electricity, modern physics. Not open for credit to students who have received credit for course 5B, 7A, 7B, 7C, 9B, 9C, or 9D.—II. (II.)

7A. **General Physics (4)**

Lecture—1.5 hours; discussion/laboratory—5 hours. Prerequisite: Mathematics 16B (may be taken concurrently). Introduction to general principles and analytical methods used in physics for students majoring in a biological science. Only two units of credit allowed to students who have completed course 9B, 5B, or 1B—I. (I, II.)

7B. **General Physics (4)**

Lecture—1.5 hours; discussion/laboratory—5 hours. Prerequisite: course 7A. Continuation of course 7A. Only two units of credit allowed to students who have completed course 9A, 5A, or 1A—I. II, III, III.)

7C. **General Physics (4)**

Lecture—1.5 hours; discussion/laboratory—5 hours. Prerequisite: course 7B. Continuation of course 7B. Only two units of credit allowed to students who have completed course 9C or 5C—I, II, III, III.)

9A. **Classical Physics (4)**

Lecture—3 hours; laboratory—2.5 hours; discussion—1 hour. Prerequisite: Mathematics 21B. Mechanics. Mechanics. Introduction to general principles and analytical methods used in physics for physical science and engineering majors. Only two units of credit allowed to students who have completed course 1A or 7B. Not open for credit to students who have completed course 9A—II.—III. (III.)

9B. **Classical Physics (4)**

Lecture—3 hours; laboratory—2.5 hours; discussion—1 hour. Prerequisite: course 9A. Mathematics 21C, Mathematics 21D (may be taken concurrently). Continuation of course 9B. Fluid mechanics, thermodynamics, wave phenomena, optics. Only two units of credit allowed for students who have completed course 7A. Not open for credit to students who have completed course 9B or 9C or Engineering 105A.—I. (I.)

9C. **Classical Physics (4)**

Lecture—3 hours; laboratory—2.5 hours; discussion—1 hour. Prerequisite: course 9B, Mathematics 21B, Mathematics 22A (may be taken concurrently). Continuation of course 9B. Electricity and magnetism including circuits and Maxwell’s equations. Only two units of credit allowed for students who have completed course 7C. Not open for credit to students who have completed course 9D—II.—II. (II.)

9D. **Modern Physics (4)**

Lecture—3 hours; discussion/laboratory—4 hours. Prerequisite: course 9C and Mathematics 22A; Mathematics 22B recommended (may be taken concurrently). Introduction to physics concepts developed since 1900. Special relativity, quantum mechanics, atoms, molecules, condensed matter, nuclear and particle physics. Not open for credit to students who have completed course 9B, 9C, or 9D—II.—III. (III.)

9HA. **Honors Physics (4)**

Lecture—3 hours; discussion/laboratory—4 hours. Prerequisite: Mathematics 21B (may be taken concurrently) or consent of instructor; high school physics highly recommended. Classical mechanics. Same material as course 9A in greater depth. Not open for credit to students in physical sciences, mathematics and engineering. Only two units of credit allowed to students who have completed course 7B. Not open for credit to students who have completed course 9A.—I. (I.)

9HB. **Honors Physics (4)**

Lecture—3 hours; discussion/laboratory—4 hours. Prerequisite: course 9HA or 9A and Mathematics 21C (may be taken concurrently). Special relativity, thermodynamics. Continuation of course 9HA. Only two units of credit allowed to students who have completed course 7A. Not open for credit to students who have completed course 9B or 9D.—II. (II.)

Quarter Offered: I=Fall; II=Winter; III=Spring; IV=Summer, 2001-2002 offering in parentheses.

9HC. Honors Physics (4)
Lecture—3 hours; discussion/laboratory—4 hours. Prerequisite: course 9HB and Mathematics 21D (may be taken concurrently). Waves, sound, optics, quantum pho- tonic Continuation of course 9HB. Only two units of credit allowed to students who have com-pleted course 7C. Not open for credit to students who have com-pleted course 9B or 9D.—II. (III.)

9HD. Honors Physics (4)
Lecture—3 hours; discussion/laboratory—4 hours. Prerequisite: course 9HC and Mathematics 21D. Electricity and magnetism. Continuation of course 9HC. Same material as in course 9C but in greater depth. Only two units of credit allowed to stu-dents who have completed course 7C. Not open for credit to students who have completed course 9C.—II. (III.)

9HE. Honors Physics (4)
Lecture—3 hours; discussion/laboratory—4 hours. Prerequisite: course 9HD and Mathematics 22B (may be taken concurrently). Applications of quantum mechanics. Not open for credit to students who have completed course 9D.—II. (III.)

10. Topics in Physics for Nonscientists (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: high school algebra. Emphasis varies: survey of basic principles or a deeper exploration of some particular branch. Past topics included black holes, space time, and relativity; physics of music; his-tory and philosophy; energy and the environment; and natural phenomena. Check with the department office for the current emphasis. No units of credit allowed if taken after any other physics course. GE credit: SciEng, Wrt.—I, II, III, (I, II, III.)

49. Supplementary Work in Lower Division Physics (1-3)
Students with partial credit in lower division physics courses may, with consent of instructor, complete the credit under this heading. May be repeated for credit.—I, II, III, (I, II, III.)

90X. Lower Division Seminar (2)
Seminar—2 hours. Prerequisite: lower division standing and consent of instructor. Examination of a special topic in Physics through shared readings, discussions, written assignments, or special activities such as laboratory work. May be repeated for credit. Limited enrolment.

98. Directed Group Study (1-5)
Prerequisite: consent of instructor; primarily for lower division students. (P/NP grad-ing only.)

99. Special Study for Undergraduates (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)

Upper Division Courses

104A. Introduction to Methods of Mathematical Physics (4)
Lecture—3 hours; extensive problem solving. Prerequisite: courses 9B, 9C, 9D, and Mathematics 21D, 22A, and 22B passed with grade of C- or better, or consent of instructor. An introduction to the mathematics used in upper-division courses, applications of vector spaces, Fourier series, Legendre series, partial differential equations.—I. (I.)

104B. Introduction to Methods of Mathematical Physics (4)
Lecture—3 hours; extensive problem solving. Prerequisite: course 104A passed with a grade of C- or better, or consent of instructor. Applications of infinite series, complex analysis, or conditional probability, tensor analysis, group theory.—II. (II.)

105A-105B. Analytical Mechanics (4-4)
Lecture—3 hours; extensive problem solving. Prerequisite: courses 9B, 9C, 9D, and Mathematics 21D, 22A, and 22B passed with grade of C- or better, or consent of department; course 104A and 104A passed with a grade of C- or better or consent of department. Principles and applications of Newtonian mechanics, introduction to Lagrange's and Hamilton's equations.—I (I-III)

105AL. Computational Laboratory in Mechanics (1)
Laboratory—3 hours. Prerequisite: Engineering 5 or the equivalent; course 105A concurrently. Introduction to the application of computers to solving physics prob-lems. Introduction to numerical and graphical methods in mechanics. (P/NP grading only.)—I. (I.)

105BL. Computational Laboratory in Mechanics (1)
Laboratory—3 hours. Prerequisite: course 105AL; course 105B concurrently. Com-puter application of numerical and graphical methods in mechanics. (P/NP grad-ing only.)—II. (II.)

105C. Continuum Mechanics (4)
Lecture—3 hours; extensive problem solving. Prerequisite: courses 104B and 105A passed with a grade of C- or better, or consent of department. The continuum hypothesis and limitations. Tensor methods develop stress-strain relations for linear elastic materials. Tensor field equations for wave propagation in solids/fluids, heat flow, potential flow and ocean waves.—III. (III.)

108. Optics (3)
Lecture—3 hours. Prerequisite: course 9 or 5 sequence and Mathematics 21 sequence or consent of instructor. The phenomena of diffraction, interference, the polarization of light, with applications to current problems in astrophysics, material science, and atmospheric science. Study of modern optical instrumentation. Open to non-majors.—III. (III.)

108L. Optics Laboratory (1)
Laboratory—3 hours. Prerequisite: course 108 concurrently. The laboratory will con-sist of one major project pursued throughout the quarter, based on modern appli-cations of optical techniques.—III. (III.)

110A-110B-110C. Electricity and Magnetism (4-4-4)
Lecture—3 hours; extensive problem solving. Prerequisite: courses 9B, 9C, 9D, and Mathematics 21D, 22A, and 22B passed with grade of C- or better, or consent of department. prerequisite for 110B is courses 110A and 104B passed with a grade of C- or better or consent of department; prerequisite for course 110C is courses 110B and 104B passed with a grade of C- or better, or consent of department. Theory of electrostatics, electromagnetism, Maxwell's equations, electromagnetic waves.—I-II-II. (I-II-II)

112. Thermodynamics and Statistical Mechanics (4)
Lecture—3 hours; extensive problem solving. Prerequisite: course 115A or the equivalent. Introduction to classical and quantum statistical mechanics and their connections with thermodynamics. The theory is developed for the ideal gas model and simple magnetic models and then extended to studies of solids, quantum flu-ids, and chemical equilibria.—II. (III.)

115A. Foundations of Quantum Mechanics (4)
Lecture—3 hours; extensive problem solving. Prerequisite: courses 104B and 105B passed with grade of C- or better, or consent of department. Methods of quantum mechanics with applications to atomic, molecular, solid state, nuclear and elemen-tary particle physics.—III. (III.)

115B. Applications of Quantum Mechanics (4)
Lecture—3 hours; extensive problem solving. Prerequisite: course 115A passed with a grade of C- or better, or consent of department. Angular momentum and spin; hydrogen atom and atomic spectra; perturbation theory; scattering theory.—I. (I.)

116A. Electronic Instrumentation (4)
Lecture—3 hours; laboratory—3 hours. Prerequisite: course 9C, Mathematics 22B. An experimental and theoretical study of important electronic circuits commonly used in physics.—II. (II.)

116B. Electronic Instrumentation (4)
Lecture—3 hours; laboratory—3 hours. Prerequisite: courses 9D, 116A. Continua-tion of course 116A. Introduction to the use of digital electronics and microcom-puters in experimental physics.—III. (III.)

121. Atomic Physics (4)
Lecture—3 hours; term paper. Prerequisite: course 9D. The phenomena of atomic physics including contemporary work: fine- and hyperfine-structure, quantum elec-trodynamics, laser spectroscopy; beam foil experiments and trapped atoms.—II. (II.)

122. Advanced Physics Laboratory (4)
Laboratory—8 hours; extensive problem solving. Prerequisite: course 9D with grade C- or better or consent of instructor. Experimental techniques and measurements in atomic, condensed matter, nuclear and high energy physics. Student performs three to six experiments depending on difficulty. Individual work is stressed. May be repeated for credit.—I. (I.)

127. Introduction to Astrophysics (4)
Lecture—3 hours; extensive problem solving. Prerequisite: course 105A passed with grade C- or better, or consent of instructor. Celestial mechanics, radiation, astrophysical measurements, electromagnetic processes, the sun, binary and variable stars, stellar structure and evolution, galaxies, cosmology.—III. (III.)

129A. Introduction to Nuclear Physics (4)
Lecture—3 hours; extensive problem solving. Prerequisite: course 115A passed with grade C- or better or consent of instructor. Survey of basic nuclear proper-ties and concepts requiring introductory knowledge of quantum mechanics: nuclear models and forces, radioactive decay and detecting nuclear radiation and nuclear reaction products, alpha, beta and gamma decay.—II. (II.)

129B. Nuclear Physics, Extensions and Applications (4)
Lecture—3 hours, term paper. Prerequisite: course 129A. Continuation of course 129A. Nuclear reactions, neutrons, fission, fusion accelerators, introduction to meson and particle physics, nuclear astrophysics, and applications of nuclear physics and techniques to mass spectrometry, nuclear medicine, trace element analysis. Not offered every year.—III. (III.)

130A-130B. Elementary Particle Physics (4-4)
Lecture—3 hours; extensive problem solving. Prerequisite: course 115A passed with a grade of C- or better or consent of instructor. Properties and classification of elementary particles and their interactions. Experimental techniques. Conservation laws and symmetries. Strong, electromagnetic, and weak interactions. Introduction to Feynman calculus. Not offered every year.—I-II-II. (I-II-II.)

137. Science and Technology of Nuclear Arms Effects and Control (3)
Lecture—3 hours. Prerequisite: upper division standing; one course from courses 1B, 5C, 9C. 3. Scientific and technical aspects of nuclear arms effects and nuclear arms control including nuclear physics of atomic and hydrogen bombs, blast and radiation effects, radioactivity, electromagnetic pulse, ICBM accuracy, laser weapons, verification safeguards, biological and ecological effects. Emphasis on order of magnitude calculations. (Same course as Applied Science Engineering 137.) GE credit: SciEng or SocSci.—II. (II.)

140A-140B. Introduction to Solid State Physics (4-4)
Lecture—3 hours; extensive problem solving. Prerequisite: course 115A or the equivalent passed with a grade of C- or better or consent of instructor. Survey of funda-mentals ideas in the physics of solids, with selected device applications. Crystal structure, x-ray and neutron diffraction, phonons, simple metals, energy bands and Fermi surfaces, semiconductors, optical properties, magnetism, superconductiv-ity.—III. (III.)
160. Environmental Physics and Society (3)
Lecture—3 hours. Prerequisite: course 9D or 5C; or course 10 or 1B and Mathematics 16B or the equivalent. Impact of humankind on the environment will be discussed from the point of view of the physical sciences. Calculations based on physical principles will be made, and the resulting policy implications will be considered. (Same course as Engineering 160.) GE credit: SciEng or SocSci.—III. (III.)

194HA-194HB. Special Study for Honors Students (4-4)
Independent study—12 hours. Prerequisite: consent of instructor required. Open only to Physics and Applied Physics majors who satisfy the College of Letters and Science requirements for entrance into the Honors Program. Independent research project at a level significantly beyond that defined by the normal physics curriculum. (Deferred grading only; pending completion of sequence.)

195. Senior Thesis (5)
Independent study—15 hours. Prerequisite: consent of instructor required. Open only to Physics and Applied Physics majors with senior standing. Preparation of a senior thesis on a topic selected by the student with approval of the department. May be repeated for a total of 15 units.—I, II, III. (III.)

197T. Tutoring in Physics and Astronomy (1-5).
Lecture—3 hours. Prerequisite: courses 215A-215B-215C; courses 140A-140B recommended. Introduction to the phenomena and theory of the solid state. Periodic structures, lattice structures, electron states, static properties, electron-electron interaction, electron dynamics, transport properties, optical properties, the Fermi surface, superconductivity.—III. (III.)

200C. Quantum Theory of Fields (3)
Lecture—3 hours. Prerequisite: course 230A. Continuation of 230A, with selected advanced topics, such as S-matrix theory, dispersion relations, axiomatic formulations.—II. (II.)

230B. Quantum Theory of Fields (3)
Lecture—3 hours. Prerequisite: course 230A. Continuation of 230A, with selected advanced topics, such as S-matrix theory, dispersion relations, axiomatic formulations.—II. (II.)

240A-240B. Solid State Physics (3-3)
Lecture—3 hours. Prerequisite: courses 215A-215B-215C; courses 140A-140B recommended. Introduction to the phenomena and theory of the solid state. Periodic structures, lattice structures, electron states, static properties, electron-electron interaction, electron dynamics, transport properties, optical properties, the Fermi surface, superconductivity.—III. (III.)

240C-240D. Solid State Physics (3-3)
Lecture—3 hours. Prerequisite: course 240A-240B or the equivalent. General introduction to many-body techniques as applied in solid state physics.—II-III. (II-III.)

241. Advanced Topics in Magnetism (3)
Lecture—3 hours. Prerequisite: courses 240A-240B, 240C-240D, or consent of instructor. Topics chosen from areas of current research interest. Not offered every year.—II. (II.)

242. Advanced Topics in Superconductivity (3)
Lecture—3 hours. Prerequisite: courses 240A-240B, 240C-240D, or consent of instructor. Topics chosen from areas of current research interest. Not offered every year.—II. (II.)

243A-243B-243C. Surface Physics of Materials (3-3-3)
Lecture—3 hours. Prerequisite: courses 140A-140B, 115A-115B or the equivalents; courses 215A, 240A, or the equivalents recommended. Experimental and theoretical fundamentals of surface and interface physics and chemistry, including electronic and magnetic structure, thermodynamics, adsorption kinetics, epitaxial growth, and a discussion of various spectroscopic and structural probes based on photons, electrons, ions, and scanning probes. Not offered every year.—II-III. (II-III.)

245A. High-Energy Physics (3)
Lecture—3 hours. Prerequisite: course 230A. Phenomenology and systematics of strong, electromagnetic, and weak interactions of hadrons and leptons; determination of quantum numbers; quarks and quarkonia; deep inelastic scattering; the quark parton model; experiments at hadron colliders and electron-positron colliders.—I, II. (I, II.)

245B. High-Energy Physics (3)
Lecture—3 hours. Prerequisite: course 245A. Electroweak interactions; phenomenology of the Standard Model of SU(2)xSU(1); weak interaction experiments; properties of and experiments with W and Z vector bosons; Glashow-Weinberg-Salam model and the Higgs boson; introduction to supersymmetry and other speculations.—III. (III.)

245C. High-Energy Physics (3)
Lecture—3 hours. Prerequisite: course 245A. Strong interaction: quantum chromodynamics; phenomenon; jets and other experimental tests; quark and gluon distribution functions; quark and gluon scattering; applications of the renormalization group. Not offered every year.—II. (II.)

246. Supersymmetry: Theory and Phenomenology (3)
Lecture—3 hours. Prerequisite: courses 230A-230B, 240A-240B recommended, or consent of instructor. Construction of supersymmetric models of particle physics; superfields; supersymmetry breaking the minimal supersymmetric standard model; supergravity. Collider phenomenology of supersymmetry. Dark matter phenomenology. Not offered every year.—II. (II.)

250. Special Topics in Physics (3)
Lecture—3 hours. Prerequisite: consent of instructor. Topic varies. May be repeated for credit. Not offered every quarter.—I, II, III. (I, II, III.)

252A. Techniques of Experimental Physics (3)
Lecture—3 hours. Introduction to techniques and methods of designing and executing experiments. Problems and examples from condensed matter research will be utilized. Not offered every year.—II. (II.)

252B. Techniques of Experimental Physics (3)
Lecture—3 hours. Introduction to techniques and methods of designing and executing experiments. Problems and examples from nuclear and particle research will be utilized. Not offered every year.—II. (II.)

256. Introduction to General Relativity (3)
Lecture—3 hours. Prerequisite: courses 200A, 200B. An introduction to general relativity. Differential geometry and curved spacetime; the Einstein field equations; gravitational fields of stars and black holes; weak fields and gravitational radiation; experimental tests, Big Bang cosmology. Offered in alternate years.—II. (II.)
290. Seminar in Physics (1)
Seminar—1 hour. Prerequisite: graduate standing in Physics or consent of instructor. Presentation and discussion of topics of current research interest in physics. Topics will vary weekly and will cover a broad spectrum of the active fields of physics research at a level accessible to all physics graduate students. May be repeated for credit. (S/U grading only.)—I, II, III. (I, II, III.)

291. Seminar in Nuclear Physics (1)
Seminar—1 hour. Prerequisite: graduate standing in Physics or consent of instructor. Presentation and discussion of topics of current research interest in nuclear physics. May be repeated for credit. (S/U grading only.)—I, II, III. (I, II, III.)

292. Seminar in Elementary Particle Physics (1)
Seminar—1 hour. Prerequisite: graduate standing in Physics or consent of instructor. Presentation and discussion of topics of current research interest in elementary particle physics. May be repeated for credit. (S/U grading only.)—I, II, III. (I, II, II.)

293. Seminar in Condensed Matter Physics (1)
Seminar—1 hour. Prerequisite: graduate standing in Physics or consent of instructor. Presentation and discussion of topics of current research interest in condensed matter physics. May be repeated for credit. (S/U grading only.)—I, II, III. (I, II, II.)

294. Seminar in Cosmology (1)
Seminar—1 hour. Prerequisite: graduate standing in Physics or consent of instructor. Presentation and discussion of topics of current research interest in cosmology. May be repeated for credit. (S/U grading only.)—I, II, III. (I, II, III.)

297. Research on the Teaching and Learning of Physics (3)
Seminar—3 hours. Prerequisite: graduate standing in Physics or consent of instructor. Discussion and analysis of recent research in how students construct understanding of physics and other science concepts and the implications of this research for instruction. (S/U grading only.)—III. (III.)

298. Group Study (1-5)
Prerequisite: consent of instructor. (S/U grading only.)

299. Research (1-12)
(S/U grading only.)

Professional Course

390. Methods of Teaching Physics (1)
Lecture/discussion—1 hour. Prerequisite: graduate standing in Physics; consent of instructor. Practical experience in methods and problems related to teaching physics laboratories at the university level, including discussion of teaching techniques, analysis of quizzes and laboratory reports and related topics. Required of all Physics Teaching Assistants. May be repeated for credit. (S/U grading only.)—I, II, III. (I, II, III.)

396. Teaching Assistant Training Practicum (1-4)
Prerequisite: graduate standing. May be repeated for credit. (S/U grading only.)—I, II, III. (I, II, III.)
Biological Sciences: Plant Biology

Deborah P. Delmer, Ph.D., Chairperson of the Section
Section Office, 1002 Life Sciences Addition (530-752-0617)
World Wide Web: http://www-plb.ucdavis.edu

Committee in Charge of the Major
Deborah Canington, Ph.D. (Plant Biology)
Judy Jernstedt, Ph.D. (Agronomy and Range Science), Chairperson
John Labavitch, Ph.D. (Pomology)
Alan Stemler, Ph.D. (Plant Biology)
Thea Wikins, Ph.D. (Agronomy and Range Science)
Terence Murphy, Ph.D. (Plant Biology)

Faculty
Faculty includes members of the Departments of Agronomy and Range Science; Environmental Horticulture, Land, Air and Water Resources; Plant Pathology; Pomology; Vegetable Crops; Viticulture and Enology, and the Sections of the Division of Biological Sciences.

Primary Section Members
John L. Bowman, Ph.D., Assistant Professor
Anne Brit, Ph.D., Associate Professor
Deborah P. Delmer, Ph.D., Professor
Richard H. Falk, Ph.D., Professor
John J. Harada, Ph.D., Professor
Bo Liu, Ph.D., Assistant Professor
William J. Lucas, Ph.D., Professor
Terence Murphy, Ph.D., Professor
Sharman O’Neill, Ph.D., Professor
Thomas L. Rost, Ph.D., Professor, Academic Senate Distinguished Teaching Award
Neelima Sinha, Ph.D., Associate Professor
Alan J. Stemler, Ph.D., Professor
Robert M. Thornton, Ph.D., Senior Lecturer, Academic Senate Distinguished Teaching Award
Larry N. Vanderhoef, Ph.D., Professor

Secondary Section Members
Judy Collins, Ph.D., Associate Professor
James A. Doyle, Ph.D., Professor (Geology)
Marilynn E. Ezler, Ph.D., Professor
Charles S. Gasser, Ph.D., Professor
Marcel Rejmanek, Ph.D., Associate Professor
Raymond L. Rodriguez, Ph.D., Professor
Irwin H. Segel, Ph.D., Professor
Maureen L. Stanton, Ph.D., Professor
Donald R. Strong, Ph.D., Professor

Emeriti Faculty
Fredrick T. Addicott, Ph.D., Professor Emeritus
Floyd M. Ashton, Ph.D., Associate Emeritus
Bruce A. Bonner, Ph.D., Professor Emeritus
Herbert B. Currier, Ph.D., Professor Emeritus
Emanuel Epstein, Ph.D., Professor Emeritus
Ernest M. Gifford, Ph.D., Professor Emeritus, Academic Senate Distinguished Teaching Award
Hendrick J. Ketelapper, Ph.D., Professor Emeritus
Donald W. Kyhos, Ph.D., Professor Emeritus
Norma J. Lang, Ph.D., Professor Emeritus
C. Ralph Stocking, Ph.D., Professor Emeritus
John M. Tucker, Ph.D., Professor Emeritus
Grady Webster, Ph.D., Professor Emeritus
Kenneth Wells, Ph.D., Professor Emeritus

Affiliated Faculty
Deborah Canington, Ph.D., Lecturer, Academic Federation Excellence in Teaching Award
Ellen Dean, Ph.D., Academic Coordinator/Lecturer

Courses in Plant Biology (PLB)

Lower Division Courses
1. Plants for Garden, Orchard and Landscape (2)
Lecture—1 hour; laboratory—3 hours. For non-majors. Hands-on experience with plants cultivated for food, environmental enhancement and personal satisfaction. Topics include establishing a vegetable garden, pruning and propagating trees and vines, growing flowers and ornamental plants, and the role of plants in human health and well-being. Not open for credit to students who have completed Agricultural Systems and Environment 2 or Plant Science 1. (Former course Plant Science 1.) (P/NP grading only.)—I, II, III. (I, II, III.)

11. Plants and the Biosphere (3)
Lecture—3 hours; one weekend field trip (half-day); term paper. Ethnobotanical and ecological themes are emphasized in examining our dependence on plants, the ecological roles of plants, and the development of botany as a contemporary science. Intended primarily for non-science majors. GE credit: SciEng, Wrt.—I. (I.)

90X. Plant Science Seminar (1-4)
Prerequisite: consent of instructor. Examination of a special topic in a small group setting. Not open for credit to students who have completed course Plant Science 90X. (Former course Plant Science 90X.)

92. Internship (1-12)
Internship—3—36 hours. Prerequisite: consent of instructor. Technical and/or professional experience on or off campus. Supervised by a member of the Plant Biology faculty. (P/NP grading only.)

98. Directed Group Study (1-5)
Prerequisite: consent of instructor. Primarily for lower division students. (P/NP grading only.)

99. Special Study for Undergraduates (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)

Upper Division Courses
For questions about courses numbered 102 through 125, see the Plant Biology Section Office, 1002 Life Sciences Addition. For questions concerning courses numbered 140 through 198 and 196, see the Plant Science Advising Center, 152 Hunt Hall.

102. California Floristics (5)
Lecture—2 hours, lecture/discussion—1 hour; laboratory—6 hours (includes three one-day, weekend field trips). Prerequisite: Biological Sciences 1A, 1B, 1C or the equivalent in plant science. Survey of the flora of California, with emphasis on field recognition and identification of important vascular plant families and genera characterizing the major floristic regions. Lectures review the taxonomic diversity, evolutionary relationships, and geographical patterns of California flora.—III. (II, III.)

105. Developmental Plant Anatomy (5)
Lecture—3 hours; laboratory—6 hours. Prerequisite: introductory plant biology (for example, Biological Sciences 1C). Survey of vascular plant structure and development. Current ideas and experimental evidence for developmental concepts.—I. (I.) Canington

108. Systematics and Evolution of Angiosperms (5)
Lecture—3 hours; laboratory—6 hours. Prerequisite: Biological Sciences 1A, 1B and 1C. Diversity and classification of angiosperms (flowering plants) on a world scale, and current understanding of the origin of angiosperms and evolutionary relationships and trends within them based on morphological and molecular evidence. (Same course as Evolution and Ecology 108.) GE credit: SciEng.—I. (II.)

111. Plant Physiology (3)
Lecture—3 hours. Prerequisite: Biological Sciences 1C; Chemistry 8B and Physics 7C (either may be taken concurrently); course 105 recommended. The plant cell as a functional unit. The processes of absorption, movement, and utilization of water and minerals. Water loss, translocation, photosynthesis, respiration.—I. (I.)

111D. Problems in Plant Physiology (1)
Discussion—1 hour. Prerequisite: course 111 concurrently. Discussion of problems and applications relating to principles presented in course 111. Students will be assigned problems each week showing novel applications of principles described in course 111 and will prepare answers to be delivered orally during the class period. (P/NP grading only.)—I. (I.)

Quarter Offered: I—Fall; II—Winter; III—Spring; IV—Summer; 2001-2002 offering in parentheses.

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
111L. Introductory Plant Physiology Laboratory (5)
Lecture/discussion—1 hour; laboratory—9 hours; extensive writing. Prerequisite: course 111 (may be taken concurrently) or 112 or consent of instructor (both recommended). Introduction to basic experimental techniques and instruments used in the investigation of plant physiological processes, such as photosynthesis, water and solute transport, tissue cultures, and detection of hormones.—(III.) Murphy

112. Plant Growth and Development (3)
Lecture—3 hours. Prerequisite: Biological Sciences 1C, Chemistry 8B. Introduction to the mechanisms and control systems that govern plant growth and development and the responses of plants to the environment. Strong emphasis on vegetative development of flowering plants. GE credit: SciEng.—Il. (II.) Harada

112D. Problems in Plant Growth and Development (1)
Discussion—1 hour. Prerequisite: course 112 concurrently. Discussion of problems and applications relating to principles presented in course 112. Students will be assigned problems each week showing novel applications of the principles described in course 112 and will prepare answers to be delivered orally during class period. (P/NP grading only).—(III.)

113. Molecular and Cellular Biology of Plants (3)
Lecture—3 hours. Prerequisite: Biological Sciences 1A, 1C, 101; Biological Sciences 102 recommended. Molecular and cellular aspects of the growth and development of plants and their response to biological and environmental stresses. Primary focus on processes unique to plants. Experimental approaches will be emphasized.—(III.)

113D. Problems in Molecular and Cellular Biology of Plants (1)
Discussion—1 hour. Prerequisite: course 113 concurrently. Discussion of topics and applications relating to principles presented in course 113. Assigned topics each week show novel applications of the principles described in course 113; discussion of topics during class period. (P/NP grading only).—(III.)

116. Plant Morphology and Evolution (5)
Lecture—3 hours; laboratory—6 hours. Prerequisite: introductory plant biology (e.g., Biological Sciences 1C); plant anatomy recommended (e.g., course 105). Introduction to the form, development and evolution of vascular plants. Emphasis given to the form and development of reproductive structures in ferns and seed-producing plants as a basis for determining evolutionary relationships. GE credit: SciEng.—Il. (II.) Jernstedt

117. Plant Ecology (4)
Lecture—3 hours; three to five field trips. Prerequisite: Biological Sciences 1A, 1B, 1C; course 112; course 102 or 108 strongly recommended. The study of interactions between plant populations or vegetation types and their environment. Special emphasis on California. Students taking course 117 cannot receive credit for Evolution and Ecology 121. (Same course as Evolution and Ecology 117.)—I. (I.)

118. Introductory Phylogeny and Bryology (5)
Lecture—3 hours; laboratory—6 hours. Prerequisite: Biological Sciences 1A and 1C. Comparative morphology, physiology, development and reproduction of cyanobacteria, the major algal groups, and the bryophytes. Focus on structure-function and evolutionary relationships. Ecological factors and commercial uses are considered. Laboratories include study of living organisms and identification exercises.—Il. (II.) Rejmanek

119. Population Biology of Weeds (3)
Lecture—2 hours; laboratory—3 hours. Prerequisite: Biological Sciences 1A, 1B, 1C, introductory statistics recommended. Origin and evolution of weeds, reproduction and dispersal, seed ecology, modeling of population dynamics, interactions of weeds with crops, birds, and control. Laboratories emphasize design of competition experiments and identification of weedy species. Not open for credit to students who have completed Plant Biology 121. (Same course as Evolution and Ecology 119.)—Il. (III.) Rejmanek

123. Plant-Virus-Vector Interaction (3)
Lecture—3 hours. Prerequisite: Biological Sciences 1A, 1C, 101; course 105. Plant Pathology 120, and Entomology 100 recommended. Analysis of the interactions necessary for viruses to infect plants. Interactions among insect vectors and host plants involved in the plant-virus life cycle. Evolutionary aspects of the molecular components in viral infection and modern experimental approaches to the interdiction of viral movement. Offered alternate years. (Same course as Entomology 123/Plant Pathology 123.)—I. (I.) Lucas, Gilbertson, Ullman

125. Molecular Biology of Plant Development (3)
Lecture—3 hours. Prerequisite: Biological Sciences 1A, 1B, 1C; Biological Sciences 103, Molecular and Cellular Biology 161 or course 111. Gene expression and gene structure and their influence on growth and differentiation of higher plant tissues.—(III.)

126. Plant Biochemistry (2)
Lecture—3 hours. Prerequisite: Biological Sciences 1C or the equivalent, and Biological Sciences 103. The biochemistry of important plant processes and metabolic pathways. Discussion of methods used to understand plant processes, including use of transgenic plants. (Same course as Molecular and Cellular Biology 152.)—Il. (II.) Cailliau, Abel

141. Principles and Methods of Ethnobotany (4)
Lecture—3 hours; laboratory/discussion—2 hours. Prerequisite: Biological Sciences 1C or Agricultural Systems and Environment 2 or the equivalent; course 108 recommended. Examination of concepts, questions, and methods in ethnobotany, the study of human-plant interactions. Specific topics include traditional and scientific classification systems, uses of specific plants, plant evolution under domestication, and ethical issues related to ethnobotany. Offered in alternate years. GE credit: SciEng or SocSci. Wrt.—Il. (II.) Potter

142. Ecology of Crop Systems (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: Agricultural Systems and Environment 2 or Biological Sciences 1C; Mathematics 16A or Physics 1A, or consent of instructor. Ecological processes governing the structure and behavior of managed ecosystems. Emphasis on mechanistic and systems views of the physical environment, photosynthetic productivity, competition, adaptation, nutrient cycling, energy relations and contemporary issues such as climate change. GE credit: SciEng.—Il. (II.) Denison

143. Evolution of Crop Plants (3)
Lecture—3 hours. Prerequisite: Biological Sciences 1C or the equivalent. Origins of crops and agriculture, including methodological approaches, center of origin and diversity, crop dissemination pathways, and differences between wild and cultivated plants. Clinical studies of individual crops are published on the Internet. Not open for credit to students who have completed Plant Science 103. GE credit: SciEng, Wrt.—Il. (II.) Gepts

144. Trees and Forests (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: Biological Sciences 1C. Biological structure and function of trees as organisms; understanding of forests as communities and as ecosystems; use of forests by humans; tree physiology, photosynthesis, respiration, soil processes, life histories, dormancy, forest biodiversity, and agroforestry. (Same course as Environmental Horticulture 144 and Environmental and Resource Sciences 144.)—I. (I.) Barbour, Berry, Beddoes

145. Sierra Nevada Flora (3)
Lecture/laboratory—30 hours (total); fieldwork—50 hours (total). Prerequisite: course 102 or 108 or Ecology 121 or Environmental Horticulture 105. An introduction to the flora of the Sierra Nevada. Basic plant identification, the principal plant communities and species of the Sierra Nevada. Class offered the first two weeks in July in the Sierra Nevada. Offered in alternate years. —summer

146. Rhizosphere Ecology (3)
Lecture—2 hours; discussion—1 hour. Prerequisite: Agricultural Systems and Environment 2 or Biological Sciences 1C. Effects of plant-microbe interactions on plant growth, soil formation, and agricultural sustainability. Physical, chemical and biological processes that occur at the surface of plant roots. Evolution and modification of the biochemical and genetic bases of rhizosphere ecology.—Il. (III.) Phillips

146. Introductory Mycology (5)
Lecture—3 hours; laboratory—6 hours. Prerequisite: Biological Sciences 1A, 1B, 1C. Introduction to morphology, ontogeny, taxonomy and biology of the fungi. Not open for credit to students who have completed former course 119, Botany/Plant Pathology 119. (Former course 119, Botany/Plant Pathology 119.) (Same course as Plant Pathology 145.)—I. (I.) MacDonald, Rizzo

151. Plant Genetic Resources for Global Crop Production (3)
Lecture—3 hours. Prerequisite: Biological Sciences 1B or 10. Biological and social factors that influence availability of plant genetic resources for discovery of useful new traits and improvement of cultivated plants. Environmental, ethical, social, property rights and biological systems on conservation strategies in local and global contexts. Offered in alternate years. GE credit: SciEng, Wrt.—Il. (Il.) Potter

152. Plant Genetics (4)
Lecture—3 hours; discussion/laboratory—1 hour. Prerequisite: Biological Sciences 1A or consent of instructor. Basic principles of plant genetics, cytogenetics, population and quantitative genetics, and molecular genetics. Practical aspects of genetic crosses and analysis of segregating populations. Not open for credit to students who have completed Plant Science 105. (Former course Plant Science 105.)—Il. (II.) Wilkins

153. Plant, Cell, Tissue and Organ Culture (4)
Lecture—2 hours; discussion—1 hour; laboratory—3 hours. Prerequisite: Biological Sciences 1C or Agricultural Systems and Environment 2. Basic and applied aspects of plant tissue culture including media preparation, micropropagation, embryogenesis, anther culture, protoplast culture and transformation. Offered in alternate years. Not open for credit to students who have completed Plant Science 107. (Former course Plant Science 107.)—Il. (II.) Sutter

154. Introduction to Plant Breeding (4)
Lecture—3 hours; laboratory—3 hours. Prerequisite: course 152, Biological Sciences 101 or consent of instructor. The principles, methods and applications of plant breeding and genetics to the improvement of crop plants. Illustration of how plant breeding is a dynamic, multidisciplinary, constantly-evolving science. Laboratory emphasizes hands-on experience in the basics of breeding through experience. (Former course Plant Science 113.)—Il. (II.) St. Clair
157. Physiology of Environmental Stresses in Plants (4)
Lecture—2 hours; discussion—2 hours. Prerequisite: course 112 (may be taken concurrently) or the equivalent. Stress concepts and principles; physiological, developmental, and morphological characteristics enabling plants to avoid or tolerate environmental stresses; mechanisms of acclimation common to many stresses; responses of wild and cultivated species to drought, flooding, nutrient deficiencies, salinity, toxic metals, and extreme temperatures.—II. (II.) Slik, Lauchli

158. Mineral Nutrition of Plants (4)
Lecture—3 hours; laboratory—3 hours. Prerequisite: course 111 or the equivalent. Evolution and scope of plant nutrition; essential and other elements; mechanisms of absorption and translocation; mineral metabolism; deficiencies and toxicities; genetic and ecological aspects of plant nutrition. Not open for credit to students who have completed Plant Biology/Plant Science 135. (Former course Plant Biology/Plant Science 135.—II. III. Richards, Brown

160. Principles of Plant Biotechnology (3)
Lecture—2 hours; laboratory—6 hours. Prerequisite: course 152 and/or 160. Technical aspects of genetic analysis at the molecular and organismal levels, including segregation and linkage analysis, cytogenetics and recombinant DNA. Not open for credit to students who have completed Plant Science 140. (Former course Plant Science 140.—II. (II.) Dandekar

161A. Plant Genetics and Biotechnology Laboratory (4)
Lecture—2 hours; laboratory—6 hours. Prerequisite: course 152 and/or 160. Advanced techniques of genetic analysis at the molecular and organismal levels, including transformation, gene expression, analysis of transgenic plants and QTL analysis. Not open for credit to students who have completed Plant Science 141A. (Former course Plant Science 141A.—II. (II.) Dandekar, Dubcovsky

161B. Plant Genetics and Biotechnology Laboratory (4)
Lecture—2 hours; laboratory—6 hours. Prerequisite: course 152 and/or 160. Advanced techniques of genetic analysis at the molecular and organismal levels, including transformation, gene expression, analysis of transgenic plants and QTL analysis. Not open for credit to students who have completed Plant Science 141B. (Former course Plant Science 141B.—II. (II.) Harada

171. Plant Propagation (4)
Lecture—2 hours; discussion—1 hour; laboratory—3 hours. Prerequisite: Agricultural Systems and Environment 2 or Biological Sciences 1C. Principles and practices of propagating plants covering anatomical, physiological, and practical aspects. Not open for credit to students who have completed Plant Science 109. (Former course Plant Science 109.—II. (II.) Sutter

172. Postharvest Physiology and Handling of Horticultural Commodities (3)
Lecture—3 hours. Prerequisite: general plant science background recommended (e.g., Agricultural Systems and Environment 2, course 120 or Food Science and Technology 2); concurrent enrollment in course 172L recommended. Physiological processes related to the maturation and senescence of fruits, vegetables, and ornamentals; fundamentals involved in handling, transportation, storage, and marketing practices, e.g., temperature and humidity control, protective treatments, controlled atmospheres. Not open for credit to students who have completed Plant Science 112. (Former course Plant Science 112.—II. (II.) Dandekar

172L. Postharvest Physiology and Handling Laboratory (2)
Discussion—1 hour; laboratory—3 hours. Prerequisite: course 172 (may be taken concurrently). Demonstrations and exercises following the subject matter of course 172L are open for credit to students who have completed Plant Science 112L. (Former course Plant Science 112L.—II. (II.) Saltveit

173. Biological Applications in Fruit Tree Management (2)
Lecture—1 hour; laboratory—3 hours. Prerequisite: Biological Sciences 1C or Agricultural Systems and Environment 2 or the equivalents. Physiology, growth, developmental requirements of fruit trees and cultural practices used to maintain them. Emphasis on the application of biological principles in the culture of commercially important temperate zone fruit tree species. Not open for credit to students who have completed Plant Science 115. (Former course Plant Science 115.—II. (II.) DeJong, Polito

174. Biological Applications in Fruit Production (2)
Lecture—1 hour; laboratory—3 hours. Prerequisite: Biological Sciences 1C or Agricultural Systems and Environment 2; course 173 recommended. Reproductive biology of tree-crop species. Biological principles of fruit production, tree nutrition and orchard management. Laboratories emphasize hands-on work with orchard tree systems.—II. III. (III.) DeJong, Polito

175. Applied Plant Biology (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 111, and Biological Science 110 or course 152. Advanced concepts of plant biology with reference to the uses of plants for food, fiber, and environmental enhancement. Current research, applications, and issues in crop improvement, production and biotechnology will be presented and discussed. Not open for credit to students who have completed Plant Science 145. (Former course Plant Science 145.—II. (II.) Brown, Labavitch, Rains

176. Introduction to Weed Science (3)
Lecture—2 hours; laboratory—3 hours. Prerequisite: Agricultural Systems and Environment 2 or Biological Sciences 1C. Principles of weed science including mechanical, biological, and chemical control methods. Weed control in crop, pasture, range, brush, forests, aquatic, and non-crop situations. Types of herbicides. Application of herbicides. Sight identification of common weeds and demonstrations to illustrate the principles. Not open for credit to students who have completed former course 120.—II. (II.) Bayer

177. Action of Herbicides (3)
Lecture—2 hours; laboratory—3 hours. Prerequisite: course 176; Soil Science 100; courses 111, 111D recommended. Influence of plants and soils on the action of herbicides. Absorption, translocation, fate, mechanism of action and symptoms of herbicides in plants. Effects of herbicides on plant populations. Physical and molecular fate of herbicides in soils. Not open for credit to students who have completed former course 122. (Former course 122.—II. (III.) Bayer, Fischer, Falk

178. Biology and Management of Freshwater Macrophytes (3)
Lecture—3 hours; two field trips. Prerequisite: Biological Sciences 1A, 1B, 1C, Chemistry 8B; course 111 or Hydrologic Science 122 recommended. Brief survey of common fresh water macrophytes, their reproductive modes, physiology, growth (photosynthesis, nutrient utilization), development (hormonal interactions), ecology and management. Offered in alternate years. Not open for credit to students who have completed former course 150. (Former course 150.—II. (II.) Anderson

188. Undergraduate Research: Proposal (3)
Lecture/discussion—3 hours. Prerequisite: upper division standing and consent of instructor. Through lectures, class discussion and individual mentoring, students will define a problem, identify objectives, conduct a literature survey, generate testable hypotheses, design experiments, plan data analysis, prepare an outline, and write a scientific proposal. (Same course as Biotechnology 188.) (P/NP grading only)—III. (III.) Kader

189. Experiments in Plant Biology: Design and Execution (3)
Laboratory/discussion—6 hours. Prerequisite: Biological Sciences 1A, 1B, 1C or the equivalent courses in plant sciences, and consent of the instructor. Provides an opportunity for undergraduate students to formulate experimental approaches to current research questions in plant biology and to carry out their proposed experiments. May be repeated for credit for a total of 12 units. (P/NP grading only)—II, III. (II, III.)

190C. Research Conference in Botany (1)
Discussion—1 hour. Prerequisite: upper division standing in botany or related discipline; consent of instructor. Introduction to research methods in botany. Design of field or laboratory research projects, survey of appropriate literature, and discussion of research by faculty and students. May be repeated for credit. (P/NP grading only)—II, III. (II, III.)

192. Internship (1-12)
Internship—36 hours. Prerequisite: upper division standing; consent of instructor. Technical and/or professional experience on or off campus. Supervised by a member of the Plant Biology Section faculty. (P/NP grading only.)

194H. Special Study for Honors Students (1-5)
Prerequisite: open only to majors on senior standing on honors list. Independent study of selected topics under the direction of a member of the staff. Completion will involve the writing of a senior thesis. (P/NP grading only.)

196. Postharvest Technology of Horticultural Crops (3)
Lecture/discussion/demonstration—5 days; field trip—5 days. Prerequisite: upper division or graduate student standing. Intensive study of current procedures for postharvest handling of fruits, nuts, vegetables, and ornamentals in California. Scheduled first two weeks immediately following last day of spring quarter. Considered a spring course for preenrollment. Not open for credit to students who have completed Plant Science 196. (Former course Plant Science 196.) (P/NP grading only)—II, III. (II, III.)

197T. Tutoring in Botany (1-5)
Tutoring—1-5 hours. Prerequisite: upper division standing and consent of instructor. Designed for undergraduate students who desire teaching experience. Student contact will be primarily in laboratory or discussion sections. (P/NP grading only.)

198. Directed Group Study (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)
Courses in Plant Biology (PLB)

Lower Division Courses

1. Plants for Garden, Orchard and Landscape (2)
Lecture—1 hour; laboratory—3 hours. For non-majors. Hands-on experience with plants cultivated for food, environmental enhancement and personal satisfaction. Topics include establishing a vegetable garden, pruning and propagating trees and vines, growing flowers and ornamental plants, and the role of plants in human health and well-being. Not open for credit to students who have completed Agricultural Systems and Environment 2 or Plant Science 1. (Former course Plant Science 1.) (P/NP grading.)—I, III, (I, III.) Marrush

11. Plants and the Biosphere (3)
Lecture—3 hours; one weekend field trip (half-day); term paper. Ethnobotanical and ecological themes are emphasized in examining our dependence on plants, the ecological roles of plants, and the development of botany as a contemporary science. Intended primarily for non-science majors. GE credit: SciEng, Wrt.—I. (I.) Falk

12. Plants and People (3)
Lecture—3 hours. Prerequisite: high school biology. Plants as a resource for food, recreation, and environmental enhancement. Emphasis on how our relationship to plants has changed through history and how the growth and development of plants affect their utility. Not open for credit to students who have completed Plant Science 10. (Former course Plant Science 10.) GE credit: SciEng, Div, Wrt.—II, III, (I, II, III.) Nevins, Micheldom, Bloom

90X. Plant Science Seminar (1-4)
Prerequisite: consent of instructor. Examination of a special topic in a small group setting. Not open for credit to students who have completed course Plant Science 90X. (Former course Plant Science 90X.)

92. Internship (1-12)
Internship—3-36 hours. Prerequisite: consent of instructor. Technical and/or professional experience on or off campus. Supervised by a member of the Plant Biology faculty. (P/NP grading only.)

98. Directed Group Study (1-5)
Prerequisite: consent of instructor. Primarily for lower division students. (P/NP grading only.)

99. Special Study for Undergraduates (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)

Upper Division Courses

For questions about courses numbered 102 through 125, see the Plant Biology Section Office, 1002 Life Sciences Addition. For questions concerning courses numbered 140 through 196, see the Plant Science Advising Center, 152 Hunt Hall.

102. California Floristics (5)
Lecture—2 hours; lecture/discussion—1 hour; laboratory—6 hours (includes three one-day, weekend field trips). Prerequisite: Biological Sciences 1A, 1B, 1C or the equivalent in plant science. Survey of the flora of California, with emphasis on field recognition and identification of important vascular plant families and genera characterizing the major floristic regions. Lectures review the taxonomic diversity, evolutionary relationships, and geographical patterns of California flora.—III. (I, III.) Potter, Dean

105. Developmental Plant Anatomy (5)
Lecture—3 hours; laboratory—6 hours. Prerequisite: introductory plant biology (for example, Biological Sciences 1C). Survey of vascular plant structure and development. Current ideas and experimental evidence for developmental concepts.—I. (I.) Canington

108. Systematics and Evolution of Angiosperms (5)
Lecture—3 hours; laboratory—6 hours. Prerequisite: Biological Sciences 1A, 1B and 1C. Diversity and classification of angiosperms (flowering plants) on a world scale, and current understanding of the origin of angiosperms and evolutionary relationships and trends within them based on morphological and molecular evidence. (Same course as Evolution and Ecology 108.) GE credit: SciEng.—II. (III.) Doyle

111. Plant Physiology (3)
Lecture—3 hours. Prerequisite: Biological Sciences 1C; Chemistry 8B and Physics 7C (either may be taken concurrently); course 105 recommended. The plant cell as a functional unit. The processes of absorption, movement, and utilization of water and minerals. Water loss, translocation, photosynthesis, respiration.—I. (I.) Lucas, Stemler

111D. Problems in Plant Physiology (1)
Discussion—1 hour. Prerequisite: course 111 concurrently. Discussion of problems and applications relating to principles presented in course 111. Students will be assigned problems each week showing novel applications of principles described in course 111 and will prepare answers to be delivered orally during the class period. (P/NP grading only.)—I. (I.) Lucas, Stemler
111L. Introductory Plant Physiology Laboratory (5)
Lecture/discussion—1 hour; laboratory—9 hours; extensive writing. Prerequisite: course 111 (may be taken concurrently) or 112 or consent of instructor (both recommended). Introduction to basic experimental techniques and instruments used in the investigation of plant physiological processes, such as photosynthesis, water and solute transport, tissue cultures, and detection of hormones.—(III.) Murphy

112. Plant Growth and Development (3)
Lecture—3 hours. Prerequisite: Biological Sciences 1C; Chemistry 88. Introduction to the mechanisms and control systems that govern plant growth and development and the responses of plants to the environment. Strong emphasis on vegetative development of flowering plants. GE credit: SciEng.—II. (II.) Harada

112D. Problems in Plant Growth and Development (1)
Discussion—1 hour. Prerequisite: course 112 concurrently. Discussion of problems and applications relating to principles presented in course 112. Students will be assigned problems each week showing novel applications of the principles described in course 112 and will prepare answers to be delivered orally during class period. (P/NP grading only.)—II. (II.) Harada

113. Molecular and Cellular Biology of Plants (3)
Lecture—3 hours. Prerequisite: Biological Sciences 1A, 1C, 101; Biological Sciences 102 recommended. Molecular and cellular aspects of the growth and development of plants and their response to biological and environmental stresses. Primary focus on processes unique to plants. Experimental approaches will be emphasized.—(III.)

113D. Problems in Molecular and Cellular Biology of Plants (1)
Discussion—1 hour. Prerequisite: course 113 concurrently. Discussion of topics and applications relating to principles presented in course 113. Assigned topics each week show novel applications of the principles described in course 113; discussion of topics during class period. (P/NP grading only.)—(III.)

116. Plant Morphology and Evolution (5)
Lecture—3 hours; laboratory—6 hours. Prerequisite: introductory plant biology (e.g., Biological Sciences 1A and 1B; plant anatomy recommended (e.g., course 105)). Introduction to the form, development and evolution of vascular plants. Emphasis given to the form and development of reproductive structures in ferns and seed-producing plants as a basis for determining evolutionary relationships. GE credit: SciEng.—II. (II.) Jernstedt

117. Plant Ecology (4)
Lecture—3 hours; three to five field trips. Prerequisite: Biological Sciences 1A, 1B, 1C; course 112; course 102 or 108 strongly recommended. The study of interactions between plant populations or vegetation types and their environment. Special emphasis on California. Students taking course 117 cannot receive credit for Evolution and Ecological Sciences 117.—I. (I.)

118. Introductory Phyology and Bryology (5)
Lecture—3 hours; laboratory—6 hours. Prerequisite: Biological Sciences 1A and 1C. Comparative morphology, physiology, development and reproduction of cyanobacteria, the major algal groups, and the bryophytes. Focus on structure-function and evolutionary relationships. Ecological factors and commercial uses are considered. Laboratories include study of living organisms and identification exercises.—II. (II.) Rejmanek

119. Population Biology of Weeds (3)
Lecture—2 hours; laboratory—3 hours. Prerequisite: Biological Sciences 1A, 1B, 1C; introductory statistics recommended. Origin and evolution of weeds, reproduction and dispersal, seed ecology, modeling of population dynamics, interactions of weeds with their environment and their control. Laboratories emphasize design of competition experiments and identification of weedy species. Not open for credit to students who have completed Plant Biology 121. (Same course as Evolution and Ecology 119.)—II. (II.) Canziani

123. Plant-Virus-Vector Interaction (3)
Lecture—3 hours. Prerequisite: Biological Sciences 1A, 1C, 101; course 105, Plant Pathology 120, and Entomology 100 recommended. Analysis of the interactions necessary for viruses to infect plants. Interactions among insect vectors and host plants involved in the plant-virus life cycle. Evolutionary aspects of the molecular components in viral infection and modern experimental approaches to the elucidation of viral movement. Offered alternate years. (Same course as Entomology 123/Plant Pathology 123.)—I. (I.) Lucas, Gilbertson, Ullman

125. Molecular Biology of Plant Development (3)
Lecture—3 hours. Prerequisite: Biological Sciences 1A, 1B, 1C; Biological Sciences 103. Moleculer and Cellular Biology 161 or course 111. Gene expression and gene structure and their influence on growth and differentiation of higher plant tissues.—(III.)

126. Plant Biochemistry (3)
Lecture—3 hours. Prerequisite: Biological Sciences 1C or the equivalent, and Biological Sciences 103. The biochemistry of important plant processes and metabolic pathways. Discussion of methods used to understand plant processes, including use of transgenic plants. (Same course as Molecular and Cellular Biology 126.)—III. (III.) Callis, Abel

141. Principles and Methods of Ethnobotany (4)
Lecture—3 hours; laboratory/discussion—2 hours. Prerequisite: Biological Sciences 1C or Agricultural Systems and Environment 2 or the equivalent; course 106 recommended. Examination of ethnobotany, the study of human-plant interactions. Specific topics include traditional and scientific classification systems, uses of specific plants, plant evolution under domestication, and ethical issues related to ethnobotany. Offered in alternate years. GE credit: SciEng or SocSci.—Wrt.—II. (II.) Potter

142. Ecology of Crop Systems (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: Agricultural Systems and Environment 2 or Biological Sciences 1C. Mathematics 16A or Physics 1A, or consent of instructor. Biological processes governing the structure and behavior of managed ecosystems. Emphasis on mechanistic and systems views of the physical environment, photosynthetic productivity, competition, adaptation, nutrient cycling, energy relations and contemporary issues such as climate change. GE credit: SciEng.—II. (II.) Denison

143. Evolution of Crop Plants (3)
Lecture—3 hours. Prerequisite: Biological Sciences 1C or the equivalent. Origins of crops and agriculture, including methodological approaches, center of origin and diversity, crop dissemination pathways, and differences between wild and cultivated plants. Group studies of individual crops are published on the Internet. Not open for credit to students who have completed Plant Science 103. GE credit: SciEng. Wrt.—III. (III.) Gepts

144. Trees and Forests (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: Biological Sciences 1C. Biological structure and function of trees as organisms; understanding of forests as communities and as ecosystems; use of forests by humans; tree phenology, photosynthesis, respiration, soil processes, life histories, dormancy, forest biodiversity and agroforestry. (Same course as Environmental Horticulture 144 and Environmental and Resource Sciences 144.)—I. (I.) Barbour, Berry, Bleedsoe

145. Sierra Nevada Flora (3)
Lecture/laboratory—30 hours (total), fieldwork—50 hours (total). Prerequisite: course 102 or 108 or Evolution and Ecology 121 or Environmental Horticulture 105. An introduction to the flora of the Sierra Nevada. Basic plant identification, the principle plant communities and species of the Sierra Nevada. Class offered the first two weeks in July in the Sierra Nevada. Offered in alternate years.—summer

146. Rhizosphere Ecology (3)
Lecture—2 hours; discussion—1 hour. Prerequisite: Agricultural Systems and Environment 2 or Biological Sciences 1C. Effects of plant-microbe interactions on plant growth, soil formation, and agricultural sustainability. Physical, chemical and biological processes that occur at the surface of plant roots. Evolution and modification of the biochemical and genetic bases of rhizosphere ecology.—III. (III.) Phillips

146. Introductory Mycology (4)
Lecture—3 hours; laboratory—3 hours. Prerequisite: Biological Sciences 1A, 1B, 1C. Introduction to morphology, ontogeny, taxonomy and biology of the fungi. Not open for credit to students who have completed former course 119, Botany/Plant Pathology 119. (Former course 119, Botany/Plant Pathology 119.) (Same course as Plant Pathology 146.)—I. (I.) MacDonald, Rizzo

151. Plant Genetic Resources for Global Crop Production (3)
Lecture—3 hours. Prerequisite: Biological Sciences 1B or 10. Biological and social factors that influence availability of plant genetic resources for discovery of useful new crop varieties and improvement of cultivated plants. Causes of critical issues, property rights and biological systems on conservation strategies in local and global contexts. Offered in alternate years. GE credit: SciEng. Wrt.—I. (I.) Potter

152. Plant Genetics (4)
Lecture—3 hours; discussion/laboratory—1 hour. Prerequisite: Biological Sciences 1A or consent of instructor. Biological principles of transmission genetics, cyto genetics, population and quantitative genetics, and molecular genetics. Practical aspects of genetic crosses and analysis of segregating populations. Not open for credit to students who have completed Plant Science 105. (Former course Plant Science 105.)—I. (I.) Wilkins

153. Plant, Cell, Tissue and Organ Culture (4)
Lecture—2 hours; discussion—1 hour; laboratory—3 hours. Prerequisite: Biological Sciences 1C or consent of instructor. Biological principles of tissue culture, cytophysics, genetic manipulation, and ethogenic systems. Not open for credit to students who have completed Plant Science 107. (Former course Plant Science 107.)—II. (II.) Stutter

154. Introduction to Plant Breeding (4)
Lecture—3 hours; laboratory—3 hours. Prerequisite: course 152, Biological Sciences 101 or consent of instructor. The principles, methods and applications of plant breeding and genetics to the improvement of crop plants. Illustration of how plant breeding is a dynamic, multidisciplinary, constantly-evolving science. Labo ratories emphasize hands-on applications in the basics of breeding through experiments. (Former course Plant Science 113.)—II. (II.) St. Clair

157. Physiology of Environmental Stresses in Plants (4)
Lecture—2 hours; discussion—2 hours. Prerequisite: course 112 (may be taken concurrently) or the equivalent. Stress concepts and principles; physiological, developmental and morphological characteristics enabling plants to avoid or tolerate environmental stresses; mechanisms of acclimation common to many stresses; responses of wild and cultivated species to drought, flooding, nutrient deficiencies, salinity, toxic ions, extreme temperatures.—II. (II.) Silk, Lauchli
158. Mineral Nutrition of Plants (4)
Lecture—3 hours; laboratory—3 hours. Prerequisite: course 111 or the equivalent. Evolution and scope of plant nutrition; essential and other elements; mechanisms of absorption and translocation; mineral metabolism; deficiencies and toxicities; genetic and ecological aspects of plant nutrition. Not open for credit to students who have completed Plant Biology/Plant Science 135. (Former course Plant Biology/Plant Science 135.)—III. (III.) Richards, Brown

160. Principles of Plant Biotechnology (3)
Lecture—3 hours. Prerequisite: Biological Sciences 1A and 101. Principles and concepts of plant biotechnology including recombinant DNA technology, plant molecular biology, plant cell and tissue culture, and crop improvement. Not open for credit to students who have completed Plant Science 141A. (Former course Plant Science 141A.)—II. (II.) Dandekar, Dubovcys

161A. Plant Genetics and Biotechnology Laboratory (4)
Lecture—2 hours; laboratory—6 hours. Prerequisite: course 152 and/or 160. Techniques of genetic analysis at the molecular and organismal levels, including segregation and linkage analysis, cytogenetics and recombinant DNA. Not open for credit to students who have completed Plant Science 141B. (Former course Plant Science 141B.)—II. (II.) Harada

171. Plant Propagation (4)
Lecture—2 hours, discussion—1 hour; laboratory—3 hours. Prerequisite: Agricultural Systems and Environment 2 or Biological Sciences 1C. Principles and practices of propagating plants covering anatomical, physiological, and practical aspects. Not open for credit to students who have completed Plant Science 109. (Former course Plant Science 109.)—II. (II.) Sutter

172. Postharvest Physiology and Handling of Horticultural Commodities (3)
Lecture—3 hours. Prerequisite: general plant science background recommended (e.g., Agricultural Systems and Environment 2, course 12 or Food Science and Technology 2); concurrent enrollment in course 172L recommended. Physiological processes related to the maturation and senescence of fruits, vegetables, and ornamentals; fundamentals involved in handling, transportation, storage, and marketing practices, e.g., temperature and humidity control, protective treatments, controlled atmospheres. Not open for credit to students who have completed Plant Science 112. (Former course Plant Science 112.)—I. (I.) Kader, Reid, Saltveit

172L. Postharvest Physiology and Handling Laboratory (2)
Discussion—1 hour; laboratory—3 hours. Prerequisite: course 172 (may be taken concurrently). Demonstrations and exercises following the subject matter of course 172. Not open for credit to students who have completed Plant Science 112L. (Former course Plant Science 112L.)—I. (I.) Saltveit

173. Biological Applications in Fruit Tree Management (2)
Lecture—1 hour; laboratory—3 hours. Prerequisite: Biological Sciences 1C or Agricultural Systems and Environment 2; course 173 recommended. Practical biological and ecological aspects of fruit production, as applied to orchard management. Not open for credit to students who have completed Plant Science 115. (Former course Plant Science 115.)—I. (I.) De Jong

174. Biological Applications in Fruit Production (2)
Lecture—1 hour; laboratory—3 hours. Prerequisite: Biological Sciences 1C or Agricultural Systems and Environment 2; course 173 recommended. Practical biological and ecological aspects of fruit production, as applied to orchard management. Not open for credit to students who have completed Plant Science 115. (Former course Plant Science 115.)—I. (I.) De Jong, Politto

175. Applied Plant Biology (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 111, and Biological Sciences 101 or course 152. Advanced concepts of plant biology with reference to the uses of plants for food, fiber, and environmental enhancement. Current research, applications, and issues in crop improvement, production and biotechnology will be presented and discussed. Not open for credit to students who have completed Plant Science 145. (Former course Plant Science 145.)—II. (II.) Brown, Labavitch, Rains

176. Introduction to Weed Science (3)
Lecture—3 hours; laboratory—3 hours. Prerequisite: Agricultural Systems and Environment 2 or Biological Sciences 1C. Principles of weed science including mechanical, biological, and chemical control methods. Weed control in crop, pasture, range, brush, forests, aquatic, and non-crop situations. Types of herbicides. Application of herbicides. Identification of common weeds and demonstrations to illustrate the principles. Not open for credit to students who have completed former course 120.—II. (II.) Bayer

177. Action of Herbicides (3)
Lecture—2 hours; laboratory—3 hours. Prerequisite: course 176; Soil Science 100; courses 111, 111D recommended. Influence of plants and soils on the action of herbicides. Absorption, translocation, fate, mechanism of action and symptoms of herbicides in plants. Effects of herbicides on plant populations. Physical and molecular fate of herbicides in soils. Not open for credit to students who have completed former course 122. (II) Stinner course 122.—III. (III.) Bayer, Fischer, Falk

178. Biology and Management of Freshwater Macrophytes (3)
Lecture—3 hours; two field trips. Prerequisite: Biological Sciences 1A, 1B, 1C, Chemistry 8B; course 111 or Hydrologic Science 122 recommended. Brief survey of common fresh water macrophytes, their reproductive modes, physiology, growth (photosynthesis, nutrient utilization), development (hormonal interactions), ecology and management. Offered in alternate years. Not open for credit to students who have completed former course 150. (Former course 150.)—I. (I.) Anderson

188. Undergraduate Research: Proposal (3)
Lecture/discussion—3 hours. Prerequisite: upper division standing and consent of instructor. Through lectures, class discussion and individual mentoring, students will define a problem, identify objectives, conduct a literature survey, generate testable hypotheses, design experiments, plan data analysis, prepare an outline, and write a scientific proposal. (Same course as Biotechnology 188.) (P/NP grading only.)—II. (II.) Anderson

189. Experiments in Plant Biology: Design and Execution (3)
Laboratory/discussion—6 hours. Prerequisite: Biological Sciences 1A, 1B, 1C or the equivalent courses in plant sciences, and consent of the instructor. Provides an opportunity for undergraduate students to formulate experimental approaches to current questions in plant biology and to carry out their proposed experiments. May be repeated for credit for a total of 12 units. (P/NP grading only.)—I, II, III. (I, II, III.)

190C. Research Conference in Botany (1)
Discussion—1 hour. Prerequisite: upper division standing and consent of instructor. Technical and/or professional experience on or off campus. Supervised by a member of the Plant Biology Section faculty. (P/NP grading only.)

194H. Special Study for Honors Students (1-5)
Prerequisite: open only to majors of senior standing on honors list. Independent study of selected topics under the direction of a member or members of the staff. Completion will involve the writing of a senior thesis. (P/NP grading only.)

196. Postharvest Technology of Horticultural Crops (3)
Lecture/discussion/demonstration—5 days; field trip—5 days. Prerequisite: upper division or graduate student standing. Intensive study of current procedures for postharvest handling of fruits, nuts, vegetables, and ornamentals in California. Scheduled first two weeks immediately following last day of spring quarter. Considered a spring course for preenrollment. Not open for credit to students who have completed Plant Science 196. (Former course Plant Science 196.) (P/NP grading only.)—III. (III.) Mitchell

197T. Tutoring in Botany (1-5)
Tutoring—1-5 hours. Prerequisite: upper division standing and consent of instructor. Designed for undergraduate students who desire teaching experience. Student contact will be primarily in laboratory or discussion sections. (P/NP grading only.)

198. Directed Group Study (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)
Plant Pathology

(College of Agricultural and Environmental Sciences)

Richard M. Bostock, Ph.D., Chairperson of the Department
Department Office, 354 Hutchison Hall (530-752-0300)
World Wide Web: http://www.plpnem.ucdavis.edu/PLP/courses/courses.htm

Faculty

Richard M. Bostock, Ph.D., Professor
George Bruening, Ph.D., Professor
John M. Dunway, Ph.D., Professor
Lynn Epstein, Ph.D., Associate Professor
Bryce W. Falk, Ph.D., Professor
Robert L. Gilbertson, Ph.D., Professor
David G. Gilchrist, Ph.D., Professor
Thomas R. Gordon, Ph.D., Professor
Clarence I. Kado, Ph.D., Professor
Bruce Kirkpatrick, Ph.D., Professor
James D. MacDonald, Ph.D., Professor (Plant Pathology, Environmental Horticulture)

Emeriti Faculty

Edward E. Butler, Ph.D., Professor Emeritus
Robert N. Campbell, Ph.D., Professor Emeritus
James E. DeVay, Ph.D., Professor Emeritus
W. Harley English, Ph.D., Professor Emeritus
Raymond G. Grogan, Ph.D., Professor Emeritus
Bert Lear, Ph.D., Professor Emeritus
Srecker John M. Mincetich, Ph.D., Lecturer Emeritus
George Nyland, Ph.D., Professor Emeritus

Affiliated Faculty

Greg Browne, Ph.D. Research Plant Pathologist
E. Civerolo, Ph.D., Lecturer
R. Michael Davis, Ph.D., Lecturer
Deborah A. Golino, Ph.D., Lecturer
W. Douglas Gubler, Ph.D., Lecturer
Jerry K. Uyemoto, Ph.D., Lecturer

Related Major Program. See the major in Plant Biology.

Graduate Study. The Department of Plant Pathology offers programs of study and research leading to the M.S. and Ph.D. degrees. Information can be obtained from the graduate adviser. See also the Graduate Studies section in this catalog.

Courses in Plant Pathology (PLP)

Lower Division Course

40. Edible Mushroom Cultivation (2)
Lecture—1 hour; laboratory—6 hours. Prerequisite: Biological Sciences 10 or Microbiology 20 recommended. Principles and practices of growing edible mushrooms, including culture maintenance, basic mushroom substrate preparation, composting, spawn generation techniques, inoculation methods, harvesting, and pest and pest management.—II- (II) Davis

Upper Division Courses

120. Introduction to Plant Pathology (4)
Lecture—2 hours; laboratory—6 hours. Prerequisite: Biological Sciences 1C, Microbiology 102 recommended. The nature, cause, and control of plant diseases.—I, II, III. (I, III) Dunway, Falk, Gilbertson, Bostock

123. Plant-Virus-Vector Interaction (3)
Lecture—3 hours. Prerequisite: Biological Sciences 1A, 1C, 101, Plant Biology 105, course 120, and Entomology 100 recommended. Analysis of the interactions necessary for viruses to infect plants. Interactions among insect vectors and host plants involved in the plant-virus life cycle. Evolutionary aspects of the molecular components in viral infection and modern experimental approaches to the interdiction of viral movement. Offered alternate years. (Same course as Entomology 123/Plant Biology 123.)—I, II, III. Lucas, Gilchrist, Bostock

130. Fungal Biotechnology and Biochemistry (3)
Lecture—3 hours. Prerequisite: Plant Biology 119, Biological Sciences 103. How fundamental physiological and biochemical activities of fungi impact the destructive and beneficial roles of these organisms in nature. Utilization and manipulation of fungi for biotechnological and industrial applications.—II, (II) Gilchrist, Bostock

135. Field Identification of Mushrooms (1)
Field course; three-day mandatory field trip. Prerequisite: introductory course in biological sciences; course in mycology recommended. Collection and identification of mushrooms and other fleshy fungi based on macro and microscopic features. (P/NP grading only.)—II- (II) Davis

140. Agricultural Biotechnology, Ethics and Public Policy (4)
Lecture—3 hours; term paper or discussion—1 hour. Examination of agricultural biotechnology within a moral/ethical framework. Public policy development and implementation. GE credit: SciEng, Wrt.—III- (III) Bruening

148. Introductory Mycology (5)
Lecture—3 hours; laboratory—6 hours. Prerequisite: Biological Sciences 1A, 1B, 1C. Introduction to morphology, ontogeny, taxonomy and biology of the fungi. (Same course as Plant Biology 148.)—I, II, III. MacDonald, Rizzo

150. Fungal Ecology (3)
Lecture—3 hours. Prerequisite: Biological Sciences 1C or equivalent. The ecological roles of fungi as saprobes, mutualists and parasites in native and managed ecosystems. Physiological and reproductive strategies associated with adaptations to diverse habitats.—II- (II) Gordon

151A-151B. Fungal Biodiversity in Natural Environments (4-4)
Lecture—1 hour; laboratory—6 hours; field work—three or four one-day-long weekend field trips. Prerequisite: introductory course in mycology (e.g., Plant Biology 148/148B or course 148). Plant Pathology 150 (may be taken concurrently). Fungal biodiversity within a natural habitat. Fungi collected on field trips will be identified during laboratory periods. The ecological roles of the various fungal taxa are emphasized. Offered in alternate years.—(III-summer.) MacDonald

192. Internship (1-12)
Internship—3 to 36 hours. Prerequisite: course 120 and consent of instructor. Work experience off and on campus, supervised by a member of the faculty. (P/NP grading only.)

198. Directed Group Study (1-5)
(P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5)
(P/NP grading only.)

Graduate Courses

205A-205B. Diseases of Vegetable and Field Crops (4-1)
Lecture—2 hours; laboratory—3 hours; fieldwork—6 hours; research term paper. Prerequisite: course 120; Plant Biology 119 or course 125. Study of vegetable and field crops with emphasis on diagnosis, epidemiology, and control. Lectures on diagnostic techniques, seed pathology, disease assessment and crop loss, and integrated disease management. Field trips and laboratory exercises related to disease diagnosis. (Deferred grading only, pending completion of sequence.)—III-summer. (III-summer) van Bruggen

206A-206B. Diseases of Fruit, Nut, and Vine Crops (3-1)
Lecture—2 hours; laboratory—6 hours. Prerequisite: course 120; Plant Biology 119. Course 205 may be taken concurrently. Clinical study of fruit, nut, and vine crops diseases with emphasis on etiology, epidemiology, diagnosis, and control. Offered in alternate years. (Deferred grading only, pending completion of sequence.)—III-summer. Kirkpatrick

208. Ecology of Plant Pathogens and Epidemiology of Plant Diseases (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 120 or the equivalent. Interaction between higher plants, plant pathogens, and the environment which is important in the occurrence and severity of plant disease. Emphasis is placed on the population dynamics and ecology of plant pathogens in the aerial and soil environment. Offered in alternate years.—III. Dunway

209. Principles of Plant Disease Control (3)
Lecture—3 hours. Prerequisite: course 120 or the equivalent. Discussion of the underlying principles and methods used for the control of plant diseases. Emphasis placed on application of epidemiological principles, biological (including host resistance), and chemical strategies to achieve disease control. Offered in alternate years.—II.

211. Biochemistry and Molecular Biology of Plant–Microbe Interaction (4)
Lecture/discussion—4 hours. Prerequisite: Biological Sciences 101, 102, 103, and 104, or the equivalent. Discussion of plant-microbe interactions, focused on the underlying cellular, biochemical, and molecular events that determine the diseased state. Offered in alternate years.—I. Gilchrist, Bostock

215X. Genetics and Molecular Biology of Plant Pathogens (4)
Lecture—3 hours; laboratory/discussion—3 hours. Prerequisite: course 120 and Biological Sciences 101. Genetic analysis of pathogenicity, cultivar-specificity, and host-specificity in plant pathogens, particularly fungi; application of molecular biology to characterization of the genes involved; and to aspects of pathogen identification; emphasis on research techniques and problem-solving. Offered in alternate years.—II. Tyler
217. Molecular Genetics of Fungi (3)
Lecture—3 hours. Prerequisite: graduate standing in a biological science, Biological Sciences 101, 103, Molecular and Cellular Biology 161, Plant Biology 119, courses 130, 215X. Microbiology 215 recommended. Advanced treatment of molecular biology and genetics of filamentous fungi and yeasts, including gene structure, organization and regulation; plant pathogenesis; secretion; control of reproduction; molecular evolution; transformation; and gene manipulation. Offered in alternate years. (Same course as Biological Chemistry 217.)—II. Holland, Tyler

224. Plant Pathogenic Fungi (5)
Lecture—3 hours; laboratory—6 hours. Prerequisite: course 148. Advanced topics in the systematics, morphology, and ecology of the fungi. Emphasis on plant pathogenic fungi, although other groups are considered. Offered in alternate years.—(III.) Rizzo

226. Plant Virology (5)
Lecture—2 hours; laboratory—9 hours. Prerequisite: consent of instructor. Viruses as causal agents of plant diseases; chemical and physical properties of viruses; methods of transmission; procedures for assay and diagnosis; multiplication of viruses; pathological cytology and anatomy; application of equipment and techniques used in research. Offered in alternate years.—II. Bruening, Falk, Gilbertson

228. Plant Bacteriology (5)
Lecture—2 hours; laboratory—9 hours. Prerequisite: course 120, Microbiology 2 or the equivalent; Biological Sciences 102, 103. Study of bacteria which have a saprophytic, symbiotic, or parasitic association with higher and lower plants. Clinical and molecular methods for identification and classification of these bacteria. Offered in alternate years.—(I.) Kirkpatrick, Gilbertson

290. Seminar (1)

290C. Advanced Research Conference (1)
Seminar—1 hour. Prerequisite: course 120 or consent of instructor. Presentation, evaluation, and critical discussions of research activities in the area of advanced plant pathology, primarily designed for graduate students. (S/U grading only.)—I, II, III. (I, II, III.)

291. Seminar in Molecular Plant Pathology (1)
Seminar—1 hour. Prerequisite: course 120 or consent of instructor. Review and evaluation of current literature and research in biochemistry and molecular biology of plant-microbe interactions. May be repeated for credit. (S/U grading only.)—I, II, III. (I, II, III.)

293. Seminar on Soil Microbiology and Root Diseases (1)
Seminar—1 hour. Prerequisite: course 120. One of the students or faculty members introduces a topic based on one or more papers read by the students, and then leads the discussion on this topic. (S/U grading only.)—I, II. (I, II.) Bostock, Gilchrist, Falk, Gilbertson

294. Seminar on Plant Epidemiology (1)
Seminar—1 hour. Prerequisite: course 120. One of the students or faculty members introduces a topic, based on one or more papers on plant epidemiology read by the participants, and then leads the discussion on this topic. May be repeated for credit. (S/U grading only.)—I. (I.) Dunway

295. Seminar in Mycology (1)
Seminar—1 hour. Review and evaluation of current literature and research in mycology. May be repeated for credit. (S/U grading only.)—III. (III.) Rizzo

296. Special Group Study (1-5)
(S/U grading only.)
Pathology, Microbiology, and Immunology

(School of Veterinary Medicine)

N. James MacLachlan, B.V.Sc., Ph.D., Chairperson of the Department
Department Office, 1044 Haring Hall (530-752-1385)

Faculty

Mark L. Anderson, D.V.M., Ph.D., Professor of Clinical Diagnostic Pathology (California Animal Health and Food Safety Laboratory System)
Brad C. Bean, D.V.M., Ph.D., Professor of Clinical Diagnostic Pathology (California Animal Health and Food Safety Laboratory System)
Stephen W. Barthold, D.V.M., Ph.D., Professor
Arthur A. Bickford, V.M.D., Ph.D., Professor of Clinical Diagnostic Pathology (California Animal Health and Food Safety Laboratory System)
Walter M. Boyce, D.V.M., Ph.D., Professor
Mary M. Christopher, D.V.M., Ph.D., Associate Professor
Pat A. Conroy, D.V.M., Ph.D., Professor
George Cooper, D.V.M., M.S., Assistant Professor of Clinical Diagnostic Pathology (California Animal Health and Food Safety Laboratory System)
Rocio M. Crespo, D.V.S., M.S., B.V.S.C., M.A., Assistant Professor of Clinical Diagnostic Pathology (California Animal Health and Food Safety Laboratory System)
D. David Dunn, M.S., D.V.M., Assistant Professor of Clinical Pathology
Deryck H. Read, B.V.Sc., Ph.D., Associate Professor of Clinical Diagnostic Pathology
Bennie I. Osburn, D.V.M., Ph.D., Dean
Linda Munson, D.V.M., Ph.D., Associate Professor
Peter F. Moore, B.V.Sc., Ph.D., Professor
Robert B. Möeller, D.V.M., Associate Professor of Clinical Diagnostic Pathology
Christopher J. Miller, D.V.M., Ph.D., Acting Professor
Rance B. LeFebvre, Ph.D., Professor
Laurel J. Gershwin, D.V.M., Ph.D., Professor
Pat A. Conrad, D.V.M., Ph.D., Professor
Mary M. Christopher, D.V.M., Ph.D., Associate Professor
Arthur A. Bickford, V.M.D., Ph.D., Professor of Clinical Diagnostic Pathology

Courses in Pathology, Microbiology, and Immunology (PMI)

Lower Division Course

99. Special Study for Undergraduates (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)

Upper Division Courses

101. Comparative Hematology (2)
Lecture—2 hours. Prerequisite: Biological Sciences 1A, 1B, Neurobiology, Physiology, and Behavior 101, Biological Sciences 102; or consent of instructor. An overview of the production, function and morphology of vertebrate blood cells, their alteration in health and disease, and the basic principles of laboratory testing in hematology. For students interested in medical technology or animal health.
Offered in alternate years.—(III.) Zinkl

126. Fundamentals of Immunology (3)
Lecture—3 hours. Prerequisite: Biological Sciences 102 or the equivalent or consent of instructor. Overview of immunology including components of the immune system, initiation and regulation of the immune response, infection and immunity, hypersensitivity and immune dysfunction. Clinical immunologic techniques, immunodiffusion and vaccination.—(III.) Zinkl

126L. Immunology Laboratory (2)
Laboratory—6 hours. Prerequisite: course 126 or Medical Microbiology 107 or equivalent (may be taken concurrently). Laboratory procedures in clinical immunology. Laboratory animal immunization/bleeding. Quantitative and qualitative characterization of the immune response. Cells of the immune system.—(III.) Stott

127. Medical Microbiology (5)
Lecture—5 hours. Laboratory—5 hours. Prerequisite: general microbiology (Microbiology 102 and 102L). Basic immunology (course 126 or Medical Microbiology 107) and consent of instructor. An introduction to the bacterial and mycotic pathogens of man and animals, with emphasis on pathogenic mechanisms and ecologic aspects of infectious disease.—(III.) LeFebvre

128. Biology of Animal Viruses (3)
Lecture—3 hours. Prerequisite: Biological Sciences 102. Fundamental physical and chemical properties of animal viruses; methods of propagation, purification and assay. Mechanisms of viral replication and pathogenesis of viral infections in man and animals. Immunity to virus diseases and oncogenic properties of animal viruses.—(I.) Zee, Miller

198. Directed Group Study (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5)
(P/NP grading only.)

Graduate Courses

270. Advanced Immunology (3)
Lecture—3 hours. Prerequisite: course 126 or Veterinary Medicine 450 or consent of instructor. Immunoglobulin structure and function, antigenic determinants, complement. Biology of lymphocytes; cell-mediated immune reactions, immunogenetics, hypersensitivity. Pathogenetic mechanisms in immunological diseases, immunological unresponsiveness, cancer immunology. Dynamics of infection and resistance. Methods in immunohemistry and immunobiology. Offered in alternate years.—(III.) Stott

283. Comparative Avian Anatomy and Pathology (1-3)
Lecture—3 hours. Prerequisite: anatomy section—upper division undergraduates, graduates or veterinary students consent of instructor; pathology section—third-year and fourth-year veterinary students or graduate students and consent of instructor. Ten lectures outline gross/microscopic functional anatomy of a wide range of avian species as appropriate for students interested in avian biology. The remaining 20 lectures encompass comparative aspects of avian pathobiology and disease manifestations for students interested in avian diseases.—(I.) Lowenstein

Quarter Offered: I—Fall; II—Winter; III—Spring; IV—Summer; 2001-2002 offering in parentheses.

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.

285. Cellular Basis of Disease (3)
Lecture—3 hours. Prerequisite: Biological Sciences 104, and either Veterinary Medicine 452 or Medical Pathology 210. Application of cell biology, biochemistry and molecular biology to the understanding of the basic nature of disease. Cellular injury and mechanisms of adaptation, host-defense and vascular responses, and cellular transformation. Offered in alternate years.—(II.) Mohr, Wu

287. Comparative Pathology of Laboratory Animals (3)
Lecture—3 hours. Prerequisite: general and systemic pathology; third- or fourth-year veterinary student or graduate student, or consent of instructor. Recognition of lesions and understanding of pathogenesis of diseases of animals commonly kept in laboratory settings. Species covered include rodents, lagomorphs, amphibians, nonhuman primates. Genetically manipulated animals and novel animal models. Offered in alternate years.—(III.) Lowenstein

290. Seminar (1)
Seminar—1 hour. Prerequisite: graduate standing and consent of instructor. Topics in pathology, microbiology or immunology. May be repeated for credit. (S/U grading only.)—I, II, III (I, II, III.)

291A. Seminar in Immunology (1)
Seminar—1 hour. Prerequisite: course 126 or the equivalent. Students choose topic for each quarter. Individual or pairs of students choose a paper for all to read and present a seminar based on the subject of the paper. All students participate in discussion. May be repeated for credit. (S/U grading only.)—I, II, III (I, II, III.) Gershwin

291B Histopathology Conference (1)
Discussion—1 hour. Prerequisite: Graduate standing or final year Veterinary student; consent of instructor. Discussion of selected cases based on records and slides. Defense of diagnosis. May be repeated for credit. (S/U grading only.)—I, II, III (I, II, III.) Wilson

292A. Seminar in Animal Virology (1)
Seminar—1 hour. A discussion of the current topics in animal virology. May be repeated for credit. (Same course as Microbiology 296.) (S/U grading only.)—I, II, III (I, II, III.) Marnas, Miller

292B. Surgical Pathology Conference (1)
Discussion—1 hour. Prerequisite: graduate standing or final-year veterinary student; consent of instructor. Diagnosis and discussion of current surgical pathology cases based on clinical records and microscopic study. May be repeated for credit. (S/U grading only.)—I, II, III (I, II, III.)

293A. Seminar in Infectious Diseases (1)
Seminar—1 hour. Prerequisite: current enrollment in health sciences professional school or graduate student in Biological Sciences. Discussion of current topics and cases of infectious diseases. May be repeated for credit. (S/U grading only.)

293B. Necropsy and Surgical Pathology (2-4)
Laboratory—6–12 hours. Prerequisite: graduate standing; consent of instructor. Responsible diagnostic casework. Performance of necropsies, slide reading, and case reporting. May be repeated for credit. (S/U grading only.)—I, II, III (I, II, III.)

296. Microbiological Diagnosis (2-5)
Laboratory—5–14 hours; discussion—1 hour. Prerequisite: laboratory course in veterinary or medical microbiology or the equivalent; consent of Chief of Microbiology, VM Teaching Hospital. Laboratory diagnosis of infectious diseases involving case work at the VM Teaching Hospital. (S/U grading only.)

298. Group Study (1-5)
Group study. (S/U grading only.)

299. Research (1-12)
(S/U grading only.)

Professional Course

397T. Tutoring in Veterinary Pathology, Microbiology, and Immunology (1-5)
Lecture—1 hour; laboratory—3 hours; discussion—2 hours. For graduate or professional students who desire teaching experience, but are not teaching assistants. May be repeated for credit. (S/U grading only.)

Professional Courses

418. Wildlife Health and Disease (2)
Lecture—17 sessions; discussion—3 sessions. Prerequisite: upper division undergraduate or graduate veterinary student. Ecology and epidemiology of disease in free-ranging wildlife. Offered in alternate years. (S/U grading only.)—II. Boyce

418L. Wildlife Health Laboratory (3)
Lecture—9 sessions; laboratory—33 sessions; discussion—1 session. Prerequisite: course 418 and Medicine and Epidemiology 294B. For second- and third-year veterinary students. Graduate students and upper division undergraduates majoring in wildlife biology admitted with consent of instructor. Introduction to the concepts and technical skills necessary to capture wild animals and conduct field studies of wildlife health and disease. (S/U grading only.)—III (III.) Boyce

475. Diagnostic Medicine of Domestic Animals (2)
Discussion—2 hours. Prerequisite: second-year standing in the School of Veterinary Medicine or consent of instructor. An integrated, problem oriented, approach to diagnosis of animal infectious disease through the disciplines of microbiology, clinical pathology and anatomic pathology. Participants organize assigned cases for presentation to the class in a grand rounds format with presentations by small groups composed of individuals who act as either a moderator, microbiologist, clinical pathologist or pathologist. (S/U grading only.)—III (III.) Wilson, Zinki, Hirsch
Political Science

(College of Letters and Science)
Miroslav Nincic, Ph.D., Chairperson of the Department
Department Office, 1246 Social Sciences and Humanities Building (530-752-0966)
Undergraduate Student Matters, 1270 Social Sciences and Humanities Building (530-752-3983)
Graduate Student Matters, 1254 Social Sciences and Humanities Building (530-752-2183)
World Wide Web: http://ps.ucdavis.edu

Faculty
Josephine Andrews, Ph.D., Assistant Professor
Larry Berman, Ph.D., Professor
Scott S. Gartner, Ph.D., Associate Professor
John B. Gates, Ph.D., Associate Professor
Emily O. Goldman, Ph.D., Associate Professor
Benjamin Highton, Ph.D., Assistant Professor
Stuart L. Hill, Ph.D., Associate Professor
Robert W. Jackman, Ph.D., Professor
Jeannette Money, Ph.D., Associate Professor
Gabriella R. Montinola, Ph.D., Assistant Professor
Miroslav Nincic, Ph.D., Professor
Larry J. Peterman, Ph.D., Professor
Donald S. Rothchild, Ph.D., Professor
Brian R. Sala, Ph.D., Assistant Professor
John T. Scott, Ph.D., Associate Professor
Randolph M. Siverson, Ph.D., Professor
James F. Spriggs II, Ph.D., Associate Professor
Larry L. Wade, Ph.D., Professor
Geoffrey A. Wandefors-Storm, Ph.D., Associate Professor (Political Science, Environmental Science and Policy), Academic Senate Distinguished Teaching Award

Emeriti Faculty
Edmond Costantini, Ph.D., Professor Emeritus
Richard W. Gable, Ph.D., Professor Emeritus
Alexander J. Groth, Ph.D., Professor Emeritus
Clyde E. Jacobs, Ph.D., Professor Emeritus
Joyce K. Kallgren, Ph.D., Professor Emeritus
Lloyd D. Musolf, Ph.D., Professor Emeritus
John R. Owens, Ph.D., Professor Emeritus
Larry I. Peterman, Ph.D., Professor Emeritus
Scott S. Gartner, Ph.D., Associate Professor
Larry Berman, Ph.D., Professor

The Major Programs
Political science is the study of politics and political systems at the local, national, and international levels. It concerns not only the institutions of government but also the analysis of such phenomena as political behavior, political values, political change and stability, parties, pressure groups, bureaucracies, administration, behavior, justice, national security, and international affairs.

The Program. The Department of Political Science offers two major programs: political science and political science-public service. The political science major aims to provide the student with a broad understanding of political concepts, political institutions, political behavior, and political processes. The political science-public service major is for students who desire opportunities for practical hands-on experience in their major. It differs in particular from the political science major in its internship requirement and its focus on the American political system.

Internships and Career Alternatives. Both the proximity of UC Davis to the state capital and the programs offered by the UC Davis Washington Center afford exceptional internship possibilities in local, state, and national government offices, providing students with actual experience in politics and government service while still attending school. A student who majors in political science acquires research and analytic skills relevant to many professional fields. Consequently, the majors offered in political science are valuable not only in providing students with a better understanding of politics and political systems, but also as a first step toward careers in teaching, law, management, government, urban planning, journalism, politics, administration, or for graduate studies in numerous fields.

A.B. Major Requirements:

Preparatory Subject Matter..20
Political Science 1...10
Two courses from Political Science 2, 3, 4, 5, 7...............8
(Course 7 may not be taken if course 5 is taken.)

Depth Subject Matter...36
Select two courses in each of three fields, listed below. The fields must be chosen from at least two Groups, A, B, or C ..24
Group A
Field (1) Political theory: Political Science 111–119, 187
Field B
Field (2) American government and institutions: Political Science 100–109, 171, 174–175, 180–187, 195
Field (3) Parties and political behavior: Political Science 160–170
Field (4) Public law: Political Science 150–155
Group C
Field (5) Comparative government: Political Science 126, 140–149, 179
Field (6) International relations: Political Science 120–139
Additional upper division units in political science to achieve a total of 36 ..12
Only 5 units of Political Science 192 (internship) may be counted towards the 36-unit requirement; and Political Science 192A, 192B, or 192W may not be counted toward a field requirement.

Total Units for the Major..56

A.B. Major Requirements:

Political Science—Public Service

Preparatory Subject Matter...12
One course from Political Science 1, 5, or 74
Two courses from Political Science 2, 3, or 48
Recommended: Economics 1A-1B.

Depth Subject Matter...48
Core program...12
Two courses chosen from Political Science 100, 104, 105, 106, 113, 180; and one course from Political Science 108, 109, 111, 114.
Internship, Political Science 192A, 192B, or 192W.........................10
Research paper, Political Science 193...2

Fields of concentration...24
Select six upper division courses from two or three fields of concentra- tion listed below with at least two courses in each field selected; at least 16 of the units must be in political science. (Core Program courses may not be counted toward this requirement.)

Fields of Concentration
Field (1) Policy formulation: Political Science 105, 106, 109, 160, 161, 162, 163, 164, 165, 166, 168, 170, 171, 174, 175, 195; Economics 130
Field (2) Policy implementation and evaluation: Political Science 156, 180, 183, 187; Economics 131
Field (3) Policy interpretation—Substance and procedures (public/pre-law): Political Science 150, 151, 152, 153, 155.
Field (4) Policy areas:
 a) Urban policy and implementation: Political Science 100, 102, Economics 125, Environmental Biology and Management 110, Environmental Science and Policy 162, 173.
 c) Environmental policy and implementation: open field that might include courses relevant to health care, welfare, education, community development, transportation, science and technology, etc. (requires approval of Political Science–Public Service adviser).

Total Units for the Major...60

Major Advisers. Consult Department Office.

Quarter Offered: I=Fall; II=Winter; III=Spring; IV=Summer, 2001-2002 offering in parentheses.

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
Minor Program Requirements:

Students electing a minor in Political Science may choose one of two plans.

UNITS
Political Science..24

Select one plan.

Plan I: upper division units in political science (may include 4 units of lower division course work) distributed among at least two of the three Groups, A, B, and C.

Plan II: a 24-unit plan approved by a faculty adviser. Five units of internship may count toward the minor.

Public Affairs Internship Program. This program is open to upper division students in any major who want to obtain an internship in the area of government and public service. Information and applications are available from the Intern Coordinator, Political Science Department, 1263 Social Sciences and Humanities Building, 752-3077. Teacher Credential Subject Representative, Consult Departmental Office. See also the section on the Teacher Education Program.

Graduate Study. The Department of Political Science offers programs of graduate study and research leading to the M.A.J.D. and Ph.D. degrees. Students are admitted to the joint M.A.J.D. program in coordination with the UC Davis School of Law. Information concerning admission to these programs and requirements for completion are available in the Graduate Program Coordinator Office.

Graduate Adviser. Consult Graduate Program Coordinator Office.

American History and Institutions. This University requirement may be satisfied by passing any one of the following Political Science courses: 1, 5, 100, 101, 102, 103, 104, 105, 106, 108, 109, 113, 130, 131, 160, 163. (See also under University passing any one of the following Political Science courses: 1, 5, 100, 101, 102, American History and Institutions.

and upon who governs and who benefits from the policies in these areas. GE Focuses upon policy areas such as poverty, transportation, welfare, and housing, including cities, counties, and special districts. Emphasizes sources and varieties of formal political and governmental structures. GE credit: SocSci, Wrt.—III. (III.)

104. California State Government and Politics (4) Lecture—3 hours; research paper. The California political system. Political culture, constitution, elections and parties, direct democracy, legislature, governor, executive branch, courts, finances, state-local relations, and policy issues.

105. The Legislative Process (4) Lecture—3 hours; discussion—1 hour. Analysis of the legislative process with emphasis on the United States Congress; legislative organization and procedures, legislative leadership and policy making, legislators and constituents, relations between Congress and other agencies. GE credit: SocSci, Wrt.—I. (I.)

106. The Presidency (4) Lecture—3 hours; discussion—1 hour; optional term paper. The American presidency’s origins and development; presidential power and influence as manifest in relationships with Congress, courts, parties, and the public in the formulation and administration of foreign and domestic policy; nominations, campaigns, and elections.

107. Environmental Politics and Administration (4) Lecture—3 hours; discussion—1 hour. Introduction to the environment as a political issue in the United States and to the development of administrative mechanisms for handling environmental problems. Changing role of Congress, the presidency, the bureaucracy, and the courts in environmental policy formulation and implementation. GE credit: SocSci, Wrt.—II, III (I, III).

108. Policy Making in the Public Sector (4) Lecture—3 hours; research paper. The theoretical rationale for governmental activity, program evaluation, PPBS, positive theories of policy making, the quantitative study of policy determinants, implementation, and proposals for improved decision making. GE credit: SocSci, Wrt.—II, III (I, III).

111. Systematic Political Science (4) Lecture/discussion—4 hours. Philosophical basis of modern political science; major specific approaches; selected concepts relevant to modern political concerns; and research design and execution. GE credit: SocSci, Wrt.—II, III (I, III).

112. Contemporary Democratic Theory (4) Lecture—3 hours; discussion—1 hour. Major contemporary attempts to reformulate traditional democratic theory; attempts to replace traditional theory by conceptual models derived from modern social science findings. Offered in alternate years. GE credit: SocSci, Wrt.—II, III (I, III).

114. Quantitative Analysis of Political Data (4) Lecture—3 hours; term paper. Logic and methods of analyzing quantitative political data. Topics covered include central tendency, probability, correlation, and non-parametric statistics. Particular emphasis will be placed on understanding the use of statistics in political science research. Offered in alternate years. GE credit: SocSci, Wrt.

115. Medieval Political Thought (4) Lecture—3 hours; term paper. Prerequisite: course 118A. Examination of the ideas central to medieval political thinking. Emphasis will be upon the thoughts of the major political thinkers of the period, rather than upon political history. GE credit: SocSci, Wrt.

116. Foundations of Political Philosophy (4) Lecture/discussion—3 hours; term paper. Analysis and evaluation of the seminal works of a major political philosopher or of a major problem in political philosophy. May be repeated once for credit when topic differs. Offered in alternate years. GE credit: SocSci, Wrt.—II, III (I, II).

117. Marxism (4) Lecture—3 hours; discussion—1 hour. Examination of the political and social philosophy of Karl Marx, with reference to the evolution of Marxism in the nineteenth and twentieth centuries.

119. Modern Political Thought (4)
Lecture—3 hours; term paper. Prerequisite: upper division standing in Political Science or consent of instructor. Study in depth of philosophers considered central to modern political thought, especially nineteenth and twentieth century political thought. Emphasis will be upon an individual philosopher or concept rather than upon a survey of modern political thought.

120. Theories of International Politics (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: upper division standing or consent of instructor. Major contemporary approaches to the study of international politics, including balance of power, game theory, Marxist-Leninist theory, systems theory, and decision-making analysis.—II, III, (II, III.)

121. War (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 3 recommended. An analysis of political processes involved in the initiation, conduct, and termination of modern international warfare. GE credit: SocSci, Wrt.—I. (I)

122. International Law (4)
Lecture—4 hours. Selected topics in international law; territory, sovereign immunity, responsibility, the peaceful settlement or non-settlement of international disputes. GE credit: SocSci, Wrt.—III. (III)

123. The Politics of Interdependence (4)
Lecture—3 hours; term paper. Prerequisite: upper division standing or consent of instructor. In the past several decades, growing economic interdependence and the world system has generated new problems in international relations. Course deals with difficulties in managing complex interdependence and its implications on national policies and politics. GE credit: SocSci, Wrt.—II, II. (II, II.)

124. The Politics of Global Inequality (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: upper division standing. Course 123 recommended. Long-standing division of the global system into richer and poorer regions poses many important problems in international political economy. Course presents a theoretical background to North-South issues and analyses of current problems in economic and political relations. GE credit: SocSci, Div. Wrt.—III. (III, III.)

125. Ethnic Self-Determination and International Conflict (4)
Lecture—3 hours; individual meetings with students to discuss term papers. Prerequisite: one international relations course recommended. Compares the claims of the state and the ethnic peoples in countries undergoing internal conflicts, e.g., South Africa, Northern Ireland, etc. Also analyzes the role of the international community in facilitating the peaceful resolution of conflicts. GE credit: SocSci, Div. Wrt.—I. (I)

129. Special Studies in International Politics (4)
Lecture—3 hours; term paper. Prerequisite: upper division standing. Intensive examination of one or more special problems in international politics. May be repeated once for credit when different topic is studied. GE credit: SocSci, Wrt.—II. (II)

130. Recent U.S. Foreign Policy (4)

131. Analysis of U.S. Foreign Policy (4)
Lecture—3 hours; term paper. Prerequisite: upper division standing or consent of instructor. Broad survey of the development of U.S. foreign policy in the twentieth century with emphasis on transformation of policy during and after World War II, and the introduction to analytic tools and concepts useful for understanding of current foreign policy issues. GE credit: SocSci, Wrt.—II, III, (II, III)

132. National Security Policy (4)
Lecture—3 hours; term paper. Prerequisite: upper division standing. Development of national security policies since 1945. Analysis of deterrence and assumptions upon which it is based. Effects of nuclear weapons upon conduct of war, alliance systems, and the international system: Prospects of stability and alliances through arms control. GE credit: SocSci, Wrt.—II, II. (II)

134. Africa and U.S. Foreign Policy (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: upper division standing in Political Science or consent of instructor. Overview of American foreign policy toward Africa. Relationship to global adversaries. Legacies of colonialism. Challenge of national self-determination and white racism. Policies on nonalignment, producer cartels, multinational corporations, continental integration, and trade and aid relations.—II, II. (II, II)

137. International Relations in Western Europe (4)
Lecture—4 hours. Prerequisite: upper division standing. Analysis of European unity, problems of the Atlantic alliance, Atlantic political economy, East-West relations, communism in Western Europe and the relationship between domestic politics and foreign policy.—II, II. (II, II)

139. Special Studies in Foreign Policy (4)
Lecture—3 hours; term paper. Prerequisite: upper division standing or consent of instructor. Extensive examination of one or more special problems in foreign policy. May be repeated once for credit when topic differs.

140. Comparative Public Policy (4)
Lecture—3 hours; term paper. Ideological orientations, institutions, processes, and public policies of modern states. Emphasis on democratic, socialist, communist and fascist experience.

142. Politics and Inequality (4)
Lecture—3 hours; term paper or discussion—1 hour. Examines the linkages between politics and the distribution of social and economic goods. Topics include the impact of civil rights legislation, the politics of welfare states, and the effects of social inequality on the distribution of goods. GE credit: SocSci, Div.—II. (II)

144. Russian Politics and Policy (4)
Lecture/discussion—4 hours. Prerequisite: upper division standing and course 2. Democratization, state-building and economic reform; creation of new institutions; impacts of Soviet rule.

145. Government and Politics in Emergent Nations (4)
Lecture—4 hours. Prerequisite: course 2. Conceptual study of problems of political organization and procedure in the context of rapid change engendered by socialist revolution in “emergent countries” and liberation from colonial oppression. Offered in alternate years.

146. Contemporary African Politics (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: upper division standing in Political Science or consent of instructor. Analysis of party systems, military coups, bureaucracy, regional integration, and disintegration, and economic development in Africa south of the Sahara.

147. Politics and Policy in Western Europe (4)
Lecture—4 hours. The evolution, politics, and contemporary problems of selected political systems of Western Europe. GE credit: SocSci, Div.—II. (II, II)

148A. Government and Politics in East Asia: China (4)
Lecture—4 hours. Prerequisite: course 2 recommended. Evolution of political institutions and political culture in China with emphasis on the post-1949 period. Primary attention to nationalism, modernization and political efficacy.—II. (I)

148B. Government and Politics in East Asia: Pacific Rim (4)
Lecture—4 hours. Prerequisite: course 2 recommended. Establishment and evolution of political cultures and establishment of political institutions in selected countries of the Pacific Rim, namely Japan, Korea, Taiwan. Emphasis on post-World War II.

148C. Government and Politics in East Asia: Southeast Asia (4)
Lecture—3 hours; term paper. Prerequisite: course 2 recommended. Evolution of political culture, institutions, economy of selected nations in Southeast Asia including Vietnam plus two or three other examples. Emphasis on imperialist legacy, nation building in multi-ethnic communities, contrasts between socialist and non-socialist development models in the alternate years.—(III, III)

149. Politics of Development in Africa (4)
Lecture/discussion—4 hours. Prerequisite: course 134 recommended. Analysis of the developmental process in sub-Saharan Africa. Emphasis will be placed upon state and state institution, state-society relations, ethnicity, socioeconomic class, women, ideology, party systems, bureaucracy, military and developmental changes.—III. (III)

150X. Judicial Politics and Constitutional Interpretation (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: upper division standing. Politics of judicial policymaking; issues surrounding constitutional interpretation and decision-making; prerequisite for courses on the politics of constitutional law.—II, II. (II, II)

151. The Constitutional Politics of the First Amendment and the Right to Privacy (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 150. The constitutional politics surrounding such issues as the right to free expression, associational rights, the right to free exercise of religious beliefs, and the right to privacy. GE credit: SocSci, Wrt.—II. (II)

152. The Constitutional Politics of Equality (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 150. Constitutional politics of equality in the American political system; issues surrounding constitutional doctrine and judicial policymaking; special attention on racial and sexual equality. Offered in alternate years. GE credit: SocSci, Div. Wrt.—III. (III)

153. The Constitutional Politics of the Justice System (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 150. Constitutional politics of the American criminal justice system; the issues surrounding constitutional doctrine and judicial policymaking on issues such as search and seizure, arrest, trial, incarceration, and other issues of due process. Offered in alternate years.—II. (II)

154. Legal Philosophy (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: upper division standing. Analysis of the nature and functions of law as an instrument of social control and the relationship between law and morality. Offered in alternate years.

155. Judicial Process and Behavior (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: upper division standing. Analysis of the behavior of judges and courts in the political process. Techniques of judicial decision making. Relationships among courts and other decision-making bodies. Offered in alternate years. GE credit: SocSci, Wrt.—II. (II)

160. American Political Parties (4)
Lecture—3 hours; discussion—1 hour. Analysis of the structured operations of the party system in the United States; party functions and organizations, nomination processes, campaigns and elections, party trends and reforms. GE credit: SocSci, Wrt.—II. (II)

161. Comparative Political Parties (4)
Lecture—2 hours; discussion—1 hour. Organization, operation, governmental function and social bases of political parties especially in Great Britain and France but with some reference to other Western European countries.
162. Elections and Voting Behavior (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 1 recommended. Analysis of American elections and partisan behavior; political socialization, political participation, partisanship and individual and group determinants of voting. GE credit: SocSci, Wrt.—I. (I)

163. Group Politics (4)
Lecture—3 hours; discussion—1 hour. Groups, institutions, and individuals, especially in American politics. Historical and analytical treatment of group theories as applied to interest groups (especially labor, business, agriculture, science, military); to racial, ethnic, and sectional groups; to parties, public and legislative groups, bureaucracies. GE credit: SocSci, Wrt.—I. (I)

164. Public Opinion (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: upper division standing and course 1 or 5, or consent of instructor. Nature of public opinion in America as it is "supposed to be" and as it is. Distribution of opinions among different publics and the significance of that distribution for system stability and institutions. Opinion polling and its problems. GE credit: SocSci, Wrt.—II. (II)

165. Mass Media and Politics (4)
Lecture—3 hours; discussion—1 hour. Organization of and decision making within the media; media audiences and the effect of the media on attitudes and behavior; the relationship of the government to the media (censorship, secrecy, freedom of the press, government regulation); the media in election campaigns. GE credit: SocSci, Wrt.

166. Women in Politics (4)
Lecture—3 hours; discussion—1 hour or seminar—1 hour. The role of women in American politics. Historical experiences; contemporary organizations and strategies; areas of legislative concern; the impact of differences in social class, race, and ethnicity upon the involvement of women in politics. GE credit: SocSci, Wrt.

168. Chicano Politics (4)
Lecture—3 hours; discussion—1 hour. Political aspects of Chicano life in America; examines the Chicano's political role as it has been historically defined by different groups in society and the Chicano's responses to his/her political environment. GE credit: SocSci, Div.

170. Political Psychology (4)
Seminar—3 hours; term paper. Prerequisite: course 1 or the equivalent. Social psychological theories of how voters form political attitudes and to what extent such attitudes translate into behaviors.

171. The Politics of Energy (4)
Lecture/discussion—4 hours. Prerequisite: upper division standing. Analysis of nature and performance of political processes for making energy choices at the international, national and state levels. Emphasizes interaction of energy policy with other political goals and the ability of governmental institutions to overcome constraints on policy innovation.

172. American Political Development (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: some background in American politics is strongly recommended. Systematic analysis of contemporary issues in American political development: historical determinants of political change; the timing and character of institutional development; conditions for successful political action. Topics may include democratization, cultural change, party formation, state building, constitutionalism, race relations.

174. Government and the Economy (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: upper division standing in Political Science or consent of instructor. Political basis of economic policy (taxation, spending and regulation); impact of prices, employment and growth on political decisions; elite responses to economic conditions; policy alternatives and the public interest. GE credit: SocSci, Wrt.

175. Science, Technology, and Policy (4)
Lecture—3 hours; discussion—1 hour. Analysis of policymaking for science and the use of scientific expertise for making decisions about technology. Topics include funding of basic research, relationship of science to technological development, science and military policy, technological risks, technology assessment and scientists and politics. GE credit: SocSci, Wrt.—II. (III)

176. Racial Politics (4)
Seminar—3 hours; term paper. Prerequisite: Course 1 or equivalent. Race, racial attitudes and racial policies in the United States with a specific emphasis on African Americans. GE credit: SocSci, Div.

178. Political Development in Modernizing Societies (4)
Lecture—3 hours; discussion—1 hour. Nature and sequence of political development within economic and social concomitants; role of elites, military, bureaucracy, and party systems; social stratification and group politics; social mobilization and political participation; instability, violence, and the politics of integration.—I. (I)

179. Special Studies in Comparative Politics (4)
Seminar—4 hours. Prerequisite: consent of instructor and upper division standing. Individual examination of one or more special problems appropriate to comparative politics. May be repeated once for credit.

180. Bureaucracy in Modern Society (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: upper division standing in Political Science or consent of instructor. Role of bureaucracy in a complex society, with emphasis upon changing relationships between government and the economy; consequences of rapid technological and social change for bureaucratic structures and processes; the problems of reconciling expertise and democracy and increasing the responsiveness of public bureaucracy. GE credit: SocSci, Wrt.

183. Administrative Behavior (4)
Lecture—3 hours; discussion—1 hour. The implications for American public administration of evolving concepts about behavior in organizations.
207. Environmental Public Policy (4)
Seminar—4 hours. Analysis of the interface between the world of academic reflection about ecological and environmental problems and the world of political action. Evaluation of alternative approaches to policy analysis and recommendation. Individual research, including field research, will parallel discussion of the literature.

208. Policy Analysis (4)
Seminar—4 hours. Social science techniques applied to public policy formation and evaluation.—II, III.

209. The American Political System (4)
Seminar—4 hours. Analysis of selected theoretical and empirical issues posed by contemporary research in American government and politics.—II, III.

211. Research Methods in Political Science (4)
Seminar—4 hours. Prerequisite: Statistics 13; graduate standing or permission of instructor. Introduction to research design, research results, research design for experimental and quasi-experimental settings, and data analysis. Topics include: logic of empirical research, measurement problems, research design, sampling, descriptive statistics, tabular analysis, measures of association, and introduction to correlation and regression.—II, III.

212. Quantitative Analysis in Political Science (4)
Seminar—4 hours. Prerequisite: course 211. Topics usually covered in an introductory statistics course with an emphasis on applications in political science—descriptive statistics for samples, probability and probability distributions, hypothesis testing, ANOVA, bivariate regression, and introduction to multiple regression.—II, III.

213. Quantitative Analysis in Political Science II (4)
Seminar—4 hours. Prerequisite: courses 211, 212. More advanced topics in the use of statistical methods, with emphasis on political applications. Topics include: properties of linear least squares estimates, problems in multiple regression, and advanced topics (probit analysis, simultaneous models, time-series analysis, etc.).—II, III.

214A-214B. Research in Political Science (2-2)
Seminar—2 hours. Prerequisite: courses 211, 212. Research seminar sequence required of all Ph.D. students. Design, execution and defense of an original piece of research in political science, culminating in a paper of publishable quality. (Deferred grading only, pending completion of sequence.)—II, III.

215. Introduction to Modeling Political Behavior (4)
Seminar—3 hours. Prerequisite: courses 211 and 212. Introduction to formal and game theoretic analyses of politics. Students will learn basic game theory and modeling skills. We examine the benefits of modeling, and look at examples of formal analysis in a variety of political science sub-fields. Offered in alternate years.—I, II.

216. Qualitative Research Methods (4)
Seminar—3 hours; term paper. Methodology for utilizing theoretically-oriented case studies and controlled comparison of a small number of cases to develop and test theories. Examination of how the case study method complies experimental, statistical and deductive modes of research. Offered in alternate years.—III. Goldman

217. Social Choice Theory and Spatial Modeling (4)
Seminar—4 hours. Introduction to social choice theory and formal spatial modeling including Arrow’s Theorem, the paradox of voting, cycling and agenda control. Focus on mastering modeling techniques as well as interpretation of classic works. Offered in alternate years.

218. Topics in Political Theory (4)
Seminar—3 hours; term paper. Topics will vary and may be the work of a single theorist, time period, political concept, such as justice. Offered in alternate years.

219A. Political Theory Sequence (4)
Seminar—3 hours; term paper. Survey of the great works in ancient and medieval political theory including such writers as Plato, Aristotle, Cicero, St. Augustine, Aquinas, Alfarabi and Marsilius. Discussion of various interpretations of these authors. Offered in alternate years.—II, III.

219B. Political Theory Sequence (4)
Seminar—3 hours; term paper. Survey of the great works in early modern to contemporary political theory including such writers as Machiavelli, Hobbes, Locke, Rousseau, Marx, Mill, Nietzsche, and Rawls. Discussion of various interpretations of these authors. Offered in alternate years.—III.

223. International Relations (4)
Seminar—3 hours; term paper.—I, II.

225. The International System (4)
Seminar—3 hours; term paper. Analysis of the international system by means of theoretical formulation and integration; critique of research designs; use of various techniques of data generation and analysis.—II, III.

230. American Foreign Policy (4)
Seminar—3 hours; term paper.—III.

231. U.S. Political Culture and Foreign Relations (4)
Seminar—3 hours; term paper. Relates U.S. political culture to formulation of foreign policy. Analyzes American ideological preferences in historical perspective, contemporary public opinion, decision-making and implementation. Concludes by examining linkages between foreign policy behavior and democratic process. Offered in alternate years.—II, III.

241. Communist Political Systems (4)
Seminar—4 hours. course 141 or the equivalent, or consent of instructor. Systematic analysis of selected topics dealing with the political process of communist political systems.

242. Seminar in Comparative Politics (4)
Seminar—3 hours; term paper. Prerequisite: graduate standing or consent of instructor. Systematic survey of theories and methods used in the study of comparative politics.

243. Comparative Institutional Change (4)
Seminar—4 hours. Comparison of institutional changes in countries of the former Soviet Union and Eastern Europe during the period of transition to democracy. Special attention to institutions of mass representation—electoral and party systems and national legislatures. Offered in alternate years.

246. Policymaking in Third-World Societies (4)
Seminar—3 hours. Prerequisite: graduate standing or consent of instructor. In an analysis of policymaking process in Third-World countries are such topics as political resources, institutional resources, decision making, resource allocations, planning, and budgeting, implementation, and distribution of world resources. Offered in alternate years.

250. Policy Development and Impact in U.S. Courts (4)
Seminar—3 hours, term paper. Prerequisite: graduate standing. Thorough overview of the literature regarding courts as policymaking institutions of government, with emphasis on the formation and implementation of judicial policy. Differences and similarities across the judicial, congressional, and executive branch policy processes. Offered in alternate years.

260. Political Parties (4)
Seminar—3 hours; term paper. Survey of selected topics in American and comparative parties.

261. Political Behavior (4)
Seminar—3 hours; term paper. Survey of selected topics in political behavior and public opinion.—II, III.

274. Political Economy (4)
Seminar—4 hours. Politics of economic policy as reflected in taxation, spending and regulation; impact of prices, employment, and growth on political demands; government responses to economic conditions; electoral politics and the political business cycle. Offered in alternate years.—III.

283. Organizational Behavior (4)
Seminar—4 hours. Organizational behavior as it relates to public sector decision making.

290A. Research in American Government and Public Policy (4)
Seminar—4 hours. Special research seminar on selected problems and issues in the study of American government and public policy.—II, III.

290B. Research in Political Theory (4)
Seminar—4 hours. Special research seminar on selected problems and issues in the study of political theory.—II, III.

290C. Research in International Relations (4)
Seminar—4 hours. Special research seminar on selected problems and issues in the study of international relations.—II, III.

290D. Research in Judicial Politics (4)
Seminar—4 hours. Prerequisite: graduate standing in political science or consent of instructor. Contemporary research on judicial politics, judicial institutions, jurisprudence, and judicial behavior.—II, III.

290E. Research in Political Parties, Politics, and Political Behavior (4)
Seminar—4 hours. Special research seminar on selected problems and issues in the study of comparative political parties, politics, and political behavior.—II, III.

290F. Research in Comparative Government and Policy (4)
Seminar—4 hours. Special research seminar on selected problems and issues in the study of comparative government and policy.—II, III.

291. Internships in Political Science (2)
Seminar—2 hours. Prerequisite: open only to persons who have internships or other positions in governmental agencies, political parties, etc. Application and evaluation of theoretical concepts through work experience or systematic observation in public and political agencies. May be repeated for credit. (SU grading only.)

298. Group Study (1-5)
(SU grading only.)

299. Research (1-12)
(SU grading only.)

299D. Directed Reading (1-12)
(SU grading only.)

Professional Course

290. The Teaching of Political Science (1)
Seminar—1 hour. Prerequisite: graduate student standing in Political Science. Methods and problems of teaching political science at the undergraduate level. (SU grading only.)—I, III.

299F. Teaching Assistant Training Practicum (1-4)
Prerequisite: graduate standing. May be repeated for credit. (SU grading only.)—I, II, III.

Quarter Offered: I=Fall; II=Winter; III=Spring; IV=Summer, 2001-2002 offering in parentheses.

General Education (GE) credit: ArtHum = Arts and Humanities, SciEng = Science and Engineering, SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.

2000–2001/2002 UC Davis General Catalog
Pomology

(College of Agricultural and Environmental Sciences)
T. M. DeJong, Ph.D., Chairperson of the Department
Department Office, 1035 Wickson Hall (530-752-0123)
World Wide Web: http://pom.ucdavis.edu

Faculty
Patrick H. Brown, Ph.D., Professor
Carlos H. Crespo, Ph.D., Lecturer
Abhaya M. Dandekar, Ph.D., Professor
Theodore M. DeJong, Ph.D., Professor
Louise Ferguson, Ph.D., Lecturer
Thomas M. Gradziel, Ph.D., Associate Professor
Scott Johnson, Ph.D., Lecturer
Adel A. Kader, Ph.D., Professor
John M. Labavitch, Ph.D., Professor
Gale McGranahan, Ph.D., Lecturer
Elizabeth J. Mitcham, Ph.D., Lecturer
Dan E. Parfitt, Ph.D., Lecturer
Vito S. Polito, Ph.D., Professor
Kenneth A. Shackel, Ph.D., Professor
Douglas V. Shaw, Ph.D., Professor
Stephen M. Southwick, Ph.D., Lecturer
Ellen G. Sutter, Ph.D., Professor
Steven A. Weinbaum, Ph.D., Professor

Emeriti Faculty
Fredrick A. Bliss, Ph.D., Professor Emeritus
Royce S. Bringhurst, Ph.D., Professor Emeritus
Robert M. Carlson, Ph.D., Lecturer Emeritus
Peter B. Castlin, Ph.D., Lecturer Emeritus
William H. Griggs, Ph.D., Professor Emeritus
Dale E. Kester, Ph.D., Professor Emeritus
George C. Martin, Ph.D., Professor Emeritus
Warren C. Micke, M.S., Lecturer Emeritus
F. Gordon Mitchell, M.S., Lecturer Emeritus
Noel F. Sommer, Ph.D., Lecturer Emeritus
Kiyoto Uriu, Ph.D., Professor Emeritus

Related Major Programs. See the majors in Plant Biology, Agricultural Systems and Environment, Crop Science and Management, and Biotechnology.

Related Courses. Pomology faculty also teach the following courses that contribute to majors and graduate programs in Agricultural Systems and Environment, Horticulture, and Plant Biology:

Graduate Study. For graduate study related to the field of pomology, see the M.S. degree program in Horticulture. See also the Graduate Studies chapter of this catalog.

Courses in Pomology (POM)

Lower Division Courses
10. Fruits and Nuts of California and the World (3)
Lecture—3 hours, one field trip on seventh Saturday of the quarter. Biological and environmental principles of fruit and nut crop production emphasizing California’s tree crop industries. Topics include temperate and subtropical species and cultivars, biotechnology and genetic improvement, environmental physiology, plant and crop growth, pest control, harvest and storage and consumer issues. GE credit: SciEng, Wrt.—II. (II.) Polito

92. Internship in Pomology (1-12)
Internship—3-36 hours. Prerequisite: consent of instructor. Work experience on and/or off campus in the production and management of orchard crops or closely related enterprises. (P/NP grading only.)

Upper Division Courses
192. Internship in Pomology (1-12)
Internship—3-36 hours. Prerequisite: consent of instructor. Work experience on and off campus in the production and management of orchard crops or closely related enterprises. (P/NP grading only.)

198. Directed Group Study (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5)
(P/NP grading only.)

Graduate Courses
212. Postharvest Biology and Biotechnology of Fruits and Nuts (3)
Lecture—3 hours. Prerequisite: Plant Science 112 or the equivalent. Review of postharvest biology of fruits and nuts in relation to biotechnological procedures used in handling, emphasizing research needs. Offered in alternate years. —(III.) Kader, Mitcham

290. Seminar (1)
Seminar—1 hour. (S/U grading only.)—I, II, III. (I, II, III.)

298. Group Study (1-5)
(S/U grading only.)

299. Research (1-12)
(S/U grading only.)

Quarter Offered: I=Fall; II=Winter; III=Spring; IV=Summer; 2001-2002 offering in parentheses.
General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
D. Ken Giles, Ph.D., Chairperson of the Group
Group Office, 367 Briggs Hall (530-752-0475)

Faculty. Includes faculty members from the Colleges of Agricultural and Environmental Sciences and Letters and Science.

Graduate Study. The Graduate Group in Plant Protection and Pest Management offers programs of study and research leading to the M.S. degree. Students may conduct independent research or participate in on-going projects on integrated crop management and sustainable agriculture. Weeds, insects, plant pathogens, nematodes, rodents, and other pests are treated as parts of complex ecosystems and not as isolated problems. Courses include concepts and systems of plant protection and pest management, diagnosis and control of plant pest problems, toxicology and legal ramifications, and equipment for pest control operations. Detailed information can be obtained from the Group Chairperson and the application for Graduate Admission and Fellowship.

Graduate Adviser. B.C. Kirkpatrick (Plant Pathology).

Courses in Plant Protection and Pest Management (PPP)

Graduate Courses

201. Concepts and Systems of Plant Protection and Pest Management (4)
Lecture—2 hours; discussion—1 hour; laboratory—2 hours. Prerequisite: Agricultural Systems and Environment 120, Entomology 110, Plant Pathology 120, Plant Biology 120 (may be taken concurrently). Nematology 100; Plant Biology 117 or Evolution and Ecology 101 recommended. Ecological perspectives of agricultural systems, the role of pests and pest management in these systems, and the monitoring and modeling of the systems. Offered in alternate years.—(II.) Webster

202A-202B. Diagnosis of Plant Pest Problems and the Control of Causal Agents (4-4)
Discussion—1 hour; fieldwork—9 hours. Prerequisite: Entomology 110, Plant Pathology 120, Plant Biology 120, Nematology 100 (may be taken concurrently). Problems and assessment of losses caused by insects, pathogens, weeds, nematodes, and other pests. Methods of determining infestation levels and establishing economic thresholds, and control of these pests with emphasis on integration of available management practices into programs.—I-III. (I-III.) Norris, Rosenheim

290. Seminar (1-2)
(S/U grading only.)

298. Group Study (1-5)

299. Research (1-12)
(S/U grading only.)
The Department of Biological and Agricultural Engineering offers a minor in Precision Agriculture, the latest farming concept that optimizes fertilizer, pesticide and water use, while minimizing environmental concerns.

Minor Program Requirements

This minor acquaints students with recent developments and their applications to agriculture, in geographic information systems (GIS), global positioning systems (GPS), variable rate technologies (VRT), crop and soil sensors, and remote sensing. The minor prepares students for challenging positions in site-specific crop management as we enter the "information age" in agriculture.

UNITS

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precision Agriculture</td>
<td>20</td>
</tr>
<tr>
<td>Select 10 or more units from Agricultural Systems and Environment 120 or Statistics 100, Agricultural Systems and Environment 110A or Plant Biology 112, Environmental and Resource Sciences 186, Soil Science 109</td>
<td>10</td>
</tr>
</tbody>
</table>

Minor Advisers. S.K. Upadhyaya, D.K. Giles.
Psychology

(College of Letters and Science)
Sally P. Mendoza, Ph.D., Chairperson of the Department
Department Office, 135 Young Hall (530-752-1880)
World Wide Web: http://psychology.ucdavis.edu

Faculty

Linda P. Acredolo, Ph.D., Professor, Academic Senate Distinguished Teaching Award
John P. Capitanio, Ph.D., Associate Professor
Leo M. Chalupa, Ph.D., Professor
Richard G. Coss, Ph.D., Professor
Alan C. Elms, Ph.D., Professor
Robert A. Emmons, Ph.D., Professor
Karen P. Erickson, Ph.D., Professor
Gail S. Goodman, Ph.D., Professor
Albert A. Harrison, Ph.D., Professor
Kenneth R. Henry, Ph.D., Professor
Gregory M. Herik, Ph.D., Professor
Joel T. Johnson, Ph.D., Professor
Neal E. A. Kroll, Ph.D., Professor
Leah A. Krubitzer, Ph.D., Associate Professor
Debra L. Long, Ph.D., Associate Professor, Academic Senate Distinguished Teaching Award
Sally P. Mendoza, Ph.D., Professor
Bruno A. Olschussen, Ph.D., Assistant Professor
Donald H. Owings, Ph.D., Professor
Theodore E. Parks, Ph.D., Professor
Robert B. Post, Ph.D., Professor
Richard W. Robins, Ph.D., Assistant Professor
Jeffrey Schank, Ph.D., Assistant Professor
Phillip R. Shaver, Ph.D., Professor
Dean K. Simonton, Ph.D., Professor, UC Davis Prize for Teaching and Scholarly Achievement
Robert Sommer, Ph.D., Professor
Stanley Sue, Ph.D., Professor
Carol Tomlinson-Keasey, Ph.D., Professor
Keith F. Widaman, Ph.D., Professor
Andrew P. Yonelinas, Ph.D., Associate Professor

Emeriti Faculty

Jarvis R. Bastian, Ph.D., Professor Emeritus
William F. Dukes, Ph.D., Professor Emeritus
Joseph Lyons, Ph.D., Professor Emeritus
Peter R. Marier, Ph.D., Professor Emeritus
William A. Mason, Ph.D., Professor Emeritus
G. Mitchell, Ph.D., Professor Emeritus
Robert M. Murphy, Ph.D., Professor Emeritus
Thomas Natsoulas, Ph.D., Professor Emeritus
Charles T. Tart, Ph.D., Professor Emeritus

Affiliated Faculty

Jacqueline Horn, Ph.D., Lecturer

The Major Programs

Psychology provides knowledge of and means of studying human and animal behavior.

The Program. The department offers the Bachelor of Arts degree for the student interested in the liberal arts and the Bachelor of Science program for students with an interest in either biology or mathematics. The psychology program is extremely broad and represents a wide variety of topics. The courses are organized around three focal points. Personality/Social emphasizes the individual in the social environment and includes such topics as personality theory, social psychology, abnormal psychology, individual differences, developmental psychology, humanistic psychology, and motivation. Psychobiology emphasizes the biological correlates of behavior and includes such topics as sensory psychology, physiological psychology, and comparative psychology. Perception/Cognition emphasizes how information from the physical world is sensed, perceived, and used, and examines the roles of consciousness, language, perception, and learning in behavior.

Preparatory Requirements. Before declaring a major in psychology, students must complete the following courses with a combined grade point average of at least 2.50. All courses must be taken for a letter grade. (Students in the Bachelor of Science, Biology program must complete Biological Sciences 1A.)

Psychology 1, 41 ...8 units
Statistics 13 or 102 ..4 units

Biological Sciences 1A
or
Biological Sciences 10 and one course from Anthropology 1, Molecular and Cellular Biology 10, Neurobiology, Physiology, and Behavior

Sociology or cultural anthropology ..4 units

Career Alternatives. A degree in psychology provides broad intellectual foundations which are useful to the graduate for the development of careers in a variety of areas, including social work, the ministry, teaching, business, and counseling. An undergraduate education in psychology also provides excellent preparation for graduate study. Individuals with degrees in psychology may enter graduate programs to prepare for teaching, research, or clinical/counseling careers in psychology, or may go on to professional schools for training in veterinary and human medicine, law, and other professions.

A.B. Major Requirements:

Preparatory Subject Matter..21-25
Psychology 1 or the equivalent ..4

Psychology 41 ...4

Statistics 13 or 102 ..4

(Strongly recommended that Psychology 41 and Statistics 13 or 102 be completed in the first year.)

Biological Sciences 1A; or a combination of Biological Sciences 10 and one course from Anthropology 1, Molecular and Cellular Biology 10, or Neurobiology, Physiology and Behavior ..5-8

One course in sociology or cultural anthropology (may be lower or upper division), minimum of 4 units.................................4-5

Depth Subject Matter...40

Two courses from two of the following three groups and one course from the remaining group...19-22

Group A: Psychology 100, 130, 131, 132, 135, 146
Group B: Psychology 101, 113, 121, 122, 123, 126, 127, 129
Group C: Psychology 140 (or Human Development 100A or 100B), 151, 154, 162, 168

Additional units to achieve a total of 40 upper division units in psychology (A maximum of 12 approved upper division Human Development units can be credited toward satisfaction of the 40-unit requirement.)

Total Units for the Major..61-65

B.S. Major Requirements:

Biology Emphasis

Preparatory Subject Matter..52-61
Psychology 1 or the equivalent ..4

Psychology 41 ...4

Statistics 13 or 102 ..4

(Strongly recommended that Psychology 41 and Statistics 13 or 102 be completed in the first year.)

Mathematics 16A-16B or 21A-21B ..6-8

Physics 10 or 7A-7B ..4-8

Biological Sciences 1A, 1B ...10

Chemistry 2A, 2B ...10

Chemistry 3A-3B or 8A-8B or 118A-118B or 128A-128B6-8

One course in sociology or cultural anthropology (may be lower or upper division), minimum of 4 units.................................4-5

Depth Subject Matter...49

Seven Psychology courses distributed as specified:

Group A: two courses from Psychology 100, 130, 131, 132, 135, 146 ..8

Group B: three courses from Psychology 101, 113, 121, 122, 123, 126, 127, 12912-15

Group C: two courses from Psychology 140 (or Human Development 100A or 100B), 151, 154, 162, 168 ..8

Additional units to achieve a total of 40 upper division units in psychology (A maximum of 12 approved upper division Human Development units can be credited toward satisfaction of the 40-unit requirement.)

Quarter Offered: I=Fall; II=Winter; III=Spring; IV=Summer; 2001-2002 offering in parentheses

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
Recommended

Mathematics Emphasis

Preparatory Subject Matter

Psychology 1 or the equivalent

Statistics 13 or 102

Mathematics 21A, 21B, 21C

Computer Science Engineering 30 or Engineering 5

Chemistry 10 or 2A-2B or 2AH-2BH

Physics 10 or 7A-7B

Total Units for the Major

(Biology Emphasis) 110-115

Courses in Psychology (PSC)

Lower Division Courses

1. General Psychology (4)

Lecture—4 hours. Introduction emphasizing empirical approaches. Focus on perception, cognition, personality and social psychology, and biological aspects of behavior. Only 2 units allowed to those who have taken course 15 or 16, no credit allowed to those who have taken both courses 15 and 16. GE credit: SocSci.—I, II, III, (I, II, III.)

20. Freshman Psychology Seminar (4)

Seminar—4 hours. Prerequisite: standing. Instructor will acquaint students with his or her program of research, the development of scientific questions from the literature, and the application of research methods to examine these questions. Critical thinking will be encouraged via expository writing and brief presentations.—III. (III.)

41. Research Methods in Psychology (4)

Lecture—3 hours; discussion—1 hour. Prerequisite: course 1 or the equivalent; completion of Statistics 13 or 102 strongly recommended. Introduction to experimental design, interviews, questionnaires, field and observational methods, reliability and statistical inference.—I, II, III (I, II, III.)

90X. Lower Division Seminar (1-2)

Seminar—1-2 hours. Prerequisite, lower division standing and consent of instructor. Examination of a special topic in psychology through shared readings, discussions, written assignments, or special activities such as fieldwork or laboratory work. May not be repeated for credit. Limited enrollment.

98. Directed Group Study (1-5)

Primarily for lower division students. (P/NP grading only.)

99. Special Study for Lower Division Students (1-5)

(P/NP grading only.)

Upper Division Courses

100. Introduction to Cognitive Psychology (4)

Lecture—4 hours. Prerequisite: courses 1 and 41. Introduction to human information processing, mental representation and transformation, imagery, attention, memory, language processing, concept formation, problem solving, and computer simulation. Not open for credit to students who have completed former course 136.—I, II, III, (I, II, III.)

101. Introduction to Psychobiology (4)

Lecture—4 hours. Prerequisite: courses 1, 41. Survey and integration of the relationships between behavior and biological processes, including physiology, genetics, development, ecology, and evolution.—I, II, III, (I, II, III.)

103. Advanced Research Design and Data Analysis (5)

Lecture—5 hours. Prerequisite: courses 41 and either Statistics 13 or 102. Design and analysis of psychological investigations and the interpretation of quantitative data in psychology.—I, II, III, (I, II, III.)

104. Applied Psychometrics: An Introduction to Measurement Theory (4)

Lecture—4 hours. Prerequisite: upper division standing in Psychology, courses 41 and 102. Examination of the basic principles and applications of classical and modern test theory. Topics include test construction, reliability theory, validity theory, factor analysis and latent trait theory.—(II.)

105. Statistical Inference from Psychological Experiments (4)

Lecture—4 hours. Prerequisite: upper division standing in Psychology, courses 41 and 103. Probability theory, sampling distributions, hypothesis testing, statistical inference, and nonparametric statistics, with applications in sensory, perceptual, comparative, physiological, and other areas of psychology. Only 2 units of credit allowed to students who have taken Statistics 134.—Kroll

109. Interactive Computer Programming for Psychological Experiments (4)

Lecture—2 hours; laboratory—3 hours. Prerequisite: course 41 and one of course 100, 130, or 132 and consent of instructor. Instruction in programming with an emphasis on programming desktop computers as an interactive research tool. Not open for credit to students who have completed course 181. (Former course 181.)—I, II, III, (I, II, III.)

113. Developmental Psychology (4)

Lecture—3 hours; laboratory—2 hours. Prerequisite: course 101. The biology of behavioral development; survey and integration of the organismic and environmental processes that regulate the development of behavior.—II, III, (III.)

121. Ethological Psychology (4)

Lecture—3 hours; laboratory—3 hours. Prerequisite: courses 1, 41, 101. Pass 1 open psychology major. Relationship of brain structure and function to behavior, motivation, emotion, language, and learning in humans and other animals. Methodology of physiological psychology and neuroscience. Not open for credit to students who have completed course 108. (Former course 108.)—I, II, III, (I, II, III.)

Honors and Honors Program

In order to be eligible for high or highest honors in Psychology, the student must both meet the college criteria and complete a research project involving a minimum of six units of course work over at least two quarters which represents an original analysis of data on psychological phenomena. Course 194HA-194HB or other approved courses can be used to satisfy the unit requirement. This project is to be written in the third and approved by the departmen

Honors

The quality of the thesis work will be the primary determinant for designating high or highest honors at graduation.
122. Advanced Animal Behavior (4)
Lecture—3 hours; laboratory—2 hours. Prerequisite: course 101 or Neurobiology, Physiology, and Behavior 102. Pass 1 open to Psychology majors. Advanced integrative survey of biological principles of behavioral organization, emphasizing historical roots, current research directions, conceptual issues and controversies. Laboratory exercises on the description and analysis of the behavior of captive and free-living animals. (Same course as Neurobiology, Physiology, and Behavior 150.) Not open for credit to students who have completed course 156. (Former course 150.)—II. (II) Owings

123. Hormones and Behavior (3)
Lecture—3 hours. Prerequisite: Neurobiology, Physiology, and Behavior 101 and either course 101 or Neurobiology, Physiology, and Behavior 102. Pass 1 open to Psychology majors. Endocrine physiology with an emphasis on the principles of behavior. Fundamental relationships between hormones and various behaviors engaged in by the organism during its lifetime. Role of hormones in behavioral homeostasis, social behavior, reproductive behavior, parental behavior, adaptation to stress. (Same course as Neurobiology, Physiology, and Behavior 152.) Not open for credit to students who have completed course 152. (Former course 152.)—III. (III) Mendoza

124. Comparative Neuroanatomy (4)
Lecture—3 hours; laboratory—2 hours. Prerequisite: course 101 or Neurobiology, Physiology and Behavior 100 or 101. Overview of the neuroanatomy of the nervous system in a variety of mammalian and non-mammalian vertebrates. Examination of modifications or neural structures as a result of morphological or behavioral specializations. (Same course as Neurobiology, Physiology and Behavior 124.)—II. (II) Krubitzer, Recanzone

126. Health Psychology (4)
Lecture—3 hours; term paper. Prerequisite: courses 1, 41, 101. Pass 1 open to Psychology majors. Psychosocial factors influencing health and illness. Topics include stress and coping, personality and health, symptom perception and reporting, heart disease, cancer, compliance, and health maintenance and promotion. Application of principles in written exercises. Not open for credit to students who have completed course 160. (Former course 160.)—I, II, III (II) Capitano, Emmons

127. Animal Cognition (4)
Lecture—3 hours; term paper or discussion—1 hour. Prerequisite: courses 1, 41, 101. Pass 1 open to Psychology majors. Integrative review of the historical backdrop, theoretical issues, and scientific methods of studying animal cognition in a wide range of species. Emphasis on learning processes, pattern recognition, and the neurobiology of learning and memory. Not open for credit to students who have completed course 134. (Former course 134.)—I. (I) Coss

128. Information Processing Models in Neuroscience and Psychology (4)
Lecture—3 hours; term paper. Prerequisite: Mathematics 16B, Physics 7B, course 101 or Neurobiology, Physiology, and Behavior 100. Pass 1 open to Psychology majors. Basic mathematical modeling techniques used in neuroscience and psychology. Specific topics include linear systems theory, Fourier transforms, neural networks, adaptive systems, probabilistic inference and information theory. Emphasis on understanding information processing in neural systems. (Same course as Neurobiology, Physiology, and Behavior 163.) Not open for credit to students who have completed course 163. (Former course 163.)—II. (II) Oshhausen

129. Sensory Processes (5)
Lecture—4 hours; term paper. Prerequisite: course 101. Psychobiology of sensory systems in mammals. The relationship of behavior to the physiology, structure, and function of the senses. GE credit: Wrt.—II, I, II, III (II) Henry, Mendoza, Oshhausen

130. Human Learning and Memory (4)
Lecture—4 hours; discussion—1 hour. Prerequisite: courses 1, 41, 100, and either Statistics 13 or 102; or consent of instructor. Consideration of major theories of human learning and memory with critical examination of relevant experimental data.—I, II, III, III (II) Parks, Goodman, Kroll, Yomelines

131. Perception (4)
Lecture—4 hours; independent library work. Prerequisite: courses 1, 41. The cognitive organizations related to measurable physical energy changes mediated through sensory channels. The perception of objects, space, motion, events.—I, II, III, III (II) Parks, Post

132. Language and Cognition (4)
Lecture—3 hours; term paper. Prerequisite: courses 1, 41, 100; or consent of instructor. Introduction to the cognitive processes involved in language comprehension and production. Topics include the biological foundations of language, speech perception, word recognition, syntax, reading ability, and pragmatics.—(I, L) Long

135. Cognitive Neuroscience: The Biological Foundations of the Brain (5)
Lecture—4 hours; term paper. Prerequisite: courses 1, 41, and 100; or consent of instructor; courses 108, 129, or 131 highly recommended. Neuroscientific foundations of higher mental processes including attention, memory, language, higher-level perceptual and motor processes and consciousness. Emphasis on the neural mechanisms which form the substrates of human cognition, and the relationships of mind to brain.

140. Developmental Psychology (4)
Lecture—4 hours. Prerequisite: courses 1, 41, Pass 1 open to Psychology majors. Ontogenetic account of human behavior through adolescence with emphasis on morphological, mental abilities, social, and interaction. Two units of credit allowed to students who have completed Human Development 100A or 100B. Not open for credit to students who have completed course 112. (Former course 112.)—II, III, III (II) Acredolo, Gremillion

142. Psychology of Social Development (4)
Lecture—4 hours. Prerequisite: courses 1, 41. Pass 1 open to Psychology majors. Theory and research on social development from childhood to adulthood. Topics include the development of personality, achievement motivation, self-understanding, sex-role identity, and antisocial behavior, with an emphasis on the interface between biological and social factors. Two units of credit allowed to students who have completed Human Development 102. Not open for credit to students who have completed course 114. (Former course 114) GE credit: SocSci, Wrt.—II, II, II (II) Robins

146. The Development of Memory (4)
Lecture—4 hours; term paper. Prerequisite: courses 1, 41. Pass 1 open to Psychology majors. Theory and research on memory development with focus on infancy and childhood. Not open for credit to students who have completed course 133. (Former course 133.)—III, III (II) Goodman

151. Social Psychology (4)
Lecture—4 hours. Prerequisite: courses 1, 41. Pass 1 open to Psychology majors. Behavior of the individual in the group. Examination of basic psychological processes in social situations, surveying various problems of social interaction: group tensions, norm-development, attitudes, values, public opinion, status. Not open for credit to students who have completed course 145. (Former course 145.) I, II, III, III (II) Simonson, Johnson, Robbins, Shaver

153. Psychology and Law (4)
Prerequisite: courses 1, 41. Pass 1 open to Psychology majors. Current theoretical and methodological issues in the study of psychology and law. Topics include eyewitness testimony, child abuse, jury decision making, juvenal delinquency and criminology, prediction of violence, insanity defense, and memory for traumatic events. Not open for credit to students who have completed course 115. (Former course 115.) Offered in alternate years.—I, Goodman, Johnson

154. Psychology of Emotion (4)
Lecture—4 hours. Prerequisite: course 1, 41. Pass 1 open to Psychology majors. Introduction to current theories and research on emotion and bodily feelings with special reference to self-knowledge. Not open for credit to students who have completed course 143. (Former course 143.—II, II) Shaver

155. Environmental Awareness (4)
Lecture—4 hours. Prerequisite: course 1. Pass 1 open to Psychology majors. Interactions of people and the environments they construct. Research methods for evaluating designed environments and reviews of current research in environmental psychology. Not open for credit to students who have completed course 144. (Former course 144.) GE credit: SocSci.—II, II (II) Sommer, Coss

156. Organizational Psychology (4)
Lecture—4 hours. Prerequisite: courses 1, 41. Pass 1 open to Psychology majors. Survey of interrelationships among psychological processes, interpersonal dynamics, and organizational forms. Topics include motivation, communication, decision making, leadership, personnel selection and training, stress and conflict, career development, organizational development, and organization-community relations. Not open for credit to students who have completed course 183. (Former course 183.)—III, III (II) Harrison

159. Gender and Human Reproduction (4)
Lecture—4 hours. Prerequisite: courses 1, 41. Pass 1 open to Psychology majors. Social psychology of human reproduction. Examines gender relations over the course of the individual’s reproductive cycle. Not open for credit to students who have completed course 149. (Former course 149.)—I, (I) Ericksen

162. Personality Theory (4)
Lecture—4 hours. Prerequisite: courses 1, 41, Pass 1 open to Psychology majors. The theories of Freud, Erikson, and other major twentieth-century contemporary approaches to personality. Not open for credit to students who have completed course 147. (Former course 147.) GE credit: SocSci, Wrt.—II, III, III (II, III) Elms, Emmons, Ericksen, Robins

165. Introduction to Clinical Psychology (4)
Lecture—4 hours. Prerequisite: courses 1, 41, 168, and either 112 or 145. Major theoretical formulations in the history of clinical psychology, from classical psychoanalysis to contemporary existentialism and behavior modification. A survey, based on lectures, films, and tapes, of what clinical psychologists do, including methods of appraisal, prevention, and approaches to treatment.—I, II, III, III (II, III)

168. Abnormal Psychology (4)
Lecture—4 hours. Prerequisite: courses 1, 41. Descriptive and functional account of behavioral disorders, with primary consideration given to neurotic and psychotic behavior. GE credit: SocSci.—I, III, III (II, III) Emmons, Sommer

170. Psychology of Religion (4)
Lecture—4 hours. Prerequisite: courses 1 and 41. Major theories, issues, data, and research methodologies of the psychology of religion. Religious experience and expression; religious development in childhood, adolescence, and adulthood; conversion; religious influences on physical and mental health; cross-cultural perspectives. GE credit: Div, Wrt.—II, II (II) Emmons
175. Genius, Creativity, and Leadership (4)
Lecture—4 hours. Prerequisite: course 1 or 16; course 41. The phenomenon of genius is examined from a diversity of theoretical, methodological, and disciplinary perspectives, with an emphasis on outstanding creativity and leadership in art, music, literature, philosophy, science, war, and politics. GE credit: SocSci, Wrt.—I. (III.) Simonton

177. Psychobiography and Life History (4)
Lecture—4 hours; laboratory—4 hours. Prerequisite: course 101, three additional upper division courses in Psychology, and consent of instructor. Case-history research as a nonquantitative approach to studying personality. Psychological interpretation of life histories of outstanding individuals in the arts, politics, and science and other areas. GE credit: SocSci, Wrt.—II. (II, III.) Elms

180A. Research in Conceptual and Perceptual Psychology (4)
Lecture—4 hours; laboratory—4 hours. Prerequisite: course 41, and four upper division Psychology courses and consent of instructor. Empirical research on selected topics in concept and perceptual psychology. May be repeated for credit. (S/U grading only.)—I, II, III. (I, II, III.)

180B. Research in Psychobiography (4)
Lecture—2 hours; laboratory—4 hours. Prerequisite: course 101, three additional upper division courses in Psychology, and consent of instructor. Seminar—1 hour. Prerequisite: graduate standing in psychology. Presentation of seminar research. May be repeated for credit. (S/U grading only.)—I, II, III. (I, II, III.)

180C. Research in Personality and Social Psychology (4)
Lecture—2 hours; laboratory—4 hours. Prerequisite: course 41, and four upper division Psychology courses and consent of instructor. Empirical research on selected topics in personality and social psychology (personality, social psychology, organizational psychology, etc.). Content will vary from quarter to quarter. May be repeated once for credit when content differs.—I, II, III. (II, III.)

185. History of Psychology (4)
Lecture—3 hours; term paper. Prerequisite: courses 1, 41, upper division standing or consent of instructor. Pass 1 open to Psychology majors. Development of psychology thought and research in context of history of philosophy and science. May be repeated for credit for a total of 8 units. (P/NP grading only.)—Fall, Winter, Summer; 2001-2002 offering in parentheses.—(I.) Chalupa

190. Seminar in Psychology (4)
Seminar—4 hours. Prerequisite: junior or senior standing; major in psychology or consent of instructor. Intensive treatment of a special topic or problem of psychological interest. May be repeated for credit in different subject area.—III. (I, III.)

190X. Upper Division Seminar (1-2)
Seminar—1-2 hours. Prerequisite: upper division standing and consent of instructor. In-depth discussion at an upper division level of a special topic in Psychology. Emphasis on student participation in learning. May not be repeated for credit. Limited enrollment.

192. Fieldwork in Psychology (1-6)
Fieldwork—1-8 hours. Prerequisite: upper division standing in psychology and consent of instructor. Supervised internship off and on campus, in community and institutional settings. Maximum of four units may be used towards satisfaction of upper division major requirement. May be repeated once for credit. Limited enrollment (P/NP grading only.)—Harrison, Sommer

194HA-194HB. Special Study for Honors Students (3-3)
Independent study. Prerequisite: senior standing in Psychology and qualifications for admission into college honors program, and consent of instructor; at least one course from 180A, 180B, 180C or 199 strongly recommended. Directed research. Supervised reading, research and writing leading to submission of a Senior Honors thesis under the direction of faculty sponsor. (Deferred grading only, pending completion of sequence.)

197T. Tutoring in Psychology (1-3)
Tutoring—1-3 hours. Prerequisite: upper division standing and consent of instructor. Intended for advanced undergraduate students who will lead discussion sections in Psychology courses. May be repeated for credit for a total of 8 units. (P/NP grading only.)

198. Directed Group Study (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5)
(P/NP grading only.)

Graduate Courses

200. Proseminar in Psychology (3)
Seminar—2 hours; independent study—1 hour. Prerequisite: graduate standing in Psychology or consent of instructor. Introduces matriculating graduate students to research activities of departmental faculty. (SU grading only.)—I. (I.)

201. Research Preceptorship (4)
Laboratory—3-4 hours; independent study—5-6 hours. Prerequisite: consent of instructor. May be repeated for credit. (SU grading only.)—I, II, III. (II, III.)

202. Research Seminar (1)
Seminar—1 hour. Prerequisite: graduate standing in psychology. Presentation of graduate research to program faculty and graduate students. May be repeated for credit. (SU grading only.)—I, II, III. (I, II, III.)

204A. Statistical Analysis of Psychological Experiments (4)
Lecture—4 hours. Prerequisite: course 203A or the equivalent or consent of instructor. Probability theory, sampling distributions, statistical inference, and hypothesis testing using standard parametric and correlational approaches. Analysis of variance, factorial and repeated measures, and tests of trends. Not open for credit to students who have completed course 206. (Former course 2026.)—I. (I.)

204B. Causal Modeling of Correlational Data (4)
Lecture—4 hours. Prerequisite: course 204A or the equivalent or consent of instructor. Examination of how to make causal inferences from correlational data in the behavioral sciences. Emphasis on testing rival causal models using correlations among observed variables. Beginning with multiple regression analysis, discussion advances to path analysis and related techniques. Not open for credit to students who have completed course 207A. (Former course 207A.) Offered in alternate years.—II. Simonton

204C. Applied Psychometrics and Measurement Theory (4)
Lecture—4 hours. Prerequisite: course 204A or the equivalent or consent of instructor. Examination of the basic principles and applications of classical and modern test theory. Topics include test construction, reliability theory, validity theory, factor analysis, and latent trait theory. Not open for credit to students who have completed course 204. (Former course 204.) Offered in alternate years.—III. Widaman

204D. Advanced Statistical Inference from Psychological Experiments (4)
Lecture—4 hours. Prerequisite: course 204A or the equivalent or consent of instructor. Advanced topics in statistical inference, which may include probability theory, sampling distributions, statistical inference and hypothesis testing, nonparametric statistics, Bayesian approaches, and advanced issues in analysis of variance. Not open for credit to students who have completed course 205. (Former course 205.) Offered in alternate years.—III.

205A. Applied Multivariate Analysis (4)
Lecture—4 hours. Prerequisite: three courses from 204A, 204B, 204C or 204D or the equivalent. Core or consent of instructor. Review of the major methods of multivariate data analysis for psychological data. Statistical routines using a linear algebra-based computing language. Topics include multivariate analysis of variance, discriminant analysis, canonical analysis factor analysis, and component analysis. Not open for credit to students who have completed course 207B. (Former course 207B.) Offered in alternate years.—II.

208. Physiological Psychology (4)
Seminar—4 hours. Prerequisite: graduate standing in psychology or consent of instructor. A conceptual analysis of the contributions of neuroanatomy, neurophysiology and neurochemistry to an understanding of animal and human behavior.—Chalupa, Henry, Mendoza

220. History of Psychology (4)
Lecture—2 hours; seminar—2 hours. Prerequisite: graduate standing in psychology or consent of instructor. The original behavioral repertoire of the child and its subsequent development.—III. (III.) Acredido, Shields, Goodman

224. History of Philosophy (4)
Lecture—4 hours. Prerequisite: graduate standing in philosophy or consent of instructor. Critical study in a selected area of philosophy. May be repeated for credit when content differs. Offered in alternate years.—III.

230. Psychological Analysis and Research Methods (4)
Lecture—2 hours; seminar—2 hours. Prerequisite: graduate standing in psychology or consent of instructor. An examination of how to make causal inferences from correlational data. Study of animal behavior in an evolutionary and comparative framework.—Post

245. Social Psychology (4)
Seminar—4 hours. Prerequisite: graduate standing in psychology or consent of instructor. The study of animal behavior in an evolutionary and comparative framework.—Waller

252. Topics in Psychobiology (4)
Seminar—4 hours. Prerequisite: graduate standing in psychology or consent of instructor. Critical study in a selected area of psychobiology. May be repeated for credit when content differs. Offered in alternate years.—(II.) Chalupa

Quarter Offered: I=Fall; II=Winter; III=Spring; IV=Summer, 2001-2002 offering in parentheses.

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
261. Cognitive Neuroscience (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: graduate student standing in Psychology or Neuroscience or consent of instructor. Graduate core course for neuroscience. Neurobiological bases of higher mental function including attention, memory, language. One of three in a three-quarter sequence. (Same course as Neuroscience 223.)—III. (III.) Olshausen

263. Topics in Cognitive Psychology (4)
Seminar—4 hours. Prerequisite: graduate standing in psychology or consent of instructor. Selected topics in language processing, memory, perception, problem solving, and thinking, with an emphasis on the common underlying cognitive processes. May be repeated for credit when content differs. Offered in alternate years.—(I.) Acredolo, Goodman, Kroll, Long, Parks, Post, Yonelinas

264. Topics in Psycholinguistics (4)
Seminar—4 hours. Prerequisite: graduate standing in psychology or consent of instructor. Discussion of fundamental issues in the psychology of language. May be repeated for credit when content differs. Offered in alternate years.—Long

265. Topics in Psychology of Consciousness (4)
Seminar—4 hours. Prerequisite: graduate standing in psychology or consent of instructor. Theory and research in the psychology of consciousness. May be repeated for credit when content differs. Offered in alternate years.

270. Topics in Personality Psychology (4)
Seminar—4 hours. Prerequisite: graduate standing or consent of instructor. Critical study of a selected area of personality psychology. May be repeated for credit when content differs.—Elms, Emmons, Eriksen, Shaver

290. Seminar (4)
Seminar—4 hours. Prerequisite: graduate standing in psychology or consent of instructor. Seminar devoted to a highly specific research topic in any area of basic psychology. Special topic selected for a quarter will vary depending on interests of instructor and students.—I, II, III. (I, II, III.)

296. Group Study (1-5)
(S/U grading only.)

299. Research (2-9)
(S/U grading only.)

299D. Dissertation Research (1-12)
Prerequisite: consent of instructor. (S/U grading only.)

Professional Course

390A-390B. The Teaching of Psychology (6-4)
Discussion, lecture, practice. Prerequisite: advanced graduate standing in psychology or a closely related discipline and consent of instructor. Methods and problems of teaching psychology at the undergraduate and graduate levels; curriculum design and evaluation. Practical experience in the preparation and presentation of material. (S/U grading only; deferred grading only, pending completion of sequence.)—II-III. (II-III.)

396. Teaching Assistant Training Practicum (1-4)
Prerequisite: graduate standing. May be repeated for credit. (S/U grading only.)—I, II, III. (I, II, III.)
Pharmacology and Toxicology (A Graduate Group)

Jerold A. Last, Ph.D., Chairperson of the Group
Group Office, 4138 Meyer Hall (Department of Environmental Toxicology, 530-752-4521)
World Wide Web: http://etx.ucdavis.edu/ptx

Faculty. The 60 faculty in the graduate group are from more than 20 academic departments and organized research units within the College of Agricultural and Environmental Sciences, the School of Medicine and the School of Veterinary Medicine.

Graduate Study. The program of study and research leading to the Ph.D. degree emphasizes an interdisciplinary approach to graduate student training. Many specialty areas in pharmacology and toxicology are represented in the research interests of the faculty. Graduate students can study areas of pharmacology and toxicology which emphasize the effects of chemicals in the environment, on human health, and on ecosystems. Molecular and analytical approaches are used to study reproductive, genetic and developmental, respiratory and neurological systems, as well as metabolic fate and pharmacokinetics. Career opportunities include teaching in professional schools and hospitals, laboratory research in academia, government, industry, environmental control, and agricultural and drug regulatory agencies. For detailed information on the program, contact the Group Office, appropriate graduate adviser, or the group chairperson.

Graduate Advisers. C.G. Plopper (Anatomy, Physiology, and Cell Biology), A.R. Buckpitt (Molecular Biosciences), J.A. Last (Pulmonary Medicine), M.G. Miller (Environmental Toxicology), K. Pinkerton (Institute of Toxicology and Environmental Health), R. Vuilliet (Molecular Biosciences).

Courses in Pharmacology and Toxicology (PTX)

Graduate Courses

201. Principles of Pharmacology and Toxicology I (5)
Lecture—5 hours. Prerequisite: Biological Sciences 102 and Neurobiology, Physiology and Behavior 101. First of three courses presenting fundamental principles of pharmacology and toxicology. Introductory overview of basic concepts in pharmacology/toxicology, followed by in-depth blocks on fate processes of chemicals in the body, fate processes in tissue selective responses, selective toxicity employed therapeutically.—I. (I.)

202. Principles of Pharmacology and Toxicology II (4)
Lecture—4 hours. Prerequisite: course 201. The second of three courses presenting fundamental principles of pharmacology and toxicology. Principles of pharmacodynamics and mechanisms of drug/toxicant actions.—II. (II.)

203. Principles of Pharmacology and Toxicology (4)
Lecture—4 hours. Prerequisite: courses 201 and 202. Integrated physiological systems, cardiovascular and nervous systems and how drugs and toxicants act to perturb function.—III. (III.)

230. Advanced Topics in Pharmacology and Toxicology (1-3)
Lecture/discussion/seminar—1 hour each (course format can vary at option of instructor). Prerequisite: course 201 and consent of instructor. In-depth coverage of selected topics for graduate students in Pharmacology-Toxicology and related disciplines. Topics determined by instructor in charge for each quarter.—I, II, III. (I, II, III.)

290. Seminar (1)
Range and Wildlands Science

(College of Agricultural and Environmental Sciences)

Admission into the Range and Wildlands Science major has been discontinued. Students interested in this area should refer to the Agricultural Systems and Environment major, Range and Natural Resources specialization.

The Major Program

Range and wildlands science is the study of the biological and physical components of land resources which are used mostly for grazing domestic livestock, but which also provide wildlife habitats, watersheds, recreation, and open space.

The Program. The major provides background in the biological, physical, and social sciences. Comprehensive study in the plant, animal, soil, and resource sciences supplements the core of range management courses. Integration of the knowledge of a variety of specialized fields is learned as a basis for land management oriented toward the multiple use concept and the maintenance of environmental quality.

Career Alternatives. Range and wildlands science graduates, especially those with some experience, may be employed as consultants, extension specialists, ranch managers, or ranchers. They may also qualify for the position of Range Conservationist in governmental agencies such as the Forest Service, Soil Conservation Service, and the Bureau of Land Management. If career work with such an agency is desired, it is recommended that trainee or apprenticeship experience with that agency be included in the major program of study as an internship. In addition, the training provided by this major should give an excellent background for natural resource management positions.

B.S. Major Requirements:

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>English Composition Requirement</td>
<td>0-8</td>
</tr>
<tr>
<td>See College requirement</td>
<td></td>
</tr>
<tr>
<td>Preparatory Subject Matter</td>
<td>63-67</td>
</tr>
<tr>
<td>Animal Science 2</td>
<td>4</td>
</tr>
<tr>
<td>Biological Sciences 1A, 1B, 1C</td>
<td>15</td>
</tr>
<tr>
<td>Chemistry 2A, 2B, 8A, 8B</td>
<td>16</td>
</tr>
<tr>
<td>Agricultural Science and Management 21, Engineering 5, or Computer Science</td>
<td>3</td>
</tr>
<tr>
<td>Engineering 10</td>
<td></td>
</tr>
<tr>
<td>Agricultural and Resource Economics 1, Economics 1A, or 1B</td>
<td>4-5</td>
</tr>
<tr>
<td>Geology 1-11</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 16A, 16B recommended</td>
<td>3-6</td>
</tr>
<tr>
<td>Physics 1A, 1B</td>
<td>6</td>
</tr>
<tr>
<td>Soil Science 100</td>
<td>4</td>
</tr>
<tr>
<td>Agricultural Science and Management 150</td>
<td>4</td>
</tr>
<tr>
<td>Breadth/General Education</td>
<td>6-24</td>
</tr>
<tr>
<td>Satisfaction of General Education requirement to include two non-introductory courses in Agricultural and Resource Economics, Economics, Environmental Science and Policy, or Geography.</td>
<td></td>
</tr>
<tr>
<td>Depth Subject Matter</td>
<td>51-56</td>
</tr>
<tr>
<td>Botany 111 or Water Science 104</td>
<td>3-4</td>
</tr>
<tr>
<td>Botany 117 or Plant Science 101</td>
<td>4</td>
</tr>
<tr>
<td>Geography 3, Atmospheric Science 105</td>
<td>3-4</td>
</tr>
<tr>
<td>Soil science, two upper division courses</td>
<td>6-8</td>
</tr>
<tr>
<td>Water Science 141</td>
<td>3</td>
</tr>
<tr>
<td>Nutrition 115</td>
<td>4</td>
</tr>
<tr>
<td>Wildlife ecology or management, one upper division course in wildlife, fish and conservation biology, or zoology</td>
<td>3-4</td>
</tr>
<tr>
<td>Agronomy 112</td>
<td>3</td>
</tr>
<tr>
<td>Select units from Range Science 100, 133, 134, 135, 105, 160, 145; and</td>
<td>18</td>
</tr>
<tr>
<td>Range Science 192, 198, 199 (not more than a total of 3 units can be counted)</td>
<td></td>
</tr>
<tr>
<td>Geography 106</td>
<td>4</td>
</tr>
<tr>
<td>Restricted Electives</td>
<td>6-8</td>
</tr>
<tr>
<td>Two upper division natural science or applied biological science courses in one or two of the following: animal science, botany, entomology, genetics, geography, mathematics, nematology, plant pathology, plant science, environmental and resource sciences, water science, or weed science.</td>
<td></td>
</tr>
<tr>
<td>Unrestricted Electives</td>
<td>17-47</td>
</tr>
<tr>
<td>Total Units for the Major</td>
<td>180</td>
</tr>
</tbody>
</table>

Major Adviser, Contact department office.
Advising Center for the major is in 152 Hunt Hall.
Graduate Study. See the Ecology Graduate Group.

Quarter Offered: I=Fall; II=Winter; III=Spring; IV=Summer; 2001-2002 offering in parentheses.

General Education (GE) credit: ArHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
Range Science

(College of Agricultural and Environmental Sciences)

Faculty. See under the Department of Agronomy and Range Science.

Related Courses. See Agricultural Systems and Environment 101, 112, 130, 131, 134, 135, 137; Nutrition 115; Soil Science 105, 120; Wildlife, Fish, and Conservation Biology 151.

Courses in Range Science (RMT)

Questions pertaining to the following courses should be directed to the instructor or to the Advising Center, 152 Hunt Hall.

Lower Division Course

92. Range Science Internship (1-12)
Internship—3-36 hours. Prerequisite: consent of instructor. Work experience off or on campus in all subject areas pertaining to range management. Internships supervised by a member of the faculty. (P/NP grading only.)

Upper Division Courses

192. Range Science Internship (1-12)
Internship—3-36 hours. Prerequisite: completion of 84 units and consent of instructor. Work experience off or on campus in all subject areas pertaining to range management. Internships supervised by a member of the faculty. (P/NP grading only.)

198. Directed Group Study (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5)
Prerequisite: senior standing and consent of instructor. (P/NP grading only.)

Graduate Courses

298. Group Study (1-5)
299. Research (1-12)
(S/U grading only.)
Religious Studies

(College of Letters and Science)
Jacob Olupona, Ph.D., Program Director
Program Office, 622 Sproul Hall (530-752-4999)
World Wide Web: http://religions.ucdavis.edu

Committee in Charge
Emily Albu, Ph.D. (Classics)
Ruth Frankenberg, Ph.D. (American Studies)
Lincoln D. Hurst, Ph.D. (Religious Studies)
Whaen Lai, Ph.D. (Religious Studies)
Jacob Olupona, Ph.D. (African American and African Studies)
Peter Schaeferrer, Ph.D. (German)

Faculty
Lincoln D. Hurst, Ph.D., Associate Professor
Naomi Janowitz, Ph.D., Associate Professor
Whaen W. Lai, Ph.D., Professor

Affiliated Faculty
Kathleen O’Connor, Ph.D., Lecturer
Bruce Rosenstock, Ph.D., Lecturer (Classics, Religious Studies)

The Program
Majoring in religious studies provides an opportunity to explore and analyze the great written and oral traditions of the world’s religions: Hinduism, Buddhism, Judaism, Christianity, Islam, contemporary groups in the U.S., and African religions.

The Program.
The major introduces students to the academic study of religion. The religious studies major offers a broad choice of courses, including history, philosophy, sociology, anthropology, American studies, classics, and medieval studies. For some students, religious studies is an appropriate second major and might combine well with other fields such as anthropology or history to international relations. The religious studies program has also designed four options for minor programs: religious studies, Asian religions, Judaism, and Christian studies.

Career Alternatives.
The emphasis in religious studies courses on developing analytical thinking skills and clear written expression is an asset for many career goals. As a strong liberal arts program, the major can lead to research and/or teaching on the humanities, and for professional schools including law, business, and foreign service.

A.B. Major Requirements:

Preparatory Subject Matter
At least one course from each of the following groups.................20
(a) Religious Studies 1, 2
(b) Religious Studies 21, 23, 40, 60, 70, 75

Anthropology 2 or, with approval from adviser, a lower division course related to religion from African American and African Studies, American Studies, Philosophy, Native American Studies, or other departments...4

Depth Subject Matter
Five upper division Religious Studies courses plus Religious Studies 100

Two upper division History courses related to religion.......................8
Sociology, philosophy, anthropology...8
Two upper division courses related to religion in the above disciplines such as Philosophy 105, 145, Sociology 146, 149, Anthropology 124; or, with approval from adviser, in other disciplines such as Medieval Studies, Native American Studies, African American and African Studies, Classics, or other departments.

Total Units for the Major...64

Recommended.
A reading knowledge of a foreign language is highly recommended. Consult major adviser for a complete list of recommended upper division courses.

Course Equivalents.
The major advisers have a list of lower and upper division courses that can be substituted for courses suggested above.

Minor Program Requirements:
The following four minor program options and others responsive to students’ needs are subject to approval by the major adviser or the Curriculum Committee. The four areas of emphasis are Religious Studies, Asian Religions, Judaism, and Christian Studies.

UNITS
Religious Studies...20
Lower division courses...4
Upper division courses ...16
Religious Studies 100 required

Some substitutions from other departments or programs allowed with consent of adviser.

Preministerial Adviser. L.D. Hurst.

Jewish Studies.
Students interested in Jewish studies should contact N. Janowitz of Religious Studies or H. Murav of Comparative Literature.

Courses in Hebrew (HEB)

Lower Division Courses
1. Elementary Hebrew (5)
Lecture/discussion—4 hours; laboratory—1 hour. Speaking, listening, comprehension, reading and writing fundamentals of modern Hebrew. (Students who have successfully completed, with a C- or better, Hebrew 2 or 3 in the 10th or higher grade in high school may receive unit credit for this course on a P/NP grading basis only. Although a passing grade will be charged to the student’s P/NP option, no petition is required. All other students will receive a letter grade unless a P/NP petition is filed.)—I (I)

2. Elementary Hebrew (5)
Lecture/discussion—4 hours; laboratory—1 hour. Prerequisite: course 1 or the equivalent. Speaking, listening, comprehension, reading and writing fundamentals of modern Hebrew.—II. (II)

3. Elementary Hebrew (5)
Lecture/discussion—4 hours; laboratory—1 hour. Prerequisite: course 2 or the equivalent. Speaking, listening comprehension, reading and writing fundamentals of modern Hebrew.—III. (III)

Upper Division Courses
100. Introduction to Modern Literary Hebrew (4)
Lecture/discussion—4 hours. Prerequisite: course 3 or the equivalent. Advanced topics in Hebrew grammar and syntax, selected literary texts, and advanced work in modern spoken Hebrew.—I. (I) Rosenstock

101. Biblical Hebrew Literature (4)
Lecture/discussion—4 hours. Prerequisite: course 100 or the equivalent. The major literary genres of the Hebrew Bible: narrative Psalms, wisdom, prophecy, and love poetry. Study of biblical Hebrew grammar. Modern Hebrew used in oral presentations and class discussion. GE credit: ArtHum, Wrt.—II. (II) Rosenstock

102. Post-Biblical Hebrew Literature (4)
Lecture/discussion—4 hours. Prerequisite: course 100 or the equivalent. Rabbinic and medieval Hebrew literature, modern Hebrew prose and poetry. Oral presentations and class discussion in modern Hebrew. GE credit: ArtHum, Wrt.—III. (III) Rosenstock

Courses in Religious Studies (RST)

Lower Division Courses
1. Survey of Religion (4)
Lecture—3 hours; discussion—1 hour. Basic concepts introduced through readings of the primary religious literature. Discussion of central ideas (creation, history, law, prophecy, suffering, mysticism, asceticism, karma, reincarnation, moksha, etc.); readings from the Bible, Bhagavad Gita, the Koran, selections from Plato and early Buddhist writings. GE credit: ArtHum, Div, Wrt.—II. (II) Lai

2. Myth, Ritual, and Symbolism (4)
Lecture—3 hours; discussion—1 hour. Myths, rituals and religious symbols found in a variety of religious traditions including examples from ancient and contemporary religious life. Variety of religious phenomena; validity of different approaches to the study of religion. GE credit: ArtHum, Div, Wrt.—I, III, (I, II) Lai, Janowitz

Quarter Offered: I—Fall; II—Winter; III—Spring; IV—Summer, 2001-2002 offering in parentheses.

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
10. Introduction to Religious Studies (2)
Lecture—2 hours. Topic of importance in more than one religious tradition as an illustration of the problems and methods of religious studies. May be repeated for credit in a different subject area. GE credit: ArtHum, Div, Wrt.—I. (I.) Lai

21. Hebrew Scriptures (4)
Lecture—3 hours; term paper. Selected texts from the Hebrew Scriptures (Gneseis—II Chronicles) and review of modern scholarship on the texts from a variety of perspectives (historical, literary, sociological, psychological). Course work is based on an English translation and no knowledge of Hebrew is required. GE credit: ArtHum, Div, Wrt.—I. (I.)

23. Introduction to Judaism (4)
Lecture/discussion—3 hours; term paper. Introduction to the study of religion using examples from the rituals, art and holy texts of Judaism. No prior knowledge of either Judaism or the study of religion is necessary. GE credit: ArtHum, Div, Wrt.—II. (II.) Lai

40. New Testament (4)
Lecture—3 hours; discussion—1 hour. New Testament literature from critical, historical, and theological perspectives. GE credit: ArtHum, Wrt.—I. (I.) Hurst

60. Introduction to Islam (4)
Lecture/discussion—4 hours. Introduction to topics at core of Islamic tradition including Muhammad, the Qur’an, Islamic law, Sufism and sects as well as to selected topics including Islamic revival.—III. (III.) O’Connor

75. Chinese Philosophy: An Introduction (3)
Lecture—2 hours; discussion—1 hour. Introduction to Chinese philosophy from classical to modern times: emphasis on basic metaphysics and its change over time, including Confucian humanism, Taoist cosmologics, the Han synthesis of Tao, Yin, Yang and Five Elements; its impact on Buddhism, Sung new synthesis and conflict with the West. Offered in alternate years.—I. Lai

98. Directed Group Study (1-5)
Prerequisite: consent of instructor; primarily for lower division students. (P/NP grading only.)

99. Special Study for Lower Division Undergraduates (1-5) (P/NP grading only)

Upper Division Courses

100. Study of Religion: Issues and Methods (4)
Lecture—3 hours; term paper. Principal issues and methods of Religious Studies and associated fields.—III. (III.)

102. Christian Origins (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 40; course 23 recommended. Beginning of the Christian faith seen in relation to milieu in which it originated. Offered in alternate years.—(I.) Hurst

110. Life, Meaning and Id (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 2 or upper division standing. Study of religious lives, the quest for meaning and for personal identity; how religions frame the problems of life; how cultural and personal crises affect youthful identity; the nature and structure of dreams, myths, and ideals. Offered in alternate years.—II. Lai

115. Mysticism (4)
Lecture—3 hours; term paper. Prerequisite: one lower division Religious Studies course (except 10, 98, or 99). Historical and descriptive analysis of selected key figures in mystical traditions and readings of representative mystical texts. Analytic term paper. Offered every 3-4 years. GE credit: ArtHum, Div, Wrt.—(III.) O’Connor

122. Studies in Biblical Texts (4)
Lecture—3 hours; term paper. Prerequisite: course 21. Study of a book from the Prophets or writings from critical, historical, and religious perspectives. May be repeated once for credit in different subject area.—III. (III.) Janowitz

124. Topics in Judaism (4)
Lecture—3 hours; term paper. Prerequisite: course 23. Examination of selected aspects of Jewish life, religion, or literature. May be repeated once for credit in different subject area.—II. Lai

125. Dead Sea Scrolls, Apocrypha, and Pseudepigrapha (4)
Lecture/discussion—4 hours. prerequisite: courses 21 or 40. Survey of the major apocryphal and pseudepigraphical writings of the ancient Near East and their historical, social, and religious importance. GE credit: Wrt.—III. (III.) Rosenstock

130. Topics in Religious Studies (4)
Lecture—3 hours; term paper. Prerequisite: course 1 or 2 or consent of instructor. Thematic study of a phenomenon in more than one religious tradition or of the relationship between religion and another cultural phenomenon; review of theory and method included. May be repeated twice for credit in different subject area.—II, III, (III.)
Russian

(College of Letters and Science)
Daniel Rancour-Laferriere, Ph.D., Program Director
Program Office, 622 Sproul Hall (530-752-4998)
World Wide Web: http://russian.ucdavis.edu

Committee in Charge
Yuri Druzhnikov, Ph.D. (Russian)
Harriet Murav, Ph.D. (Russian)
Daniel Rancour-Laferriere, Ph.D. (Russian)

Faculty
Yuri Druzhnikov, Ph.D., Professor
Harriet Murav, Ph.D., Professor
Daniel Rancour-Laferriere, Ph.D., Professor

Emeriti Faculty
James Gallant, Ph.D., Lecturer Emeritus
Valerie A. Tumins, Ph.D., Professor Emerita

Affiliated Faculty
Frederick Choate, Ph.D., Lecturer
Avram Brown, Ph.D., Lecturer

The Major Program

The Russian major introduces students to a culture rich in art, music, theater, film, language, and literature. The major offers an opportunity to learn skills needed to enter the fields of foreign affairs, world politics, and international trade, or to begin graduate work in literature, history, cultural studies and international relations.

The Program. The major program instructs students in speaking, understanding, reading, and writing the Russian language. The program also acquaints students with the intellectual and cultural contributions of the Russian world through the study of its literature, traditions, and institutions.

Interdisciplinary and Career Alternatives. Russian majors may participate in internships where they can serve as translators and interpreters for schools and business firms throughout Northern California. Upon graduation, many Russian majors enter the business world or enter graduate programs in Slavic studies and international relations. The program encourages students to supplement their Russian studies with courses in related fields such as international relations, political science, computer science, cultural studies, or economics in order to maximize their career possibilities.

A.B. Major Requirements:

Preparatory Subject Matter

<table>
<thead>
<tr>
<th>Course</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Russian 1 through 6 (or the equivalent)</td>
<td>4-31</td>
</tr>
<tr>
<td>Russian 41 or 42</td>
<td>4</td>
</tr>
</tbody>
</table>

Depth Subject Matter

<table>
<thead>
<tr>
<th>Course</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Russian 101A, 101B, 101C</td>
<td>12</td>
</tr>
<tr>
<td>Russian 102 or 103 or 104 or 105</td>
<td>4</td>
</tr>
<tr>
<td>Russian 150</td>
<td>4</td>
</tr>
<tr>
<td>Additional upper division units chosen in consultation with adviser</td>
<td>20</td>
</tr>
</tbody>
</table>

Total Units for the Major: 74-77

Minor Adviser: D. Rancour-Laferriere.

Minor Program Requirements:

<table>
<thead>
<tr>
<th>Course</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Russian 101A, 101B, 101C</td>
<td>20</td>
</tr>
<tr>
<td>Other upper division Russian courses</td>
<td>8</td>
</tr>
</tbody>
</table>

Honors and Honors Program. The honors program comprises at least one quarter of study under course 194H, which will include a research paper. See also the University and College requirements.

Study Abroad. Students who have completed one or two years of Russian language study can participate in the Education Abroad Program (EAP) in Moscow. Many of our students also participate in summer, semester, and year programs sponsored by CIEE and ACTR in St. Petersburg and Moscow.

Teaching Credential Subject Representative. D. Rancour-Laferriere. See also under Teacher Education Program.

Prerequisite credit. Credit normally will not be given for a course if that course is the prerequisite for a course already completed.

Courses in Russian (RUS)

Lower Division Courses

Course Placement. Students who have learned Russian at home must consult the department for placement instructions. Students with two years of Russian in high school normally continue in Russian 2; those with three years, Russian 3; those with four years, Russian 4.

1. Elementary Russian (5)
Discussion—5 hours; laboratory—1 hour. Introduction to Russian grammar and development of all language skills in a cultural context with special emphasis on communication. (Students who have successfully completed Russian 2 or 3 in the 10th or higher grade in high school may receive unit credit for this course on a P/NP grading basis only. Although a passing grade will be charged to the student’s P/NP petition, no petition is required. All other students will receive a letter grade unless a P/NP petition is filed.)—I. (I.) Choate

2. Elementary Russian (5)
Discussion—4 hours; laboratory—1 hour. Prerequisite: course 1. Continuation of grammar and language skills developed in course 1.—II. (II.) Choate

3. Elementary Russian (5)
Discussion—5 hours; laboratory—1 hour. Prerequisite: course 2. Continuation of grammar and language skills developed in course 2.—III. (III.) Choate

4. Intermediate Russian (4)
Discussion—4 hours; laboratory—1 hour. Prerequisite: course 3. Grammar review and conversational practice.—I. (I.) Choate

5. Intermediate Russian (4)
Discussion—4 hours; laboratory—1 hour. Prerequisite: course 4. Grammar review. Introduction to literature. Conversational practice.—II. (II.) Choate

6. Intermediate Russian (4)
Discussion—4 hours; laboratory—1 hour. Prerequisite: course 5. Grammar review. Intermediate conversation and continued reading of literature.—III. (III.) Choate

10. Elementary Conversation (2)
Discussion—2 hours. Prerequisite: course 1; course 2 or 3 (concurrently). Conversational practice to improve pronunciation and master spoken idioms. May be repeated for credit up to a maximum of 6 units.—II. (II. III.)

41. Survey of Nineteenth-Century Russian Literature (in English) (4)
Lecture—3 hours. Introduction to dominant literary trends, major literary figures and landmarks of Russian prose and poetry from the period of Sentimentalism through Romanticism and Realism to the beginnings of Modernism. Offered in alternate years. GE credit: ArtHum, Wrt.—II. Murav

42. Survey of Twentieth-Century Russian Literature (in English) (4)
Lecture—3 hours. Introduction to major literary trends such as Symbolism, Acmeism, Futurism, Neorealism, and Socialist Realism. Readings from representative writers such as Gorky, Bely, Pasternak, Solzhenitsyn, and Tertz. Offered in alternate years. GE credit: ArtHum, Div, Wrt.

99. Directed Group Study (1-5)
Discussion—1-5 hours. (P/NP grading only.)

99. Special Study for Undergraduates (1-5)
(P/NP grading only.)

Upper Division Courses

101A. Advanced Russian (4)
Lecture—2 hours; discussion—1 hour; oral reports. Prerequisite: course 6. Topics in Russian grammar for the advanced student. Reading and discussion of contemporary literary and journalistic texts. Conversation exercises utilizing literary and colloquial variants of current Soviet speech.—I. (I.)

101B. Advanced Russian (4)
Lecture—2 hours; discussion—1 hour; oral reports. Prerequisite: course 101A. Topics in Russian grammar for the advanced student. Reading and discussion of contemporary literary and journalistic texts. Conversation exercises utilizing literary and colloquial variants of current Soviet speech.—II. (II.)

101C. Advanced Russian (4)
Lecture—2 hours; discussion—1 hour; oral reports. Prerequisite: course 101B. Continuation of course 101B. Topics in Russian grammar for the advanced student. Reading and discussion of contemporary literary and journalistic texts. Conversational exercises utilizing literary and colloquial variants of current Soviet speech.—III. (III.)
102. Russian Composition (4) Discussion—3 hours; individual tutorial with instructor. Prerequisite: course 6. Practice in writing Russian. One composition on a different topic each week. Topics include: history, geography, politics, and literature of Russia; comparison of Soviet and American lifestyles; current events. Conducted in Russian. Offered in alternate years. GE credit: ArtHum.—(III.) Druzhnikov

103. Literary Translation (4) Discussion—3 hours; prerequisite: course 101C. Translation of Russian literary texts into stylistically equivalent idiomatic English. Offered in alternate years.—(III.) Choate

104. Scientific Translation (4) Discussion—3 hours; prerequisite: course 101A. Techniques of translating Russian scientific texts. Science students will select articles from their fields of interest; Russian students will work on materials assigned by instructor. Offered in alternate years.

105. Advanced Russian Conversation (4) Conversation—3 hours; preparation of texts—1 hour. Prerequisite: course 6. Intensive conversational practice and discussion based on current events and contemporary texts. Offered in alternate years.—I. Druzhnikov

121. Nineteenth-Century Russian Prose (in English) (4) Lecture—3 hours; term paper. Development of prose from Pushkin and Gogol, through Dostoevsky and Tolstoy, to Maxim Gorky. Other writers are selected sequentially: Turgenev, Goncharov, Pisemsky, Saltykov, Chekhov. Romanticism, the Natural School, critical realism, and psychological realism are covered. Offered in alternate years. GE credit: ArtHum.—ArtHum

122. Twentieth-Century Russian Poetry (4) Lecture/discussion—3 hours; term paper. Examination of various trends including Acmeism, Symbolism, Neo-realism, and Socialist Realism in development of prose. Readings from such writers as Gorky, Zamiatkin, Solzhenitsyn, Pasternak, and Solzhenitsyn. Offered in alternate years. GE credit: ArtHum, Wrt.—Druzhnikov

126. The Russian Theater (in English) (4) Lecture—3 hours; discussion—1 hour. The main works of Russian dramatists from Gogol to the present, including Turgenev, Tolstoy, Chekhov, Gorky, Mayakovsky, Bulgakov, Shvarts. Offered in alternate years. GE credit: ArtHum, Wrt.

127. Nineteenth-Century Russian Poetry (4) Discussion—3 hours; term paper. Course 6. Introduction to the principles of Russian versification followed by historical and poetic analysis of the following figures: Derzhavin, Zhukovsky, Pushkin, Delvig, Baratynsky, Lermontov, Nekrasov, Tютчев, and Фет. Conducted in Russian. Offered in alternate years. GE credit: ArtHum

128. Twentieth-Century Russian Poetry (4) Discussion—3 hours; term paper. Prerequisite: course 6. Introduction to principles of Russian versification followed by historical and poetic analysis of the following figures: Brjusov, Blok, Akhmatova, Mandelstam, Esenin, Mayakovsky, Khlebnikov, Pasternak, Evtushenko, Voznesensky, and Brodsky. Conducted in Russian. Offered in alternate years. GE credit: ArtHum—ArtHum—III. Druzhnikov

129. Russian Film (4) Lecture/discussion—3 hours; term paper; film viewing—3 hours. Prerequisite: completion of Subject A requirement. History of Russian film; film and social revolution, the cult of Stalin, dissident visions; film and the collapse of the Soviet empire; gender and the nation in Russian film. In English; films with English subtitles. Offered in alternate years. GE credit: ArtHum, Div, Wrt.—II. Choate

130. Contemporary Russian Culture (4) Lecture—3 hours; term paper. Prerequisite: upper division standing or consent of instructor. Current trends in Russian culture and the relationship between artists and the government. Topics include history of censorship, official and dissident art, recent changes in the cultural scene. Knowledge of Russian not required. Offered in alternate years. GE credit: ArtHum, Wrt.—(III.)

131. Literature of Revolution (4) Lecture—3 hours; essays. Prerequisite: History 3 or 4C, and/or any introductory literature course. Study of impact of revolution on society and culture; the major artistic, political and historical works surrounding the Russian revolutions of 1905 and 1917. Offered in alternate years. GE credit: ArtHum, Wrt.

132. Nature and Culture in Russia (4) Lecture—3 hours; discussion—1 hour. Prerequisite: any introductory course in environmental studies. History of the environmental movement in Russia from the 1920’s to the present, showing the influence of Stalinism on environmental ethics, concepts of nature, and the Russian literary and film; international impact of Soviet environmental policy. Knowledge of Russian is not required. GE credit: ArtHum, Wrt.—(III.)

139. Pushkin (in English) (4) Lecture/discussion—3 hours; term paper. The life and works of Pushkin, the most prominent poet of Russia. Evaluations of Pushkin by both Russian and Western scholars. Images of Pushkin and the official myths that surround him. No knowledge of Russian required. GE credit: ArtHum, Div, Wrt.—(III.) Druzhnikov

140. Dostoevsky (in English) (4) Lecture—3 hours; term paper. Prerequisite: course 101C. Translation of Dostoevsky’s principal works such as Crime and Punishment, The Idiot, The Brothers Karamazov, and The Diary. Study of social and political views as reflected in Dostoevsky’s works. Offered in alternate years. GE credit: ArtHum, Div, Wrt.—(III.) Murav

141. Tolstoy (in English) (4) Lecture—3 hours; Study of Leo Tolstoy’s literary evolution and moral quest. Readings include his Confession, a major novel such as War and Peace or Anna Karenina, and representative shorter fiction. Offered in alternate years. GE credit: ArtHum, Div, Wrt.—(III.) Rancour-Lafiere

142. Women’s Autobiography (in English) (4) Lecture—2 hours; discussion—1 hour; term paper. Prerequisite: any introductory course in literature. An examination of Russian women’s autobiography from the 18th through the 20th centuries, emphasizing the way in which the genre of autobiography serves as a means of the writer’s creation of herself, as opposed to her definition by others. Offered in alternate years. GE credit: ArtHum, Div, Wrt.

143. Alexander Solzhenitsyn (4) Lecture/discussion—3 hours; term paper. Prerequisite: any introductory literature course or consent of instructor. Examination of the literary and political writings of the major Russian dissident in the biographical context in which they were created. Knowledge of Russian not required. GE credit: ArtHum, Div, Wrt.—(III.) Rancour-Lafiere

144. Christ and Literature (4) Lecture—3 hours; discussion—1 hour. Prerequisite: any introductory literature course or consent of instructor. Literature and censorship in Russia. Personal responsibility of the author vs. conformism to state morality. Russian myths and Russian realities. GE credit: ArtHum, Div, Wrt.—(III.) Druzhnikov

150. Russian Culture (4) Discussion—3 hours; term paper. Knowledge of Russian not required. Study of Russian culture in nineteenth and twentieth centuries. Brief introduction of the beginnings up to nineteenth century. Russian art, music, philosophy, church, traditions, and daily life. Offered in alternate years. GE credit: ArtHum, Div, Wrt.—II.—(III.) Rancour-Lafiere

151. Writers and Censorship in Russia and the Soviet Union (4) Lecture—3 hours; discussion—1 hour. Prerequisite: any introductory literature course or consent of instructor. Literature and censorship in Russia. Personal responsibility of the author vs. conformism to state morality. Russian myths and Russian realities. GE credit: ArtHum, Div, Wrt.—(II.) Druzhnikov

154. Russian Folklore (4) Lecture—3 hours; term paper. Knowledge of Russian not required. Russian folklore, rituals, and history will be analyzed and compared with folklore of other peoples. Sociological implications of attitudes toward family unit, children, etc. Influences of folklore on Russian literature and historiography. Offered in alternate years. GE credit: ArtHum, Div, Wrt.—(II.) Murav

158. Yiddish Literature in Translation (4) Lecture/discussion—3 hours; term paper. Major writers of Yiddish in English translation; major genres of Yiddish literature from the mid-19th century to the present. GE credit: ArtHum, Div, Wrt.—(III.) Murav

166. Representations of Sexuality in Russian Literature (4) Lecture—3 hours; term paper. Prerequisite: Women’s Studies 50 or introductory psychology. Sexuality in Russian oral and written literature from a dual, feminist-psychosocial analytic perspective. Monogamy, free love, sexism, homosexuality, incest, androgyny, and others as depicted by such writers as Pushkin, Gogol, Tolstoy, Dostoevsky, Akhmatova, Blok, Tolstoa, and others. GE credit: ArtHum, Div, Wrt.

192. Research Essay (2) Prerequisite: a Russian literature course (may be taken concurrently). A research essay, based on primary and secondary sources, dealing in depth with a topic arising from or related to the prerequisite literature course. May be repeated for credit.

194H. Special Study for Honors Students (4) Independent study—4 hours. Prerequisite: open only to majors of senior standing who qualify for honors program. Guided research, under the direction of a faculty member, leading to a senior honors thesis on a topic in Russian studies.

195H. Honors Thesis (4) Independent study—4 hours. Prerequisite: course 194H. Writing an honors thesis, under the direction of a faculty member, on a topic in Russian studies.

198. Directed Group Study (1-5) (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) (P/NP grading only.)
Science and Society

(Reserved for Ag Students)

One course from each of the four following areas:

Science and Society 2, 5, 15, 20, 30, 90A, 90B, 90C or 90X 2-4
Science and Society 1 .. 4
Science and Society ... 22-27

Minor Program Requirements:

Science and Society is an interdepartmental teaching program

Minor Adviser: R.B. MacDonald.

Science and Society 120... 2-4

Quarter Offered: I—Fall; II—Winter; III—Spring; IV—Summer, 2001–2002 offering in parentheses.

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
90B. Observing and Writing in Biology (2)
Seminar—1 hour; laboratory—1 hour; term paper. Students will observe the interactions between microscopic organisms, conduct simple laboratory experiments, describe and analyze observations and discuss scientific observations and writing.—I. (I.) Jaffee

90C. Herbal Medicine: Relevance for the 21st Century (2)
Seminar—2 hours. Medicinal usage of plants from biological, historical, and cultural perspectives. Broad contexts of holistic and scientific paradigms for understanding herbal medicine. Saturday field trip to teach herb identification.—II. (II.) Weinbaum

90X. Lower Division Seminar (1-4)
Seminar—1-4 hours. Prerequisite: lower division standing and consent of instructor. Examination of a special topic in Science and Society through shared readings, discussions, written assignments, or special activities such as fieldwork, laboratory work, etc. May be repeated for credit. Limited enrollment.

92. Internship in Science and Society (1-12)
Internship—3-36 hours. Prerequisite: lower division standing and consent of instructor. Supervised internship on and off campus, in the community, or in institutional settings. (P/NP grading only.)

97T. Tutoring in Science and Society (2-3)
Discussion/lecture—6-9 hours. Prerequisite: lower division standing; consent of instructor. Tutoring in undergraduate Science and Society courses. Assisting with leading discussion groups under supervision of instructor(s) and teaching assistants. Acting as liaison between the students and course instructor(s) to foster effective communication and interaction. May not be repeated. (P/NP grading only.)

98. Directed Group Study (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)

99. Special Study for Undergraduates (1-5)
Discussion—3-15 hours. Prerequisite: lower division standing and consent of instructor. (P/NP grading only.)

Upper Division Courses

105. Organismal Interactions in Everyday Life (3)
Lecture—2 hours; discussion/laboratory—1 hour. Prerequisite: Biological Sciences 10 or 1A. Ecology and evolution of organismal interactions and the importance of these interactions to human health and welfare and a sustainable environment. Students will debate environmental issues on scientific, political, and ethical grounds. GE credit: SciEng, Wrt.—II. (II.) van Bruggen

120. Science and Contemporary Societal Issues (3)
Lecture/discussion—3 hours. Prerequisite: upper division standing. Study of a contemporary societal issue/problem emphasizing critical thinking with information drawn from several disciplines. Multiple instructors illustrate the necessity of an interdisciplinary and cooperative approach in solving important issues. Topic will vary. May be repeated once for credit. Course not offered every year. GE credit: SciEng or SocSci, Wrt.

190X. Upper Division Seminar (1-4)
Seminar—1-4 hours. Prerequisite: upper division standing and consent of instructor. In-depth examination at an upper division level of a special topic in Science and Society. Emphasis upon student participation in learning. May be repeated for credit. Limited enrollment.

192. Internship in Science and Society (1-12)
Internship—3-36 hours. Prerequisite: upper division standing and consent of instructor. Supervised internship on or off campus, in the community, or in institutional settings. (P/NP grading only.)

197T. Tutoring in Science and Society (1-5)
Tutoring—3-15 hours. Prerequisite: upper division standing; consent of instructor. Tutoring of students in Science and Society courses. Assistance with discussion groups and laboratory sections under supervision of instructor. May be repeated for credit if tutoring another Science and Society course. (P/NP grading only.)

198. Directed Group Study (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)

199. Special Study in Science and Society (1-5)
Prerequisite: upper division standing and consent of instructor. (P/NP grading only.)

Graduate Courses

298. Group Study (1-5)
Prerequisite: consent of instructor. May be repeated for credit when topic differs. (S/U grading only.)

299. Graduate Research (1-12)
Prerequisite: graduate student and consent of instructor. May be repeated for credit. (S/U grading only.)

Professional Course

390. Teaching Methods in Science and Society (1)
Discussion—1 hour. Prerequisite: graduate level standing and consent of instructor. Practical experience in methods and problems related to teaching Science and Society courses. Discussion of critical pedagogies specific to teaching of science-societal issues, preparing for and conducting discussion sessions, analyses of texts and supporting material, formulation of assignments, exams. May be repeated for credit. (S/U grading only.)—I, II, III; (I, II, III.)
Soil and Water Science

(College of Agricultural and Environmental Sciences)

The Major Program
Soil and water science is concerned with the use and protection of our land and water resources. The major teaches graduates sound scientific principles for managing soil and water resources to benefit both agriculture and the environment.

The Program. Major programs include land use, soil survey, soil management and conservation, plant nutrition, diagnostic technology, irrigation and drainage, water resources management, water quality, and related environmental problems. (For example, the emphasis on water quality would include more than the minimum number of units of physical and biological sciences, while an emphasis in resource allocation and land-use planning would include more courses in the social, political, and economic areas.)

Internships and Career Alternatives. Before they graduate, many students receive practical work experience through student internships with state and federal agencies, soil and plant labs, and growers. Students also have the opportunity to work on research projects with faculty members and to develop individual research or study topics. Graduates are qualified for managerial and technical positions with environmental and agricultural businesses. They are also prepared for positions in advising, planning, land appraisal, and research and teaching with private, government, and international organizations involved with soil and water development, use, and conservation. Some graduates also continue in master's and doctoral programs in soil science, hydrologic science, ecology, and plant physiology.

B.S. Major Requirements:

<table>
<thead>
<tr>
<th>REQUIREMENT</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>English Composition Requirement</td>
<td>4-12</td>
</tr>
<tr>
<td>See College requirement</td>
<td>0-8</td>
</tr>
<tr>
<td>Communication 1</td>
<td>4</td>
</tr>
<tr>
<td>Preparatory Subject Matter</td>
<td>74</td>
</tr>
<tr>
<td>Biological Sciences 1A, 1B, 1C</td>
<td>15</td>
</tr>
<tr>
<td>Chemistry 2A-2B-2C and a more advanced course</td>
<td>18</td>
</tr>
<tr>
<td>Agricultural Systems and Environment 21 or Engineering 5</td>
<td>3</td>
</tr>
<tr>
<td>Economics 1A, 1B</td>
<td>5</td>
</tr>
<tr>
<td>Geology 50</td>
<td>3</td>
</tr>
<tr>
<td>Mathematics 16A, 16B</td>
<td>6</td>
</tr>
<tr>
<td>Physics 7A-7B-7C</td>
<td>12</td>
</tr>
<tr>
<td>Statistics 13, 100 or Agricultural Systems and Environment 120</td>
<td>4</td>
</tr>
<tr>
<td>Additional physical sciences, biological sciences, and/or mathematics with approval of adviser</td>
<td>8</td>
</tr>
<tr>
<td>Breadth/General Education</td>
<td>15-33</td>
</tr>
<tr>
<td>Satisfaction of General Education requirement</td>
<td>6-24</td>
</tr>
<tr>
<td>At least one upper division course from each of the following areas, with approval of adviser, (1) resource management, (2) environmental law, (3) environmental economics and decision making</td>
<td>9</td>
</tr>
<tr>
<td>Depth Subject Matter</td>
<td>30</td>
</tr>
<tr>
<td>Soil Science 100</td>
<td>4</td>
</tr>
<tr>
<td>Environmental and Resource Sciences 100, 100L</td>
<td>6</td>
</tr>
<tr>
<td>Additional upper division units in soil science and hydrologic science</td>
<td>20</td>
</tr>
<tr>
<td>Restricted Electives</td>
<td>27</td>
</tr>
<tr>
<td>To supplement or expand areas of student interest selected with approval of adviser</td>
<td>24</td>
</tr>
<tr>
<td>Special study or experience (192 or 199 course in the major area)</td>
<td>3</td>
</tr>
<tr>
<td>Unrestricted electives</td>
<td>4-30</td>
</tr>
<tr>
<td>Total Units for the Degree</td>
<td>180</td>
</tr>
</tbody>
</table>

Major Adviser. R. Dahlgren.

Advising Center for the major is located in 148 Hoagland Hall (530-752-1669).

Graduate Study. Graduate programs are available in Soil Science as well as Hydrologic Sciences. Detailed information can be obtained from the Graduate Adviser and the Graduate Announcement. See also the Graduate Studies chapter of this catalog.

Courses. For specific courses of instruction in this major, see course listings under Atmospheric Science, Plant Science, Environmental and Resource Sciences, Soil Science, and Hydrologic Science.

Quarter Offered: I—Fall; II—Winter; III—Spring; IV—Summer; 2001-2002 offering in parentheses.

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Writ = Writing Experience.
Sociology

(College of Letters and Science)

Ph.D., Chairperson of the Department

Department Office, 1282 Social Sciences and Humanities Building (530-752-0782)

World Wide Web: http://sociology.ucdavis.edu

Faculty

Nicole W. Biggart, Ph.D., Professor (Sociology, Management)
Fred Block, Ph.D., Professor
Patrick Carroll-Burke, Ph.D., Assistant Professor
Lawrence E. Cohen, Ph.D., Professor
James C. Craner, Ph.D., Professor
Diane H. Felmlee, Ph.D., Professor
Jack A. Goldstone, Ph.D., Professor
Luis Guarnizo, Ph.D., Assistant Professor (Human and Community Development)
T. Ryken Grattet, Ph.D., Assistant Professor
Laura Grindstaff, Ph.D., Assistant Professor
John R. Hall, Ph.D., Professor
Frank Hirtz, Ph.D., Associate Professor (Human and Community Development)
Mary Jackman, Ph.D., Professor
Carole E. Joffe, Ph.D., Professor (Sociology, Women and Gender Studies)
Carl G. Jorgensen, Ph.D., Associate Professor
David J. Kyle, Ph.D., Assistant Professor
William B. Lacy, Professor (Human and Community Development)
Ming-Cheng Lo, Ph.D., Assistant Professor
Lyn H. Lofland, Ph.D., Professor
William McCarthy, Ph.D., Associate Professor
Seán O’Riain, Ph.D., Assistant Professor
Donald A. Palmer, Ph.D., Professor (Management)
Kimberlee A. Shauman, Ph.D., Assistant Professor
Xiaoling Shu, Ph.D., Professor
Michael P. Smith, Professor (Human and Community Development)
Vicki Smith, Ph.D., Associate Professor
John T. Walton, Ph.D., Professor
Diane L. Wolf, Ph.D., Associate Professor

Emeriti Faculty

Bruce M. Hackett, Ph.D., Professor Emeritus
John F. Lofland, Ph.D., Professor Emeritus
Leon H. Mayhew, Ph.D., Professor Emeritus
Julius A. Roth, Ph.D., Professor Emeritus
John F. Scott, Ph.D., Professor Emeritus

The Major Programs

Sociology is the study of human society in all its manifestations. Its aim is to discover the process and structure of human interaction, to identify the main forces that sustain or weaken social groups, and determine the conditions that transform social life. Sociology, like any science, is a disciplined, intellectual quest for knowledge about the fundamental nature of things.

The Program. The Department of Sociology offers two major programs, Sociology and Sociology-Organizational Studies. Students selecting the Sociology major may choose from four options in the major. The General Sociology emphasis allows students to obtain a broad understanding of the concepts, methods, and theories of the social sciences. Options in Law and Society or Social Service prepare students for careers in such areas as law, corrections, social work or counseling. The Comparative Studies and World Development emphasis provides students for graduate training leading to careers in international fields. Majors in Sociology-Organizational Studies will be prepared for a variety of career options, particularly in the field of management. The major specifically meets entry requirements for programs of professional training leading to a Masters degree in public or private management, and may also lead to further study in any of the disciplinary areas incorporated in the major.

Sociology

A.B. Degree Requirements:

General emphasis:

Preparatory Subject Matter: Sociology 1, 2, or 3; 46A and 46B (or the equivalents)..24-25
Anthropology 2 or 20...4
Select from History 4A, 4B, 4C, 8, 9A, 9B, 10, 15, 16, 17A, 17B............4
Select from Philosophy 5, 6, 14..4

Depth Subject Matter: Sociology 100 ..4
B. Select one course from each of the following four clusters..............16
Individual, Culture and Society: Sociology 125, 126, 135...............................4
Stratification and Social Differentiation: Sociology 130, 132, 140..............4
Organizations and Institutions: Sociology 118, 131, 146, 180A..................4
Social Dynamics: Sociology 141, 143A, 170...4
C. Select three upper division courses from one of the following clusters (not counting courses taken to fulfill requirement B)...12
Individual, Culture and Society: Sociology 120, 125, 126, 127, 128, 129, 131, 132, 134, 135, 143B, 148, 150, 152, 172, 173, 175, 176
Stratification and Social Differentiation: Sociology 118, 128, 129, 130, 132, 133, 134, 140, 145A, 145B, 172, 185, and not more than one of the following courses: African American and African Studies 123, Asian American Studies 100, Chican/o Studies 110, or Native American Studies 115
Organizations and Institutions: Sociology 118, 119, 124, 131, 133, 139, 144, 146, 149, 150, 154, 155, 159, 180A, 180B, 181, 182, 183, 185
Social Dynamics: Sociology 123, 125, 138, 141, 143A, 145A, 145B, 147, 148, 156, 157, 170
Student-initiated thematic cluster developed with a faculty adviser and approved by the Sociology Undergraduate Curriculum Committee
D. Eight units of Sociology beyond courses taken to fulfill above require-
ments, and outside of the course cluster used to fulfill requirement C.
E. One integrative course (prerequisite: senior standing and completion of require-
ment A, and at least two of the courses for requirement B).
Choose from Sociology 190X, 191, 194HA-194HB.

Total Units for the Major...68-69

Law and Society emphasis:

Preparatory Subject Matter: Sociology 1, 3, 46A and 46B (or the equivalents)..29
Anthropology 2 or 20...4
Select from History 4A, 4B, 4C, 8, 9A, 9B, 10, 15, 17A, 17B...................4
Philosophy 5 or 14...4

Depth Subject Matter: Sociology 100 ..4
Select from Sociology 125, 126, 135..4
Select from Sociology 130, 132, 140..4
Select from Sociology 118, 131, 146, 180A.................................4
Select from Sociology 120, 150, 152..8
Select from Sociology 118, 148, 156, 157; no more than one of the follow-
ing courses: Philosophy 119, Political Science 122, 154, Environment-
al Science and Policy 161; no more than one of the following courses: African American and African Studies 121, 145, Asian American Studies 155, Chican/o Studies 130, 132, Native American Studies 117, 118...12

Quarter Offered: I=Fall; II=Winter; III=Spring; IV=Summer, 2001-2002 offering in parentheses.

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
Select from Sociology 190X, 192, 194HA-194HB4
(Required prerequisite: senior standing and completion of Sociology 100 and 8 units from Sociology 118, 125, 126, 130, 131, 132, 135, 140, 146, 180A.)

Total Units for the Major...73

Social Services emphasis: UNITS

Preparatory Subject Matter ...28
Sociology 2, 3, 46A and 46B (or the equivalents) ...4
Psychology 1 ...4
Select from African American and African Studies 10, 15; Asian American Studies 1, 2; Chicano Studies 10, 20; Native American Studies 10, 70 ...4

Depth Subject Matter ...44
Sociology 131, 140, 185 ...4
Select units from upper division human psychology4
Select seven courses distributed as specified ...29

Social Issues:
Sociology 119, 120, 122, 124, 139, 143A, 144, 146, 150, 152, 154, 155, 170 ...4

Social Interaction:
Sociology 126, 127, 128, 143B, 148, 157 ...4

Race and Ethnicity:
African American and African Studies 100; Community and Regional Development 176; Asian American Studies 110, 111, 150, Chicano Studies 110; Native American Studies 112, 124; Sociology 129, 130, 134 ..4

Gender:
Sociology 132, 133, 145B, 172 ...4

Organizational Behavior:
Sociology 180A, 180B, 181, 182, 183 ..4

Methodology:
Sociology 103, 106 (or the equivalents), 192, 194HA, 194HB4

Total Units for the Major..72

Comparative Studies and World Development emphasis: UNITS

Preparatory Subject Matter ...28
Sociology 1, 46A and 46B (or the equivalents) ...13
Economics 1A, 1B ...10
Anthropology 2 ...4
At least 4 units from Geography 2-2G, History 10, Political Science 2, 4 Course work in language instruction in modern foreign language equiva lent to 26 units at UC Davis ..26

Depth Subject Matter ...48
Sociology 100, 141, 145A, 170 ...16
Economics 115A and Anthropology 126 ...8
At least twelve units from Sociology 118, 130, 131, 143A, 144, 145B, 156 12

Regional focus, three courses from one of the following groups12
(a) Africa/Middle East: Anthropology 140A, 140B, 142, Economics 175, Geography 125A, 125B, History 115A, 115B, 115C, 116, Political Science 134, 146
(b) Latin America/Pacific: Anthropology 144, 147, Geography 122A, 122B, History 161A, 161B, 162, 165, Spanish 135, 136

Total Units for the Major..79-105

Sociology—Organizational Studies

A.B. Degree Requirements: UNITS

Preparatory Subject Matter ...27
Sociology 1, 2, 46A, 46B (or Statistics 13) ..17
Economics 1A, 1B ...10

Depth Subject Matter ...44
Sociology 180A, 180B ..4
Sociology 106 ...4
Select from Psychology 183, Communication 130, or 1364

Select 16 units from one of the following two clusters and select 4 units from the other cluster ...20

(1) Public Administration

(2) Business and Society

Select from Sociology 128, 130, 132, 140, 145A, 145B, 1724
Select from Sociology 190X, 192, 194HA-194HB4
(Required prerequisite for 190X or 192: senior standing and comple tion of all major requirements other than 12 units of the cluster requirements.)

Total Units for the Major..71

Major Advisers. Consult the Departmental Advising Office, 1282 Social Sciences and Humanities Building.

Minor Program Requirements:
Students in other disciplines may elect to minor in Sociology by choosing a sociological subject emphasis listed below. On transcripts, the minor will appear as a minor in Sociology.

Sociology ...20

Sociology—General emphasis
Select from Sociology 100, 126, 140, 170, 180A ..8
One course from three clusters (see cluster lists under Sociology Major— General Emphasis) ...12

Sociology—Organizational Studies emphasis
Sociology 190A and 192B ..8
Select from Agricultural and Resource Economics 112, American Studies 125, Communication 134, 136, Community and Regional Development 162, 163, 164, Economics 100, Political Science 180, 181, 183, 187, 188, Psychology 183 ..8
Select from Anthropology 122, History 174A, 179, 187A, 187B, 194D, Sociology 118, 139, 141, 156, 159, 175, 181, 183 ..4

Sociology—Social Service emphasis
Sociology 185, plus 4 units selected from Sociology 131, 132, 133, 145B8
Select from Sociology 129, 130, 133, 140, 172 ..4
Four units from Social Issues cluster and four units from Social Interaction cluster (See cluster lists under Sociology Major—Social Services emphasis) ..8

Sociology—Law and Society emphasis
Sociology 155, plus one of Sociology 120, 150, 152 ..8
One of Sociology 129, 130, 131, 132, 133, 134, or 1724
One of Sociology 118, 139, 140, 141, 145A or 145B, 180A or 180B, or 186 ..4
One of Sociology 100, 122, 124, 126, 128, 143A or 143B, 156, 157, or 1914

Minor Advisers, Consult the departmental Advising Office, 1282 Social Sciences and Humanities Building.

Honors Program. An Honors Program is available to Sociology and Sociology—Organizational Studies majors who have demonstrated excellence in their field of study. To be eligible for the program, students must have a grade-point average of 3.5 in the major and the recommendation of a faculty sponsor familiar with their work. In addition to meeting the standard major requirements, the honors student writes an honors thesis and participates in a two-quarter honors seminar (course 194HA-194HB). Successful completion of the Honors Program, when combined with College GPA requirements, enables the student to graduate with Highest Honors or with High Honors.

Graduate Study. The Department offers programs of study and research leading to the M.A. and Ph.D. degrees in sociology. Further information regarding graduate study may be obtained at the department office or on our Web site.

Graduate students in Sociology have the opportunity to pursue designated emphases in Critical Theory, Women's Studies, Social Theory and Comparative History, or Native American Studies. See these headings for further details on these interdisciplinary programs.

Graduate Advisers. Consult the Graduate Administrative Assistant, 1287 Social Sciences and Humanities Building.

Courses in Sociology (SOC)

Lower Division Courses

1. Introduction to Sociology (5)
Lecture—4 hours; discussion—1 hour. Principles and basic concepts of sociology. The study of groups, culture, collective behavior; classes and caste, community and ecology, role, status, and personality. GE credit: SocSci—I, II, III. (I, II, III.)
2. Self and Society (4)

3. Social Problems (4)

4. Immigration and Opportunity (4)
Lecture—3 hours; discussion—1 hour or term paper. Social and demographic analysis of immigration: motives and experiences of immigrants; immigration and social mobility; immigration, assimilation, and social change; multicultural societies. Detailed study of immigration into the U.S., with comparative studies of Europe, Australia, and other host countries. GE credit: SocSci, Div. Wrt.—I. (I)

5. Global Social Change: An Introduction to Macrosociology (4)
Lecture—3 hours; discussion—1 hour. An introduction to change and diversity in world history, including the United States. Examines population and family, technological change and economic development, power and status, culture and identity. GE credit: SocSci, Div. Wrt.—I. (I)

25. Sociology of Popular Culture (4)

30A. Intercultural Relations in Multicultural Societies (3)
Lecture—1.5 hours; discussion—1.5 hours. Macro-structural analysis of contemporary multicultural societies; immigration and assimilation in comparative perspective; social construction of racial and ethnic group identities; ethnicity and gender; group conflict and cooperation; controversies surrounding multiculturalism. First course in a 2-course Multicultural Immersion Program. GE credit: Div.—I. (I)

30B. Intercultural Relations in Multicultural Societies (3)
Lecture—1.5 hours; discussion—1.5 hours. Prerequisite: course 30A. Social-psychological analysis of personal experiences living in a multicultural setting; forming or rejecting group identity or stereotypes; managing and reducing conflict; cross-cultural communication; promises and problems of diversity at UCD. Second course in 2-course Multicultural Immersion Program.—II. (II.)

46A. Introduction to Social Research (4)
Lecture—3 hours; discussion—1 hour or term paper or project (instructor’s option). Examination of the methodological problems of social research. Selection and definition of problems of investigation, data-gathering techniques, and sampling.—I, III, (I, III.)

46B. Introduction to Social Research (4)
Lecture—3 hours; discussion—1 hour or term paper or research project. Data-analysis techniques, measurement, scaling, multivariate analysis, and quantitative measures of association.—II, III, (II, III.)

90X. Lower Division Seminar (1-2)
Seminar—1-2 hours. Prerequisite: lower division standing and consent of instructor. Examination of a specific sociological problem through shared readings, discussions, written assignments, or special activities such as fieldwork, laboratory work, etc. May not be repeated for credit. Limited enrollment.

98. Directed Group Study (1-5)
Prerequisite: consent of instructor. Primarily intended for lower division students. (P/NP grading only.)

99. Special Study for Undergraduates (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)

Upper Division Courses

100. Classical and Modern Sources of Sociological Theory (4)
Lecture—3 hours; term paper. Prerequisite: upper division standing or consent of instructor. Historical introduction of sociological thought, with special reference to its 19th-century origins and 20th-century lines of development. Consideration of theoretical texts may include works of Marx, Durkheim, Simmel, early critical theorists, Parsons, and the Chicago School. Not open for credit to students who have received credit for course 165A. GE credit: Wrt.—I, II, III, (I, II, III.)

102. Society and Culture of California (4)
Lecture—3 hours; discussion—1 hour or term paper or discussion—1 hour. Prerequisite: introductory course in Sociology recommended. California’s distinctive society and culture; sociological analyses of topical issues concerning diversity, environment, cities.—II, (II)

103. Evaluation Research Methods (4)
Lecture—3 hours; discussion—1 hour or field research (instructor’s option). Prerequisite: course 46A and 46B, or Statistics 13 or the equivalent. Surveys applications of research methods to the evaluation of social programs, primarily emphasizing methodological issues, e.g., research design and data collection; uses of evaluation research are also discussed and placed in theoretical contest. Participation in an

104. The Political Economy of International Migration (4)
Lecture—3 hours; term paper or discussion—1 hour. Prerequisite: upper division standing. Analysis of worldwide migration patterns, and social scientific theories of international and transnational migration. Focus in economical, political, and social impact of immigration and potential for international and regional cooperation. (Same course as International Relations 104).—II. (II)

106. Intermediate Social Statistics (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 46B or Statistics 13 or the equivalent. Intermediate level course in statistical analysis of social data, emphasizing the logic and use of statistical measures, procedures, and mathematical models especially relevant to sociological analysis.—I, II, III, (I, III)

118. Political Sociology (4)
Lecture—3 hours; discussion—1 hour or term paper or research project. Relation of social cleavages and social cohesion to the functioning of political institutions; the social bases of local and national power structures; social sources of political movement, analysis of concepts of alienation, revolution, ideology, ruling class, and elite.—II, III, (II, III.)

120. Deviance (4)
Lecture—3 hours; term paper or discussion. Social structural sources, institutional practices and microprocesses associated with illegality, evil, disease, immorality, disability, racial and class differences, citizenship, and the body. Special emphasis on expert knowledge and the production and management of social difference. GE credit: Wrt.—I, II, III, (I, II, III.)

122. Sociology of Adolescence (4)
Lecture—3 hours; discussion—1 hour or term paper or research project. Chronological age and social status; analysis of social processes bearing upon the socialization of children and adolescents. The emergence of “youth cultures.” Generational succession as a cultural problem.—II. (III.)

123. American Society (4)
Lecture—3 hours; discussion—1 hour or term paper or research project. The demographic, social structure of American society and population, with emphasis upon ethnic and class groups as bases for political and economic interest. Attention to selected current social controversies.

125. Sociology of Culture (4)
Lecture—discussion—3 hours; term paper. Sociological approaches to study of historical and contemporary culture and mass media, and their structuring in relation to social actors, institutions, stratification, power, the production of culture, audiences, and the significance of culture in processes of change. GE credit: SocSci.—I. (I)

126. Social Interaction (4)
Lecture—3 hours; discussion—1 hour or term paper or research project. Prerequisite: course 2. Everyday interaction in natural settings: ethnographic approaches to the understanding of social meanings, situations, personal identity and human relations. Particular attention to the work of Erving Goffman and to principles of field observation and qualitative analysis. GE credit: Wrt.—I, II, III, (I, III.)

127. Sociology of Death (4)
Lecture—3 hours; discussion—1 hour or term paper or project (instructor’s option). Prerequisite: course 1 or the equivalent. Overview of attitudes toward, structural effects of, and methods of coping with death and death-related behaviors. Particular attention to social psychological aspects of death and dying, to death occupations, and to death rituals in various cultures. GE credit: Wrt.—II, III.

128. Interracial Interpersonal Dynamics (4)
Lecture—3 hours; discussion—1 hour or term paper or project (instructor’s option). Prerequisite: one course from courses 1, 2, 3, Afro-American Studies 10, Asian American Studies 1, 2, Chicano Studies 10, Native American Studies 1, 20. Analysis of the influences of cultural differences and racial stratification on interpersonal interaction in microsettings (e.g., work, education, political action) and intimate settings (e.g., friendship, love, marriage, family). Minority/majority relationships. GE credit: Div.—II, (II)

129. Sociology of Black Experience in America (4)
Lecture—3 hours; discussion—1 hour or research paper or project (instructor’s option). Survey of historical and contemporary sociological perspectives on the Black experience in United States. Emphasis on comparisons of Black sociological perspectives and mainstream perspectives of specific sociologists. GE credit: Div.—II, III.

130. Race Relations (4)
Lecture—3 hours; discussion—1 hour or term paper or research project. Functions of the social definitions of race and racial groups. Analysis of racial conflict, oppression, and other forms of ethnic stratification. Models of ethnic interaction and social change. Emphasis on racial relationships within the U.S. GE credit: Div.—I, II, III.

131. The Family (4)
Lecture—3 hours; discussion—1 hour. Contemporary family life in historical and cross-cultural perspective. How different family forms arose, their significance today and prospects for further family change. Attention to power relations within and beyond the family and to the social implications of family transformation. GE credit: SocSci, Div. Wrt.—I, II, III, (I, II, III.)
132. The Sociology of Gender (4) Lecture—3 hours; discussion—1 hour. Analysis of biological, psychological, cultural and structural conditions underlying the status and roles of men and women in contemporary society. Provides a historical and comparative perspective. GE credit: SocSci, Div.—I, II, III.

133. Sexual Stratification and Politics (4) Lecture—3 hours; discussion—1 hour. Prerequisite: course 132 or the equivalent. Focus on analysis of origins, dynamics, and social implications of sexual stratification. Examination of classical and contemporary theorists such as Engels, Freud, J.S. Mill, de Beauvoir, Juliet Mitchell, D. Dinnerstein. Attention to selected issues in social movements for and against sexual equality. GE credit: Div. Wrt.

134. Sociology of Racial Ethnic Families (4) Lecture—3 hours, discussion—1 hour or term paper. Asian American, Black, Chicano, and Native American family life in comparative-historical perspective. Family structure and gender roles are considered in relation to socio-historical dynamics. Offered in alternate years. GE credit: Div. Wrt.

135. Social Relationships (4) Lecture—3 hours; discussion—1 hour or term paper. Prerequisite: course 1, 2 or 3, and upper division standing. Social and cultural factors influencing friendships and intimate relationships. Topics include relationship development, relationship maintenance, and relationship loss. GE credit: Div. Wrt.—(II.)

136. Economic Sociology (4) Lecture—3 hours; discussion—1 hour. Prerequisite: Economics 1A or 1B and upper division standing in the social sciences. Overview of the rapidly growing field of economic sociology. Focus on variations in the ways that markets are organized. The relationship between individual and collective rationality will also be emphasized.—(II.)

139. Corporations and Society (4) Lecture—3 hours; discussion—1 hour; term paper. Prerequisite: course 1 or 2 or 3, and upper division standing. Study of the history and power of the modern corporation: organization, politics, the state, and the corporation; labor, unions and the labor process; competition, regulation and international markets; the multinational and conglomerate corporation; and mass markets and consumerism.—I, II, III.

140. Social Stratification (4) Lecture—3 hours; discussion—1 hour or term paper or research project (instructor’s option). Systems of social ranking, theories of stratification; power, prestige, culture, and styles of life of various social classes; social mobility and its consequences for social structure.—I, II, III. (I, II, III)

141. Industrialization and Social Change (4) Lecture—3 hours; discussion—1 hour or term paper or research project. Selected technological and social factors. Preconditions of economic development and industrialization. Social, political, and cultural issues at various levels of economic development. Major historical differences and major current trends. Emphasis either on highly industrialized countries or on less developed countries. GE credit: Wrt.—II. (II.)

143A. Urban Society (4) Lecture—3 hours; discussion—1 hour or term paper or project (instructor’s option). Prerequisite: course 1 or the equivalent. Theories of city origins. Analysis of the historic process of urbanization and of varying city types. Comparison of American and European experience of metropolitanization, counterurbanization, and neighborhood change. Consideration of competing theories of urban growth and change and competing visions of the urban future. Offered in alternate years.—(II.)

143B. Sociology of City Life (4) Lecture—3 hours; discussion—1 hour or term paper or project (instructor’s option). Prerequisite: course 1 or the equivalent; course 143A recommended. Critical dissection of the “loss of community” issue. Analysis of the organization of primary ties in the city, of the culture of urban public life and of the learning of city skills. Offered in alternate years. GE credit: Wrt.—II.

144. Agriculture and Society (4) Lecture—3 hours; discussion—1 hour or term paper or research project. Prerequisite: advanced standing in the social sciences or one year of course work in agricultural and environmental sciences. Development of agriculture as a major enterprise in modern society with the concomitant reduction in the labor force and family farms. Analysis of issues including mechanization, migrant labor, corporate farming, and public resource policy. Offered in alternate years.

145A. Sociology of Third World Development (4) Lecture—3 hours; discussion—1 hour. Prerequisite: course 1; upper division standing. Introduction to theories and contemporary issues in the sociology of development. Topics such as urbanization, rural/agrarian change, class, status groups, international division of labor, sectoral shifts, international capital, informal economy, gender, and political processes are analyzed within a comparative-historical framework. GE credit: Div. Wrt.—II.

145B. Gender and Rural Development in the Third World (4) Seminar—4 hours. Prerequisite: course 1; upper division standing. Political-economy analysis of women and men during the process of socioeconomic change in the world with particular attention to the family/household context. Offered in alternate years. GE credit: Div. Wrt.—II.

146. Sociology of Religion (4) Lecture—3 hours; discussion—1 hour or term paper or research project. Relationship between social structures and religions. The social setting of the major world religions. Religious innovators and institutionalization (churches, sects, cults). Secularization in the modern world and the rise of secular ideologies. Offered in alternate years. GE credit: SocSci, Div. Wrt.—I.

147. Sociological Perspectives on East Asia (4) Lecture—4 hours; discussion—1 hour or term paper or research project. Sociological theories and concepts applied toward understanding East Asian society. Emphasis on the political structure, stratification, and economy in China and Japan. Analysis of historical and contemporary similarities and differences. Offered in alternate years.—(II.)

148. Collective Behavior (4) Lecture—3 hours; discussion—1 hour or term paper or project (instructor’s option). Prerequisite: course 1 or the equivalent. Study of behavior of human crowds and masses in extraordinary circumstances, including crowd panics, mass scares, collective protests, riots, revolutionary situations, ecstatic and revivalist gatherings, crazes, fads, and fashions.—III. (III.)

149. Religion and American Society (4) Lecture—3 hours; class project. Historical, contemporary survey of religious traditions and organizations and their relation to U.S. social and cultural patterns. Civil religion, religious pluralism, minority and deviant communities, religious migration, U.S. religion as a social institution, and religion, politics, and social stratification. Offered in alternate years. GE credit: Div. Wrt.—(II.)

150. Criminology (4) Lecture—3 hours; discussion—1 hour or term paper or research project. Sociological analysis of criminal behavior in relation to social structure and the criminalization process.—I, II, III. (I, II, III)

151. The Criminal Justice System (4) Lecture—3 hours; term paper or discussion—1 hour. Prerequisite: course 150 and upper division standing. Sociological analysis of the different components of the criminal justice system including the emergence and interpretation of criminal laws, the contemporary roles and functions of the police, criminal courts and correctional institutions.—II. (II.)

152. Juvenile Delinquency (4) Lecture—3 hours; discussion—1 hour or term paper or research project. Study of juvenile delinquency in relation to the family, peer groups, community, and institutional structures. Consideration of processing of the delinquent by formal agencies of control.—I, II, III. (I, II, III)

154. Sociology of Health Care (4) Lecture—3 hours; discussion—1 hour or term paper or research project. Overview of sociological research in medicine and health care, with emphasis on the organizational, institutional, and social psychological aspects.—II. (II.)

155. Sociology of Law (4) Lecture—3 hours; discussion—1 hour or term paper or research project. Law considered as social control; relation of legal institutions to society as affecting judicial decision making and administration of justice. Lawyers as an occupational group. Legal reform.—I, II, III. (I, II, III)

156. Social Movements (4) Lecture—3 hours; discussion—1 hour or term paper or project (instructor’s option). Analysis of several aspects of social movements: mobilization, forms of organization, ideology, recruitment, leadership, strategies and tactics, development, effects. Frequent use of sound and film materials. GE credit: SocSci.—II. (II, III)

157. Social Conflict (4) Lecture—3 hours; discussion—1 hour or term paper or project. Analysis of the causes, dynamics, and regulation of social conflict within and between various kinds of social groupings with particular reference to nonviolent methods of waging and regulating conflict.

159. Sociology of Occupations (4) Lecture—3 hours; discussion—1 hour or term paper or research project. Natural history of occupations; the institutional matrix of occupations; colleague and client relationships; occupational social controls; career lines, and occupational-related self-deﬁnitions; occupational politics.—I, II, III.

170. Population (4) Lecture—3 hours; discussion—1 hour or term paper or research project. Introduction to the study of human population, including theories and statistical measurements; social causes and consequences of population trends; changes in population structure; geographical distribution of migration, socio-psychological factors affecting fertility. GE credit: SocSci.—I.

172. Ideology of Class, Race and Gender (4) Lecture—4 hours. Examination of popular belief systems that accompany relations between social classes, whites and blacks, and men and women in the United States. How do dominant groups attempt to justify each relationship, and is there ideological conflict or consensus between groups. GE credit: Div. Wrt.—II. (II)

173. Sociology Through Literature (4) Lecture—3 hours; discussion—1 hour or term paper or research project. Introduction to sociological analysis of literature as sociological data. Reading of numerous works on American and other societies by authors such as Steinbeck, Lewis, Dreiser, Schulberg, Orwell, etc. Offered in alternate years.—(II)
174. Sociology of the Jewish Experience (4)
Seminar—3 hours; term paper. Prerequisite: upper division standing preferred. The sociology of Jewish life, analyzing challenges to Jewish identity and community in the diaspora. Diversity within the Jewish community: Americanization, women, new immigrants, post-Holocaust Jewish identity, and Black-Jewish relations. Offered in alternate years. —(I, II)

175. Mass Communication (4)
Lecture—3 hours; term paper. Prerequisite: course 1 or 2. Examines the relationship between the media and social structures. History of media-state relations. Media as反映or and shaper of values. Emphasis on current European and Marxist pluralist theories rather than on content analysis. Offered in alternate years. —III.

176. Sociology of Knowledge (4)
Lecture—3 hours; term paper or research project. Critical analysis of the social foundations of knowledge in society. The history, problems and dilemmas in classical sociology of knowledge. Contemporary applications. Natural and social sciences as social systems. Sociology of personal knowledge in everyday life. —I. (I, II, III)

180A. Complex Organizations (4)
Lecture—3 hours; discussion—1 hour or term paper or research project. Prerequisite: course 1; Economics 1A and 1B recommended. A sociological approach to organizations theory. Designed to introduce sociological concepts, address the alternative psychological and economic models, and involve students in the practice of organizational analysis.—I, II, III, IV

180B. Complex Organizations (4)
Lecture—3 hours; discussion—1 hour or term paper or research project. Prerequisite: course 180A or consent of instructor. Builds on concepts and skills developed in course 180A. Deals with the issues of organizational decision making, design, and survival. Emphasis on relations between organizations and the effects of those relations in both the public and private sectors.—II, III, IV

181. Social Change Organizations (4)
Lecture—3 hours; discussion—1 hour or term paper. Prerequisite: course 1. Analysis of organizations with social change and improvement goals and programs, emphasizing voluntary associations and grassroots citizen groups. Topics treated include formation, decision making and leadership, strategies and tactics, factorization, and survival. Offered in alternate years. GE credit: Wrt.—I, II

182. Experimental and Utopian Communities (4)
Lecture—3 hours; discussion—1 hour. The social structure of intentional, experimental or Utopian settlements and communal movements, including comparison with other small settlement forms: villages, neighborhoods, monasteries, encampments and nonsettlement communities based on occupation, ethnicity, and religion.

183. Comparative Organizations (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 180A or 180B, upper division standing. Examination of economic and political organizations of major industrial nations. Discussion of historical, cultural, social, and political influences on industrial patterns and practices, alternative theoretical models for explaining differential development. Societies may include Sweden, Japan, Germany, Taiwan, and South Korea. Offered in alternate years.—I, II

185. Sociology of Social Welfare (4)
Lecture—3 hours; discussion—1 hour or term paper or research project. Sociological analysis of the evolution and current organization of welfare functions in modern societies.—II, III, IV

186. Stratification in China (4)
Lecture—3 hours; term paper. Prerequisite: upper division standing. Social and political systems and patterns of social stratification in relation to change in state power and economic institutions in China since 1949. Offered in alternate years.—I

189. Social Science Writing (4)
Lecture—3 hours; discussion—1 hour or term paper. Prerequisite: course 46A, upper division standing, and 12 units of social science. Improved analytic writing and methods for reporting social science research to a wider public. Sociological analysis of the conditions of good and bad writing. Offered in alternate years.—I

190X. Seminar in Sociological Analysis (4)
Seminar—3 hours; term paper. Prerequisite: upper division standing and course 100 (former course 165A). In-depth examination at an upper division level of a special topic in Sociology. Emphasis on student participation in learning. May not be repeated for credit. Limited enrollment.

191. Workshop in Contemporary Sociological Theory (4)
Lecture—3 hours; discussion—1 hour; term paper. Prerequisite: course 100 (former 165A) and senior standing. Workshop in contemporary sociological theory that allows students to explore the uses of theory in empirical inquiry on problems of interest to students. Contemporary theory considered in relation to classical and modern influences. Concept formation, theory construction, and explanation. Not open for credit to students who have received credit for course 165B.—III

192. Internship and Research Practicum (2-12)
Internship—3-33 hours; discussion—1 hour. Prerequisite: upper division standing; course 191 or approval of proposed internship. Supervised internship and study in an agency, organization or institution; application of core concepts in sociology to the work experience. May be repeated for credit only by permission. Maximum of 4 units of course 192 may be counted toward the Sociology major. (P/NP grading only.)

194HA-194HB. Special Study for Honors Students (4-4)
Seminar—3 hours; term paper. Prerequisite: senior standing and admission to the Honors Program. Directed reading, research and writing culminating in the preparation of a Senior Honors Thesis under direction of faculty adviser. (Deferred grading only pending completion of sequence.)

195. Special Topics in Sociological Analysis (4)
Seminar—3 hours; term paper. Prerequisite: upper division standing and consent of instructor. In-depth examination of topics in sociology. Emphasis on student research and writing. May be repeated for credit when topic differs. —III, IV

197T. Tutoring in Sociology (1-4)
Tutorial—3-12 hours. Prerequisite: upper division standing; completion of appropriate course with distinction. Activities vary depending on the nature of the course assignment. May include (but not limited to) tutoring on course material, advising on projects and papers, and leading discussion groups. (P/NP grading only.)

198. Directed Group Study (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5)
Prerequisite: open to seniors only. (P/NP grading only.)

Graduate Courses

201. Social Research (4)
Lecture/discussion—3 hours; term paper. Prerequisite: graduate standing, or consent of instructor. Survey of sociological inquiry, taught as practicum. Philosophy of social science; values and research; research agendas and research problem formulation; research process; explanation vs. interpretation; study design; concept formation; research methods. Offered in alternate years. GE credit: Wrt.—I, II

202. Quantitative Analysis in Sociology (4)
Lecture—4 hours. Prerequisite: course 106. Survey of the statistical models and methods that serve as a foundation for quantitative research in sociology, with an emphasis on multivariate regression analysis, as well as measurement theory and time series analysis. (SU grading only.)—I, II

207A-207B. Methods of Quantitative Research (4-4)
Lecture—3 hours; paper. Prerequisite: course 106 or the equivalent. Principles of study design, examination of measurement, survey research methods and multivariate analysis. Course will stress actual practice of techniques. Students will carry out quantitative data analysis using packaged computer programs. (Deferred grading only, pending completion of sequence.)—I, II

215. Economy, Polity, and Society (4)
Seminar—3 hours; paper. Prerequisite: consent of instructor. Open to graduate students in sociology and related disciplines. Course introduces students to topics and selected issues in the related fields of economic and political sociology and political economy.—III

220. Deviance, Law, and Social Control (4)
Seminar—3 hours; projects. Prerequisite: course 120 or consent of instructor. Report and discussions of literature on selected forms of deviance in relation to law and formal social control: Agency contacts and exploratory research projects.—I

225. Cultural Sociology (4)
Seminar—3 hours, term paper. Explores the varied ways in which culture is understood in the social sciences and the research questions that follow from contrasting viewpoints. The approach is historically informed and focused on changing cultural forms in relation to industrialization and post-modernism. Offered in alternate years.—I

226. Sociological Social Psychology (4)
Seminar—3 hours; seminar paper—1 hour. Prerequisite: graduate standing or consent of instructor. Advanced study of the varying approaches, methods, issues and topical concerns of sociological social psychology. Analysis of central and representative historical and contemporary works.—I

227. Sociology of Reproduction (4)
Lecture—3 hours; discussion—1 hour. Recent social science scholarship in such areas as premarital pregnancy, family planning, abortion, adoption, AIDS, and new reproductive technologies; focus on the current situation in the United States. Offered in alternate years.—II

230. Ethnic (Race) Relations (4)
Lecture—3 hours; paper. Advanced study of the determinants of ethnic groupings and their interrelationships. Major theme will be the patterns of ethnic stratification and causes of ethnic conflict. Specific focus upon dominance and resistance to dominance. Influence of social science research.—I

233. Gender, Culture, and Local/Global Transformation (4)
Seminar—3 hours; term paper. Focus on critical approaches to women and development; analyze local transformations with global connections within specific cultural contexts. Course covers theory, methodological issues, and relationship between theory and practice. Offered in alternate years.—I
234. Gender, Family, and Society (4)
Seminar—3 hours; seminar paper. Prerequisite: graduate standing or consent of instructor. The major theoretical traditions and concerns in family sociology and sociology of gender. Analysis of classical and contemporary works representative of functionalist, Marxist, psychoanalytic, feminist and critical theoretical approaches to these subjects (e.g., Engels, Parsons, Freud, Horkheimer, Goode, Lasch, Mitchell). Emphasis on macro and historical questions.—(II, III.)

242A-242B. Comparative Methods in Historical Sociology (4-4)
Seminar—3 hours; term paper. Prerequisite: graduate standing or consent of instructor. Comparative approaches to major historical phenomena such as nationalism, bureaucratization, feudalism, and capitalism; the relevance of sociological and sociological theories to historical interpretation; the verifiability of historically grounded hypotheses; the meaning of analogy, correspondence and causality. (If taken as a sequence, deferred grading only, pending completion of sequence.)—II, III. (II-III.)

243. Urban Society (4)
Seminar—3 hours; paper. Broad overview of the issues and concerns of the field of urban sociology. Special emphasis on the human experience of urban living in contemporary, cross-cultural or historical settings.

245. Developing Societies (4)
Seminar—3 hours; term paper or project. Prerequisite: graduate student status or familiarity with problems of developing societies. Analysis of social and economic problems of developing societies from the standpoint of theory and research on modernization and underdevelopment. Nature of third world dependency and interdependence in the global political economy. Offered in alternate years.—(III.)

248. Social Movements (4)
Seminar—3 hours; paper. Analysis of current issues in and contributions to the study of collective behavior and social movements; particular focus upon the strategies and tactics of social movements.—I. (I.)

254. Sociological Issues in Health Care (4)
Seminar—3 hours; paper. Prerequisite: open to graduate or professional students. Sociopolitical perspectives and methods directed to health care issues. Students select topics for supervised research. The course will have a theme (described in advance) each time it is offered. Paper on research will be required. (S/U grading only.)—(II.)

255. Sociology of Law (4)
Seminar—4 hours. Prerequisite: consent of instructor. Analysis of the nature of the legal process and its impact on social behavior. Will consider (1) nature and functions of law, (2) the organization and administration of law, and (3) the capacity of law to affect social behavior.—(II.)

256A. Classical Sociological Theory (4)
Lecture—3 hours; discussion—1 hour. Introduces graduate students to the work of the main classical thinkers in the tradition of social theory, such as Marx, Durkheim, Weber, Simmel, Freud, G.H. Mead, and Parsons, locating them within the historical, cultural, and philosophical milieu in which their ideas originated.—I. (I.)

256B. Theory in Contemporary Sociology (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 256A. Explores the uses of theories in contemporary sociology by tracing their connections with classical sociological writings and their relations to broader theoretical concerns of contemporary social thought, with particular emphasis on relevance to the current historical, cultural and social milieu.—II. (II.)

270. Social Demography (4)
Seminar—4 hours. Prerequisite: course 170 or consent of instructor. How social institutions affect and are affected by the level and variation of mortality, migration, and fertility. Special emphasis on the determinants of fertility-related attitudes and behavior, on less-developed countries, and on contemporary empirical studies.—(II.)

280. Organizations and Institutions (4)
Seminar—4 hours. Theory of formal organizations and bureaucracy. Methods of research in organizational and institutional studies. Historical and comparative analysis of political, religious, educational, military, and economic structure.—(I.)

290. Seminar (4)
Seminar—3 hours; term paper. (S/U grading only.)—II. (II.)

292A-292B. Field Research (4-4)
Seminar—3 hours; field trips. Prerequisite: graduate standing in Sociology or consent of instructor. The process of collecting, analyzing, and reporting quantitative social data: techniques of intensive interviewing, participant-observation and document analysis; generating, developing, and evaluating analytic frameworks; recording, storing, retrieving, and writing up qualitative data. Emphasis on application of principles: each participant completes a fieldwork project. (Deferred grading only, pending completion of sequence.)

293. Proseminar in Sociology (2)
Seminar—2 hours. Prerequisite: first-year Sociology graduate students only. Introduction to graduate training in sociology. A seminar designed to introduce students entering graduate work in the department to its ongoing research activities. (S/U grading only.)—II, III. (II, III.)

295. Special Topics Seminar. (4)
Lecture/discussion—3 hours; term paper. Prerequisite: graduate standing or consent of instructor. Research topics in Sociology. Specific topic will vary according to faculty interest and student demand. May be repeated for credit when topic differs.—II, III. (II, III.)
The interdisciplinary minor in Social and Ethnic Relations explores the racial, ethnic, class and gender aspects of human relations in the modern world. Students study human societies and cultures from a multi-ethnic perspective and across established academic departmental lines. The minor is jointly sponsored by African American and African Studies, Asian American Studies, Native American Studies, and Women’s Studies.

Minor Program Requirements:

- **UNITS**

<table>
<thead>
<tr>
<th>Courses</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Social and Ethnic Relations</td>
<td>24</td>
</tr>
</tbody>
</table>

Select one course from each of the following six groups to total 24 units.

- Courses applied toward the satisfaction of a major may not also be offered in satisfaction of the minor. No more than four units (one course) may be lower division.
 - African American and African Studies 100; Anthropology/Native American Studies 134; Women’s Studies 102
 - African American and African Studies 123, 133, 145A
 - Asian American Studies 1, 2, 100, 110, 130
 - Chicana/o Studies 130, 132
 - Native American Studies 1, 10, 130A, 130B, 130C, 157, 180
 - Women’s Studies 103, 104, 180

Advising. Contact Asian American Studies, 3102 Hart Hall, 530-752-3625.
Social Sciences

(College of Letters and Science)
Gregory Clark, Ph.D., Program Director
Program Office, 108 Sproul Hall (530-752-4001)

Committee in Charge
Colin Cameron, Ph.D., (Economics)
Gregory Clark, Ph.D., (Economics)
Dennis J. Dingemans, Ph.D., (Social Sciences)
Emily O. Goldman, Ph.D., (Political Science)
William W. Hagen, Ph.D., (History)
John R. Hall, Ph.D., (Sociology)
John E. Roemer, Ph.D., (Economics)
Suzana M. Sawyer, Ph.D., (Anthropology)
Niels G. Waller, Ph.D., (Psychology)

Faculty
Dennis J. Dingemans, Ph.D., Associate Professor, Academic Senate
Distinguished Teaching Award

Emeriti Faculty
Howard F. Gregor, Ph.D., Professor Emeritus
Frederick J. Simoons, Ph.D., Professor Emeritus
Kenneth Thompson, Ph.D., Professor Emeritus

The Program of Study
The Program in Social Sciences promotes the development of innovative curricular initiatives across the social sciences, including offering broadly conceived, integrative undergraduate-level and graduate-level courses. Faculty affiliated with the program are often engaged in interdepartmental teaching and research.
Soil Science (A Graduate Group)

Michael J. Singer, Ph.D., Chairperson of the Group
Group Office, 148 Hoagland Hall (530-752-1669)

Faculty
Conrad Bledsoe, Ph.D., Professor
Caroline Bledsoe, Ph.D., Professor
Patrick Brown, Ph.D., Associate Professor
William Casey, Ph.D., Professor
Randy Dahlgren, Ph.D., Professor
R. Ford Dennison, Ph.D.
Graham Fogg, Ph.D., Professor
Mark Grismer, Ph.D., Professor
Jan Hopmans, Ph.D., Assistant Professor
Theodore Hsiao, Professor
Louise Jackson, Ph.D., Associate Professor
William Horwath, Ph.D., Assistant Professor
Theodore Hsiao, Professor
André Läuchli, Ph.D., Professor
Miquel Marino, Ph.D., Professor
Mark Matthews, Ph.D., Professor
Alexandra Navrotsky, Ph.D., Professor
Randy Southard, Ph.D., Assistant Professor
Kevin Rice, Ph.D., Professor
James Richards, Ph.D., Professor
Dennis Rolston, Ph.D., Professor
Kate Scow, Ph.D., Professor
Kenneth Shackel, Ph.D., Associate Professor
Wendy Silf, Ph.D., Professor
Michael Singer, Ph.D., Professor
Randal Southard, Ph.D., Professor
Srinivas Upadhyaya, Ph.D., Professor
Susan Ustin, Ph.D., Associate Professor
Chris van Kessel, Ph.D., Professor
Steven Weinbaum, Ph.D., Professor
Tom Young, Ph.D., Assistant Professor
Robert Zasowski, Ph.D., Professor

Emeriti Faculty
James Bigger, Ph.D., Professor Emeritus
Richard Burau, Ph.D., Professor Emeritus
William Chancellor, Ph.D., Professor Emeritus
Donald Grimes, Ph.D., Professor Emeritus
Gordon Huntington, Ph.D., Professor Emeritus
Mark Kliewer, Ph.D., Professor Emeritus
Ray Krone, Ph.D., Professor Emeritus
Donald Nielsen, Ph.D., Professor Emeritus
Kenneth Tanji, Ph.D., Professor Emeritus

Affiliated Faculty
Victor Claassen, Ph.D., Assistant Researcher
Theresa Fan, Ph.D., Associate Researcher
Stephen Grattan, Ph.D., Specialist in Cooperative Extension
Richard Higashi, Ph.D., Assistant Research Chemist
Roland Meyer, Ph.D., Associate Specialist in Cooperative Extension
G. Stuart Pettigrove, Ph.D., Associate Specialist in Cooperative Extension

Graduate Study. The Graduate Group in Soil Science offers programs of study and research leading to the M.S. and Ph.D. degrees. Soil science focuses on the physical, chemical and biological processes that govern the quality and distribution of soils in relation to landform evolution, geochemical environments, and organism habitats. Research in soil science includes the study of soil as a global natural resource, as a critical component of the environment, and as a resource to sustain agricultural and wildland ecosystems. Students may specialize in environmental quality; soil physics; soil chemistry; soil genesis, morphology and classification; soil fertility and plant nutrition; soil microbiology and biochemistry; soil-plant-water relationships; or general soil science. For detailed information regarding the programs, address the chairperson of the group.

Graduate Admissions Officer. Louise Jackson (Vegetable Crops), 754-9116, lejackson@ucdavis.edu.
Spanish

(Office of the Dean of the College of Letters and Science)

Neil Larsen, Ph.D., Chairperson of the Department
Department Office (Spanish and Classics), 622 Sproul Hall (530-752-0835)
World Wide Web: http://spanish.ucdavis.edu

Faculty

Marta E. Altisent, Ph.D., Associate Professor
Samuel G. Armistead, Ph.D., Professor
Robert Bircumshaw, Ph.D., Professor
Cecilia Calombe, Ph.D., Associate Professor
Linda Egan, Ph.D., Assistant Professor
Cristina Gonzalez, Ph.D., Professor
Neil Larsen, Ph.D., Professor
Adrienne Martin, Ph.D., Associate Professor
Almendo O. Ojeda, Ph.D., Associate Professor (Linguistics)
Ana Pelayo, Ph.D., Assistant Professor
Robert M. Scari, Ph.D., Professor
Maximo Torribianca, Ph.D., Professor (Linguistics)
Hugo J. Verani, Ph.D., Professor

Emeriti Faculty

Zuni Gertel, Ph.D., Professor Emeritus
Mario Gonzalez, Ph.D., Lecturer Emeritus
Didier J. Jaen, Ph.D., Professor Emeritus
Daniel S. Keller, Ph.D., Professor Emeritus
Fabian A. Samaniego, M.A., Senior Lecturer Emeritus

Affiliated Faculty

Francisco Alarcon, M.A., Lecturer
Norma Lopez-Burton, M.A., Lecturer

The Major Program

The Spanish major program assures proficiency in all four language skills—speaking, understanding, reading, and writing—and acquaints students with the intellectual and cultural contributions of the Spanish-speaking world through a study of its language, literature, and traditions.

The Program.

The department's lower division program gives students a solid foundation in the Spanish language, either through the traditional elementary and intermediate language series or through an accelerated three-course sequence of Spanish for native speakers. Linguistics 1 introduces students to a systematic study of language in general and serves as an introduction to upper division courses in Spanish linguistics. At the upper division level, students receive a broad introduction to basic concepts and the practice of literary criticism and to the four areas of study represented in the department's curriculum: Spanish linguistics, Spanish literature, Spanish-American literature, and Hispanic literatures and cultures in the United States. Students are encouraged to work closely with the department's academic advisers in designing a program of studies tailored to their individual needs and interests. Many students combine the Spanish major with another major in the humanities or social sciences.

Career Alternatives. The program, alone or in combination with other major programs, may lead to advanced study of the language or literature of Spain and Spanish America, and to careers not only in teaching, but also in other professions such as library science, law, medicine, and in government, social service, or business.

A.B. Major Requirements:

Preparatory Subject Matter

SPANISH 1, 2, 21, 22, 23, and 24 = 0-33
or SPANISH 31, 32, 33 = 4-37
Spanish 21, 22, and 23 may be taken in the EAP Taxco or Morelia programs. Course 23 may be substituted by an equivalent course taken on EAP.

Linguistics 1 = 4

In consultation with a departmental adviser and with the consent of the department chairperson, Linguistics 1 may be taken concurrently with upper division courses.

Depth Subject Matter

One course in each of the following five areas = 19-20
Spanish 100
Spanish 111N, 115N, or 116
Spanish 130, 131N, or 134N
Spanish 150N, 151N, or 157

Spanish 117, 174, or 176 = 4

Students planning to take Spanish 110 should do so at the beginning of the upper division sequence or concurrently with Spanish 100.

Seven elective courses to be chosen in consultation with the student's major adviser. = 26-28

No more than seven electives may be taken with EAP, preferably concentrated in two of the following areas. Other combinations are possible with the approval of the major adviser.

(a) Spanish literature,
(b) Spanish-American literature,
(c) Chicano/Latino literature,
(d) Spanish linguistics

Students may, with the approval of their adviser, take up to three elective courses outside the Spanish department in such programs as Anthropology (e.g., Anthropology 144), Chicano/Latino Studies (e.g., Chicano/Latino Studies 154, 155, 156), Comparative Literature, History (e.g., History 161A, 161B, 164, 165, 166A, 166B, 168W, 169A, 169B), and Linguistics (e.g., Linguistics 115, 116).

A maximum of six units of course 199 may be counted toward the major. Course 199 cannot be used to replace regular departmental courses.

Total Units for the Major = 49-85

Major Advisers: M.E. Altisent, C. Colombi, L. Egan, A. Martin, R.M. Scari (Master Adviser)

Advising. Given the great flexibility in the Spanish major, it is important that students design their programs in close consultation with their major adviser. This is especially important for students who intend to use their major as preparation for graduate study, for those who are planning a teaching career, and for those who wish to take advantage of our EAP options.

Minor Program Requirements:

Spanish = 23-24

One course in each of the following five areas:
Spanish 100
Spanish 111N, 115N, or 116
Spanish 130, 131N, or 134N
Spanish 150N, 151N, or 157
Spanish 117, 174, or 176

One upper division elective in Spanish = 4

Consult a departmental adviser if any of these courses are to be taken abroad.

Honors Program. Candidates for high or highest honors in Spanish must write a senior thesis under the direction of a faculty member. For this purpose, honors candidates must enroll in at least six units of Spanish 194H distributed over two quarters. Normally, a student will undertake the honors project during the first two quarters of the senior year; other arrangements must be authorized by the department chair. Only students who, at the end of their junior year (135 units), have attained a cumulative GPA of 3.5 in courses required for the major will be eligible for the honors program. The requirements for earning high and highest honors in Spanish are in addition to the regular requirements for the major in Spanish.

Education Abroad Program options. The department encourages its majors to consider study in a Spanish-speaking country with our Education Abroad Program (EAP). It is now possible for our students to complete significant portions of the Spanish major in the EAP centers at both the lower (Preparatory Subject Matter) and upper division levels through newly introduced options.

Short Term Language and Culture Programs. A new Short Term Language and Culture Program in Spanish (STLCP) will be offered in Mendoza, Argentina, in spring 2001. This program aims at providing students with opportunities to increase their knowledge of the Spanish language and the Latin American culture by experiencing the life-learning challenges of living and studying abroad.

The STLCP in Mendoza will offer three consecutive course languages, Spanish 3, 21, and 22 (15 units); plus one upper division Spanish-American culture course, Spanish 170 (4 units) taught by one UC Davis faculty member who will accompany the group as a program director. For more information, contact C. Colombi.

Teaching Credential Subject Representative. C. Colombi See also under Teacher Education Program.

Graduate Study. The Department offers courses leading to the M.A. degree in Spanish to students who have completed with distinction the A.B. degree in Spanish, or the equivalent. Candidates will be recommended for admission to graduate study.
Prerequisite credit. Credit normally will not be given for a course if that course is the prerequisite of a course already successfully completed. Exceptions can be made by the Department Chairperson only.

Courses in Spanish (SPA)

Course placement: Students with two years of high school Spanish normally take Spanish 2, those with three years take Spanish 3, and those with four years take Spanish 21. It is recommended that transfer students who have successfully completed a two-year sequence at the junior college level continue their study by taking Spanish 24 or 100 and consult a departmental adviser.

Lower Division Courses

1. Elementary Spanish (5)
 Discussion—5 hours; laboratory—1 hour. Introduction to Spanish grammar and development of all language skills in a cultural context with special emphasis on communication. (Students who have successfully completed Spanish 2 or 3 in the 10th or higher grade in high school may receive unit credit for this course on a P/NP grading basis only. Although a passing grade will be charged to the student’s P/NP option, no petition is required. All other students will receive a letter grade unless a P/NP petition is filed.)—I, II, III (I, II, III)

2. Elementary Spanish (5)
 Discussion—5 hours; laboratory—1 hour. Course 1. Continuation of course 1 in the areas of grammar and basic language skills.—I, II, III (I, II, III)

3. Elementary Spanish (5)
 Discussion—5 hours; laboratory—1 hour. Prerequisite: course 2. Completion of grammar sequence and continuing practice of all language skills through cultural texts.—I, II, III (I, II, III)

8. Elementary Spanish Conversation (2)
 Discussion—3 hours. Prerequisite: course 3; course 21 (concurrently) recommended. Designed to develop oral communication skills. Emphasis on increasing vocabulary, improving listening comprehension, pronunciation, accuracy and grammar control. Practice of everyday situations. Not open to native speakers or to upper division students.—I, II, III (I, II, III)

21. Intermediate Spanish (5)
 Lecture/discussion—5 hours; laboratory—1 hour. Prerequisite: course 3. Designed to review and develop the grammar, vocabulary and composition acquired in the first year through exercises and reading of modern texts. It is recommended that students transferring from other institutions start the second-year program at this point. (Former course 4.)—I, II, III (I, II, III)

22. Intermediate Spanish (5)
 Lecture—5 hours; laboratory—1 hour. Prerequisite: course 21. Continuation of Spanish 21. Focus on more difficult grammatical concepts and further practice in composition. Development of all language skills through exercises and reading of modern texts. (Former course 5.)—I, II, III (I, II, III)

23. Spanish Composition I (4)
 Lecture—3 hours; frequent writing assignments. Prerequisite: course 22. Development of writing skills by way of reading, discussion, and analysis of authentic materials, literary texts, and videos. Selective review of grammar. Composition, journals, and essay-like projects.—I, II, III (I, II, III)

24. Spanish Composition II (4)
 Lecture—3 hours; term paper. Prerequisite: course 23. Development of advanced level writing skills, with particular emphasis on how to write argumentative prose, essays, and research papers. Introduction to the analysis of literary genres. Compositions, journals, and individual and group projects.—I, II, III (I, II, III)

28. Intermediate Spanish Conversation (2)
 Discussion—3 hours. Prerequisite: course 8 or 22. Continuation of course 8. Designed to develop oral communication skills at a more advanced level. Practice in more complex situations. (Former course 9.)—I, II, III (I, II, III)

31. Intermediate Spanish for Native Speakers I (5)
 Lecture/discussion—3 hours; tutorial—1 hour. Frequent writing assignments. Prerequisite: course 31 or consent of instructor. Continuation of intensive review of grammar and composition. Development of all language skills through reading of modern texts, presentation/discussion of major ideas, vocabulary expansion, and writing essays on topics discussed. Designed for students whose native language is Spanish. (Former course 7B.)—I, II

32. Intermediate Spanish for Native Speakers II (5)
 Lecture/discussion—3 hours; tutorial—1 hour; frequent writing assignments. Prerequisite: course 31 or consent of instructor. Development of writing skills, with emphasis on experimenting with various writing styles: analytical, argumentative, and creative. Analytical review of literary genres. Written essays will be assigned. Students will develop a research paper. Designed for students whose native language is Spanish. (Former course 7C.)—I, II, III

98. Directed Group Study (1-5)
 Prerequisite: consent of instructor and Department Chairperson. Primarily for lower division students. (P/NP grading only.)

99. Special Study for Undergraduates (1-5)
 Prerequisite: consent of instructor. (P/NP grading only.)

Upper Division Courses

Course 100 is prerequisite to all upper division literature courses.

100. Principles of Hispanic Literature and Criticism (4)
 Lecture—3 hours; extensive writing or discussion—1 hour. Prerequisite: course 24 or 33. Principles of literary criticism applied to the study of fiction, drama, poetry and essay of major literary writers of the Hispanic world.—I, II, III (I, II, III, III) Altisen, Egan, Martin, Scari, Verani

110. Advanced Spanish Composition (4)
 Lecture—3 hours; frequent writing assignments. Prerequisite: course 24 or 33. Practice in expository writing with emphasis on clarity and idiomatic expression. Practical application and review of selected grammar topics. (Part of former courses 110A and 110B.)—I, II, III (I, II, III)

111N. The Structure of Spanish: Sounds and Words (3)
 Lecture—3 hours. Prerequisite: Linguistics 1 and course 24 or 33, or consent of instructor. A linguistic description of the sound patterns of Spanish and how those sounds can be used to form larger units, such as morphemes and words. Theoretical and practical comparisons with English and with other Romance languages. (Former course 132.)—I, II, III (I, II, III)

112N. The Structure of Spanish: Words and Phrases (3)
 Lecture—3 hours. Prerequisite: course 111N. A study of Spanish word and phrase structure, with special emphasis on the constituent structure of noun and verb phrases. Theoretical and practical comparisons with English and with other Romance languages. (Former course 131.)—I, II, III (I, II, III)

113. Spanish Pronunciation (3)
 Lecture—3 hours. Prerequisite: Linguistics 1 and course 24 or 33, or consent of instructor. The sound structure of modern Spanish; theoretical analysis of selected problems in pronunciation. Strongly recommended for prospective teachers. (Former course 133.)—I, II, III (I, II, III)

114N. Contrastive Analysis of English and Spanish (4)
 Lecture—3 hours; extensive writing. Prerequisite: Linguistics 1 and course 24 or 33, or consent of instructor. Exploration of the major theoretical and practical issues concerning learning Spanish as a second language. For students interested in teaching Spanish as a career.—I, II, III (I, II, III)

115. History of the Spanish Language (4)
 Lecture—3 hours; extensive writing/discussion—1 hour. Prerequisite: course 24 or 33 and Linguistics 1 or consent of instructor. The Spanish language from its roots in spoken Latin to modernity. Emphasis on the class relationship between historical events and language change, and the role that literature plays in language standardization.—I, II, III (I, II, III)

116. Applied Spanish Linguistics (4)
 Lecture—3 hours; extensive writing or discussion—1 hour. Prerequisite: Linguistics 1 and course 24 or 33, or consent of instructor. Exploration of the major theoretical and practical issues concerning learning Spanish as a second language. For students interested in teaching Spanish as a career.—I, II, III (I, II, III)

117. Teaching Spanish as a Native Tongue in the U.S.: Praxis and Theory (4)
 Lecture—3 hours; extensive writing. Prerequisite: Linguistics 1 and course 24 or 33, or consent of instructor. Course 116 and Linguistics 116 recommended. Designed for students interested in teaching Spanish to native speakers. Focus on cultural diversity of the main Spanish-speaking populations in the U.S.; applied language teaching methodologies in the context of teaching Spanish to native speakers at different levels. Conducts proficiency in Spanish.—I (I) Colombi, Alarcón

118. Topics in Spanish Linguistics (4)
 Lecture—3 hours; term paper. Prerequisites: courses 111 and 112. A study of specialized topics in Spanish linguistics, for example: language and use; text and context, language and society; bilingualism, Spanish dialectology; syntax and semantics. May be repeated once for credit when topics differ.—I, II, III

123. Creative Writing in Spanish (4)
 Discussion—4 hours. Prerequisite: course 24 or 33, or consent of instructor. Intensive writing of poetry or fiction in Spanish or in a bilingual (Spanish/English) format. Students will write both in prescribed forms and in experimental forms of their own choosing. Offered in alternate years.—I, III (I) Alarcón

130. Survey of Spanish Literature to 1700 (4)
 Lecture—3 hours; term paper. Prerequisite: course 100. Survey of Spanish literature (narrative, poetry and drama) to 1700. Emphasis on the multicultural birth of the Spanish culture, the formation and growth of the Spanish language and letters through its written records and the literature of the early period. (Part of former courses 103A and 103B.)—I (I) Armstead, Martin
131N. Survey of Spanish Literature: 1700 to Present (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 100. Survey of modern Spanish literature, providing an overview of main literary movements (romanticism, realism, modernism, avant-garde). Emphasis on the philosophical and historical background and on the European context for modern Spanish literature. (Part of former courses 104A and 104B.—II. (II) Altisent, Scari)

132N. Medieval and Renaissance Spanish Literature (4)
Lecture—3 hours; term paper. Prerequisite: course 100. Introduction to the study of the principal works and authors of Medieval and early 16th-century Spanish literature. (Part of former courses 112 and 103A.—I. (I) Martin)

133N. Golden Age Literature of Spain (4)
Lecture—3 hours; term paper. Prerequisite: course 100. Introduction to the study of the principal authors and literary movements of 16th- and 17th-century Spain and Spanish American colonial literature. (Part of former courses 103B, 109 and 115)—I. (I) Martin

134N. Don Quijote (4)
Lecture—3 hours; term paper. Prerequisite: course 100. A critical reading of Don Quijote by Cervantes. Focused interpretations of important passages and characters in the context of the socio-cultural background of the period. Don Quijote as prototype for the modern novel. Offered in alternate years. (Former course 111.).—II. (II) Martin

135N. Spanish Romanticism (4)
Lecture—3 hours; term paper. Prerequisite: course 100. Romanticism as a philosophical concept, and as a literary movement in Spain, with emphasis on its distinctive, specific “Romantic” qualities and its literary expression in five leading authors of the early 19th century. (Former course 114.).—III. (III) Scari

136N. The Spanish Novel of the 19th Century (4)
Lecture—3 hours; term paper. Prerequisite: course 100. Literary realism in Spain, focusing on Leopoldo Alas (Clarín), Emilia Pardo Bazán and Benito Pérez Galdós. The unique characteristics of Spanish realism and its historical roots in Cervantes and the picaresque. (Former course 119.).—III. (III) Scari

137N. Twentieth-Century Spanish Fiction (4)
Lecture—3 hours; term paper. Prerequisite: course 100 or 131. Study of the main literary trends and authors of the modern Spanish novel and short story. Selected works by Unamuno, Valle-Inclán, Sender, Cela, Matute, Ayala and others. (Former course 119A.—II. (II) Altisent

138N. Modern and Contemporary Spanish Poetry (4)
Lecture—3 hours; term paper. Prerequisite: course 100 or 131. Study of the main literary trends and authors of modern and contemporary Spanish poetry. Selected works by Machado, Juan Ramón Jiménez, García Lorca, Quiñón, Alexandre, Hernández Hierro and others. Offered in alternate years. (Former course 120C).—II. (II) Altisent

139. Modern Spanish Theater (4)
Lecture—3 hours; term paper. Prerequisite: course 100. Study of the main dramatic trends and playwrights of modern Spanish theater. Selected works by Valle-Inclán, García-Lorca, Mihura, Bueno-Vallejo, Arrabal and others. Offered in alternate years. (Former course 120B.) GE credit: ArtHum, Div.—(III) Altisent

140N. Modern Spanish Essay (4)
Lecture—3 hours; term paper. Prerequisite: course 100. Art, Unamuno, and the modern Spanish essay. Its influence on Spanish and their relation with other movements and thinkers.—II. (II) Scari

141. Spanish Culture (4)
Lecture—3 hours; discussion—1 hour or term paper. Prerequisite: course 24 or 33. The development of Spanish culture(s) from the Romans to the present, focusing on important historical periods. Topics include art, history of ideas, and everyday cultural manifestations. (Former course 134.) Offered in alternate years. GE credit: ArtHum, Div.—(III) Altisent

142. Special Topics in Spanish Cultural and Literary Studies (4)
Lecture—3 hours; term paper. Prerequisite: course 100. Special topics in the study of Spanish literature and culture. May be repeated twice for credit when topic differs. (Part of former course 151.).—I, II, III, (I, II, III)

143. Spanish Art (4)
Lecture—3 hours; term paper or discussion—1 hour. Major topics include Romanticism, realism, modernism, avant-garde. Emphasis on the historical and cultural background of the period. (Former course 152.) GE credit: ArtHum, Div.—(III) Altisent

Lecture—3 hours; film viewing—3 hours. Analysis of the cultural influence of the Spanish-speaking world through film in translation. Emphasis on the cultural expressions illustrated by the films; no prior knowledge of cinematography required. Films with subtitles. Offered in alternate years. GE credit: ArtHum, Div, Wrt.—(I) Altisent, Culburro

149. Latin-American Literature in Translation (4)
Lecture/discussion—3 hours; term paper. Prerequisite: English 3 or the equivalent. Reading, lectures and discussions in English of works by Borges, Cortázar, Fuentes, García Márquez, Paz and others. May not be counted toward the major in Spanish. Offered in alternate years. GE credit: ArtHum, Div, Wrt.—(III) Egan, Larsen, Verani

150N. Survey of Spanish-American Literature to 1900 (4)
Lecture—3 hours; term paper. Prerequisite: course 100. Spanish American literature from prehispanic times to the Chronicles of the Conquest to Romanticism and Modernism. Reading selections from the main Spanish-speaking populations present in the U.S.: Chicanos, Puerto Ricans, Cuban-Americans, Central Americans, and other Latinos. GE credit: ArtHum, Div.—(III) Alarcón

151N. Survey of Spanish-American Literature 1900 to Present (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 100. Spanish-American literature from 1900 to present. Reading selections include fiction, poetry, drama, and essays. (Former course 105B.).—II. (II) Egan, Larsen, Verani

153. Spanish-American Short Story (4)
Lecture—3 hours; term paper. Prerequisite: course 100. The evolution of the Spanish-American short story during the 19th and 20th centuries. Emphasis on the contemporary period. Offered in alternate years. (Former course 129.).—II. (II) Egan, Larsen, Verani

154. Spanish-American Novel (4)
Lecture—3 hours; term paper. Prerequisite: course 100. The evolution of the Spanish-American novel during the 19th and 20th centuries. Emphasis on the narrative of the Revolution and significant contemporary works. Offered in alternate years. (Part of former courses 108A and 108B.).—II. (II) Egan, Larsen, Verani

155. Mexican Novel (4)
Lecture—3 hours; term paper. Prerequisite: course 100. The evolution of the Mexican novel during the 19th and 20th centuries. Emphasis on the narrative of the Mexican novel and significant contemporary works. Offered in alternate years. (Part of former courses 123 and 138.).—III. (III) Egan, Larsen, Verani

156. Dario, Modernism and Its Legacy (4)
Lecture—3 hours; term paper. Prerequisite: course 100. Modernism as an authentic literature of Latin America, its influence on 20th-century poetry and prose. In depth analysis of the works of Dario and other major Modernist writers. Offered in alternate years. (Former course 125.).—II. (II) Egan, Larsen, Verani

157. 20th Century Masters in Spanish-American Literature (4)
Lecture—3 hours; term paper. Prerequisite: course 100. Study of major 20th-century Spanish-American writers and their contributions to the cultural and literary milieu. Offered in alternate years. (Part of former courses 127 and 138.).—III. (III) Egan, Larsen, Verani

158. Spanish-American Poetry: From Vanguardism to Surrealism and Beyond (4)
Lecture—3 hours; term paper. Prerequisite: course 100. Study of vanguardism, surrealism, and more recent movements of 20th-century poetry. An in-depth analysis of the works of such major poets as Neruda, Vallejo, and Octavio Paz. Offered in alternate years.—(II) Verani

159. Special Topics in Spanish-American Literature and Culture (4)
Lecture—3 hours; term paper. Prerequisite: course 100. Special topics in the study of Spanish-American literature and culture. May be repeated twice for credit when topic differs. Offered in alternate years.—(I, II, III) Egan, Larsen, Verani

170. Spanish-American Culture (4)
Lecture—3 hours; discussion—1 hour or term paper. Prerequisite: course 24 or 33. Major developments in the arts and social institutions of Spanish-American culture and areas other than Mexico. Readings, lectures and discussions in Spanish. (Former course 136.) GE credit: ArtHum, Div.—(III) Altisent

171. Music from Latin America (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: Spanish 24 or 33. Examination of music from Latin America: Characteristic music (i.e., tango, bossa nova, salsa, musica nortena, musica andina) as well as its implications in other musical genres. Taught in Spanish. For non-majors. Offered in alternate years. (Same course as Music 127.).—(I) Ortiz

172. Mexican Culture (4)
Lecture—3 hours; discussion—1 hour or term paper. Prerequisite: course 24 or 33. The development of Mexican culture from the Aztec-Mayan era to the present. Study includes important periods such as the Conquest and Colonialism, the Independence movement, and changes from the Revolution to contemporary Mexico. Reading, lectures and discussions in Spanish. (Former course 135.). GE credit: ArtHum, Div.—III. (III) Egan

174. Chicanos (4)
Lecture—3 hours; term paper/discussion—1 hour. Prerequisite: course 24 or 33. An interdisciplinary survey of Chicano culture. Topics include literature, art, folklore, oral tradition, music, politics, as well as everyday cultural manifestations. Conducted in Spanish. (Former course 124.) GE credit: ArtHum, Div.—(III) Alarcón

176. Literature in Spanish Written in the United States (4)
Lecture—3 hours; term paper. Prerequisite: course 24 or 33. Survey of the literary and cultural contributions of the main Spanish-speaking populations present in the U.S.: Chicanos, Puerto Ricans, Cuban-Americans, Central Americans, and other Latinos. GE credit: ArtHum, Div.—(III) Alarcón

192I. Internship in Spanish (1-12)
Independent study—3-36 hours per quarter. Prerequisite: course 23, junior standing; major in Spanish, Chicano Studies, or a related field. Internships in fields where Spanish language skills can be used and perfected (teaching, counseling, translating-interpreting). May be repeated for credit for a total of 8 units. Units will not count toward the Spanish major. (P/NP grading only.)
Graduate Courses

201. Literary Theory I (4)
Seminar—3 hours; term paper. Prerequisite: graduate standing or consent of instructor. Basic theories and practical approaches to modern and contemporary Hispanic literary texts. Emphasis on formalism, poststructuralism, socio-cultural discourses, and ideologies.—II. (I.)

202. Literary Theory II (4)
Seminar—3 hours; term paper. Prerequisite: graduate standing or consent of instructor. Major contemporary critical theories including recent, innovative approaches to Hispanic literature and culture. Readings from Semiotics and Deconstruction to Psychoanalytic and Feminist theories. Focus on Postmodern and Neo-colonial discourse.—III. (II.)

205. Spanish Phonology (4)
Seminar—3 hours; term paper. Prerequisite: some knowledge of phonetics is required and consent of instructor. Linguistics 109 and 138 highly recommended. Analyzes the sound patterns of Spanish from both linear and non-linear perspectives. Students will develop a clear understanding of what phonology is and the nature of Spanish phonology, as defined by modern linguistic analysis.—II. (II.) Torreblanca

206. Spanish Syntax (4)
Seminar—3 hours; term paper. Prerequisite: Linguistics 140 and 165. An examination of Spanish word order within the framework of general linguistic theory. The student will investigate how to write a grammar of Spanish with particular attention to nonfinite clauses.—I. (I.) Blake, Ojeda

207. History of the Spanish Language (4)
Seminar—3 hours; term paper. Prerequisite: Latin 1. (Former course 220A.)—I, II, III. (I, II, III.) Blake, Torreblanca

208. Old Spanish Texts (4)
Seminar—3 hours; term paper. Prerequisite: course 207. An in-depth linguistic examination of Old Spanish texts from the 12th to the 15th centuries, with particular attention to the significance of orthographic changes.—I. (I.) Torreblanca, Blake

211. Hispanic Dialectology (4)
Seminar—3 hours; term paper. Prerequisite: course 220 or consent of instructor. Descriptive and historical study of the distinctive features of Peninsular and American Spanish dialects. (Former course 221/3.)—III. (III.) Torreblanca

212. Applied Linguistics (4)
Seminar—3 hours; term paper. Prerequisite: graduate standing and courses 215 and 216 recommended. Focuses on the relevant linguistic aspects of teaching Spanish. Designed for graduate students who have an interest in second-language learning and teaching.—II. (I.) Colom, Blake

215. Special Topics in Hispanic Linguistics (4)
Seminar—3 hours; term paper. Prerequisite: consent of instructor; courses 205, 206 recommended. Specialized topics in Hispanic linguistics (e.g., pragmatics, sociolinguistics, topics in syntax, semantics, or diachronic studies). May be repeated for credit when topic differs.—III. (III.)

222. Critical Approaches to Spanish Literature I: Prose and Essay (4)
Seminar—3 hours; term paper. Prerequisite: graduate standing or consent of instructor. A review of the main critical approaches to Spanish narrative and the essay.—II. (I.) Altisent, Armitstead, Martin, Scari

223. Critical Approaches to Spanish Literature II: Poetry and Drama (4)
Seminar—3 hours; term paper. Prerequisite: graduate standing or consent of instructor. A review of the main critical approaches to Spanish poetry and drama.—II. (I.) Altisent, Armitstead, Martin

224. Studies of a Major Writer, Period, or Genre in Spanish Literature (4)
Seminar—3 hours; term paper. Prerequisite: graduate standing or consent of instructor. Artistic development of a major Spanish writer and his/her intellectual and literary milieu or study of a special topic, period, or genre. May be repeated for credit with consent of instructor.—III. (III.)

252. Medieval Spanish Literature: Prose (4)
Seminar—3 hours; term paper. Prerequisite: graduate standing or consent of instructor. An exploration of the major genres of Medieval Spanish prose from its origins to 1450.—I. (I.) Armistead

253. Medieval Spanish Literature: Epic (4)
Seminar—3 hours; term paper. Prerequisite: graduate standing or consent of instructor. Medieval Spanish epic narratives. Major theoretical perspectives on the genesis, diffusion, and character of the Medieval epic. Relationship of epic to ballad literature.—II. (II.) Armistead

254. Medieval Hispanic Lyric (4)
Seminar—3 hours; term paper. Prerequisite: graduate standing or consent of instructor. Analysis of the most representative lyric poetry in the various Peninsular languages and in provençal troubadour poetry, kharjas, villancicos, cantigas de amigo, and courtly lyric.—II. (II.) Armistead

255. Spanish Literature of the Early Renaissance (4)
Seminar—3 hours; term paper. Spanish Literature, 1450-1550, with emphasis on La Celestina. (Former course 229.)—I. (I.) Armistead

256. Spanish Literature of the Renaissance and Golden Age: Poetry (4)
Seminar—3 hours; term paper. Prerequisite: graduate standing or consent of instructor. Extensive critical study of the main currents of Renaissance and Baroque Spanish poetry through its language structures, styles, (“Culturismo-Concepción”), rhetorical devices, myths, and symbols of love, death, time.—II. (I.) Altisent

257. Spanish Literature of the Renaissance and Golden Age: Drama (4)
Seminar—3 hours; term paper. Prerequisite: graduate standing or consent of instructor. The narrative works of Miguel de Cervantes with special emphasis on Don Quijote.—I. (I.) Armistead

260. Modern Spanish Literature (4)
Seminar—3 hours; term paper. Prerequisite: graduate standing or consent of instructor. Extensive study and analysis of the modernist and experimental works of the 20th century, with particular emphasis on the avant-garde, existentialism, social realism, and postmodern trends.—II. (II.) Altisent

263. Contemporary Spanish Literature: Drama (4)
Seminar—3 hours; term paper. Prerequisite: graduate standing or consent of instructor. The Spanish theatrical production of the last 70 years.—II. (II.) Altisent

264. Contemporary Spanish Literature: Essay (4)
Seminar—3 hours; term paper. Prerequisite: graduate standing or consent of instructor. Major thinkers from Garnet to Unamuno and Ortega y Gasset. Emphasis will be placed on the relationship between Spanish thought and European philosophical currents. Offered in alternate years.—III. (III.) Scari

265. Women Writers of Spain (4)
Seminar—3 hours; term paper. Prerequisite: graduate standing or consent of instructor. Introduction to the development of a feminine consciousness in the Spanish contemporary literary scene. Selected texts represent particularly innovative typologies of feminine discourse in the realm of the historical, psychoanalytical, and metafictional, erotic, and allegorical fiction.—II. (I.) Altisent

272. Critical Approaches to Spanish-American Literature: Narrative (4)
Seminar—3 hours; term paper. Prerequisite: graduate standing and consent of instructor. Extensive critical study of the development of Spanish-American literary periods and currents in narrative (novel, short story, and essay), from early Colonial times to the present.—I. (I.) Egan, Larsen, Verani

273. Critical Approaches to Spanish-American Literature: Poetry and Drama (4)
Seminar—3 hours; term paper. Prerequisite: graduate standing and consent of instructor. Extensive critical study of the development of Spanish-American literary periods and currents in poetry and drama, from early Colonial times to the present.—I. (I.) Egan, Larsen, Verani

274. Studies of a Major Writer, Period, or Genre in Spanish-American Literature (4)
Seminar—3 hours; term paper. Prerequisite: graduate standing and consent of instructor. An examination of pre-Hispanic and Colonial narrative, poetry and the theater. Emphasis on historical, anthropological, and ethnographic approaches to Colonial discourse.—I. (I.) Egan
276. Twentieth-Century Spanish-American Drama (4)
Seminar—4 hours. Prerequisite: graduate standing or consent of instructor. Major Spanish-American dramatists from Florencio Sánchez to the present. Offered in alternate years. (Former course 240.)—(III.)

277. Spanish-American Novel, 1900-1950 (4)
Seminar—3 hours; term paper. Prerequisite: graduate standing or consent of instructor. Study of main trends and key authors in Spanish America in the first half of the 20th century. Offered in alternate years. (Former course 241A.)—(I.) Egan, Larsen, Verani

Seminar—3 hours; term paper. Prerequisite: graduate standing or consent of instructor. Recent developments in Spanish-American narrative. Emphasis on innovative language and structure. Offered in alternate years. (Former course 241B.)—(II.) Egan, Larsen, Verani

279. Mexican Narrative (4)
Seminar—3 hours; term paper. Prerequisite: graduate standing or consent of instructor. Study of the evolution of Mexican narrative. Emphasis on the narrative of the Revolution and significant contemporary works. Offered in alternate years.—(III.) Egan, Larsen, Verani

280. Spanish-American Short Story (4)
Seminar—3 hours; term paper. Works by major writers with emphasis on 20th-century authors such as Quiroga, Borges, García Márquez, Cortázar, and Rulfo. (Former course 243.)—III. (III.) Egan, Larsen, Verani

281. Spanish-American Women Writers (4)
Seminar—3 hours; term paper. Prerequisite: graduate standing or consent of instructor. Study of feminist critical theories, gender construction, and self-representation within the history of socio-cultural changes in Latin America.—I. (I.) Egan, Verani

282. Dario and Modernism (4)
Seminar—3 hours; term paper. Prerequisite: graduate standing or consent of instructor. Study of poetry and prose of Spanish-American Modernism (1880-1916). Offered in alternate years. (Former course 245.)—(I.) Egan, Larsen, Verani

283. New Directions in Spanish-American Poetry (4)
Seminar—3 hours; term paper. Offered in alternate years. (Former course 247.)—(III.) Egan, Larsen, Verani

284. The Spanish-American Essay (4)
Seminar—3 hours; term paper. Major Spanish-American essayists from Sarmiento to Octavio Paz. Offered in alternate years. (Former course 248.)—(II.) Egan, Larsen, Verani

285. Multicultural Approaches to Cuban Literature and Culture (4)
Seminar—3 hours; term paper. Prerequisite: graduate standing or consent of instructor. Study of major trends in Cuban literature. Emphasis on historical, geographic, social and cultural context (including music and film). Course taught in English with some readings in Spanish.—III. (III.) Blanchard

298. Group Study (1-5)
Prerequisite: graduate standing and consent of instructor. May be repeated for credit. (S/U grading only.)

299. Research (1-12)
(S/U grading only.)

Professional Courses

390. The Teaching of Spanish in College (4)
Lecture—2 hours; discussion—2 hours. Prerequisite: graduate standing. Theoretical instruction in modern teaching methods and demonstration of their practical application. Required of graduate teaching assistants.—I. (I.) López-Burton

396. Teaching Assistant Training Practicum (1-4)
Prerequisite: graduate standing. May be repeated for credit. (S/U grading only.)—I, II, III. (I, II, III.)
Soil Science

(College of Agricultural and Environmental Sciences)

Faculty

See under the Department of Land, Air and Water Resources.

Major Programs. See the major in Soil and Water Science.

Minor Program Requirements

The Department of Land, Air and Water Resources, Soils and Biogeochemistry Program, offers a minor program in soil science for students in the Hydrologic Science, Environmental and Resource Sciences, Environmental Toxicology, Agricultural Systems and Environment, International Agricultural Development, and Environmental Biology and Management majors.

Minor Adviser. R.J. Southard.

Graduate Study. Programs of study leading to the M.S. and Ph.D. degrees in Soil Science are available. Information regarding these programs can be obtained from the graduate adviser and the Graduate Announcement. See also the Graduate Studies chapter of this catalog.

Graduate Adviser. L. Jackson (Vegetable Crops).

Courses in Soil Science (SSC)

Questions pertaining to the following courses should be directed to the instructor on the Resources Teaching Center, 148 Hoagland Hall (530-752-1669) or check the Soils and Biogeochemistry web site at http://lawr.ucdavis.edu/ssc.

Lower Division Courses

10. Concepts of Soil Science (4)

Lecture—3 hours; term paper; extensive problem solving. The global ecosystem; soils as natural bodies formed by interactive environmental processes; soil response to use and management; conservation practices for sustainable use of soil resources; role of soils in current agricultural and environmental issues. GE credit: SciEng, Wrt.—I. (I.) Dahlgren

92. Soil Science Internship (1-12)

Internship—3-36 hours. Prerequisite: lower division standing and consent of instructor. Work experience off and on campus in soil science. Internship supervised by a member of the faculty. (P/NP grading only.)—I. (I.) Southard

192. Soil Science Internship (1-12)

Internship—3-36 hours. Prerequisite: completion of 84 units and consent of instructor. Work experience off and on campus in soil science. Internship supervised by a member of the faculty. (P/NP grading only.)—I. (I.) Southard

Upper Division Courses

100. Principles of Soil Science (4)

Lecture—3 hours; laboratory—3 hours. Prerequisite: Chemistry 1A or Physics 1A; Biology 1A or Biology 1B; Geology 50; Biological Sciences 1C. Microbiology 2, and Chemistry 8A recommended. Formation, properties and behavior of soils. Nature and interactions of solid, aqueous, gaseous, and biotic components. Soil-plant-atmosphere relationships. Soil development and geography, management, and conservation.—I. (I.) Singer

102. Soil and Water Chemistry (5)

Lecture—3 hours; discussion—1 hour; laboratory—3 hours. Prerequisite: course 100 or the equivalent. Soil solution and solid-phase chemistry of soils in relation to agricultural and environmental concerns. Interactions between soil solids, precipitates and solution phases: mineralogy, ion exchange, adsorption, weathering and buffering, soil colloidal behavior, models of solution and solid-phase interactions.—II. (II.) Zasowski

105. Field Studies of Soil Resources (8)

Fieldwork—daily for five weeks, off campus; lecture—1 week on campus. Prerequisite: consent of instructor; course 120 recommended. Study of soils in the field throughout California. Emphasis on identification, description and classification of soils; the use of soils to landscape, vegetation, climate and human activities; role of soils in land use and as components of California ecosystems.—summer. Dahlgren, Singer, Southard

107. Soil Physics (5)

Lecture—3 hours; laboratory—3 hours; discussion—1 hour. Prerequisite: course 100, Environmental and Resource Sciences 100, Mathematics 16A, or the equivalent. Physical properties of soil. Principles of water, gas, heat, and solute movement in soil with selected examples related to soil and water management. Influence of soil properties on transport processes.—I. (I.) Rolston, Hopmans

109. Nutrient Cycling and Management (5)

Lecture—3 hours; discussion—1 hour; laboratory—3 hours. Prerequisite: course 100 or the equivalent. Plant nutrients in soil: effects of fertilizers, cover crops, compost and other amendments on plant productivity and soil quality; nutrient sustainability in alternative agricultural and natural ecosystems; soil fertility assays.—III. (III.) Horwath

111. Soil Microbiology (4)

Lecture—3 hours; laboratory—3 hours. Prerequisite: Chemistry 1C and Biological Sciences 1C. Major groups of microorganisms in soil, their interrelationships, and their responses to environmental variables. Role of microorganisms in cycling of nutrients. Plant-microbe relationships. Transformations of organic and inorganic pollutants.—II. (II.) Scow

112. Soil Ecology (3)

Lecture—2 hours; laboratory/discussion—2 hours. Prerequisite: Biological Sciences 1B, 1C, course 100. The biology and ecology of soil communities, emphasizing the soil food web and litter decomposition. Role of specific biota, ranging from microorganisms to earthworms. Applications to restoration, remediation, ecosystem science, and agriculture. GE credit: Wrt.—I. (I.) Scow, Jaffe

118. Soils in Land Use and the Environment (4)

Lecture—3 hours; discussion—1 hour; one one-day field trip. Prerequisite: course 100 or consent of instructor. Soils are considered as elements in land use planning and environmental quality. Topics include: soil survey reports, remote sensing, land capability classification, soil erosion/conservation, waste disposal on soils and soil reclamation.—III. (III.) Singer

120. Soil Genesis, Morphology, and Classification (5)

Lecture—4 hours; laboratory—3 hours (includes five one-day weekend field trips). Prerequisite: course 100; Geology 50 recommended. Recognition and description of soils: chemical, biological and physical processes of soil formation. Factors of soil formation. Interactions of soils with diverse ecosystems. Introduction to soil classification. Practice using soil taxonomy. Practical experience describing soil properties in the field.—III. (III.) Southard

198. Directed Group Study (1-5)

(P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5)

(P/NP grading only.)

Graduate Courses

207. Transport Processes in Soils (4)

Lecture—3 hours; discussion/computer laboratory—2 hours. Prerequisite: course 107 and Mathematics 22B; knowledge of a computer programming language. Physical and mathematical description of nonsteady transport processes in soil and the unsaturated zone. Emphasis on analytical and numerical solutions to water, gas, solute (contaminants), and heat transport processes and the chemical and biological reactions attenuating solute movement. Offered in alternate years.—(II.) Rolston, Hopmans

208. Soil-Plant Interrelationships (3)

Lecture/discussion—3 hours. Prerequisite: Plant Biology 111 or consent of instructor. Plant needs, occurrence and reactions of water and mineral nutrients in soils; root systems and their growth in soils; mass flow and diffusion mechanisms in nutrient acquisition; models relating nutrient uptake to soil and plant characteristics; nutrient assimilation and crop quality. Offered in alternate years.—(II.) Richards

209. Physiology and Ecology of Mycorrhizal Symbioses (3)

Lecture/discussion—3 hours. Prerequisite: Plant Biology 111 or consent of instructor; course 100 recommended. Structure, function and evolutionary development of mycorrhizal fungi and the root-fungal symbiosis. Emphasis on regulation of carbon and nutrient exchanges between host and symbiont. Course integrates mycorrhizal physiology and ecology in an ecosystem context. Offered in alternate years.—(I.) Biedsoe

211. Advanced Soil Microbiology (3)

Lecture—3 hours. Prerequisite: Chemistry 8A-8B; course 111; Biological Sciences 102, 103 or an equivalent course recommended. Microbial metabolism of organic chemicals in soil, both natural and xenobiotic. Decomposition of organic matter. Kinetics of microbial processes in soil. Offered in alternate years.—(III.) Scow

216. Physical Geochemistry (3)

Lecture—3 hours. Prerequisite: course 102 or Chemistry 110A or Geology 115 and Mathematics 119. First half emphasizes equilibrium thermodynamics, including choices of standard states, ideal solutions, and use of the Gibbs-Duhem relation. Second half covers geochemical kinetics including simple rate laws, transition state theory, solute diffusion, and experimental methods.—I. (I.) Casey
218. Soil Erosion and Conservation (3)
Lecture—2 hours; discussion—1 hour. Prerequisite: graduate standing; courses 118, 120. Processes of soil erosion by wind and water in agricultural areas, and methods of soil conservation will be discussed. Methods of predicting rates of soil erosion will be considered. Offered in alternate years.—(II.) Singer

219. Ecosystem Biogeochemistry (4)
Lecture—3 hours; laboratory/discussion—2 hours. Prerequisite: introductory courses in ecology/biology and soils recommended; undergraduates accepted with consent of instructor. Multidisciplinary analysis of energy and nutrient transfers within terrestrial ecosystems. Examination of processes and inter- and intra-system interactions between the atmosphere, biosphere, lithosphere and hydrosphere. Laboratory section uses biogeochemical simulation models to examine case studies. (Same course as Ecology 219.)—III. (III.) Dahlgren, Bledsoe

220. Pedology (3)
Lecture—3 hours. Prerequisite: consent of instructor; course 120 recommended. Topics selected from studies of soil-forming processes, soil-geomorphic relations, mineral weathering, new developments in soil classification, and development of pedologic theory. Topics vary from year to year. May be repeated once for credit. Offered in alternate years.—II. Southard

222. Organic Chemistry of Soil (3)
Lecture—3 hours. Prerequisite: Chemistry 8A, 8B, Mathematics 16A, 16B, course 100 or the equivalent. Structure and function of soil organic matter, biochemistry of humic substance formation, relationship of organic matter to nutrient cycling and sustainability in agricultural and natural ecosystems, reactions of organics with humic substances in soil and water, methods for characterization. Offered in alternate years.—II. Horwath

290. Special Topics in Soil Science (1)
Seminar—1 hour. Prerequisite: graduate standing. Oral presentation and discussion of scientific material and procedures for review and critique of publications. (S/U grading only.)—I, III. (I, III.)

298. Group Study (1-5)
Prerequisite: consent of instructor.

299. Research (1-12)
(S/U grading only.)

Professional Course

396. Teaching Assistant Training Practicum (1-4)
Prerequisite: graduate standing. May be repeated for credit. (S/U grading only.)—I, II, III. (I, II, III.)
Statistics

(College of Letters and Science)
Jane Ling Wang, Ph.D., Chairperson of the Department
Department Office, 380 Kerr Hall (530-752-2361)
World Wide Web: http://www.stat.ucdavis.edu

Faculty
Prabir Burman, Ph.D., Professor
Christiana Drake, Ph.D., Associate Professor
Juanjuan Fan, Ph.D., Assistant Professor
Alan F. Fenech, Ph.D., Associate Professor
Wesley O. Johnson, Ph.D., Professor
Richard A. Levine, Ph.D., Assistant Professor
Yue-Fok (Ed) Mack, Ph.D., Professor
Hans-Georg Mueller, Ph.D., Professor
Wolfgang Polonik, Ph.D., Assistant Professor
George G. Roussas, Ph.D., Professor
Francisco J. Samaniego, Ph.D., Professor
Robert H. Shumway, Ph.D., Professor
Jessica M. Utts, Ph.D., Professor, Academic Senate Distinguished Teaching Award
Richard A. Levine, Ph.D., Assistant Professor
Wesley O. Johnson, Ph.D., Professor
Alan P. Fenech, Ph.D., Associate Professor
Juanjuan Fan, Ph.D., Assistant Professor
Prabir Burman, Ph.D., Professor

Emeriti Faculty
Robert H. Shumway, Ph.D., Professor
Jane-Ling Wang, Ph.D., Chairperson of the Department
George G. Roussas, Ph.D., Professor
Wolfgang Polonik, Ph.D., Assistant Professor
Richard A. Levine, Ph.D., Assistant Professor
Wesley O. Johnson, Ph.D., Professor
Alan P. Fenech, Ph.D., Associate Professor
Juanjuan Fan, Ph.D., Assistant Professor
Prabir Burman, Ph.D., Professor

Affiliated Faculty
Rahman Azari, Ph.D., Lecturer

The Major Program
Statistics enables us to make inferences about entire populations, based on samples extracted from those populations. Statistical methods can be applied to problems from almost every discipline and they are vitally important to researchers in agricultural, social, engineering, and medical sciences.

The Major Program
Statistics majors may receive either a Bachelor of Arts or a Bachelor of Science degree. The A.B. degree is very flexible, facilitating a double major or extensive elective course work in a field in which statistics is applied. The B.S. degree program has two options: one emphasizes mathematics and is especially recommended as preparation for graduate study in statistics; the other emphasizes computer science. All three programs require theoretical and applied course work and underscore the strong interdependence of statistical theory and the applications of statistics.

Preparatory Requirements. Before applying for either the A.B. or B.S. major in Statistics, students must ordinarily complete the following courses with at least C grades:

- Mathematics 21A, 21B, 21C
- Mathematics 22A, 22B
- Computer Science Engineering 30 or Engineering 5

Statistics 32

In addition, due to space limitation in the B.S. major, students admitted to this major will normally be chosen from those having at least a 3.0 grade point average in the above courses. For further information, please contact a Statistics adviser.

Career Alternatives. Probability models and statistical methods are used in a great many fields, including the biological and social sciences, business and engineering. The wide applicability of statistics has created in both the public and private sectors a strong demand for graduates with statistical training. Current employment opportunities include state and federal government positions with a statistician designation, industrial positions (e.g., in the actuarial series within an insurance company or in the data management unit in a health science facility), and teaching positions.

A.B. Major Requirements:

<table>
<thead>
<tr>
<th>Preparatory Subject Matter</th>
<th>24-30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics 21A, 21B, 21C</td>
<td>12</td>
</tr>
<tr>
<td>Mathematics 22A, 22B</td>
<td>6</td>
</tr>
</tbody>
</table>

Statistics 32

Depth Subject Matter

| Statistics 106, 108 or the equivalent | 8 |
| Statistics 131A, 131B, 131C | 12 |

Three Statistics courses having Statistics 131B as a prerequisite 12
Related elective courses 9

Three upper division courses approved by major adviser. They may be in mathematics, computer science or in substantive aspects of a quantitative discipline.

Total Units for the Major 65-66

B.S. Major Requirements:

Preparatory Subject Matter

| Mathematics 21A, 21B, 21C | 12 |
| Mathematics 22A, 22B | 6 |

Computer science:

General option: Computer Science Engineering 30 or Engineering 5

(both or both equivalent) 3-4

Computer Science option: Computer Science Engineering 30 and 40 and Electrical and Computer Science Engineering 70 12

Statistics 32

Depth Subject Matter

Complete one of the two options below.

Statistics—General option

| Statistics 106, 108 or the equivalent | 8 |
| Statistics 131A, 131B, 131C | 12 |

Four courses selected from Statistics 104, 135, 137, 138, 141, 142, 144, 145 12-13

Mathematics 167

Related elective course 3

One upper division course approved by major adviser. These may be in mathematics, computer science or in substantive aspects of a quantitative discipline.

Total Units for the Major 77-87

Statistics—Computer Science option

| Statistics 106, 108 or the equivalent | 8 |
| Statistics 131A, 131B, 131C | 12 |

Two courses having Statistics 131B as a prerequisite 8

Mathematics 141

Computer Science Engineering 110, 150 4

Two courses from Mathematics 128A, 128B, 132A, 132B, 167, 168 6-8

Computers Engineering 122, or Computer Science Engineering 175 4

Total Units for the Major 86-89

Major Adviser, A.P. Fenech

Minor Program Requirements:

The Department offers a minor program in Statistics that consists of a survey at the upper division level of the fundamentals of mathematical statistics and of the most widely used applied statistical methods.

Minor Program Requirements:

| Statistics 106, 108, and 130A-130B or 131A-131B | 16 |
| One course in Statistics having Statistics 130B or 131B as a prerequisite | 4 |

Graduate Study. The Graduate Group in Statistics offers study and research leading to the M.S. and Ph.D. degrees in Statistics, including a Ph.D. in Statistics with an emphasis in Biostatistics. Detailed information concerning these degree programs, as well as information on admissions and on financial support, is available from the Department of Statistics.

Graduate Adviser, T.G. Mueller
Courses in Statistics (STA)

Lower Division Courses

10. Statistical Thinking (4)
Lecture—3 hours; discussion/laboratory—1 hour. Prerequisite: two years of high school algebra. Statistics and probability in daily life. Examines principles of collecting, presenting and interpreting data in order to critically assess results reported in the media; emphasis is on understanding polls, unemployment rates, health studies; understanding probability, risk and odds. GE credit: SciEng or SocSci. Wrt.—II. (I, II, III.)

12. Introduction to Discrete Probability (4)
Lecture—3 hours; laboratory—1 hour. Prerequisite: two years of high school algebra. Random experiments; countable sample spaces; elementary probability axioms; counting formulas; conditional probability; independence; Bayes' theorem; expectation; gambling problems; binomial, hypergeometric, Poisson, geometric, negative binomial and multinomial models; limiting distributions; Markov chains. Applications in the social, biological, and engineering sciences. Offered in alternate years. GE credit: SciEng.

13. Elementary Statistics (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: two years of high school algebra or the equivalent in college. Measures of central tendency and dispersion; binomial, normal, Student-t, and chi-square distributions; testing hypotheses; confidence intervals, regression and correlation analysis. Not open for credit to students who have completed any statistics course numbered higher than 13. Not open for course 102. GE credit: SciEng.—II, III. (II, III, III.)

32. Basic Statistical Analysis Through Computers (3)
Lecture—3 hours. Prerequisite: Mathematics 16B or 21B; ability to program in a high-level computer language such as Pascal. Overview of probability modeling and statistical inference. Problem solution through mathematical analysis and computer simulation. Recommended as alternative to course 13 for students with some knowledge of computer programming. GE credit: SciEng.—II, III. (II, III, III.)

90X. Seminar (1-2)
Seminar—1-2 hours. Prerequisite: high school algebra and consent of instructor. Examination of a special topic in a small group setting.

98. Directed Group Study (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)

99. Special Study for Undergraduates (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)

Upper Division Courses

100. Applied Statistics for Biological Sciences (4)
Lecture—3 hours; laboratory—2 hours. Prerequisite: Mathematics 16B or the equivalent. Probability computation/modeling, estimation, hypothesis testing, contingency tables, ANOVA, regression; implementation of statistical methods using computer package. Only two units credit allowed to students who have completed course 13 or 32. Not open for credit to students who have taken course 102. GE credit SciEng.—I, II, III. (II, III, III.)

102. Introduction to Probability Modeling and Statistical Inference (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: two years of high school algebra, and upper division standing. Introductory probability and statistics at a rigorous yet preparatory level. Rigorous introductions to probability and parametric/ nonparametric statistical inference with computer-based and theoretical analysis; graphical methods and exploratory data analysis; regression analysis; ANOVA. Only two units of credit allowed to students who have taken course 32. Not open for credit to students who have taken course 100. GE credit: SciEng.—I, II, III. (I, II, III.)

103. Applied Statistics for Business and Economics (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 13, 32, or 102, and Mathematics 16A, 16B. Descriptive statistics; probability; random variables; expectation; binomial, normal, Poisson, other univariate distributions; joint distributions; sampling distributions, central limit theorem; properties of estimators; linear combinations of random variables; testing and estimation; Minitab computer package. GE credit: SciEng.—I, II, III. (I, II, III.)

104. Applied Statistical Methods: Nonparametric Statistics (4)

106. Applied Statistical Methods: Analysis of Variance (4)
Lecture—4 hours; discussion—1 hour. Prerequisite: course 13, 32 or 102. One-way and two-way fixed effects analysis of variance models. Randomized complete and incomplete block designs, Latin squares. Multiple comparisons procedures. One-way random effects models. GE credit: SciEng.—I, II, III. (I, II, III.)

108. Applied Statistical Methods: Regression Analysis (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 13, 32 or 102. Simple linear regression, variable selection techniques, stepwise regression, analysis of covariance, influence measures, computing packages. GE credit: SciEng.—I, II, III. (I, II, III.)

120. Probability and Random Variables for Engineers (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: Mathematics 21A, 21B, 21C, and 22A. Basic concepts of probability theory with applications to electrical engineering. Discrete and continuous random variables, conditional probability, combinatorics, bivariate distributions, transformation of random variables, law of large numbers, central limit theorem, and approximations. No credit for students who have completed course 131A or Civil and Environmental Engineering 114. GE credit: SciEng.—I, II, III. (I, II, III.)

130A. Mathematical Statistics: Brief Course (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: Mathematics 16B. Basic probability, density and distributions, mean, variance, covariance, Chebyshev's inequality, moment-generating functions, sampling distributions, central limit theorem and law of large numbers; point estimation, some methods of estimation, interval estimation, confidence intervals for certain quantities, computing sample sizes. Only 2 units of credit allowed to students who have taken course 131A.—I. (I)

130B. Mathematical Statistics: Brief Course (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 130A. Transformed random variables, large sample properties of estimators. Basic ideas of hypotheses testing, likelihood ratio tests, goodness-of-fit tests. General linear model, least squares estimates, Gauss-Markov theorem. Analysis of variance, F-test. Regression and correlation, multiple regression. Selected topics.—II. (II)

131A. Introduction to Probability Theory (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: Mathematics 21A, 21B, 21C, and 22A. Fundamental concepts of probability theory, discrete and continuous random variables, standard distributions, moments and moment-generating functions, law of large numbers and the central limit theorem. Not open for credit to students who have taken Mathematics 131.—I, II. (I, II)

131B-131C. Introduction to Mathematical Statistics (4-4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 131A, or Mathematics 22A. Sampling, methods of estimation, sampling distributions, confidence intervals, testing hypotheses, linear regression, analysis of variance, elements of large sample theory, and nonparametric inference.—II-III. (II-III)

133. Mathematical Statistics for Economists (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 13B and Mathematics 16B. More emphasis given to statistical models. Probability, basic properties, discrete and continuous random variables (binomial, normal, t, chi-square), expectation and variance of a random variable; bivariate random variables (bivariate normal); sampling distributions; central limit theorem; estimation, maximum likelihood principle; basics of hypotheses testing (one-sample).—I. (I)

135. Multivariate Data Analysis (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 13B and preferably course 131B. Multivariate normal distribution; Mahalanobis distance; sampling distributions of the mean vector and covariance matrix; Hotelling's T² in Statistics. Probability, one-way MANOVA; discriminant analysis; principal components; canonical correlation; factor analysis. Intensive use of computer analyses and real data sets.—III. (III)

137. Applied Time Series Analysis (4)
Lecture—3 hours; term paper. Prerequisite: course 108 or the equivalent. Time series relationships, cyclical behavior, periodicity, spectral analysis, coherence, filtering, regression, ARIMA and state-space models; Applications to data from economics, engineering, medicine using time series software.—II. (III)

138. Analysis of Categorical Data (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 130B or 131B, or courses 106 and 108. Varieties of categorical data, cross-classifications, contingency tables, tests for independence. Multidimensional tables and log-linear models; maximum likelihood estimation, goodness-of-fit. Logit models, linear logistic models. Analysis of incomplete tables. Packaged computer programs, analysis of real data. GE credit: SciEng.—I. (I)

141. Statistical Computing (4)
Lecture—3 hours; laboratory—1 hour. Prerequisite: course 130A or 131A, and one of courses 13, 32, 100, 102, or the equivalent; and experience in computer programming; course 130B or 131B recommended. Use of computers in statistics. Numerical foundations of statistical procedures. Computation of probabilities and quantiles. Random numbers. Monte Carlo method and bootstrap. Methods for parametric and nonparametric statistical models. Graphical methods and exploratory data analysis.—II. (II)

142. Reliability (4)
Lecture—3 hours; discussion/laboratory—1 hour. Prerequisite: course 130B or 131B or consent of instructor. Stochastic modeling and inference for reliability systems. Topics include coherent systems, statistical failure models, notions of aging, maintenance policies and their optimization. Offered in alternate years.

144. Sampling Theory of Surveys (4)
Lecture—3 hours; discussion/laboratory—1 hour. Prerequisite: course 130B or 131B or consent of instructor. Simple, stratified, random, clustered, and systematic sampling plans; mean, proportion, total, ratio, and regression estimators for these plans; sample survey design, absolute and relative error, sample size selection, strata construction; sampling and nonsampling sources of error. Offered in alternate years. GE credit: SciEng.—I. (I)

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
145. Bayesian Statistical Inference (4)
Lecture—3 hours; laboratory—1 hour. Prerequisite: courses 130A and 130B, or 131A and 131B, or the equivalent. Subjective probability; Bayes Theorem, conjugate priors, non-informative priors, estimation, testing, prediction, empirical Bayes methods, properties of Bayesian procedures, comparisons with classical procedures, approximation techniques, Gibbs sampling, hierarchical Bayesian analysis, applications, computer implemented data analysis. Offered in alternate years.—(I-II)

190X. Seminar (1-2)
Seminar—1-2 hours. Prerequisite: one of courses 13, 32, 100, 102, or 103. In-depth examination of a special topic in a small group setting.

192. Internship in Statistics (1-12)
Internship—3-36 hours; term paper. Prerequisite: upper division standing and consent of instructor. Work experience in statistics. (P/NP grading only.)

194HA-194HB. Special Studies for Honors Students (4-4)
Independent study—12 hours. Prerequisite: senior qualifying for honors. Directed reading, research and writing, culminating in the completion of a senior honors thesis or project under direction of a faculty adviser. (Deferred grading only, pending completion of sequence.)

198. Directed Group Study (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)

Graduate Courses

205. Statistical Methods for Research (4)
Lecture—3 hours; laboratory—1 hour. Prerequisite: course 106 or the equivalent. Topics in design of experiments include factorial designs, balanced and unbalanced experiments, random and mixed effects models, response surface methodology, nested design, repeated measures, cross-over design, analysis of covariance. Applications in engineering, biological sciences, medicine and environmental research. Offered in alternate years.—(II)

222. Biostatistics: Survival Analysis (4)
Lecture—3 hours; discussion/lab—1 hour. Prerequisite: course 131C or consent of instructor. Incomplete data; life tables; nonparametric methods; parametric models; accelerated failure time models; proportional hazards models; partial likelihood, advanced topics.—I. (I)

223. Biostatistics: Generalized Linear Models (4)
Lecture—3 hours; discussion/lab—1 hour. Prerequisite: course 131C or consent of instructor. Likelihood and linear regression; generalized linear model; Binomial regression; case-control studies; dose-response relations; Poisson regression; Gamma regression; quasi-likelihood models; estimating equations; multivariate GLMs.—II. (II)

224. Biostatistics: Clinical Trials and Advanced Topics (4)
Lecture—3 hours; discussion/lab—1 hour. Prerequisite: course 223 or consent of instructor. Clinical trials; sequential design; covariate adjustment; meta-analysis; applications of generalized linear models; longitudinal studies; random effects models; advanced topics.—III. (III)

231A-231B-231C. Mathematical Statistics (4-4-4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 131C and Mathematics 127A-127B or the equivalent. Distribution theory; decision theoretic methods, estimation and hypothesis testing, multivariate techniques, large sample theory.—I-II-III.

232A-232B. Linear Model Theory (4-4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 131C. Estimation and testing for the general linear hypothesis, components of variance, multiple comparisons.—I. (I-II)

233. Design of Experiments (3)
Lecture—3 hours. Prerequisite: course 131C. Topics from balanced and partially balanced incomplete block designs, fractional factorials, and response surfaces. Offered in alternate years.—(II)

235A-235B-235C. Probability Theory (3-3-3)
Lecture—3 hours. Prerequisite: Mathematics 127C and courses 131A-131B or the equivalent. Measure theoretic foundations, abstract integration, modes of convergence, limit theorems, independence, laws of large numbers, characteristic functions, central limit theorem, conditional expectations; topics from discrete time, Markov and stationary processes, ergodic theory, Brownian motion, weak convergence, Wiener and Poisson processes. (Same course as Mathematics 235A-235B-235C.)—I-II-III.

237A-237B. Time Series Analysis (4-4)
Lecture—3 hours; term paper. Prerequisite: course 231B or the equivalent; course 237A is a prerequisite for course 237B. Advanced topics in time series analysis and applications. Models for experimental data, measures of dependence, large-sample theory, statistical estimation and inference. Univariate and multivariate spectral analysis, regression, ARIMA models, state-space models, Kalman filtering. Offered in alternate years.—(I-II)

238. Theory of Multivariate Analysis (4)
Lecture—3 hours; term paper. Prerequisite: courses 131B and 135. Multivariate normal and Wishart distributions, Hotelling’s T2 squared, simultaneous inference, likelihood ratio and union intersection tests, Bayesian methods, discriminant analysis, principal component and factor analysis, multivariate clustering, multivariate regression and analysis of variance, application to data. Offered in alternate years.—I.

240A-240B. Nonparametric Inference (4-4)
Lecture—3 hours; term paper. Prerequisite: course 231C, courses 235A-235B-235C recommended. Comprehensive treatment of nonparametric statistical inference, including the most basic materials from classical nonparametrics, robustness, nonparametric estimation of a distribution function from incomplete data, curve estimation, and theory of resampling methodology. Offered in alternate years.

241. Asymptotic Theory of Statistics (4)
Lecture—3 hours; term paper. Prerequisite: course 231C. BS, 235A-235B-235C desirable. Topics in asymptotic theory of statistics chosen from weak convergence, contiguity, empirical processes, Edgeworth expansion, and semiparametric inference. Offered in alternate years.

250. Advanced Data Analysis (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 141, 232A and either course 230 or 231A. Resampling methods and one to three additional topics selected from nonparametric and semi-parametric methods, incomplete data analysis, diagnostics, nonstandard multivariate and time series analysis, applied Bayesian methods, sequential analysis and quality control, categorical data analysis.—I. (I)

251. Topics in Advanced Theory of Statistics (4)
Lecture—3 hours; term paper. Prerequisite: course 231C. Bayesian, regression, sequential and survival analysis; bootstrap and reliability theory; change-point problems; empirical and spatial processes; asymptotic inference under dependence; asymptotic theory in linear, parametric and semiparametric models.—III. (III)

280. Orientation to Statistical Research (2)
Seminar—2 hours. Prerequisite: consent of instructor. Guided orientation to original statistical research papers, and oral presentations in class of such papers by students under the supervision of a faculty member. May be repeated once for credit. (SU grading only.)—III. (III)

290. Seminar in Statistics (1-6)
Prerequisite: consent of instructor. Seminar on advanced topics in probability and statistics. (SU grading only.)—I-II. III. (I-II, III)

292. Group Study (1-5)
Prerequisite: consent of instructor. (SU grading only.)

299. Individual Study (1-12)
Prerequisite: consent of instructor. (SU grading only.)

299D. Dissertation Research (1-12)
Prerequisite: candidate for Ph.D. degree. Research in statistics under the supervision of major professor. (SU grading only.)

Professional Course

390. Methods of Teaching Statistics (2)
Lecture/discussion—2 hours; workshop—1 hour. Prerequisite: graduate standing. Training in teaching methodology at the undergraduate level. Emphasis is on practical training exercises which are used to evaluate skills and improve these skills. Lecture exercises will be videotaped and critiqued. (SU grading only.)—I. (I)

Professional Course

401. Methods in Statistical Consulting (3)
Lecture/discussion—3 hours; laboratory—1 hour. Prerequisite: graduate standing. Introduction to consulting, in-class consulting as a group, individual or team consulting under supervision. May be repeated for credit. (SU grading only.)—I, II, III. (I, II, III)
Statistics (A Graduate Group)

Jane-Ling Wang, Ph.D., Chairperson of the Group
Group Office, 380 Kerr Hall (530-752-2362)
World Wide Web: http://www-stat.ucdavis.edu

Faculty
Carolyn Aldwin, Ph.D., Professor (Human and Community Development)
David S. Bunch, Ph.D., Associate Professor (Graduate School of Management)
Prabar Burman, Ph.D., Associate Professor (Statistics)
Colin Cameron, Ph.D., Associate Professor (Economics)
Andrew J. Clifford, Ph.D., Professor (Nutrition)
Christiana Drake, Ph.D., Associate Professor (Statistics)
Juanjuan Fan, Ph.D., Assistant Professor (Statistics)
Thomas B. Farver, Ph.D., Professor (Population Health and Reproduction)
Alan P. Fenech, Ph.D., Associate Professor (Statistics)
Benjamin Friedlander, Ph.D., Professor (Electrical and Computer Engineering)
William Gardner, Ph.D., Professor (Electrical and Computer Engineering)
Shu Geng, Ph.D., Professor (Agronomy and Range Science)
Arthur Havenner, Ph.D., Professor (Agricultural and Resource Economics)
Wesley O. Johnson, Ph.D., Professor (Statistics)
Oscar Jorda, Ph.D., Assistant Professor (Economics)
Philip Kass, Ph.D., Associate Professor (Population Health and Reproduction)
M. Levent Kavas, Ph.D., Professor (Civil and Environmental Engineering)
Arthur J. Krener, Ph.D., Professor (Mathematics)
David Layton, Ph.D., Assistant Professor (Environmental Science and Policy)
Richard A. Levine, Ph.D., Assistant Professor (Statistics)
Hongzhe Li, Ph.D., Assistant Professor (Internal Medicine)
Yue-Pok (Ed) Mack, Ph.D., Professor (Statistics)
Norman Matloff, Ph.D., Professor (Computer Science)
Patricia Mokhtarian, Ph.D., Associate Professor (Civil and Environmental Engineering)
Hans-Georg Mueller, M.D., Ph.D., Professor (Statistics)
Debbie Niemeier, Ph.D., Associate Professor (Civil and Environmental Engineering)
Richard E. Plant, Ph.D., Professor (Agronomy and Range Science)
Wolfgang Polonik, Ph.D., Assistant Professor (Statistics)
Carlos E. Puente, Ph.D., Associate Professor (Land, Air and Water Resources)
David Rocke, Ph.D., Professor (Graduate School of Management)
George G. Roussas, Ph.D., Professor (Statistics)
Naoki Saito, Ph.D., Associate Professor (Mathematics)
Francisco J. Samaniego, Ph.D., Professor (Statistics)
Steven J. Samuels, Ph.D., Associate Adjunct Professor (Epidemiology and Preventive Medicine)
Douglas V. Shaw, Ph.D., Professor (Pomology)
Robert H. Shumway, Ph.D., Professor (Statistics)
Chih-Ling Tsai, Ph.D., Professor (Graduate School of Management)
Jessica M. Utts, Ph.D., Professor (Statistics)
Yue-Pok (Ed) Mack, Ph.D., Professor (Statistics)
Roger J.B. Wets, Ph.D., Professor (Mathematics)

Emeriti Faculty
P.K. Bhattacharya, Ph.D., Professor Emeritus
Gerald L. DeNardo, M.D., Professor Emeritus
Charles E. Franti, Ph.D., Professor Emeritus
Alvin D. Wiggins, Ph.D., Professor Emeritus

Affiliated Faculty
Rahman Azari, Ph.D., Lecturer (Statistics)

Graduate Study. The Graduate Group in Statistics offers programs of study and research leading to the M.S. and Ph.D. degrees. The M.S. gives students a strong foundation in the theory of statistics as well as substantial familiarity with the most widely used statistical methods. Facility in computer programming is essential for some of the course work. The supervised statistical consulting required of all M.S. students has proven to be a valuable educational experience. The Ph.D. program combines advanced course work in statistics and probability with the opportunity for in-depth concurrent study in an applied field. A Ph.D. program with an emphasis in biostatistics is also offered and overseen by the Biostatistics Affinity Group, a subgroup of the Graduate Group in Statistics. For detailed information contact the Chairperson of the Group or the Graduate Adviser.

Preparation. For admission to the Ph.D. program, course work requirements for the master’s degree, and at least one semester/two quarters of advanced calculus must be completed.

Graduate Adviser, H.-G. Mueller
John R. Hall, Ph.D., Program Director and Professor (Sociology)
Program Office, Center for History, Society, and Culture, 2231 Social Sciences and
Humanities Building (530-754-8328)
Graduate Study. The program comprises course work and research leading to the
Ph.D. with a designated emphasis in Social Theory and Comparative History. The
program provides theoretical training and interdisciplinary perspective to Ph.D. can-
didates in the seven participating departments and graduate groups (Anthropology,
Comparative Literature, Economics, Geography, History, Political Science, Sociol-
yogy). Students from other departments are also welcome. All students must fulfill all
Ph.D. requirements of their home department. The additional requirements leading
to the designated emphasis include: (1) four graduate courses (Social Theory and
Comparative History 250, Sociology 242A, and two courses sponsored by the
Social Theory and Comparative History program, one of which must be offered by
a department other than the student’s home department); (2) presentation of a
Social Theory and Comparative History field as one area of specialization in the
departmental Ph.D. qualifying examination; (3) an oral discussion, following pas-
sage of the Ph.D. qualifying examination, based on the student’s dissertation
prospectus; (4) completion of the dissertation to the satisfaction of the student’s the-
sis committee, one of whose members will be a representative of the Social Theory
and Comparative History program.
Graduate Adviser. Consult the Program Director, Program Office, or web site
(http://chsc.ucdavis.edu) for advising and detailed information on application and
requirements.

Courses in Social Theory and Comparative History (STH)

Graduate Courses
250. Research in Social Theory and Comparative History (4)
Seminar—3 hours; term paper. Prerequisite: admission to Social Theory and Com-
parative History Designated Emphasis. Theoretically informed research in compar-
history. Students read exemplary works and learn to frame their own research
projects. Presentations include Center for History, Society, and Culture faculty and
visitors discussing current research.—III. (III.)
290. Advanced Topics in Social Theory and Comparative History (4)
Seminar—3 hours; term paper. Prerequisite: consent of instructor and History 204 or
Sociology 242A. Interdisciplinary study of particular substantive problems in social
theory and comparative history. Topics vary.—I, II, III. (I, II, III.)
295. Advanced Group Research in Social Theory and Comparative
History (1)
Discussion—1 hour. Prerequisite: consent of instructor. Participation in research
workshops sponsored by the Center for Comparative Research in History, Society,
and Culture. May be repeated for credit. (S/U grading only)—I, II, III. (I, II, III.)
296. Theory and Society Journal Editorial Workshop (1-4)
Workshop—1 hour; independent study—3 hours. Reading and offering workshop
critiques of papers submitted for publication. Reading and discussion of other rele-
vant work in history and the social sciences. May be repeated for credit up to 36
units or with consent of instructor. (S/U grading only.)—I, II, III. (I, II, III.) Gouldner

Quarter Offered: I=Fall; II=Winter; III=Spring; IV=Summer; 2001-2002 offering in parentheses.
General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
Science and Technology Studies

(College of Letters and Science)
Joan Cadden, Ph.D., Program Director
Program Office, 1238 Social Sciences and Humanities Building (530-752-9621)

Committee in Charge
Joan Cadden, Ph.D. (History)
Patrick Carroll-Burke, Ph.D. (Sociology)
Deborah E. Harkness, Ph.D. (History)
Kevin D. Hoover, D. Phil. (Economics)
James R. Griesemer, Ph.D. (Philosophy)
Jay Mechling, Ph.D. (American Studies)
Benjamin S. Orlove, Ph.D. (Environmental Science and Policy)
Paul Teller, Ph.D. (Philosophy)

The Program of Study
The program in Science and Technology Studies offers courses and undergraduate programs of study exploring the nature of science, technology, and medicine in relation to their economic, social, political, and cultural environments. The curriculum is oriented toward the analysis and synthesis of science, technology, and medicine in a way that actively creates connections between the varieties of perspectives and concerns in the humanities and the sciences.

The program will be of interest to undergraduate students who intend to pursue careers in which it will be useful to have a broad understanding of the nature and role of science, technology, and medicine; for example, careers in science teaching, medicine and other health care professions, technical writing and science journalism and science policy.

Courses in Science and Technology Studies (STS)

Lower Division Courses
1. Introduction to Science and Technology Studies (4)
Lecture—3 hours; discussion—1 hour. History, philosophy, sociology, politics, and cultural studies of science, technology, and medicine. Emphasis on a broad range of perspectives. GE credit: SciEng or SocSci.—I. (I.) Carroll-Burke

20. Methods in Science and Technology Studies (4)
Lecture/discussion—3 hours; extensive writing. Prerequisite: course 1 recommended. Methodological issues concerning the historical, philosophical, sociological, ethical, and political analysis of science, technology, and medicine. Detailed case studies to illustrate different methods of analysis. GE credit: SciEng or SocSci, Wrt.—(III.) Carroll-Burke

Upper Division Course
190. Seminar in Science and Technology Studies (4)
Lecture/discussion—3 hours; term paper. Prerequisite: open to junior and senior Science and Technology Studies majors only. Intensive reading, discussion, research and writing by small groups in selected topics of science, technology, and medicine studies scholarship. Emphasis on individual research projects.—III. (III.)
Textiles (A Graduate Group)

You-Lo Hsieh, Ph.D., Chairperson of the Group
Group Office, 129 Everson Hall (530-752-6650)

Faculty
Colin A. Carter, Ph.D., Professor (Agricultural and Resource Economics)
You-Lo Hsieh, Ph.D., Professor (Textiles and Clothing)
Stephen C. Jett, Ph.D., Professor (Geography, Textiles and Clothing)
Susan B. Kaiser, Ph.D., Professor (Textiles and Clothing, Women and Gender Studies)
Dean MacCannell, Ph.D., Professor (Landscape Architecture)
Zuhair A. Munir, Ph.D., Professor (Chemical Engineering and Materials Science)
Ning Pan, Ph.D., Professor (Textiles and Clothing, Biological and Agricultural Engineering)
Margaret H. Rucker, Ph.D., Professor (Textiles and Clothing)
Gang Sun, Ph.D., Assistant Professor (Textiles and Clothing)
James F. Schackelford, Ph.D., Professor (Chemical Engineering and Materials Science)
Barbara Shawcroft, M.F.A., Professor (Design)
Charles F. Shoemaker, Ph.D., Professor (Food Science and Technology)
Robert Sommer, Ph.D., Professor (Psychology)
Jo Ann C. Stabb, M.A., Senior Lecturer (Design)
Patricia A. Turner, Ph.D., Professor (African American and African Studies)

Graduate Study. The Graduate Group in Textiles offers a program of study and research leading to the M.S. degree. Students in the program can emphasize either the physical or behavioral science aspects of textiles. Research areas include chemical, physical, biochemical, and mechanical properties of fibers and polymers as well as fibrous assemblies, including composites, paper, and nonwovens; and psychological and sociological factors relating to perception and consumption of textiles and apparel. Extensive specialized fiber, polymer, and textiles research facilities and a behavioral research laboratory are available. For detailed information regarding the program, address the Chairperson of the Group.

Graduate Adviser. Y.-L. Hsieh (Textiles and Clothing).
Transportation Technology and Policy (A Graduate Group)

Patricia L. Mokhtarian, Ph.D., Chairperson of the Group
Group Office, 2028 Academic Surge (530-752-0247)
World Wide Web: http://www.its.ucdavis.edu

Faculty
Ralph C. Aldredge, III, Ph.D., Associate Professor (Mechanical and Aeronautical Engineering)
Lee Branstetter, Ph.D., Assistant Professor (Economics)
Dan Chang, Ph.D., Professor (Civil and Environmental Engineering)
Y. Hossein Farzin, Ph.D., Associate Professor (Agricultural and Resource Economics)
Robert Fenster, Ph.D., Professor (Economics)
Mark Francis, M.L.A., Professor (Landscape Architecture)
Andrew A. Frank, Ph.D., Professor (Mechanical and Aeronautical Engineering)
Joanna R. Groza, Ph.D., Professor (Chemical Engineering and Materials Science)
Robert A. Johnston, M.S., Professor (Environmental Science and Policy)
Ian Kennedy, Ph.D., Professor (Mechanical and Aeronautical Engineering)
Patricia L. Mokhtarian, Ph.D., Professor (Civil and Environmental Engineering)
Ahmet Palazoglu, Ph.D., Professor (Chemical and Materials Science Engineering)
G. Tayras R. Palmore, Ph.D., Assistant Professor (Chemistry)
Bahram Ravari, Ph.D., Professor (Mechanical and Aeronautical Engineering)
David M. Rocke, Ph.D., Professor (Graduate School of Management)
Paul Sabatier, Ph.D., Professor (Environmental Science and Policy)
Daniel Sperling, Ph.D., Professor (Civil and Environmental Engineering, Environmental Science and Policy)
Debbie A. Niemeier, Ph.D., Associate Professor (Civil and Environmental Engineering)

Emeriti Faculty
Myron "Mike" Hoffmann, Professor Emeritus

Affiliated Faculty
Rahman Azati, Ph.D., Lecturer (Statistics)
Andrew F. Burke, Ph.D., Research Engineer (Institute of Transportation Studies)
Mark A. DeLucchi, Ph.D., Research Ecologist (Institute of Transportation Studies)
Brett A. Holmen, Ph.D., Research Geochemist (Crocker Nuclear Laboratory)
Ryuchi Kitamura, Ph.D., Research Engineer (Institute of Transportation Studies)
Kenneth S. Kurani, Ph.D., Research Engineer (Institute of Transportation Studies)
Robert Moore, Ph.D., Research Associate (Institute of Transportation Studies)
Tom Turrentine, Ph.D., Research Anthropologist (Institute of Transportation Studies)

Graduate Study. The Graduate Group in Transportation Technology and Policy offers the M.S. (Plan I—thesis; and Plan II—exam), and Ph.D. degrees in two areas of specialization: Transportation Technology and Policy. Students in each track are required to take courses in a common set of core competencies, as well as some courses in the other track.

Curriculum
Core Courses. Students in each track are required to take courses in a common set of core competencies, as well as some courses in the other track.

Research Methods core courses: M.S. students take one of Transportation Technology and Policy 200, Environmental Science and Policy 278, Management 249; Policy Ph.D. students also take one of Civil and Environmental Engineering 254, Agricultural and Resource Economics 252, 256, Agronomy 206; Technology Ph.D. students also take one of Agronomy 205, Statistics 205, Biological Sciences Engineering 265.

Transportation Modeling/Analysis core courses: M.S. students take one of Civil and Environmental Engineering 251, 256, Ph.D. students take both.

Policy Analysis core courses: M.S. students and Technology Ph.D. students take one, and Policy Ph.D. students take two of Civil and Environmental Engineering 252, 262, Environmental Science and Policy 212A, 212B, Political Science 208.

Economics core courses: M.S. and Ph.D. students take one of Transportation Technology and Policy 215, Agricultural and Resource Economics 204, 275, 276, Civil and Environmental Engineering 268.

Technology core courses: To be announced.

In addition, students are expected to register for Transportation Technology and Policy 298 (or the approved equivalent in another department), a one-unit seminar course, each quarter it is offered. Transportation Technology and Policy 298 or the equivalent units will not count toward the required totals.

Planning and Policy Courses. Approved courses in this area include the following (additional courses may be added upon approval by the Chairperson):

Agricultural and Resource Economics 100A, 100B, 106, 136, 175, 176, 252, 253, 254, 255, 275
Agronomy 205, 206
Civil and Environmental Engineering 153, 165, 254, 262, 268
Civil and Environmental Engineering/Environmental Science and Policy 163
Community and Regional Development 240
Ecology 213
Economics 140, 240A, 240B, 256
Environmental Science and Policy 168A, 168B, 171, 173, 178, 212A, 212B
Geography 155, 156
Landscape Architecture 201
Management 232, 240, 249, 250, 251, 252, 285
Mathematics 108, 227, 256A, 256B
Nutrition 492A
Psychology 207A, 207B
Transportation Technology and Policy 200, 215, 292, 298

Technology Courses. Approved courses in this area include the following (additional courses may be added upon approval by the Chairperson):

Applied Biological Systems Technology 180, 181
Applied Science Engineering - Davis 115, 116, 132
Applied Science Engineering - Livermore 220A, 220B
Atmospheric Science 116, 270
Biological Systems Engineering 265
Civil and Environmental Engineering 149, 161, 162, 189, 242, 257
Computer Science Engineering 168
Environmental and Resource Sciences 131, 186
Electrical and Computer Engineering 207
Mechanical Engineering 161, 163, 188, 217, 226, 234, 236

Courses in Transportation Technology and Policy (TTP)

Graduate Courses
200. Transportation Survey Methods (4)
Lecture—4 hours. Prerequisite: Statistics 13; Civil and Environmental Engineering 251 recommended. Description of types of surveys commonly used in transportation-domain modeling, including travel and activity diaries, attitudinal, panel, computer, and stated-response surveys. Discussion of sampling, experimental design, and survey design issues. Analysis methods, including factor, discriminant and cluster analysis. Not open for credit to students who have completed Civil and Environmental Engineering 255.—II. (I.) Mokhtarian

Quarter Offered: I—Fall; II—Winter; III—Spring; IV—Summer; 2001-2002 offering in parentheses.

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
215. Transportation Economics (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: Economics 100, Mathematics 16C, Statistics 13 or consent of instructor. Fundamental problems of planning, financing, and pricing transportation "infrastructure" (roads, ports, airports). The economics of the automobile industry, as well as the impact of government regulation and deregulation in the airlines and trucking industries.—II. (II.) Feenstra, Branstetter

289A. Selected Topics in Transportation Technology and Policy (1-5)
Lecture and/or laboratory. Prerequisite: consent of instructor. Directed group study of special topics with instruction carried out through lecture or laboratory, or a combination of both. May be repeated for credit.—I, II, III. (I, II, III.)

289B. Selected Topics in Transportation Technology and Policy (1-5)
Lecture and/or laboratory. Prerequisite: consent of instructor. Directed group study of special topics with instruction carried out through lecture or laboratory, or a combination of both. May be repeated for credit. (S/U grading only.)—I, II, III. (I, II, III.)

290C. Graduate Research Group Conference (1)
Discussion—1 hour. Prerequisite: consent of instructor. Research problems, progress, and techniques in transportation. May be repeated for credit. (S/U grading only.)—I, II, III. (I, II, III.)

292. Internship in Transportation Technology and Policy (1-5)
Prerequisite: second year standing; approval of project prior to period of internship. Supervised work experience in transportation studies. May be repeated for credit if topic differs. (S/U grading only.)—I, II, III. (I, II, III.)

298. Group Study (1-5)
Discussion—1-5 hours. Prerequisite: consent of instructor. (S/U grading only.)

299. Research (1-12)
Discussion—1-12 hours. Prerequisite: consent of instructor. (S/U grading only.)

Professional Course

396. Teaching Assistant Training Practicum (1-4)
Prerequisite: graduate standing. May be repeated for credit. (S/U grading only.)—I, II, III. (I, II, III.)
Textiles and Clothing

(College of Agricultural and Environmental Sciences)
Susan B. Kaiser, Ph.D., Chairperson of the Division
Division Office, 129 Everson Hall (530-752-4650)
World Wide Web: http://textiles.ucdavis.edu

Faculty
You-Lo Hoieh, Ph.D., Professor
Stephen C. Jett, Ph.D., Professor
Susan B. Kaiser, Ph.D., Professor
Ning Pan, Ph.D., Professor
Margaret H. Rucker, Ph.D., Professor
Gan Sun, Ph.D., Assistant Professor

Emeriti Faculty
Mary Ann Morris, Ph.D., Professor Emeritus
Howard L. Needles, Ph.D., Professor Emeritus
Mary Ann Morris, Ph.D., Professor Emeritus
S. Haig Zeronian, Ph.D., D.Sc., Professor Emeritus

Affiliated Faculty
Joan Chauderi, M.S., Lecturer

The Major Program
The textiles and clothing major emphasizes the connections among (a) the physical characteristics of textile products, (b) human perceptions of and behavior toward these products, and (c) global economic trends affecting the textile/apparel marketplace. An integrative knowledge base links textile products with people and processes, to focus on the production, distribution, and consumer use of textiles and apparel. (See also Fiber and Polymer Science.)

The Program. The textiles and clothing major offers two options: textile science and marketing/economics. The Textile Science option provides students with a broad knowledge base in both the social and physical sciences. This base includes production, end-use applications and care of textiles and apparel, physical and chemical properties of textiles, and social-psychological and economic aspects of textiles and clothing. The Marketing/Economics option emphasizes social science and business coursework, while also providing students with an awareness of the physical nature of textile products.

Internships and Career Alternatives. Textiles and clothing majors can pursue internships and careers in apparel production and merchandising, retail management, international marketing, textile testing and conservation, and textiles journalism. The majority of textiles and clothing graduates accept entry-level management and technical positions within the textile and apparel industry or in related fields, such as merchandising and marketing, production, research and development, technical service and design. Students may also pursue graduate studies in textiles, business, and other areas depending on their specific selections of restricted elective coursework.

B.S. Major Requirements:

<table>
<thead>
<tr>
<th>Component</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>English Composition Requirement</td>
<td>4-12</td>
</tr>
<tr>
<td>See College Requirements</td>
<td></td>
</tr>
<tr>
<td>Preparatory Subject Matter</td>
<td>43-45</td>
</tr>
<tr>
<td>Agricultural Systems and Environment 21 or Computer Science Engineering 15 or 30</td>
<td>3-4</td>
</tr>
<tr>
<td>Economics 1A-1B</td>
<td>10</td>
</tr>
<tr>
<td>Anthropology 2, Science and Society 1, Art History 1A, 1B, 1C, or 1D</td>
<td>4</td>
</tr>
<tr>
<td>Physics 1A or 1B</td>
<td>3-4</td>
</tr>
<tr>
<td>Sociology 2</td>
<td>4</td>
</tr>
<tr>
<td>Statistics 13</td>
<td></td>
</tr>
<tr>
<td>Textiles and Clothing 6, 7, 8</td>
<td>12</td>
</tr>
<tr>
<td>Breadth/General Education</td>
<td>6-24</td>
</tr>
</tbody>
</table>

Satisfaction of General Education requirement

Select one of the following two options:

Marketing/Economics Option

<table>
<thead>
<tr>
<th>Component</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additional Preparatory Subject Matter for the option</td>
<td>18-19</td>
</tr>
<tr>
<td>Management 11A-11B</td>
<td>8</td>
</tr>
<tr>
<td>Chemistry 10 or 2A</td>
<td>4-5</td>
</tr>
<tr>
<td>Mathematics 16A-16B</td>
<td>6</td>
</tr>
</tbody>
</table>

Depth Subject Matter..57-58

Agricultural and Resource Economics 100A-100B, 106, 136.............16
Statistics 103 12
Psychology 145 or 183, or Consumer Science 100.........................3-4
Fiber and Polymer Science 110, Textiles and Clothing 107, 162, 162L, 163, 163L, 164, 165, 171, 173, 174 ..31

Restricted Electives..12

Courses selected from the following: Agricultural and Resource Economics 18, 112, 141M, 142, 155, 157, 171A, 171B, Anthropology 122, 126, Consumer Science 100, Design 77A, 77B, 143, Economics 101, 121A, 121B, 134, 162, and other relevant course work. Foreign language units may be used to satisfy any or all of the required 12 units. Mathematics 16C, Psychology 145, 183, Sociology 123, 126, 140, 141, 145, Textiles and Clothing 180A, 180B, 230, 239, with consent of instructor, and a maximum of 5 units in either Textiles and Clothing 192 or 199.

Unrestricted Electives..15-44

Textile Science Option

Additional Preparatory Subject Matter for the option....................19
Chemistry 2A, 2B, 8A, 8B ...16
Mathematics 16A..3

Depth Subject Matter..52-53

Agricultural and Resource Economics 112, 113.................................8
Design 143 ..4
Psychology 145 or 183, or Consumer Science 100.........................3-4
Fiber and Polymer Science 100, 161, 161L, Textiles and Clothing 107, 162, 162L, 163, 163L, 164, 165, 171, 173, 17434

Restricted Electives..16

Unrestricted Electives..17-46

Total Units for the Degree ..180

(Marketing/Economics or Textile Science Option)

Major Adviser. N. Pan.

Advising Center for the major is located in 231 Everson Hall (530-752-4417).

Minor Program Requirements:

The Division of Textiles and Clothing offers a minor program for non-majors interested in satisfying secondary career objectives. For acceptance into the program, see the staff adviser in 231 Everson Hall.

Minor Program Courses:

Courses in Textiles and Clothing (TXC)

Questions pertaining to the following courses should be directed to the instructor or to the Division of Textiles and Clothing. See also courses in Fiber and Polymer Science.

Lower Division Courses

6. Introduction to Textiles (4)
Lecture—3 hours; laboratory—3 hours. Introduction to the structure and properties of textiles. Consumer use and fabric characteristics are emphasized. GE credit: Sci-Eng.—(1) Sun
7. Style and Cultural Studies (4)
 Lecture/discussion—3 hours; discussion/laboratory—1 hour. The multiple and over-
lapping influences of gender, sexuality, and class on constructions of iden-
tity and community are explored through the study of style in popular culture and
everyday life. Continuity and change in clothing and appearance styles are inter-

8. The Textile and Apparel Industries (4)
 Lecture—4 hours. Study of the textile and apparel industries including fashion the-
ory, production, distribution, and consumption of textile goods. GE credit: SocSci,
Div.—II. (I.) Rucker

92. Internship in Textiles and Clothing (1-12)
 Internship—3-36 hours. Prerequisite: consent of instructor. Work experience off
 campus in a textiles or clothing-related area. Supervision by a member of the Tex-
tiles and Clothing faculty. (P/NP grading only.)

98. Directed Group Study (1-5)
 Prerequisite: consent of instructor. (P/NP grading only.)

99. Special Study for Lower Division Students (1-5)
 (P/NP grading only.)

Upper Division Courses

107. Social and Psychological Aspects of Clothing (4)
 Lecture—3 hours; discussion—1 hour. Prerequisite: Sociology 2. Social and cogni-
tive factors influencing management and perception of personal appearance in
everyday life. Concepts and methods appropriate to the study of meaning of clothes

162. Textile Fabrics (3)
 Lecture—3 hours. Prerequisite: course 6. Properties of fabrics as related to ser-
vicability, comfort, and appearance. GE credit: SciEng.—II. (III.) Pan

162L. Textile Fabrics Laboratory (1)
 Laboratory—3 hours. Prerequisite: course 162 (may be taken concurrently). Labor-
atory methods and procedures employed in studying properties of textile fabrics as
related to serviceability, comfort, and appearance.—II. (III.) Pan

163. Textile Coloration and Finishing (3)
 Lecture—3 hours. Prerequisite: course 6, Fiber and Polymer Science 110, or Chem-
istry 8B. Basic principles of textile dyeing, printing, and finishing; color theory; struc-
ture, properties, and application of dyes and finishes; factors affecting application
and fastness; maintenance of dyed and finished textiles.—III. (III.) Sun

163L. Textile Coloration and Finishing Laboratory (1)
 Laboratory—3 hours. Prerequisite: course 163 (may be taken concurrently). Demon-
strates various aspects of dyeing, printing, and finishing of textile substrates includ-
ing the effect of fiber and finish type, and physical and chemical variables on dyeing
and finishing processes and on the properties of the resultant textile.—III. (III.) Sun

164. Principles of Apparel Production (3)
 Lecture—3 hours. Prerequisite: course 6 or 8. Overview of characteristics, technol-
yogy, processes, and research in apparel manufacturing industries including study of
government statistics, material utilization and fabrication, mechanization, manage-
ment, and production engineering.—III. (III.) Chandler

165. Textile Processes (3)
 Lecture/discussion—3 hours. Prerequisite: course 6. Physical processes involved in
the production of textiles from the individual fiber to the finished fabric. Includes spinning,
texturing, yarn formation, weaving preparation, weaving and knitting, tuft-
ing and fabric finishing.

171. Clothing Materials Science (4)
 Lecture—3 hours; laboratory/discussion—3 hours. Prerequisite: course 6, 8, and sen-
ior standing. The properties, characterization, and performance evaluation of
clothing materials and structures for specific functional applications. Principles and
methods related to wetting and transport properties, fabric hand and aesthetic proper-
ties, clothing comfort, and material and assembly technology.

173. Principles of Fashion Marketing (3)
 Lecture—3 hours. Prerequisite: course 8, Economics 1A. Agricultural and Resource
Economics 113 or 136. Study of basic elements of fashion marketing including phil-
osophy and objectives, organization, merchandising, pricing, promotion and per-
sonnel. Offered in alternate years.—I. Rucker

174. Introduction to World Trade in Textiles and Clothing (3)
 Lecture—3 hours. Prerequisite: course 8. Structure of the global fiber/textile/apparel
complex and its distribution patterns with an overview of political, economic, and
 technological factors that are changing these industries and their markets. Issues of
race, ethnicity, and gender are highlighted throughout. Offered in alternate years.
GE Credit: SocSci, Div.—(III.) Rucker

180A-180B. Introduction to Research in Textiles (2-2)
 Laboratory—6 hours. Prerequisite: senior standing with textile-related major, and
consent of instructor. Senior thesis on independent problems. Research begun in
course 180A will be continued and completed in course 180B. (Deferred grading
only, pending completion of sequence.)—I, II, III, (I, II, III.)

192. Internship in Textiles and Clothing (1-12)
 Internship—3-36 hours. Prerequisite: consent of instructor. Work experience off
campus in a textiles or clothing-related area. Supervision by a member of the Tex-
tiles and Clothing faculty. (P/NP grading only.)
Vegetable Crops

(College of Agricultural and Environmental Sciences)
Arnold J. Bloom, Ph.D., Chairperson of the Department
Department Office, 148 Asmundson Hall (530-752-0516)
World Wide Web: http://vegetables.ucdavis.edu

Faculty
Steffen Abel, Ph.D., Assistant Professor
Lars W. Anderson, Ph.D., Lecturer
David E. Bayer, Ph.D., Professor
Alan B. Bennett, Ph.D., Professor
Arnold J. Bloom, Ph.D., Professor
Kent J. Bradford, Ph.D., Professor
Marita Cantwell, Ph.D., Lecturer
Roger T. Chetelat, Ph.D., Lecturer
Joseph M. DiTomaso, Ph.D., Lecturer
Clyde L. Emore, Ph.D., Lecturer
Steven A. Fenimore, Ph.D., Lecturer
Albert J. Fischer, Ph.D., Assistant Professor
Timothy K. Hartz, Ph.D., Lecturer
Louise E. Jackson, Ph.D., Associate Professor
W. Thomas Lanius, Ph.D., Lecturer
Muhammad Marrush, Ph.D., Lecturer
Richard W. Michelmore, Ph.D., Professor
Jeffrey P. Mitchell, Ph.D., Lecturer
Donald J. Nevin, Ph.D., Professor
Robert F. Norris, Ph.D., Associate Professor
Carlos F. Quiros, Ph.D., Professor
Dina St. Clair, Ph.D., Associate Professor
Mikal E. Saltveit, Ph.D., Professor
David F. Spencer, Ph.D., Lecturer
Trevor V. Suslow, Ph.D., Lecturer
Ronald E. Voss, Ph.D., Lecturer
John I. Yoder, Ph.D., Professor

Emeriti Faculty
James F. Harrington, Ph.D., Professor Emeritus
James M. Lyons, Ph.D., Professor Emeritus
Jim W. B. McHenry, Ph.D., Lecturer Emeritus
Lawrence W. Mitch, Ph.D., Lecturer Emeritus
Leonard L. Morris, Ph.D., Professor Emeritus
Harlan K. Pratt, Ph.D., Professor Emeritus
Lawrence rappaport, Ph.D., Professor Emeritus
Charles M. Rick, Ph.D., Professor Emeritus
Vincent Rubatzky, Ph.D., Lecturer Emeritus
William L. Sims, Ph.D., Lecturer Emeritus
Paul G. Smith, Ph.D., Professor Emeritus
Herman Timm, Ph.D., Lecturer Emeritus
James E. Welch, Ph.D., Lecturer Emeritus
Masatoshi Yamaguchi, Ph.D., Professor Emeritus
Shang Fa Yang, Ph.D., Professor Emeritus

Graduate Study. A program of study is offered leading to the M.S. degree in Horticulture and Agronomy. Information can be obtained from the Advising Office at 140 Environmental Horticulture. Also see the Graduate Studies chapter of this catalog.

Graduate Adviser. C. Quiros

Related Courses. Vegetable Crops faculty also teach the following courses that contribute to majors and graduate programs in Agricultural Systems and Environment, Biological Sciences, Genetics, and Plant Biology. Agricultural Systems and Environment 2, 110C, 189, 195, Biological Sciences 1C, 101, Biotechnology 171, Genetics 2010D, 207L, 296, Plant Biology 1, 12, 154, 172, 172L, 176, 177, 188, 196, Plant Biology Graduate Group 201, 212, 214, 217, 218A, 223, 228, 293.

Courses in Vegetable Crops (VCR)
Questions pertaining to the following courses should be directed to the instructor or to the Vegetable Crops Office, 148 Asmundson Hall.

Lower Division Course

92. Internship in Vegetable Crops (1-6)
Internship—3-36 hours. Work experience off or on campus in all subject areas pertaining to vegetable crops. Internships supervised by a member of the faculty. Maximum of 12 units permitted in the Vegetable Crops 92–192 series. (P/NP grading only.)

Upper Division Courses

192. Internship in Vegetable Crops (1-12)
Internship—3-36 hours. Prerequisite: consent of instructor. Work experience off or on campus in all subject areas pertaining to vegetable crops. Internships supervised by a member of the faculty. Maximum of 12 units permitted in the Vegetable Crops 92–192 series. (P/NP grading only.)

198. Directed Group Study (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)

Graduate Courses

216. Ecology and Agriculture (3)
Lecture/discussion—3 hours. Prerequisite: Plant Biology 112 or 172. Comparative physiology of harvested vegetables; emphasis on maturation, senescence, compositional changes, physiological disorders and effects of environmental factors. Laboratories stress concepts and research procedures. Offered in alternate years.—(II.) Saltveit

217. Genomics and Breeding of Vegetable Crops (3)
Lecture—3 hours. Prerequisite: Biological Sciences 101 or the equivalent. Integration of modern biotechnology and classical plant breeding including the impact of structural, comparative and functional genomics on gene discovery, characterization and exploitation. Molecular markers, plant transformation, hybrid production, disease resistance, and novel output traits.—II. (I.) Quiros

221. Genomics and Breeding of Vegetable Crops (3)
Lecture—3 hours. Prerequisite: Biological Sciences 101 or the equivalent. Preview of genome structure, mapping, gene tagging and development of other genetic resources applied to improvement of major vegetables. For graduate students contemplating a career in modern vegetable breeding and biotechnology.—III. (II.) Quiros

290. Seminar (1)
Discussion—1 hour. (S/U grading only)—I, II, (I, II)

298. Group Study (1-5)
Prerequisite: consent of instructor.

299. Research (1-12)
(S/U grading only)

Professional Course

396. Teaching Assistant Training Practicum (1-4)
Prerequisite: graduate standing. May be repeated for credit. (S/U grading only)—I, II, III. (I, II, III)
Viticulture and Enology

(College of Agricultural and Environmental Sciences)

James A. Wolpert, Ph.D., Chairperson of the Department

Department Office, 1023 Wickson Hall (530-752-0380)

World Wide Web: http://wine.ucdavis.edu

Faculty

Douglas O. Adams, Ph.D., Associate Professor
Linda F. Bisson, Ph.D., Professor
David E. Block, Ph.D., Assistant Professor (Viticulture and Enology, Chemical Engineering)
Roger B. Boulton, Ph.D., Professor (Viticulture and Enology, Chemical Engineering)
Susan E. Ebeler, Ph.D., Assistant Professor
Mark A. Matthews, Ph.D., Professor
Carole L. Meredith, Ph.D., Professor
Ann C. Noble, Ph.D., Professor
David A. Mills, Ph.D., Assistant Professor
Andrew Walker, Ph.D., Associate Professor
Larry E. Williams, Ph.D., Professor

Emeriti Faculty

Richard E. Kepner, Ph.D., Professor Emeritus
W. Mark Klewer, Ph.D., Professor Emeritus
Ralph E. Kunkee, Ph.D., Professor Emeritus
Lloyd A. Lider, Ph.D., Professor Emeritus
Harold P. Olmo, Ph.D., Professor Emeritus
Cornelius S. Ough, D.Sc., Professor Emeritus
Vernon L. Singleton, Ph.D., Professor Emeritus, Academic Senate Distinguished Teaching Award
A. Dinsmoor Webb, Ph.D., Professor Emeritus

Affiliated Faculty

Christian E. Butzke, Ph.D., Associate Specialist in Cooperative Extension
Nick K. Dokoozlian, Ph.D., Lecturer, Associate Specialist in Cooperative Extension
James A. Wolpert, Ph.D., Specialist in Cooperative Extension

The Major Program

The Viticulture and Enology major provides an interdisciplinary education in the biological and physical principles underlying grape and wine production as well as practical knowledge of grape growing (viticulture) and wine making (enology). This program provides the knowledge base for problem-solving and decision-making in commercial grape and wine production.

Preparatory Requirements

Before transferring into the Viticulture and Enology major, students must complete the following courses with a grade of C or better and with a combined grade point average of at least 2.5 at the University of California (at least 3.0 for similar courses taken at community college) for these and all other preparatory courses. In addition, students’ overall GPA must be 2.25 or higher. All courses must be taken for a letter grade.

- Biological Sciences 1A...5 units
- Chemistry 2A, 2B, 2C, 8A..17 units
- Mathematics 16A...3 units
- Physics 7A...4 units

Recommendations. Completion of UC Davis equivalents of the following preparatory courses for the major are not required for entry but are highly recommended. Failure to complete these will delay entry into required upper division courses and may thus delay graduation. Some courses may be available at UC Davis during Summer Session.

- Chemistry 88 ...4 units
- Mathematics 16B...3 units
- Biological Sciences 1C...5 units
- Biological Sciences 102...3 units

The Program. The curriculum builds upon a foundation of biology, chemistry, biochemistry and mathematics with specialized courses related to grape and wine production. To complete the program, students may choose to place particular emphasis on viticulture, enology or economics. Credit may also be earned for foreign language study and internships.

Career Alternatives. Graduates are qualified for a variety of vineyard and winery positions, including production management, quality control and research. Additionally they may work in related fields such as pest management, nursery production and analytical services. Successful completion of this major can also provide the basis for preparation for graduate study in such areas as food science, horticulture and agronomy, microbiology, agricultural and environmental chemistry and plant biology.

B.S. Major Requirements

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>English Composition Requirement</td>
<td>0-8</td>
</tr>
<tr>
<td>See College requirement.</td>
<td></td>
</tr>
<tr>
<td>Breadth/General Education</td>
<td>24</td>
</tr>
<tr>
<td>See General Education requirements.</td>
<td></td>
</tr>
<tr>
<td>Preparatory Subject Matter</td>
<td>41-49</td>
</tr>
<tr>
<td>Biological Sciences 1A, 1C</td>
<td>10</td>
</tr>
<tr>
<td>Chemistry 2A-2B-2C</td>
<td>15</td>
</tr>
<tr>
<td>Chemistry 8A, 8B</td>
<td>6</td>
</tr>
<tr>
<td>Agricultural Systems and Environment 21 or equivalent and adviser approval</td>
<td>0-3</td>
</tr>
<tr>
<td>Mathematics 16A-16B</td>
<td>6</td>
</tr>
<tr>
<td>Physics 1A, 1B</td>
<td>6</td>
</tr>
<tr>
<td>Viticulture and Enology 2, 3 or equivalent and adviser approval</td>
<td>0-5</td>
</tr>
<tr>
<td>Depth Subject Matter</td>
<td>49-53</td>
</tr>
<tr>
<td>Biological Sciences 102, 103</td>
<td>6</td>
</tr>
<tr>
<td>Microbiology 102, 102L</td>
<td>6</td>
</tr>
<tr>
<td>Agricultural Systems and Environment 120 or Food Science and Technology</td>
<td>6</td>
</tr>
<tr>
<td>B.S. Major Requirements</td>
<td></td>
</tr>
<tr>
<td>Preparatory Subject Matter</td>
<td></td>
</tr>
<tr>
<td>Biological Sciences 1, 1C</td>
<td></td>
</tr>
<tr>
<td>Chemistry 2A-2B-2C</td>
<td></td>
</tr>
<tr>
<td>Chemistry 8A, 8B</td>
<td></td>
</tr>
<tr>
<td>Agricultural Systems and Environment 21 or equivalent and adviser approval</td>
<td></td>
</tr>
<tr>
<td>Mathematics 16A-16B</td>
<td></td>
</tr>
<tr>
<td>Physics 1A, 1B</td>
<td></td>
</tr>
<tr>
<td>Viticulture and Enology 2, 3 or equivalent and adviser approval</td>
<td></td>
</tr>
<tr>
<td>Depth Subject Matter</td>
<td></td>
</tr>
<tr>
<td>Biological Sciences 102, 103</td>
<td></td>
</tr>
<tr>
<td>Microbiology 102, 102L</td>
<td></td>
</tr>
<tr>
<td>Agricultural Systems and Environment 120 or Food Science and Technology</td>
<td></td>
</tr>
<tr>
<td>Total Units</td>
<td></td>
</tr>
<tr>
<td>B.S. Major Requirements</td>
<td>53</td>
</tr>
</tbody>
</table>

In consultation with adviser, choose 28 units from three of the following areas. At least 12 units must be from one of the following areas:

- **A. Plant Science Area**
 - The following lower division courses are not listed among the prerequisites for the major are required for one or more of the restricted electives in this area: Agricultural Systems and Environment 2, Biological Sciences 1B, Food Science and Technology 2, Geology 50, Plant Biology 10A.
- **B. Food Science and Microbiology Area**
 - The following lower division courses are not listed among the prerequisites for the major are required for one or more of the restricted electives in this area: Biological Sciences 1B, Physics 7B, 7C.
- **C. Economics and Business Area**
 - Agricultural and Resource Economics 100A, 112, 113, 118, 130, 140, 150, Economics 1A, 1B, Management 11A, 11B, Viticulture and Enology 111, 130

D. Language Area
- Maximum 12 units, not counting course 1, of one of the following languages: French, German, Italian, Portuguese or Spanish. At least one course must be Intermediate or Conversational (qualifying Intermediate or Conversational courses are listed below): French 8, 21, 22, 23, 38, German 6, 1, 11, 20, 21, 22, Italian 4, 5, 8A, 8B, Spanish 8, 21, 22, 28, 31, 32, 33.
- Courses taught in English will not count as restricted electives in this major. Italian 8A may not be repeated for restricted elective credit.

Quarter Offered: I-Fall; II-Winter; III-Spring; IV-Summer, 2001-2002 offering in parentheses.
Courses in Viticulture and Enology (VEN)

Lower Division Courses

2. Introduction to Viticulture (2)
Lecture—2 hours. Fundamental principles of biology and culture of the grapevine, including taxonomy, morphology, physiology, distribution, domestication, utilization, propagation, production systems, harvesting, and storage and processing of grapes. Successful completion of the course should prepare students for upper division courses in viticulture.—I. (I) Williams

3. Introduction to Winemaking (3)
Lecture—3 hours. Overview of the history of wine, viticulture, fermentation, winery operations, the physiology of wine consumption, wines produced in California and other major wine-producing regions and the sensory evaluation of wine. GE credit: SciEng or SocSci—I, II, III; II, I, II, III; Waterhouse, Meredith, Adams

3W. Introduction to Winemaking: Writing Experience (1)
Term paper/discussion—1 hour. Prerequisite: course 3 (enrollment recommended). Preparation of a term paper on a subject covered in course 3. Introduction to searching the wine and grape literature in Shields Library. Papers graded on research quality, composition and critical thinking. GE credit with concurrent enrollment in course 3: Wrt—I, II, III; I, II, III; Waterhouse, Meredith, Adams

90X. Lower Division Seminar (2)
Seminar—1 hour; term paper (required)/discussion. Prerequisite: lower division standing and consent of instructor. Introduction to current issues surrounding wine and health as they relate to diet, nutrition, and toxicology. May not be repeated for credit. GE credit: Wrt—Ebel, Bisson, Waterhouse

99. Special Study for Undergraduates (1-5)
P(NP grading only)

Upper Division Courses

101A. Viticultural Practices (2)
Discussion/laboratory—4 hours. Prerequisite: course 2. Provides the information required to identify the major wine, raisin, and table cultivars grown in California and elsewhere. Also provides experience in vineyard sampling techniques and vine disease identification.—II. (II) Walker

101B. Viticultural Practices (2)
Discussion/laboratory—4 hours. Prerequisite: course 2. Field-oriented experience in the principles and practices of grapevine production, including pruning, propagation, weed identification and control, frost protection, and physical examination of soil profiles and root distribution patterns.—II. (II) Walker

101C. Viticultural Practices (2)
Discussion/laboratory—4 hours. Prerequisite: course 2. Field-oriented experience in the principles and practices of grapevine production, including vineyard establishment, vine training, trellising, canopy management practices, irrigation and water management, and methods of crop adjustment for improvement of fruit quality.—III. (III) Walker

105. Grapevine Growth and Physiology (3)
Lecture—3 hours. Prerequisite: course 2. Botanical aspects including morphology and physiology of the grapevine. Lecture preceded by lectures covering flower development and energy budget concepts. Impact of physiological variables such as photosynthesis translocation, mineral nutrition, and water relations on fruit ripening and composition will be covered.—II. (III) Matthews

111. World Viticulture (3)
Lecture—3 hours. Prerequisite: upper division standing. Study of the diversity of viticulture, both geographical and historical. History of grape growing and its spread throughout the world will be covered, along with discussions of current viticultural practices in different parts of the world, including California.—III. (III) Meredith

111L. Critical Evaluation of Wines of the World (1)
Laboratory/discussion—3 hours. Prerequisite: course 111 (must be taken concurrently). course 125 with a grade of C or better. Critical analysis of wines produced in different parts of the world with emphasis on the relationship between sensory properties of the wines and factors associated with their place of origin. (P(NP grading only.)
130. Management, Marketing, and Economics of the California Wine Industry (3)
Lecture—24 hours; lecture/discussion—4 hours; fieldwork—8 hours. Prerequisite:
course 124. Introduction to management, marketing and economics of wine in
the United States with particular emphasis on California. Reviews market seg-
mament and explores alternative strategies for grape acquisition, production,
brand development, distribution, and social policy formation. GE credit: Wrt. —
summer. [summer]

135. Wine Technology and Winery Systems (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 124. Restricted to upper
division majors in fermentation science, viticulture and enology, or graduate stu-
dents in food science. Course includes three field trips. Process technologies and
process systems that are used in modern commercial wineries. Overview of wine-
making systems; winemaking operations and equipment; barrel aging and barrel
management; membrane separation processes; specialized contacting systems;
cleaning and sanitation systems; process control systems; refrigeration systems;
air conditioning and humidity systems; electrical systems; waste water systems; solid
waste handling; work place safety.—III. (III.) Boulton, Block

140. Distilled Beverage Technology (3)
Lecture—3 hours. Prerequisite: Chemistry 8B, Food Science and Technology 110A.
Distillation principles and practices; production technology of brandy, whiskey, rum,
vodka, gin, and other distilled beverages; characteristics of raw materials, fermen-
tation, distillation, and aging. Offered in alternate years.—III. (III.) Boulton

181. Readings in Enology (1)
Discussion—1 hour. Prerequisite: course 3. Critical evaluation of selected mono-
graphs in enology. Monographs are usually recent publications with a historical per-
spective. Discussion leadership rotates among students. (P/NP grading only) —III. (III.) Matthews

186. Fermentation Science (3)
Lecture—3 hours. Prerequisite: Microbiology 102, Biological Sciences 101. Basic
principles of fermentation science and biotechnology with emphasis on industrial
fermentation processes that generate useful products including fermented food and
beverages, pharmaceuticals, fine chemicals, and other gene products.—III. (III.) Block

190X. Winemaking Seminar (1)
Seminar—1 hour; discussion—1 hour; research paper. Prerequisite: course 3. Weekly
semesters presented by outside speakers on a specific winemaking topic cho-
sen for the quarter. Discussion follows with the speaker hosted by the faculty mem-
ber in charge. May be repeated twice for credit. GE credit: Wrt.

192. Internship (1-12)
Internship—3-36 hours. Prerequisite: completion of 84 units. Work experience
related to Fermentation Science (Enology) or Plant Science (Viticulture) majors.
Internships must be approved and supervised by a member of the department or
major faculty, but are arranged by the student. (P/NP grading only.)

198. Directed Group Study (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5)
(P/NP grading only.)

Graduate Courses

200. Introduction to Scientific Methods (2)
Lecture/discussion—1 hour; term paper. Prerequisite: graduate standing or consent
of instructor. Processes involved in conducting scientific research. Topics include
conducting literature review, formulating hypotheses, and analyzing and reporting
results. Annotated bibliography and written and oral research proposal.—III. (III.)

Ebeler

210. Grape Development and Composition (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: Biological Sciences 102, 103.
The anatomy, physiology and biochemistry of grape berry development, with
emphasis on the development of grape composition relevant to winemaking.
Offered in alternate years.—III. Adams, Polito

216. Vineyard Establishment and Development (4)
Lecture/discussion—3 hours; fieldwork—3 hours; term paper. Prerequisite: courses
101A, 101B, 101C, and one of courses 115 or 116, and course 118 or consent
of instructor; course 110, Soil Science 100, Atmospheric Science 133 and Agricul-
tural and Resource Economics 140 recommended. Application of plant, meterolog-
ical, soil, water, and economic sciences to vineyard establishment and develop-
ment. Preparation of a comprehensive study to determine the viticultural and
economic feasibility of a given site for raisin, table, or wine grape production.—
I. (I) Dokozian

219. Natural Products of Wine (3)
Lecture—3 hours. Prerequisite: courses 123 and 124, or natural products back-
ground and consent of instructor. Structure, occurrence, and changes due to wine
production to the natural products found in wine. Chemicals with a sensory impact
will be emphasized, including flavonoids and other phenolics, terpenes and noriso-
phenols, pyrazines, oak volatiles and other wine constituents.—II. (II.) Waterhouse

220. Secondary Nutrients, Chemistry (3)
Lecture—2 hours; discussion—1 hour. Prerequisite: Chemistry 8B, Biological Sci-
ences 102. Introduction to phytochemicals with possible health or nutritional effects,
with a focus on chemical structure, reactivity and occurrence in foods, including
phenolics, glucosinolates, carotenoids and fiber. Students will give oral reports.
Offered in alternate years.—Waterhouse
Molecular Biosciences

(School of Veterinary Medicine)
Alan R. Buckpitt, Ph.D., Chairperson of the Department
Department Office, 1311 Haening Hall (530-752-1059)

Faculty
Alan R. Buckpitt, Ph.D., Professor
Gino A. Contopoulos, Ph.D., Associate Professor
Andrea Fascetti, D.V.M., Ph.D., Assistant Professor
Shri N. Giri, B.V.Sc., Ph.D., Professor
Robert J. Hansen, Ph.D., Professor
Cynthia Kollas-Baker, D.V.M., Ph.D., Assistant Professor of Clinical Diagnostic Pharmacology (California Animal Health and Food Safety Laboratory System)
Michael E. Mount, D.V.M., Ph.D., Associate Professor
Isaac N. Pessah, Ph.D., Professor
Birgit Puschner, D.V.M., Ph.D., Assistant Professor of Clinical Diagnostic Toxicology (California Animal Health and Food Safety Laboratory System)
Quinton R. Rogers, Ph.D., Professor
Henry J. Segall, Ph.D., Professor
Scott D. Stanley, Ph.D., Assistant Professor of Clinical Diagnostic Chemistry (California Animal Health and Food Safety Laboratory System)
Philip R. Vulliet, D.V.M., Ph.D., Professor
Hanspeter Witschi, M.D., Professor

Emeriti Faculty
Arthur L. Black, Ph.D., Professor Emeritus, Academic Senate Distinguished Teaching Award
Victor W. Burns, Ph.D., Professor Emeritus
Richard A. Freedland, Ph.D., Professor Emeritus, Academic Senate Distinguished Teaching Award
James G. Morris, Ph.D., Professor Emeritus
Otto G. Raabe, Ph.D., Professor Emeritus

Affiliated Faculty
Robert Backus, D.V.M., Ph.D., Assistant Research Nutritional Physiologist/Endocrinologist
Heidrun Groes, Ph.D., Assistant Research Biochemist
Michael Lamé, Ph.D., Assistant Research Toxicologist
Thomas North, Ph.D., Adjunct Professor
Alice Wong, Ph.D., Assistant Research Biochemist
Patti Wong-Yin, Ph.D., Assistant Research Pharmacologist/Toxicologist

Courses in Molecular Biosciences (VMB)

Lower Division Course
92. Internship (1-12)
Internship—3-36 hours. Prerequisite: lower division standing and consent of instructor. Work experience off and on campus in all subject areas offered in the Department of Molecular Biosciences. Internships supervised by a member of the faculty. (P/NP grading only.)

Upper Division Courses
102. Internship (1-12)
Internship—3-36 hours. Prerequisite: completion of 84 units and consent of instructor. Work experience off and on campus in all subject areas offered in the Department of Molecular Biosciences. Internships supervised by a member of the faculty. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5)
(P/NP grading only.)

Graduate Courses
205A. Intermediary Metabolism of Animals (4)
Lecture—4 hours. Prerequisite: a course in biochemistry or physiological chemistry or consent of instructor; a course in physiology recommended. Biochemical data as related to metabolism of intact animals. Pathways and control in biosynthesis and degradation of carbohydrates and lipids, including hormonal, nutritional, and genetic effects. Dynamics of animal metabolism including pools and turnover rates. Offered in alternate years.—I.

205B. Intermediary Metabolism of Animals (3)
Lecture—3 hours. Prerequisite: course 205A or consent of instructor. Pathways and control in animals of the biosynthesis and degradation of amino acids, proteins, nucleotides and porphyrins; includes hormonal, nutritional, and genetic effects. Offered in alternate years.—(II.) Rogers, Hansen, Hershey, Rucker

247. Natural Toxicants (2)
Lecture—2 hours. Prerequisite: organic chemistry. Biological Sciences 102 and 103, or consent of instructor. Toxicity and metabolism of natural toxicants with emphasis on the toxic plants present in the western United States. General pathways of metabolism plus the relationship between chemical properties and biologic activity of natural toxicants are discussed. Offered in alternate years.—(III.) Segall

253. Metabolism of Toxicants and Drugs (2)
Lecture—2 hours. Prerequisite: Pharmacology and Toxicology 201, 202, 203, general biochemistry or consent of instructor. Significance/chemical pathways of toxicants and drug metabolism, enzymology and molecular aspects of P450 and flavin monooxygenases, hydrolases and phase 2 transferases and experimental approaches for metabolism studies. Offered in alternate years.—I. Buckpitt

258. Receptor-Mediated Mechanisms (2)
Lecture—2 hours. Prerequisite: Pharmacology and Toxicology 201 or the equivalent. Survey of modern methods for studying physiological receptors including radioligand binding analysis, ion transport/flux measurements, receptor solubilization and purification strategies, and molecular cloning. Theoretical concepts of receptor-mediated signal transduction, information processing, and mechanisms of drug/toxicant interactions. Offered in alternate years.—II. Pessah

258L. Laboratory in Receptor Mechanisms (1)
Laboratory—3 hours. Prerequisite: course 258 or consent of instructor. Emphasis on the relationships between physiology and metabolic processes in domestic animals. (S/U grading only.)

260. Toxicologic Pathology (3)
Lecture—3 hours. Prerequisite: Pharmacology and Toxicology 201, 202, and 203. Provide introduction to organ system pathology, provide understanding of pathogenesis and significance of chemically induced tissue injury in the various organs of the body. Offered in alternate years.—(II.) Witschi, Wilson

265. Mass Spectrometric Methods in Pharmacology and Toxicology (3)
Lecture/discussion—3 hours. Prerequisite: Biological Sciences 102, and Chemistry 128A or 128B or 128C. Intended to enable students in pharmacology, toxicology, and biological chemistry to evaluate and interpret mass spectrometric techniques and results. Emphasis on identification of metabolites and biological macromolecules and quantitative stable isotope methods.—I. (II.)

290. Seminar (1)
Seminars—1 hour. Prerequisite: consent of instructor. Seminar in selected areas of Pharmacology and Toxicology. (S/U grading only.)

297T. Tutoring in Molecular Biosciences (1-5)
Tutoring—1-5 hours. Prerequisite: consent of instructor. Designed for graduate or professional students who desire teaching experience. May be repeated for credit up to 5 units. (SU grading only.)

298. Group Study (1-5)
Group Study—1-5 hours. Prerequisite: consent of instructor. Group study in selected areas of Pharmacology and Toxicology. (SU grading only.)

299. Research (1-12)
Research—1-12 hours. Prerequisite: consent of instructor. Research study in Pharmacology and Toxicology. (SU grading only.)

Professional Course

397T. Tutoring in Molecular Biosciences (1-5)
Prerequisite: graduate or professional student standing and consent of instructor. Designed for graduate or professional students who desire teaching experience, but are not teaching assistants. May be repeated for credit. (SU grading only.)

Professional Courses

405. Veterinary Clinical Pharmacology (2)
Lecture—2 hours. Prerequisite: third-year standing in School of Veterinary Medicine or consent of instructor. Approved for graduate degree credit. Pharmacological basis of therapeutic use of drugs in domestic animals. Emphasis on selection of most appropriate drug, its dosage form, route of administration and dose for treatment of certain disease conditions. (SU grading only.)—I. (II.) Vulliet

465. Taxonomy of Poisonous Plants (2.6)
Lecture—16 sessions; laboratory—7 sessions; fieldwork—3 sessions. First- or second-year professional students, students in the School of Veterinary Medicine, or consent of instructor. Taxonomy, botanical terms, and family characteristics of poisonous plants from 30 plant families. The clinical effects of livestock and pets of toxic substances from each family.—II. Mount

Quarter Offered: I=Fall; II=Winter; III=Spring; IV=Summer; 2001-2002 offering in parentheses

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
475. Diagnosis and Treatment of Food Animal and Equine Poisoning (2)
Lecture—20 hours. Prerequisite: third-year standing in the School of Veterinary Medicine. Clinical systematic approach to poisoning problems in livestock, horses and other ungulate stock emphasizing diagnosis and treatment. Poisonous plants are covered in this course.—III. (III.) Mount

480. Diagnosis and Treatment of Small Animal Poisoning (2)
Lecture—20 hours. Prerequisite: third-year standing in the School of Veterinary Medicine. Clinical systematic approach to poisoning problems in dogs, cats, and pet birds, emphasizing diagnosis and treatment.—II. (II.) Mount

485. Advanced Clinical Nutrition (2)
Lecture—14 sessions; laboratory—2 three-hour sessions; discussion—2 two-hour sessions. Prerequisite: third-year standing in the School of Veterinary Medicine or graduate student with consent of instructor. Advanced training in the principles and practice of small animal clinical nutrition. (S/U grading only.)—II. (II.) Marks
Veterinary Medicine, School of

Bennie I. Osburn, D.V.M., Ph.D., Dean of the School
John R. Pascoe, B.V.Sc., Ph.D., Executive Associate Dean
Robert J. Hansen, Ph.D., Associate Dean—Student Programs
Dallas M. Hyde, Ph.D., Associate Dean—Research and Graduate Education Programs
Bradford P. Smith, D.V.M., Associate Dean—Clinical Programs; Director, Veterinary Medical Teaching Hospital
James S. Cullor, D.V.M., Ph.D., Director, Veterinary Medicine Teaching and Research Center, Tulare
Bruno B. Chomel, D.V.M., Ph.D., Director, Master’s of Preventive Veterinary Medicine Program
Donald J. Klingborg, D.V.M., Assistant Dean—Public Programs; Director, Veterinary Extension
School Office, Rooms 101–142 Surge IV (530-752-1360)

Courses in Veterinary Medicine (VMD)

Lower Division Course

92. Internship in Veterinary Science (1-12)
Discussion/laboratory—4 to 12 hours; clinical experience—3 to 36 hours. Prerequisite: approval of project by faculty sponsor prior to period of internship. Students in this program will be under the supervision of faculty in the School of Veterinary Medicine whose expertise is appropriate for the proposed project. (P/NP grading only.)—I, II, III, IV. (I, II, III, IV) Pascoe

Upper Division Courses

170. Ethics of Animal Use (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: any basic course in composition or speech. Study of applied ethical methodology, tightly organized writing of critiques and policy statements in ethical use of animals. Learning respect for divergent views in professional and public treatment of animals through case histories and by discussion of consensus policies to protect animals and human values. GE credit: SocSci, Wrt.—III. (III.) Tannenbaum

192. Internship in Veterinary Science (1-12)
Discussion/laboratory and clinical—3 to 36 hours; final report. Prerequisite: upper division standing; approval of project prior to period of internship by preceptor; supervised work experience in veterinary medicine. (P/NP grading only.) Pascoe

Graduate Courses

296. Group Study (1-5)
(S/U grading only.)

299. Directed Independent Study (1-12)
(S/U grading only.)

Professional Courses

400. Introduction to Veterinary Medicine Computing (1)
Lecture—5 sessions; laboratory—5 sessions. Prerequisite: first-year standing in the School of Veterinary Medicine. Introduction to computer hardware and software setup, connection to the web, e-mail, searching the web, and word processing to help students gain computer proficiency required in the curriculum of the School of Veterinary Medicine. (S/U grading only.)—I. (I) Hornof

401A. Normal Anatomy of the Canine Locomotor System (2.8)
Lecture—10 sessions; laboratory—18 sessions. Prerequisite: first-year standing in the School of Veterinary Medicine. Normal canine anatomy with comparison to other species of bones, joints, muscles, ligaments, tendons, nerves, and vessels of the vertebral column and limbs.—I. (I) Hyde

401B. Normal Anatomy of the Canine Head (1.4)
Lecture—6 sessions; laboratory—8 sessions. Prerequisite: first-year standing in the School of Veterinary Medicine. Normal canine anatomy of bones, joints, muscles, ligaments, tendons, nerves and vessels of the head, including the eye and ear, with comparison to other species.—II. (II) Popper

402. Structure and Function of the Cardiorespiratory System (4.2)
Lecture—29 hours; laboratory—13 hours. Prerequisite: first-year standing in the School of Veterinary Medicine. Residents in Specialty Training or graduate students with consent of instructor. Integrated view of cardiovascular anatomy and physiology.—II. (II) Jones

402D. Structure and Function of the Urinary System and Body Fluids (2.2)
Lecture—15 sessions; laboratory—7 sessions. Prerequisite: first-year standing in veterinary curriculum or consent of instructor. Basic understanding of the structure and function of the urinary system plus physiology of body fluids and acid-base balance. Structure and function are correlated.—III. (III) Schelegle

403. Physiological Chemistry (6.4)
Lecture—54 sessions; laboratory—4 sessions; discussion—6 sessions. Prerequisite: first-year standing in the School of Veterinary Medicine. Biochemical principles used to analyze problems and to evaluate metabolic relationships important in animal health and pathophysiology. Integrative approach, emphasizing controls of major metabolic pathways, molecular basis of gene expression, tumorgenesis and signal transduction.—I. (I) Hansen

405. Veterinary Parasitology (3.6)
Lecture—3 hours; laboratory—3 hours. Prerequisite: first-year standing in the School of Veterinary Medicine. Approved for graduate degree credit. Biological and clinical aspects of parasites and the diseases they cause in animals.—III. (III) Conrad

406. Principles of Behavior (0.7)
Lecture—7 hours. Prerequisite: first-year standing in the School of Veterinary Medicine. Approved for graduate degree credit. Overview of animal behavior with relevance to veterinary medicine.—I. (I) Hart

407. Principles and Techniques of Operative Surgery and Anesthesia (2.4)
Lecture—24 sessions. Prerequisite: third-year standing in the School of Veterinary Medicine; course 426. Introduction to operative and anesthetic skills and foundation in the importance of regional anatomy in the planning and conduct of surgical practice.—I. (I) Gregory

407L. Principles and Techniques of Operative Surgery Laboratory (1.4)
Laboratory—14 sessions. Prerequisite: third-year standing in the School of Veterinary Medicine; course 426. Introduction to surgical anatomy, operative and anesthetic skills. (S/U grading only; deferred grading only pending completion of course.)—I. (I) Gregory

408. Nutrition and Nutritional Diseases in Animals (2.9)
Lecture—27 hours; laboratory—2 to three-hour sessions. Prerequisite: first-year standing in the School of Veterinary Medicine. Approved for graduate degree credit. Principles of nutrition and their application to the solution of nutritional disorders of animals.—II. (II)

409. Epidemiology (1.7)
Lecture—11 hours; discussion—6 hours. Prerequisite: first-year standing in School of Veterinary Medicine. Approved for graduate degree credit. Introduction to epidemiology and its applications in veterinary medicine.—III. (III) Kass

412. Fundamentals of Zoonoses (1.1)
Lecture—11 sessions. Prerequisite: second-year standing in the School of Veterinary Medicine or consent of instructor. Major zoonotic infections transmitted mainly by farm animals and pets. For each animal species and each infection, a short review of symptoms, diagnostic tests, epidemiology and control are presented. Specific lectures on regulatory medicine of major zoonoses: e.g., rabies, tuberculosis.—III. (III) Chomel

413. Veterinary Food Safety (1.3)
Lecture—10 sessions; discussion—3 sessions. Prerequisite: second-year standing in the School of Veterinary Medicine. The food system and diseases transmitted by food. Topics include sources of contaminants, the function of processing in food safety, and the role of veterinarians in pre-harvest food safety and in food protection in general.—III. (III) Cliver

414A. Principles of Veterinary Pharmacology and Toxicology (2.4)
Lecture—19 sessions; discussion—4 sessions; laboratory—1 session. Prerequisite: second year standing in the School of Veterinary Medicine. Introduction to the principles of pharmacology and toxicology. Pharma-toxicokinetics, pharma-toxicodynamics and chemotherapy of bacterial, neoplastic, fungal and viral diseases.—I. (I) Vulliet

414B. Veterinary Pharmacology (2.4)
Lecture—22 sessions; discussion—2 sessions. Prerequisite: second year standing in the School of Veterinary Medicine; passing grade in course 414A. Basic principles for the use of drugs affecting the autonomic and central nervous systems as well as compounds affecting the cardiovascular system.—I. (II) Giri

414C. Veterinary Toxicology (1.9)
Lecture—17 sessions; discussion—2 sessions. Prerequisite: second year standing in the School of Veterinary Medicine, passing grades in courses 414A and 414B. Toxicants of major importance in veterinary medicine. Basic principles and mechanisms of action of toxicants.—I. (II) Segall
427. Cell and Tissue Structure and Function (3.3)
Lecture—24 sessions; laboratory—9 sessions. Prerequisite: first-year standing in the School of Veterinary Medicine. Relationship between structure and function of animal tissues, emphasizing the molecular and cellular processes which integrate normal and pathological activity. Mechanisms of cell division, differentiation and locomotion. Microscopic anatomy and organization of cells and extracellular molecules to form specialized differentiated tissues.—I. (I.) Tablin

430. Principles of Radiology and Radiographic Interpretation (3.5)
Lecture—24 sessions; laboratory—1 session; discussion—10 sessions. Prerequisite: first-year standing in the School of Veterinary Medicine. Physical principles of x-ray production and x-ray matter interactions as they pertain to diagnostic medical imaging and radiation safety. Principles of radiographic interpretation. Principles of ultrasound physics and interpretation.—I, II, III. (I, II, III) Sami, Long

431. Biotechnology (1.9)
Lecture—17 sessions; laboratory—2 sessions. Prerequisite: first-year standing in the School of Veterinary Medicine. Approved for graduate degree credit. Basic understanding of the structure and function of endocrine glands and how hormones and cytokines influence physiological processes.—I. (I.) Benton

432. Structure and Function of the Gastrointestinal and Mammary Systems (3)
Lecture—20 sessions; laboratory—10 sessions. Prerequisite: first-year standing in School of Veterinary Medicine or consent of instructor. Basic understanding and correlation of the structure and function of the gastrointestinal and mammary systems. Multiple species’ differences examined.—I, II. (I, II) Hinton

433. Veterinary Oncology (1.2)
Lecture—12 hours. Prerequisite: second-year standing in the School of Veterinary Medicine. Approved for graduate degree credit. Provides veterinary students with a background to define the relationships between pathology, hematology, cytology, immunology, and the clinical manifestations of neoplastic diseases in animals.—I, II, III. (I, II, III) Madewell

435A. Clinical Hematology (3.7)
Lecture—23 sessions; laboratory—11 sessions; discussion—3 sessions. Prerequisite: second year standing in the School of Veterinary Medicine. Knowledge of production, morphology and function of blood cells in health and disease provides veterinary students with ability to use hematologic data and microscopic evaluation to aid in the diagnosis of systemic diseases and primary diseases of the hematopoietic system.—I. (I.) Zinkl

435B. Cytology and Clinical Chemistry (2.5)
Lecture—16 sessions; laboratory—5 sessions; discussion—4 sessions. Prerequisite: second year standing in the School of Veterinary Medicine. Approved for graduate degree credit. Introduction to cytologic techniques, laboratory evaluation of body fluids and the cytologic evaluation of inflammation and neoplasia. Use of clinical chemistry laboratory, including the types, principles, methods, selection, and limitations of clinical chemistry tests. Interpretation of clinical chemistry and other laboratory data in the diagnosis of animal disease.—II, III. (I, II, III) Cowgill

437A. Veterinary Ethics and Law (0.8)
Discussion—2 hours. Prerequisite: first-year standing in the School of Veterinary Medicine. Ethical and legal issues critical to successful and ethical veterinary practice. Processes through which ethical and legal questions are approached and resolved. Background reading materials and discussions are supplemented with problem-based learning. Approved for graduate degree credit.—I. (I.) Tannenbaum

437B. Veterinary Ethics and Law (0.8)
Discussion—2 hours. Prerequisite: second-year standing in the School of Veterinary Medicine. Further consideration of ethical and legal issues critical to successful and ethical veterinary practice. Processes through which ethical and legal questions are approached and resolved. Background reading materials and discussions are supplemented with problem-based learning. Approved for graduate degree credit.—II, III. (I, II, III) Tannenbaum

438. Animal Handling (1)
Lecture—9 three-hour sessions; discussion—1 two-hour session. Prerequisite: first-year standing in School of Veterinary Medicine. Introduction and practice of methods of animal handling and restraint and selected techniques of diagnostic examination and therapy, as well as recognition of animal breeds, breed characteristics and purpose in animal species of veterinary importance. (S/U grading only.)—I, II, III. (I, II, III) Carlson

440. Veterinary Neurology (2.7)
Lecture—21 hours; laboratory—6 three-hour sessions. Prerequisite: second-year standing in the School of Veterinary Medicine. Approved for graduate degree credit. Integrated study of the relationship between neuroanatomy, neurophysiology, neuropathology, and the clinical manifestations of the diagnosis of neurological diseases and the use of the various neurodiagnostic aids.—I. (I.) Bailey

444. Clinical Endocrinology (1.5)
Lecture—12 sessions; discussion—3 sessions. Prerequisite: third-year standing in the School of Veterinary Medicine. A correlated review of common endocrinology disorders affecting the dog and cat.—II, III. (I, II, III) Feldman

446. Reproduction (4.2)
Lecture—32 hours; laboratory—10 three-hour sessions. Prerequisite: second-year standing in the School of Veterinary Medicine. Approved for graduate degree credit. Structure, function, pathologic, and clinical aspects of reproduction in animals (normal and abnormal).—I, II, III. (I, II, III) Constantin

447. Basic Medicine of Domestic Animals (4.7)
Lecture—45 hours; laboratory—6 hours. Prerequisite: second-year standing in the School of Veterinary Medicine. Introduction to the fundamental principles, clinical manifestations, diagnostic methods and therapeutic approaches common to medical diseases of domestic animals. Preparation for advanced course work in medical diagnosis and therapeutics with specific species focus and orientation.—I, II, III. (I, II, III) Cowgill

451. Veterinary Bacteriology and Mycology (4.9)
Lecture—48 hours; laboratory—15 three-hour sessions. Prerequisite: second-year standing in the School of Veterinary Medicine. Approved for graduate degree credit. Introduction to the bacterial and fungal agents of animal diseases. Specifically, each microorganism will be discussed with respect to overall significance to animal disease; structural and functional aspects including morphology, cellular composition, and products of medical interest.—I, I, II, III. (I, II, III)

452. General Pathology (3.1)
Lecture—18 sessions; laboratory—13 sessions. Prerequisite: second-year standing in the School of Veterinary Medicine. Approved for graduate degree credit. Basic principles of disease and in particular the fundamental mechanisms responsible for creating a disease situation. Illustrations of how the application of general pathological principles is used to determine disease pathogenesis and prognosis.—I, II, III. (I, II, III) Mohr

459. Systemic Pathology (5.8)
Lecture—42 sessions; laboratory—16 sessions. Prerequisite: second-year standing in the School of Veterinary Medicine. Approved for graduate degree credit. Basic understanding of the pathobiology of major organ systems relevant to a variety of animal species. Emphasis on mechanisms of injury, patterns of response to injury and on balance between damage and repair.—I, II, III. (I, II, III) MacLachlan

460. Fundamentals of Clinical Orthopedics (1)
Lecture—10 sessions. Prerequisite: third-year standing in the School of Veterinary Medicine. Fundamental concepts of veterinary orthopedics, including mechanisms of bone healing, types of fractures, and principles of stabilization.—I, II, III. (I, II, III) Schull

470. Hospital Practices (3.4)
Lecture—34 hours; laboratory—15 sessions. Prerequisite: third-year standing in School of Veterinary Medicine. Clinical training in Veterinary Medicine. Assignments in the medical and surgical services and clinical diagnostic faculties of the Veterinary Medical Teaching Hospital. (SU grading only; deferred grading only pending completion of three-term sequence.)—I, II, III. (I, II, III) Smith

471. Mixed Animal Practice Clinics (3-15)
Veterinary clinical practices—40 hours. Prerequisite: fourth-year standing in School of Veterinary Medicine or consent of instructor. Clinical training in veterinary medicine. Student assignments in medical and surgical services and clinical diagnostic laboratories of VM Teaching Hospital with emphasis on the care and treatment of mixed animal veterinary practice. May be repeated for credit. Students in combined DVM/MPVM program enroll for the summer-fall sequence. (SU grading only; deferred grading only, pending completion of three-term sequence.)—I, II, III. (I, II, III) Smith
472. Small Animal Practice Clinics (3-15)
Veterinary clinical practices—40 hours. Prerequisite: fourth-year standing in School of Veterinary Medicine or consent of instructor. Clinical training in veterinary medicine. Student assignments in medical and surgical services and clinical diagnostic laboratories of VM Teaching Hospital with emphasis on services relating to small animal veterinary practice. May be repeated for credit. Students in combined DVM/MPVM program enroll for the Summer Sessions I-II-III sequence. (S/U grading only; deferred grading only, pending completion of three-term sequence.)—I-II-III. (I-II-III.) Smith

473. Large Animal Practice Clinics (2.5-15)
Veterinary clinical practices—40 hours, plus animal-patient care and emergency/night coverage (by rotation). Prerequisite: fourth-year standing in School of Veterinary Medicine or consent of instructor. Clinical training in veterinary medicine. Student assignments in medical and surgical services and clinical diagnostic laboratories of VM Teaching Hospital with emphasis on those services relating to large animal veterinary practice. May be repeated for credit. Students in combined DVM/MPVM program enroll for the Summer Sessions I-II sequence. (S/U grading only; deferred grading only, pending completion of three-term sequence.)—I-II-III. (I-II-III.) Smith

474. Equine Practice Clinics (2.5-15)
Veterinary clinical practices—40 hours, plus animal-patient care and emergency/night coverage (by rotation). Prerequisite: fourth-year standing in School of Veterinary Medicine or consent of instructor. Clinical training in veterinary medicine. Student assignments in medical and surgical services and clinical diagnostic laboratories of VM Teaching Hospital with emphasis on those services relating to equine veterinary practice. May be repeated for credit. Students in combined DVM/MPVM program enroll for the Summer Session I-II sequence. (S/U grading only; deferred grading only, pending completion of three-term sequence.)—I-II-III. (I-II-III.) Smith

475. Food Animal Practice Clinics (2.5-15)
Veterinary clinical practices—40 hours, plus animal-patient care and emergency/night coverage (by rotation). Prerequisite: fourth-year standing in School of Veterinary Medicine or consent of instructor. Clinical training in veterinary medicine. Student assignments in medical and surgical services and clinical diagnostic laboratories of VM Teaching Hospital with emphasis on those services relating to food animal veterinary practice. May be repeated for credit. Students in combined DVM/MPVM program enroll for the Summer Sessions I-II sequence. (S/U grading only; deferred grading only, pending completion of three-term sequence.)—I-II-III. (I-II-III.) Smith

476. Zoological Practice Clinics (2.5-15)
Veterinary clinical practices—40 hours, plus animal-patient care and emergency/night coverage (by rotation). Prerequisite: fourth-year standing in School of Veterinary Medicine or consent of instructor. Clinical training in veterinary medicine. Student assignments in medical and surgical services and clinical diagnostic laboratories of VM Teaching Hospital with emphasis on those services relating to zoological veterinary practice. May be repeated for credit. Students in combined DVM/MPVM program enroll for the Summer Sessions I-II sequence. (S/U grading only; deferred grading only, pending completion of three-term sequence.)—I-II-III. (I-II-III.) Smith

477. Small Animal/Equine Practice Clinics (3-15)
Veterinary clinical practices—40 hours. Prerequisite: fourth-year standing in School of Veterinary Medicine or consent of instructor. Clinical training in veterinary medicine. Student assignments in the medical and surgical services and clinical diagnostic laboratories of the VM Teaching Hospital with emphasis on small and equine species. May be repeated for credit. Students in combined DVM/MPVM program enroll for the Summer Sessions I-II sequence. (S/U grading only; deferred grading only, pending completion of three-term sequence.)—I-II-III. (I-II-III.) Smith

478. Small Animal/Food Animal Practice Clinics (2.5-15)
Veterinary clinical practices—7.5-45 hours per week. Prerequisite: fourth-year standing in the School of Veterinary Medicine. Clinical training in veterinary medicine. Students will have assignments in the medical and surgical services and clinical diagnostic laboratories of the Veterinary Medical Teaching Hospital with emphasis on small and food animal species. May be repeated for credit. Students in combined DVM/MPVM program enroll for the Summer Sessions I-II sequence. (S/U grading only; deferred grading only, pending completion of sequence.)—I-II-III. (I-II-III.) Smith

490A. Hospital Practices for Veterinary Students (2)
Laboratory—60 hours. Prerequisite: first-year standing in the School of Veterinary Medicine. Introduction to procedures and knowledge integral to working in a veterinary clinical practice and the VMTH. (S/U grading only; deferred grading only, pending completion of sequence.)—I-II-III. (I-II-III.) Smith

490B. Hospital Practices for Veterinary Students (2)
Laboratory—40 hours. Prerequisite: course 490A and first-year standing in the School of Veterinary Medicine. Introduction to procedures and knowledge integral to working in a veterinary clinical practice and the VMTH. (S/U grading only; deferred grading only, pending completion of sequence.)—I-II-III. (I-II-III.) Smith

490C. Core Hospital Practices (2)
Laboratory—13 sessions (60 hours). Prerequisite: third-year standing in the School of Veterinary Medicine and course 490B. Continuation of 490B. (S/U grading only; deferred grading only, pending completion of sequence.)—I-II-III. (I-II-III.) Smith
Medicine and Epidemiology

(School of Veterinary Medicine)
Gary P. Carlson, D.V.M., Ph.D., Chairperson of the Department
Department Office, 2108 Tupper Hall (530-752-1363)

Faculty
Alexander A. Ardans, D.V.M., M.S., Professor
Patricia C. Blanchard, D.V.M., Ph.D., Associate Professor of Clinical Diagnostic Pathology
Gary P. Carlson, D.V.M., Ph.D., Professor
Tim Carpenter, Ph.D., Professor
Jim Case, D.V.M., Ph.D., Associate Professor of Clinical Diagnostic Medicine
Larry D. Cowgill, D.V.M., Ph.D., Professor
Nancy E. East, M.S., D.V.M., M.P.V.M., Professor
Edward Feldman, D.V.M., Professor
Ian Gardner, B.V.Sc., M.P.V.M., Ph.D., Professor
Lisle W. George, D.V.M., Ph.D., Professor
Ronald P. Hedrick, Ph.D., Professor
Sharon K. Hietala, D.V.M., Ph.D., Associate Professor of Clinical Diagnostic Pathology
David Hird, D.V.M., M.P.V.M., Ph.D., Professor
Peter J. Ilke, V.M.D., Professor
Mark D. Kittleson, D.V.M., M.S., Ph.D., Professor
Gerald V. Ling, D.V.M., Professor
John Madigan, M.S., D.V.M., Professor
Stanley L. Marks, B.V.Sc., Ph.D., Assistant Professor
Jonna A. Mazet, D.V.M., M.P.V.M., Ph.D., Assistant Professor of Clinical Wildlife Health
Richard W. Nelson, D.V.M., Professor
Niels C. Pedersen, D.V.M., Ph.D., Professor
Lyndsay G. Phillips, D.V.M., Associate Professor
Bradford P. Smith, D.V.M., Professor
Sharon J. Spier, D.V.M., Ph.D., Associate Professor
Lisa A. Tell, D.V.M., Associate Professor
William P. Thomas, D.V.M., Professor
Mark Thurmond, D.V.M., M.P.V.M., Ph.D., Professor
Stephen D. White, D.V.M., Professor
W. David Wilson, B.V.M.S., M.R.C.V.S., Professor
Emeriti Faculty
Murray E. Fowler, D.V.M., Professor Emeritus
Donald G. Low, D.V.M., Ph.D., Professor Emeritus
William R. Pritchard, D.V.M., Ph.D., J.D., Professor Emeritus
Edward A. Rhode, D.V.M., Professor Emeritus
Donald R. Strombeck, D.V.M., Ph.D., Professor Emeritus

Affiliated Faculty
Kristen D. Arkush, Ph.D., Assistant Adjunct Professor
Dale L. Brooks, D.V.M., Ph.D., Lecturer
Autumn P. Davidson, D.V.M., Associate Clinical Professor
Pamela H. Eisele, D.V.M., M.P.V.M., Ph.D., Associate Clinical Professor
Janet E. Foley, M.S., D.V.M., Assistant Research Epidemiologist
Carolyn S. Friedman, Ph.D., Associate Adjunct Professor
William P. Thomas, D.V.M., Professor
Mark Thurmond, D.V.M., M.P.V.M., Ph.D., Professor
Peter J. Ilke, V.M.D., Professor
W. David Wilson, B.V.M.S., M.R.C.V.S., Professor

Johnna L. Watson, D.V.M., Ph.D., Assistant Clinical Professor

Courses in Medicine and Epidemiology (VME)

Upper Division Course
199. Special Study for Advanced Undergraduates (1-5) (P/NP grading only)

Graduate Courses
217. Evaluation and Diagnostic Tests (2) Lecture/discussion—1.7 hours, laboratory—1 hour. Prerequisite: consent of instructor. Topics include sensitivity, specificity, predictive values, Bayes’ Theorem, ROC curves, measuring agreement between tests, series and parallel testing strategies. Emphasis on rational interpretation and presentation of test results for individuals and aggregates. Offered in alternate years.—(III.) Gardner

255. Animal Health Economics (3) Lecture—3 hours. Prerequisite: consent of instructor. Basic concepts of microeconomics (producer and consumer decisions, supply and demand) and their application to animal health. Emphasis on market equilibrium and market failure, and their application to animal health. Issues include the role of animal health in society, and the role of government intervention. Examples include government interventions to control disease, government intervention in the market for veterinary services, and government intervention in the market for animal health products. (S/U grading only.)—II, III. (III.) Roberts

291. Conservation Biology and Veterinary Medicine (1) Seminar—1 hour. Discussion of recent topics in conservation biology as they relate to veterinary medicine; the emphasis is on wildlife. May be repeated for credit. (S/U grading only.)—II. (II.) Carpenter

296. Group Study (1-5) Prerequisite: student in School of Veterinary Medicine or consent of instructor. Group study in selected areas of the clinical sciences. (S/U grading only.)

299. Research (1-12) (S/U grading only)

Professional Course
397T. Tutoring in Veterinary Medicine and Epidemiology (1-5) Lecture—1 hour; laboratory—3 hours; discussion—2 hours. For graduate or professional students who desire teaching experience, but are not teaching assistants. May be repeated for credit. (S/U grading only.)

Professional Courses
401. Small Animal Clinics (1.5 per week) Laboratory—50 hours total. Prerequisite: professional standing, resident in Veterinary Medical Teaching Hospital, or consent of instructor. Resident responsible for diagnosis, medical and surgical treatment of animals in the wards and outpatient clinic, including history taking, physical examinations, laboratory tests, special diagnostic and therapeutic procedures, and consultations, under the direction of the senior staff. May be repeated for credit. (S/U grading only.)—I, II, III. (II, III.)

402. Large Animal Medicine (1.5 per week) Laboratory—50 hours total. Prerequisite: professional standing, resident in Veterinary Medical Teaching Hospital, or consent of instructor. Residents responsible for the medical care of patients in the VM Teaching Hospital and outpatient clinics under the direction of the senior staff of the hospital. May be repeated for credit. (S/U grading only.)—I, II, III. (II, III.)

403. Small Animal Medicine (1.5 per week) Laboratory—50 hours total. Prerequisite: professional standing, resident in Veterinary Medical Teaching Hospital, or consent of instructor. Residents responsible for the medical care of animals in the wards and outpatient clinic including physical examinations, history taking, laboratory tests, and consultations under the supervision of the senior staff. May be repeated for credit. (S/U grading only.)—I, II, III. (II, III.)

410. Husbandry, Feeding and Management of Captive Animals (2) Lecture—2 hours. Prerequisite: second-year standing in the School of Veterinary Medicine. Management and husbandry dynamics for preventative health programs in zoos, aquaria, vivaria, and other environments for exotic pets and wild animals.—II. (II.) Brooks

411. Laboratory Animal Medicine (2) Lecture—20 hours. Prerequisite: third-year standing in School of Veterinary Medicine or consent of instructor. Diagnostic, therapeutic and preventative methods for diseases of rabbits, guinea pigs, hamsters and certain related laboratory rodents will be presented to serve the needs of clinical and research veterinarians. Lecture demonstrations with subject species will be provided.—II. (II.) Brooks

412. Laboratory Animal Medicine (2) Lecture—20 hours. Prerequisite: third-year standing in School of Veterinary Medicine or consent of instructor. Prevention, diagnosis and therapy of medical problems in rabbits, guinea pigs, hamsters, mice, rats and other laboratory species. Emphasis will be placed on animal colony health management technique, and concepts of preventive disease needed by veterinarians in charge of research facilities. (S/U grading only.)—II, III. (II, III.)

413. Medical Primatology (2) Lecture—20 hours. Prerequisite: third-year standing in School of Veterinary Medicine or consent of instructor. Major diseases, medical management and husbandry in zoos, aquaria, vivaria, and other environments for exotic pets and wild animals. Emphasis is on wildlife. May be repeated for credit. (S/U grading only.)—II, III. (II, III.)

425. Animal Health Economics (3) Lecture—3 hours. Prerequisite: consent of instructor. Basic concepts of microeconomics (producer and consumer decisions, supply and demand) and their application to animal health. Emphasis on market equilibrium and market failure, and their application to animal health. Issues include the role of animal health in society, and the role of government intervention. Examples include government interventions to control disease, government intervention in the market for veterinary services, and government intervention in the market for animal health products. (S/U grading only.)—II, III. (III.) Roberts

441. Applications of Epidemiologic Methods to Herd Health (3) Lecture/discussion—2 hours; fieldwork—2 hours. Prerequisite: Epidemiology and Preventive Medicine 405 and 406 or the equivalents or consent of instructor. Epidemiologic applications to health and production problems in animal populations. Topics include test interpretation, decision tree analysis, time trend analysis, disease reporting, investigation of chronic diseases, microcomputer programs for herd health. (S/U grading only.)—III. (III.) Gardner

Quarter Offered: I=Fall; II=Winter; III=Spring; IV=Summer, 2001-2002 offering in parentheses.

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
415. Management and Diseases of Captive Wildlife (2)
Lecture—20 hours. Prerequisite: third-year standing in School of Veterinary Medicine. Defining the role of the veterinarian in the health care and management of captive wildlife species in private and public zoological collections. Lectures concentrate on nondomestic mammalian species, stressing a preventive medical approach, including management of captive environment, infectious and non-infectious diseases, and episodic diseases (endemic, ornithologic, diagnostic techniques/approaches.—II. (III.) Phillips

416. Fish Medicine (1)
Lecture—18 hours; laboratory—3 hours. Prerequisite: consent of instructor. Pathology, diagnosis, treatment and prevention of diseases of fish. Preventative management of diseases in aquaculture and aquaria. Field trips, if interest and time permit.—II, (III.) Heldrick

417. Companion Avian Medicine (2)
Lecture—20 hours. Prerequisite: third-year standing in School of Veterinary Medicine. General concepts of avian medicine and surgical techniques, diagnostic methods for avian medicine disease.—II. (III.) Teel

421. Veterinary Dermatology (0.75 per week)
Laboratory—25 hours. Prerequisite: professional standing, resident in Veterinary Medical Teaching Hospital, or consent of instructor. Residents are responsible for patient care in the hospital and outpatient clinic including history taking, physical examinations, and diagnostic procedures under the direction of the chief dermatologist. (SU grading only.—I, II, III, (I, II, III) Kitteson

425. Zoo and Wildlife Medicine (0.75 per week)
Laboratory—25 hours. Prerequisite: professional standing, resident in Veterinary Medical Teaching Hospital, or consent of instructor. Residents responsible for assisting in handling and treatment of clinic cases and for learning the techniques of manual and chemical restraint of a wide variety of mammals, birds, reptiles, and fish. Medical problems, anesthetic techniques, and surgical procedures will be discussed and practiced. (SU grading only.—I, II, III, (I, II, III) Phillips

428. Food Animal Surgery (1.6)
Lecture—16 hours. Prerequisite: third-year standing in School of Veterinary Medicine. Selected topics in surgical diseases of food animals covered in detail. (SU grading only)—I, II, III, (I, II, III) Smith

428L Food Animal Surgery Laboratory (0.8)
Laboratory—8 three-hour sessions. Prerequisite: third-year standing in School of Veterinary Medicine; course 428 (concurrently). Representative surgeries of food animals performed by groups of students. Limited enrolment. (SU grading only.—I, II, III, (I, II, III) Smith

429A. Herd Health Management of Beef, Cattle, Swine, Sheep, and Goats (4)
Lecture—40 hours. Prerequisite: third-year standing in School of Veterinary Medicine or consent of instructor. Practical systems for delivering veterinary services to feedlot, cow-calf, stocker, swine, sheep, and goat production units are considered, with emphasis on prevention and control of disease.—II. (III.) Gardner

430. Raptor Medicine and Rehabilitation (2)
Lecture—2 hours. Biology, behavior, parasites, diseases, toxins, irritant conditions, diagnostics, management, nutrition, housing, nutrition, rehabilitation and release techniques for eggs, orphans and adult native California raptors.—III. (III.) Brooks

432A-432B-432C. Raptor Clinics (1-1-1)
Laboratory—3 hours. Prerequisite: students in the School of Veterinary Medicine or consent of instructor. Discussions in the presentation and discussion of selected cases from the small animal clinic. May be repeated for credit. (SU grading only.—I, II, III, (I, II, III) Smith

446. Small Animal Reproduction (1)
Lecture—7 hours; discussion—1 hour; laboratory—2 three-hour sessions. Prerequisite: second-year standing in the School of Veterinary Medicine. Approved for graduate degree credit. Provides a complete description (history, physical examination, laboratory abnormalities, etc.) of the common abnormalities associated with the genital tract of male and female dogs and cats.—III. (III.) Feldman

448A. Small Animal Medicine—Level I (6)
Lecture—5 hours (for 12 weeks). Prerequisite: Veterinary Medicine 447. Fundamental principles, clinical manifestations, diagnostic methods and therapeutic approaches to the medical diseases of dogs and cats. Course is a core option for the professional veterinary curriculum and is mandatory for advanced courses in small animal medical diagnoses and therapeutics.—I. (I.) Marks

448B. Small Animal Medicine—Level II (5.3)
Lecture—29 sessions; discussion—19 sessions; laboratory—5 sessions. Prerequisite: Veterinary Medicine 447 and course 448A. Medical diseases of the dog and cat. Differential diagnosis of common “signs and symptoms” in small animal veterinary practice. Emphasis on integration of the systemic organ systems approach to medical diagnosis.—II. (II.) Irike

449A. Large Animal Medicine—Level I (6.1)
Lecture—5 hours (for 12 weeks); laboratory—3 hours (for 2 weeks). Prerequisite: Veterinary Medicine 447. Introduction in the etiology, pathophysiology, epidemiology, clinical presentation, diagnostic evaluation, treatment, prevention, and control of important infectious and non-infectious diseases of food animals and horses. A problem-based approach to differential diagnosis will be emphasized.—I. (I.) Wilson

449B. Level II Advanced Equine Medicine (4.9)
Laboratory—49 hours total. Prerequisite: course 449A. Instruction in the medical aspects of equine practice including large and small farm management practices, sports medicine principles and applications, perinatology and neonatology, and the etiology, epidemiology and control of various infectious and non-infectious conditions of the equine.—II. (II.) Pedersen

449L. Level II Advanced Equine Medicine Laboratory (0.6)
Laboratory—6 sessions. Prerequisite: course 449A; course 449B concurrently. Clinical presentation and instruction in treatment of the medical aspects of equine practice. (SU grading only.—II. (II.) Carlson

450. Small Animal Clinical Immunology (2.2)
Lecture—16 hours; laboratory—6 sessions. Prerequisite: basic immunology. Comprehensive discussion of the basic mechanisms of immunologic diseases in animals and description of common immunologic diseases, including clinical presentation, diagnosis and treatment. Emphasis on small animals and analogous disorders of humans. (SU grading only.—III. (III.) Pedersen

454. International Veterinary Medicine Baja California Fieldwork (2)
Fieldwork—40 hours. Students in the School of Veterinary Medicine or consent of instructor. Livestock diseases responsible for limiting trade across the U.S.Mexico border to ranchers, and how veterinarians are educated in Mexico. Offered during Spring break. (SU grading only.—III. (III.) Hrd

460. Equine Behavior and Natural Concepts of Horsemanship (1)
Lecture/laboratory—1 hour. Each session begins with orientation for day and practical equine handling methods followed, emphasizing horse’s behavior and recognizing horse’s natural reactions to painful, threatening or frightening stimuli. (SU grading only.—II. (II.) Spier

481A-481B-481C. Clinic Rounds (1-1-1)
Discussion—1 hour. Prerequisite: first- or second-year standing in the School of Veterinary Medicine. Discussion of selected small and large animal cases from the Veterinary Medical Teaching Hospital. May be repeated once for credit. (SU grading only.—I, II, III, (I, II, III) Ling, Smith

486A. Equine Clinical Neonatology (1)
Discussion—1 hour. Prerequisite: first-year standing in the School of Veterinary Medicine or consent of instructor. Discussion of methods of equine neonatal intensive care and disease pathophysiology in a case format. (SU grading only.—I, II, III, (I, II, III) Madigan

486B. Equine Clinical Neonatology (1)
Discussion—1 hour. Prerequisite: first-year standing in the School of Veterinary Medicine or consent of instructor. Discussion of methods of equine neonatal intensive care and disease pathophysiology in a case format. (SU grading only.—I, II, III, (I, II, III) Madigan

487. Comparative Bio-Medical: Form and Function (2)
Lecture—1 hour; discussion—2 hours. Prerequisite: first- or second-year standing in the School of Veterinary Medicine or consent of instructor. Introduction and basic prerequisite for Zoological Medicine courses, involving comparative biology recommended concepts for nontraditional animal species or alternative pets, zoos, rehabeiltaion centers, aquaculture, laboratory animals, and non-human primates. (SU grading only.—I, II, III, (I, II, III) Roberge

488. Nondomestic Pet Animal Medicine (2)
Discussion—2 hours. Prerequisite: second-year standing in the School of Veterinary Medicine. Discussion of practical medical and surgical management of common spontaneous and infectious diseases of nondomestic pets.—II. (II.) Phillips

491. Small Animal Grand Rounds (0.5)
Discussion—1 hour. Prerequisite: professional standing, intern or resident in Veterinary Medical Teaching Hospital or consent of instructor. Residents take an active part in the presentation and discussion of selected cases from the small animal clinic. May be repeated for credit. (SU grading only.—I, II, III, (I, II, III)

492. Large Animal Grand Rounds (0.5)
Discussion—1 hour. Prerequisite: professional standing resident in Veterinary Medical Teaching Hospital or consent of instructor. Residents take an active part in the presentation and discussion of selected cases from the large animal and ambulatory clinics. May be repeated for credit. (SU grading only.—I, II, III, (I, II, III)

493. Seminar In Veterinary Medicine (1)
Seminar—2 hours. Prerequisite: professional standing; resident in Veterinary Medical Teaching Hospital. Seminars given by the faculty of the School of Veterinary Medicine in areas not covered directly in the practice of clinical medicine and surgery. Residents will assist in the presentation of seminar material. May be repeated for credit. (SU grading only.—I, II, III, (I, II, III)

494. International Programs Seminar (1)
Seminar—10 sessions. Students in the School of Veterinary Medicine or consent of instructor. Discussion by veterinarians around the world of aspects of veterinary medicine in their countries and regions, ranging from livestock to wildlife medicine to companion animal practice. (SU grading only.—II. (II.) Hrd
Courses in Surgical and Radiological Sciences (VSR)

Lower Division Course

99. Special Study for Undergraduates (1-5)
(PNP grading only)

Upper Division Course

199. Special Study for Advanced Undergraduates (1-5)
(PNP grading only)

Graduate Courses

281. Comparative Vertebrate Exercise Physiology (3)
Lecture—2 hours; discussion—1 hour. Prerequisite: graduate student status or consent of instructor. Fundamental mechanisms of vertebrate exercise: Metabolism and energetics, muscle function, locomotor mechanics and oxygen transport and utilization. In addition, mechanisms specific to vertebrate taxa will be considered. Strong emphasis on allometric effects of body size on all of these functions. Offered in alternate years.—(II.) Jones

290. Clinical Neurology/Neuropathology Conference (1)
Seminar—1.5 hours. Prerequisite: third- or fourth-year standing in the School of Veterinary Medicine, Veterinary Medicine Teaching Hospital, or UCDMC resident or graduate student in appropriate discipline. Discussion and review of neural and muscular pathology of selected cases from the Veterinary Medicine Teaching Hospital. (SU grading only)—I, II, III, (I, II, III, IV) Cardenet, Higgins, LeConteur

292. Advanced Veterinary Neurology/Neurosurgery (2)
Seminar—4 hours; weekly reading assignments, regular examinations. Prerequisite: House Officer in VMTH, UCDMC House Officers, graduate students in the School of Veterinary Medicine or School of Medicine, and 4th-year veterinary students with consent of instructor. Lectures/discussions/literature reviews of diagnosis and medical/surgical treatment of neurological diseases of animals. Relevant neurologic and neurosurgical topics from human medicine will be addressed. (SU grading only)—I, II, III, IV, (I, II, III, IV) Bailey

296. Small Animal Radiology Case Discussions (1)
Seminar—1 hour. Prerequisite: first or second year standing in the School of Veterinary Medicine or consent of instructor. The role of diagnostic radiology in the clinical setting and student interpretation of radiographs. May be repeated once for credit. (SU grading only)—I, II, III, (I, II, III, IV) Hornof

297. Large Animal Radiology Case Discussions (1)
Seminar—1 hour. Prerequisite: first or second year standing in the School of Veterinary Medicine or consent of instructor. The role of diagnostic radiology in the clinical setting and student interpretation of radiographs. May be repeated once for credit. (SU grading only)—I, II, III, (I, II, III, IV) Hornof

298. Group Study (1-5)
(S/U grading only.)—I, II, III, IV, (I, II, III, IV) Bailey

299. Research (1-12)
(SU grading only.)

Professional Course

397T. Tutoring in Veterinary Surgical and Radiological Science (1-5)
Seminar—1 hour; laboratory—3 hours; discussion—2 hours. For graduate or professional students who desire teaching experience, but are not teaching assistants. May be repeated for credit. (SU grading only.)

Professional Courses

404A. Small Animal Radiology (2.9)
Lecture—17 sessions; discussion—12 sessions. Prerequisite: second year standing in the School of Veterinary Medicine. Introduction to radiographic interpretation as it relates to musculoskeletal, thoracic, and abdominal disorders of small animals. Assignment of unknown cases as practice in interpreting radiographic patterns described in lecture. (Deferred grading only, pending completion of sequence)—II, III, (II, III, IV) Nyland

404B. Large Animal Radiology (1.6)
Lecture—12 sessions; discussion—4 sessions. Prerequisite: second year standing in the School of Veterinary Medicine. Orthopedic diseases of the horse and radiographic manifestations of common clinical syndromes known to the lay horseman such as laminitis, navicular disease, bucked shins and spavin. Common radiographic abnormalities in non equine large animal patients. The pharynx and skull of equine patients. Common radiographic patterns seen in both equine and non equine patients seen in large animal practice. Pattern recognition, the most common patterns and their differential diagnosis.—II, (II, III)
406. Small Animal Diagnostic Ultrasound (0.9)
Lecture—6 sessions; laboratory—3 sessions. Prerequisite: second year standing in the School of Veterinary Medicine. Introduction to ultrasound imaging physics, artifacts, techniques of abdominal scanning and basic ultrasonographic anatomy. Laboratory sessions reinforce topics covered in lecture and provide hands on ultrasound experience.—I, II, III.

408. Special Procedures Rounds (2)
Discussion—5 sessions. Prerequisite: a DVM degree and consent of instructor. Approved for graduate degree credit. Review of selected radiology cases from previous day. Specific radiographic changes and differential diagnosis are discussed, with participants leading the discussions. Special procedures such as angiography; nuclear medicine and ultrasound examinations are reviewed. May be repeated for credit. (SU grading only.)—I, II, III. (I, II, III.)

409. Known Case Conference (1.5)
Discussion/demonstration—1.5 hours. Prerequisite: DVM degree and consent of instructor. Approved for graduate degree credit. Film review of current VM Teaching Hospital proven cases. Cases will be chosen in consultation with residents and others with background in diagnostic radiology. May be repeated for credit. (SU grading only.)—I, II, III, (II, III.)

410. Current Topics in Radiological Sciences (1.5)
Lecture—1.5 hours. Prerequisite: DVM degree or consent of instructor. Fundamentals of radiological sciences for radiology residents. Topics will include series of in-depth lectures covering the broad spectrum of veterinary radiology/radiological sciences and related alternate imaging modalities. Clinically oriented but also including relevant research material. (SU grading only.)—I, II, III, IV. (II, I, II, IV.)

413. Small Animal Dentistry (2)
Lecture—20 hours. Prerequisite: third-year standing in the School of Veterinary Medicine. Introduction to the principles of oral examination, pathophysiology and treatment of periodontitis, exodontics, basic oral soft tissue surgery dental emergencies, oral pathology, developmental and congenital conditions, periodontics, advanced periodontal therapy, oral medicine and advanced oral surgery. (SU grading only.)—I, II. (I. Verstraete)

415. Lameness in Dogs (1.3)
Lecture—13 hours. Prerequisite: third-year standing in the School of Veterinary Medicine. Discussion of lameness will be followed by detailed descriptions of the disorders that cause lameness in dogs and cats and methods to diagnose and treat them effectively. An important goal will be to distinguish those disorders that can be managed by the general practitioner from those that require referral to a specialist.—III. (III.) Van Couvering

415L. Lameness in Dogs (0.5)
Laboratory—2 three-hour sessions. Prerequisite: third-year standing in the School of Veterinary Medicine and course 415 concurrently. Hands-on experience in surgical manipulation and exposure of joints. (SU grading only.)—II. (II.) Vasseur

416. Equine Ultrasound (0.6)
Lecture—6 sessions. Prerequisite: third-year standing in the School of Veterinary Medicine. Familiarize students with ultrasonographic diagnostic methodology and with ultrasonographic features of common diseases of the major equine organ systems.—II. (II.) Vassar

416L. Equine Ultrasound Laboratory (0.6)
Laboratory—4 hours; discussion—2 hours. Prerequisite: third-year standing in the School of Veterinary Medicine and course 416 concurrently. Ultrasonographic diagnostic methodology and ultrasonographic features of common diseases of the major equine organ systems.—III. (III.) Gillis

420. Small Animal Neurosurgery (1)
Lecture—4 hours; laboratory—16 hours. Prerequisite: VMTH Neurology/Neurosurgery resident, VMTH Surgery resident or consent of instructor. Indications and techniques of selected small animal neurosurgical procedures. (SU grading only.)—II. (II.) Gregory

423. Small Animal Ophthalmology (2)
Lecture—20 hours. Prerequisite: third-year standing in School of Veterinary Medicine or consent of instructor. Diagnosis and treatment of commonly encountered eye diseases of small animals.—II. (II.) Hollingsworth

423L. Small Companion Animal Ophthalmology Laboratory (0.3)
Laboratory—2 four-hour sessions. Prerequisite: course 422 or the equivalent and concurrent enrollment in course 423. Approved for graduate degree credit. Ocular surgical laboratory. Several surgical procedures involving the lids and conjunctiva, as well as enucleation, will be performed at each session. (SU grading only.)—II. (II.) Hollingsworth

424. Case Studies in Veterinary Oncology (1)
Lecture—five 2-hour sessions. Prerequisite: second-year student of Veterinary Medicine elective course offering. By use of clinical case material, the student will be introduced to the Internal Medicine Subspecialty of Oncology. Course will highlight clinical considerations, but will also serve to introduce basic tenets of tumor biology. (SU grading only.)—II. (II.) Madewell

425R. Veterinary Cancer Biology: Mechanisms of Disease (1)
Seminar—8 sessions; laboratory—4 sessions. Prerequisite: Resident in veterinary medical teaching hospital or Veterinary Medicine 433 and consent of instructor. Survey of contemporary literature regarding the biology of cancer with particular reference to mechanisms underlying tumorigenesis in domestic animals. (SU grading only.)—II. (II.)

426R. Veterinary Cancer Biology: Clinical Applications (1)
Seminar—10 sessions. Prerequisite: Resident in veterinary medical teaching hospital or Veterinary Medicine 433 and consent of instructor. Survey of contemporary literature regarding the clinical management of important tumors in domestic animals and focus on diagnosis and treatment. (SU grading only.)—I. (I.)

460. Emergency and Critical Patient Care (2)
Lecture—20 hours. Prerequisite: third-year standing in School of Veterinary Medicine. Introduction to the essential and practical concepts of care for emergency and critically ill patients.—III. (III.) Haskins

461. Management of Small Animal Musculoskeletal Trauma (1.6)
Lecture—16 sessions. Prerequisite: third-year standing in the School of Veterinary Medicine and Veterinary Medicine 460. Introduction to principles of small animal orthopedic surgery including: orthopedic anatomy and examination, orthopedic instrumentation, fracture management, traumatic joint disease and traumatic muscle and tendon disease.—II. (II.) Schutz

461L. Small Animal Orthopedic Surgery Laboratory (0.4)
Laboratory—4 hours. Prerequisite: third-year standing in the School of Veterinary Medicine and course 461 concurrently. Hands-on experience in application of external coaptation and basic principles of application of different types of fixation for fractures. (SU grading only.)—II. (II.) Schutz

462. Radiographic and Ultrasonographic Diagnosis: Small Animal (1.1)
Lecture/discussion—1 hour. Prerequisite: third-year standing in the School of Veterinary Medicine and course 404A. Small radiographic and ultrasonographic case studies discussed in small group setting. Limited enrolment. (SU grading only.)—III. (III.) Hornof

463. Surgical and Anesthetic Considerations in Small Animal Soft Tissue Surgery (2.2)
Lecture—22 sessions. Prerequisite: third-year standing in the School of Veterinary Medicine. Pathophysiology and surgical treatment of selected soft tissue diseases.—III. (III.) Gregory

463L. Soft Tissue Surgical Diseases Laboratory (0.5)
Laboratory—5 sessions. Prerequisite: third-year standing in School of Veterinary Medicine, course 463 concurrently. Prior knowledge given to small animal track students. Laboratory class complementing course 463. Two laboratories in applied surgical anatomy and physiology and three in operative surgical exercises that cover common emergency surgical procedures in veterinary species.—III. (III.) Gregory

465A. Principles and Practice of Veterinary Radiation Oncology - A (1.5)
Lecture—1 hour; laboratory—3 hours total. Prerequisite: open only to graduate students and residents. Principles and practice of veterinary radiation therapy. Topics will include a series of lectures on physical methods of radiation therapy, biological effects of therapeutic radiation, and applications in veterinary patients. Offered in alternate years. (Same course as 265A.) (SU grading only.)—I, II. Theon

465B. Principles and Practice of Veterinary Radiation Oncology - B (1.5)
Lecture—1 hour; course: 465A. Principles and practice of veterinary radiation therapy. Topics will include a series of lectures on physical methods of radiation therapy, biological effects of therapeutic radiation, and applications in veterinary patients. Offered in alternate years. (Same course as 265B.) (SU grading only.)—II. (II.) Theon

466. Mixed-Large Animal Anesthesiology (1.5)
Lecture—15 hours. Prerequisite: third-year standing in School of Veterinary Medicine or consent of instructor. Approved for graduate degree credit. Applied clinical anesthesiology for junior veterinary students. Special techniques and consideration for anesthetizing a variety of species including horses, swine, ruminants, large non-domestic species, cats and dogs. (SU grading only.)—II. (II.) Hildebrand

467. Small Animal Anesthesiology (1.5)
Lecture—15 hours. Prerequisite: third-year standing in School of Veterinary Medicine or consent of instructor. Approved for graduate degree credit. Presentation of material which is basic to safe clinical administration of anesthetic drugs to small animals. Clinical applications, indications and contraindications, and methods of use of common anesthetic drugs and techniques will be discussed.—II. (II.) Ikow

468. Equine Lameness and Radiology (4)
Lecture—4 hours. Prerequisite: third-year standing in School of Veterinary Medicine. Principles in the radiologic diagnosis of conditions that cause lameness in the equine will be emphasized. Methods used in large-animal radiography will be illustrated and latest technique for treating equine lameness will be discussed. Anatomy and pathology of some areas of the musculoskeletal system will also be presented.—II. (II.) O'Brien

468L. Equine Lameness and Radiology (1)
Lecture—10 three-hour sessions. Prerequisite: course 468 (concurrently). Prior enrolment for students in equine track, others with consent of instructor. Limited enrolment.—II. (II.) O'Brien

469. Equine Surgery (5)
Lecture—30 hours. Prerequisite: third-year standing in the School of Veterinary Medicine. Provides junior veterinary students with an understanding of those diseases of the soft tissues of the horse that can be managed surgically.—II. (II.) Pascoe

469L. Equine Surgery Laboratory (1.4)
Laboratory—6 sessions; discussion—4 sessions. Prerequisite: third-year standing in the School of Veterinary Medicine. Successful completion of Veterinary Medicine 407 and concurrent enrollment in Veterinary Medicine 407L. (SU grading only.)—II. (II.) Yorknough
485. Equine Exercise Physiology and Sports Medicine (1)
Lecture—10 sessions. Prerequisite: second-year standing in the School of Veterinary Medicine. Physiologic basis of equine athletic performance. This includes metabolism, muscle function, cardiopulmonary transport, locomotor mechanics as well as major disease processes associated with racing, e.g., orthopedic injuries. (S/U grading only.)—II. (II.) Jones

491. Anesthesia/Critical Care Basic Science Conference (1)
Discussion—1 hour. Prerequisite: postdoctoral, medical, or graduate student; consent of instructor. Advanced course in scientific foundations of animal anesthesia and critical care. Format is directed by discussion following reading of assigned material emphasizing foundations in pharmacology and physiology. (S/U grading only.)—I, II, III. (I, II, III.)

492. Large Animal Grand Rounds (0.5)
Discussion—1 hour. Prerequisite: professional standing; House Officer in Veterinary Medical Teaching Hospital or consent of instructor. House Officers take an active part in the presentation and discussion of selected cases from the large animal and ambulatory clinics. (S/U grading only.)—I, II, III. (I, II, III.)

493. Anesthesia/Critical Care Case Management Conference (1)
Discussion—1 hour. Prerequisite: postdoctoral, medical or graduate student; consent of instructor. Discussion of Veterinary Medical Teaching Hospital case material to illustrate specific medical problems and their preventive and corrective management. (S/U grading only.)—I, II, III. (I, II, III.)
War–Peace Studies

(College of Letters and Science)
The interdisciplinary minor in War-Peace Studies examines the causes and dynamics of intra- and international wars and efforts to prevent and settle such conflicts. Students in the minor are encouraged to participate in the educational activities of the Davis Program of the UC Institute on Global Conflict and Cooperation (IGCC). The minor is sponsored by the International Relations Program.

Minor Program Requirements:

<table>
<thead>
<tr>
<th>War-Peace Studies</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>One or two courses from each of the following areas:</td>
<td>19-20</td>
</tr>
<tr>
<td>Approaches</td>
<td></td>
</tr>
<tr>
<td>Anthropology 123B, 131, Comparative Literature 157, Philosophy 115, 118, Physics 137/Applied Science Engineering 137, Political Science 121, 123, 124, 132, 176, Sociology 119, 157, Women's Studies 102</td>
<td></td>
</tr>
<tr>
<td>Northern and Western Regions</td>
<td></td>
</tr>
<tr>
<td>Southern and Eastern Regions</td>
<td></td>
</tr>
<tr>
<td>Anthropology 142, 143A, 143B, 144, History 165, 191F, 194C, Native American Studies 120, Political Science 126, 134, 145, 149, 178</td>
<td></td>
</tr>
</tbody>
</table>

Restriction: No more than two courses from a single department may be offered in satisfaction of the minor requirements.

Advising. International Relations Program, 752-3063.
The UC Davis Washington Center began operations in the 1990-91 academic year. It provides students and faculty new and expanded opportunities in the nation's capital to enrich their education and research. Its principal activities are an undergraduate academic internship program, fellowships and internships for graduate and professional school students, fellowships and research grants for faculty, and satellite interactive "telecourses." In Fall 2001, the University of California will open the new Washington Center. This state-of-the-art, 11-story facility, will house academic and residential programs for undergraduates, faculty, and graduate students participating in the UC Davis Washington Center.

Undergraduate Academic Internship Program

The UC Davis Washington Center undergraduate program is open to students from all majors at UC Davis who have completed 89.9 units towards graduation. Students earn 13 units of academic credit, continue to be registered as full-time students, and fulfill university residency requirements. A GPA of approximately 3.0 is recommended for admission. Applicants also are evaluated based on a written statement, letters of recommendation and personal interviews.

The Undergraduate Program runs fall and spring quarters, on a 12-13 week "extended quarter" basis. Beginning in Winter 2001, a 10 week winter quarter program will be added to the academic curriculum. It has two principal components:

• Internships/Research Projects (9 units): Students work three to four days per week as interns in Congress, federal agencies, interest groups, trade associations, research institutions, the media, museums or in other organizations related to policy, politics, science and culture and geared to the interests and objectives of individual students. Drawing on the internship experience, each student develops an independent research project, under the supervision of a member of the faculty.

• Seminar Course (4 units): Each student also enrolls in one upper division seminar course taught at the Washington Center. These courses vary each quarter, and are a mix of political science, international relations, other social sciences, history, and the arts and humanities. In addition to regular instruction, seminars often include guest speakers, observations of congressional committees and federal agencies, and other relevant Washington experiences.

Courses are taught by UC Davis faculty in residence, faculty from the UCLA, UC Santa Barbara, UC Santa Cruz, UC San Diego, UC Berkeley Washington, UC Irvine and UC Riverside programs, or visiting faculty from the Washington area. Financial aid eligibility is maintained, and the aid package can be adjusted to reflect the additional costs of the program. Some additional financial awards also are offered directly by the Washington Center, including the University of California President's Washington Scholarship Program, and the Joyce and Norman Weil Scholarships.

Students live in university-arranged housing, (until Fall 2001, when students will reside in the new UC Washington Center facility) convenient to public transportation. Arrangements also are made to cover health services and other aspects of student life. The program also includes many educational, cultural and historical activities in the Washington area.

The UC Davis Washington Center also operates a Summer Program. The Summer Program has a credit or non-credit option. The credit option allows students to earn 5 units of academic credit, in addition to working at an internship. Students pay the summer sessions rate per credit hour plus an application fee. The non-credit internship has a program fee of $200. Both options allow students to participate in many educational, cultural, historical and social activities. Some financial assistance is provided but is more limited than for the academic year programs.

The Washington Center also has positions during the academic year for graduate students as Graduate Fellows (combination of a predoctoral research fellowship and a teaching assistantship) and Graduate Summer Internships. In partnership with faculty on campus, the Washington Center also conducts satellite interactive “tele-courses” in which students on the Davis campus participate in interviews and seminars with federal government officials and other experts from the nation's capital.
Wildlife, Fish, and Conservation Biology

(College of Agricultural and Environmental Sciences)

Deborah L. Elliott-Fisk, Ph.D., Chairperson of the Department

Department Office, 1088 Academic Surge (530-752-6586)

World Wide Web: http://www.wfb.ucdavis.edu

Faculty

Daniel W. Anderson, Ph.D., Professor
Louis W. Botstorn, Ph.D., Professor
Tim Caro, Ph.D., Professor
Joseph J. Cech, Jr., Ph.D., Professor
Chris Dewees, Ph.D., Lecturer
John M. Eadle, Ph.D., Associate Professor
Deborah L. Elliott-Fisk, Ph.D., Professor
Douglas A. Kelt, Ph.D., Assistant Professor
A. Peter Kilmyre, Ph.D., Associate Adjunct Professor
Peter B. Moyle, Ph.D., Professor
Dirk Van Vuren, Ph.D., Associate Professor

Emeriti Faculty

Ronald E. Cole, B.S., Lecturer Emeritus
Don C. Erman, Ph.D., Professor Emeritus
Nancy A. Erman, M.S., Lecturer Emerita
Walter E. Howard, Ph.D., Professor Emeritus
Nadine K. Jacobsen, Ph.D., Professor Emerita
Dale F. Lott, Ph.D., Professor Emeritus
Rex E. Marsh, A.B., Lecturer Emeritus

The Major Program

The Wildlife, Fish, and Conservation Biology major deals with the relationships between the needs of people and the requirements of wildlife. Understanding these relationships is vital for the maintenance of ecological diversity, recreational resources, and food supplies for future generations.

The Program. Because of the diversity of problems in the field, the major emphasizes broad training in biological and physical sciences, with specialization in one of eight areas. The major is primarily for students interested in eventually becoming professionals in wildlife, fish, and conservation biology, but its breadth of course requirements, when combined with suitable electives, also make it suitable as a preparatory major for such areas as veterinary medicine and secondary school teaching. Certification by professional societies such as The Wildlife Society, American Fisheries Society, or the Ecological Society of America or preparation for specialized resource-related graduate studies may also be achieved by careful planning of electives with a faculty adviser.

Career Alternatives. Positions now held by graduates in this major include wildlife, fisheries, management of problem vertebrates, and resource biologists and managers with local, state and federal agencies. Some graduates are biologists or consultants with private industries such as commercial fishing businesses, electrical utilities, sportsman’s clubs, aquaculture operations, and environmental consulting firms. Also, some are veterinarians, medical physicians, and professors/researchers who teach and/or conduct research in academic institutions.

B.S. Major Requirements:

Written/Oral Expression ... 8

Units

English 1 ... 4
Communication 1 ... 4

Above requirements simultaneously satisfy the College requirements.

Preparatory Subject Matter ... 50-56

Biological Sciences 1A, 1B, 1C ... 15
Chemistry 2A, 2B, 8A, 8B ... 16
Agricultural Systems and Environment 21 3
Mathematics 16A, 16B ... 6-12
Physics 1A, 1B or 7A, 7B, 7C ... 6-12

Statistics 100, 102 or Agricultural Systems and Environment 120 4

Breadth/General Education .. 6-24

Satisfaction of General Education requirement

Depth Subject Matter .. 49-61

Students graduating with this major are required to attain at least a C average (2.0 GPA) in all courses taken at the university in depth subject matter.

Environmental Science and Policy 100 or Evolution and Ecology 101 4

Evolution and Ecology 100 .. 4

Biological Sciences 101 ... 4

Neurobiology, Physiology, and Behavior 101 5

Anatomy, Physiology, and Cell Biology 100 or Evolution and Ecology 105 3-4

Choose three lecture courses and two (laboratory) courses. Wildlife, Fish, and Conservation Biology 110, (110L), 111, (111L), 120, (120L), or Evolution and Ecology 134, (134L) ... 12-13

Wildlife, Fish, and Conservation Biology 122 or Neurobiology, Physiology, and Behavior 102, and either 121 or 130 .. 11-12

Choose one course (two recommended) from Statistics 104, 106 or 108 3-8

Wildlife, Fish, and Conservation Biology 100, or 101 and 101L, or 102 and 102L, or three laboratory courses from 110L, 111L, 120L, 123, 156, Evolution and Ecology 134L ... 3-7

Restricted Electives .. 9-34

Choose one from the eight Areas of Specialization shown below. Students must maintain a C average (2.0 GPA) and pass all course work in their chosen specialization.

Areas of Specialization

1. Behavioral ecology: Complete Wildlife, Fish, and Conservation Biology 141. Choose one course from each group.

 a. Entomology 104, Environmental Science and Policy 101, Animal Science 104, or Anthropology 154A.

2. Conservation biology: Complete Wildlife, Fish, and Conservation Biology 154 and Environmental Horticulture 150. Choose one course from each group.

 a. Entomology 147, Evolution and Ecology 117, 138, 147, or Wildlife, Fish, and Conservation Biology 156.

3. Ecotoxicology and disease ecology: Complete Wildlife, Fish, and Conservation Biology 153, Biological Sciences 102, 103 or Animal Biology 102, 103. Choose two courses from a and one from b, or one from a and two from b:

 a. Environmental Toxicology 101, 112A (112B recommended), 132 or 138; and

 b. Pathology, Microbiology, and Immunology 101, Medical Microbiology 115 or 116.

4. Fisheries biology: Complete Wildlife, Fish, and Conservation Biology 102, 102L, 120, 120L, 121, Biological Sciences 102, 103, or Animal Biology 102, 103 and:

 a. One course from Wildlife, Fish, and Conservation Biology 123, Entomology 116 or Evolution and Ecology 112-112L; and

 b. Two courses from Environmental Science and Policy 116 (or 150C), 151, Hydrologic Science 122, or Wildlife, Fish, and Conservation Biology 157.

5. Physiological ecology: Complete Wildlife, Fish, and Conservation Biology 121 and 130, Biological Sciences 102, 103 or Animal Biology 102, 103. Choose two courses from Neurobiology, Physiology, and Behavior 126, 127, 128, 129, 140 or 141.

6. Wildlife damage management: Complete Wildlife, Fish, and Conservation Biology 152, Agricultural Systems and Environment 105 and 110A, and choose one course from Entomology 153 or 156.

7. Wildlife biology: Complete Wildlife, Fish, and Conservation Biology 100 or 101-101L, Wildlife, Fish, and Conservation Biology 130 and 151, and two courses from Evolution and Ecology 134L or Wildlife, Fish, and Conservation Biology 110L or 111L, and:

 a. Choose two courses from Agricultural Systems and Environment 130, Plant Biology 102 (or 103), 117, 121, 144, 178, Evolution and Ecology 121, Environmental Science and Policy 155, Wildlife, Fish, and Conservation Biology 156.

 b. Choose one course from Wildlife, Fish, and Conservation Biology 131, 136, 152, 157, Agricultural Systems and Environment 135.

8. Individualized: Students may, with prior approval of their adviser and the curriculum committee, design their own individualized specialization within the major. The specialization will consist of 4-6 courses with a common theme.

Unrestricted Electives ... 0-62

Total Units for the Degree (minimum) .. 180

Major Adviser: T. Caro

Quarter Offered: I=Fall; II=Winter; III=Spring; IV=Summer, 2001-2002 offering in parentheses.

General Education (GE) credit: ArHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
Courses in Wildlife, Fish and Conservation Biology (WFC)

Lower Division Courses

10. Wildlife Ecology and Conservation (4)
Lecture—3 hours; discussion—1 hour. Introduction to the ecology and conservation of vertebrates. Complexity and severity of world problems in conserving biological diversity. GE credit: SciEng, Dw. Wrt.—I. (I.) Moye, Kelt

92. Internship (1-6)
Internship—3-18 hours. Prerequisite: lower division standing and consent of instructor. Work experience off and on campus in all subject areas offered in the department. Internships supervised by a member of the faculty. (P/NP grading only)

Upper Division Courses

100. Field Methods in Wildlife, Fish and Conservation Biology (4)
Lecture—1 hour; laboratory—3 hours; fieldwork—30 hours total (requires 3 of 6 weekend field trips); term paper. Prerequisite: Evolution and Ecology 101 or Environmental Studies 100 and consent of instructor; additional coursework in systematics of groups of organisms recommended. Introduction to field methods for research on the ecology and conservation of vertebrates, invertebrates, and plants, and to the scientific method, experimental design, and data presentation. Requires preparation of a term project. —III. (III.) Elliot-Fisk

101. Field Research in Wildlife Ecology (2)
Lecture/discussion—2 hours. Prerequisite: consent of instructor and one upper division course in each of ecology, wildlife, statistics, and conservation methods. Field research in ecology of wild vertebrates in terrestrial environments; formulation of testable hypotheses, study design; introduction to research methodology; oral and written presentation of results. Limited enrollment.—I. (I.) Anderson, Eadie, Kelt, Van Vuren

101L. Field Research in Wildlife Ecology: Laboratory (4)
Lecture/discussion—2 hours; field work—15 hours. Prerequisite: consent of instructor, course 101 may be taken concurrently), and one upper division course in each of ecology, statistics, and ornithology, mammalogy, or herpetology. Field research in ecology of wild vertebrates in terrestrial environments; testing ecological hypotheses through field research, application of research methodology, supervised independent research projects. Held between Labor Day and fall quarter. Limited enrollment.—I. (I.) Anderson, Eadie, Kelt, Van Vuren

102. Field Studies in Fish Biology (1)
Lecture/discussion—1 hour. Prerequisite: upper division course in each of ecology, aquatic biology, fish biology, and statistics, and consent of instructor. Emphasis on theory of quantitative fish capture methods and design of individual research projects on ecology, behavior, physiology or population biology of fishes. Offered in alternate years.—III. Moye, Cech

102L. Field Studies in Fish Biology: Laboratory (6)
Fieldwork—15 hours; laboratory—12 hours; discussion/laboratory—3 hours. Prerequisite: course 102, upper division course in each of ecology, aquatic biology, fish biology, and consent of instructor. Field investigations of fish biology are emphasized including quantitative capture methods and individual research projects on ecology, behavior, physiology or population biology of fishes at the field site in relation to their habitats. Offered in alternate years. (Deferred grading only, pending completion of projects.) GE credit: SciEng, Wrt.—III. (III.) Moye, Cech

110. Biology and Conservation of Wild Mammals (3)
Lecture—3 hours. Prerequisite: Biological Sciences 1A, 1B, 1C; course in ecology recommended. Biology and conservation of wild mammals. Natural history, taxonomy, geographical-ecological distribution, anatomical-physiological-behavioral adaptations of mammals to their environment, and research/management techniques are emphasized.—II. (III.) Kelt

110L. Laboratory in Biology and Conservation of Wild Mammals (2)
Laboratory—6 hours. Prerequisite: course 110 (may be taken concurrently) and consent of instructor. Laboratory exercises in the morphology, systematics, species identification, anatomy, and adaptations of wild mammals to different habitats. Limited enrollment.—II. (III.) Kelt

111. Biology and Conservation of Wild Birds (3)
Lecture—3 hours. Prerequisite: Biological Sciences 1A, 1B, 1C, and Evolution and Ecology 101. Prerequisite: Statistical analysis and upper division course in population biology. Bird population dynamics, modeling philosophy, techniques for estimation of animal abundance (e.g., mark-recapture, change-in-ratio, etc.), mathematical models of populations (e.g., Leslie matrix, logistic, dynamic pool, stock-recruitment), case histories.—II. (III.) Botsford

112. Population Dynamics and Estimation (4)
Lecture—3 hours; laboratory—3 hours. Prerequisite: Mathematics 16A-16B; Statistics 13 or the equivalent; an upper division course in ecology. Description of bird, mammal and fish population dynamics, modeling philosophy, techniques for estimation of animal abundance (e.g., mark-recapture, change-in-ratio, etc.), mathematical models of populations (e.g., Leslie matrix, logistic, dynamic pool, stock-recruitment), case histories.—II. (III.) Botsford

123. Freshwater Invertebrate Ecology (4)
Lecture/discussion—2 hours; laboratory—3 hours; fieldwork—3 hours; one all-day Saturday field trip required. Prerequisite: Biological Sciences 1A and 1B or the equivalent. Ecology and classification of freshwater invertebrates with emphasis on life history, habitat, diversity, and behavior. Invertebrate monitoring technique to assess environmental impacts and classification based on morphology as a tool for understanding ecology and biology of aquatic organisms. GE credit: SciEng, Wrt.—III. (III.) N. Erman

130. Physiological Ecology of Wildlife (4)
Lecture—3 hours. Prerequisite: course 110, 111, or 120; Neurobiology, Physiology and Behavior 101; and Evolution and Ecology 101. Animal functions, adaptations, and ecological energetics of wildlife. Nutrition, metabolism, and productivity are emphasized as a pattern of relationships for understanding the distribution and abundance of wild ectotherms and endotherms in time and space.—II. (II.) Botsford

131. Biology and Management of Cervidae (3)
Lecture—2 hours; laboratory—3 hours. Prerequisite: Neurobiology, Physiology and Behavior 101 and Evolution and Ecology 101, or the equivalent; course 110 recommended. Evolution, biology, and management of cervids. Topics include differences in life history, behavior, bioenergetics, reproduction and growth, use of habitats, and research methodologies. Emphasis on North American species of caribou, elk, moose, and deer. Offered in alternate years.—III.

136. Ecology of Waterfowl and Game Birds (3)
Lecture—2 hours; laboratory—3 hours; field trip. Prerequisite: courses 111 and 111L or the equivalent. Detailed examination of distribution, behavior, population dynamics, and management of waterfowl and upland game birds. Offered in alternate years.—II.

140. Ecology and Evolution of Vertebrate Social Organization (4)
Lecture—4 hours. Prerequisite: Biological Sciences 1B or upper division ecology course (Evolution and Ecology 101 or the equivalent). Spacing competition, cooperation, and grouping of wild vertebrates are described and analyzed as adaptive products of their evolutionary history and ecology. Minimal consideration is given to humans and other primates. Offered in alternate years. GE credit: SciEng, Wrt.—II.

141. Behavioral Ecology (3)
Lecture—3 hours. Prerequisite: Evolution and Ecology 101. Basic theories underlying the functional and evolutionary significance of behavior, and the role of ecological constraints. Supporting empirical evidence taken mainly from studies of wild vertebrates. Offered in alternate years. GE credit: SciEng, Wrt.—II.

151. Wildlife Ecology (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: Biological Sciences, 1A, 1B, 1C or the equivalents; course 110L or 111L recommended. Ecology of wild vertebrates, including habitat selection, spatial organization, demography, population growth and regulation, competition, predation, and community dynamics, set in the context of human-caused degradation of environments in North America.—I. (I.) Van Vuren

152. Ecological Management of Problem Wildlife (3)
Lecture—3 hours. Prerequisite: Biological Sciences 1A, 1B, and 1C, or the equivalent. Ecological approaches to managing wild vertebrates that cause problems for agriculture, public health, or conservation of biodiversity. Offered in alternate years.—II. Van Vuren

153. Wildlife Ecotoxicology (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: introductory courses in organic chemistry, ecology, and physiology, or consent of instructor; Environmental Toxicology 101 recommended. Various forms of environmental pollution in relation to fish and wildlife, the effects and mechanisms of pollutants, effects on individuals and species, and wildlife population dynamics, examples/case histories, philosophical/management considerations. Offered in alternate years. GE credit: SciEng, Wrt.—II.

154. Conservation Biology (4)
Lecture—3 hours; term paper (will be one or more book reviews). Prerequisite: Evolution and Ecology 101 or Environmental Studies 100 or the equivalent. An introduction to conservation biology and background to the biological issues and controversies surrounding loss of species and habitats.—II. (III.) Caro
156. Plant Geography (4)
Lecture—3 hours; laboratory—3 hours; term paper. Field trips will be substituted for some in-lab activities. Prerequisite: Environmental Science and Policy 100 or Evolution and Ecology 101; Plant Biology 102 or 108 strongly recommended. Survey of the geographical distribution of vegetation types and habitats, with consideration of the environmental and historical factors that determine these patterns. Conservation and management approaches. Analytical field and lab techniques introduced. Offered in alternate years. GE credit: SciEng, Wrt.—II. Elliot-Fisk

157. Coastal Ecosystems (4)
Lecture—3 hours; laboratory/fieldwork—3 hours. Prerequisite: Environmental Studies 100 or Evolution and Ecology 101; course work in organismal biology, physical geography, and geology recommended. Overview of coastal ecosystems, physical and biological elements and processes, and coastal zone dynamics, including sandy, rocky and muddy shorelines, estuaries, dunes and coastal watersheds. Discussion of the role of historical factors and conservation, restoration, and management approaches. Offered in alternate years.—(II.) Elliot-Fisk

190. Proseminar in Wildlife and Fisheries Biology (1)
Seminar—1 hour. Prerequisite: upper division standing in biological sciences or consent of instructor. Reports and discussions of recent advances related to wildlife and fisheries biology. May be repeated twice for credit. (P/NP grading only.)—I, II, III. (I, II, III.)

190C. Research Group Conference (1)
Discussion—1 hour. Prerequisite: advanced standing; consent of instructor. Weekly conference on research problems, progress and techniques in wildlife and fisheries biology. May be repeated for credit. (P/NP grading only.)—I, II, III. (I, II, III.)

191. Museum Science (2)
Lecture—1 hour; laboratory—3 hours. Prerequisite: upper division standing and consent of instructor. Principles and methods required to preserve and present biological specimens for research, teaching collections, and museums. Offered in alternate years. (P/NP grading only.)—II. Cole

192. Internship (1-12)
Internship—3-36 hours. Prerequisite: completion of 84 units and consent of instructor. Work experience off and on campus in all subject areas offered in the department. Internships supervised by a member of the faculty. (P/NP grading only.)

195. Field and Laboratory Research (3)
Laboratory—3 hours; discussion—1 hour. Prerequisite: course 110L, 111L, or 120L; 121 or 130; Evolution and Ecology 101 or the equivalent; and consent of instructor. Critique and practice of research methods applied to field and/or laboratory environments of wild vertebrates. Students work independently or in small groups to design experimental protocol, analyze data, and report their findings. May be repeated twice for credit.—I, II, III. (I, II, III.)

197T. Tutoring in Wildlife and Fisheries (1-5)
Prerequisite: major in Wildlife, Fish, and Conservation Biology and consent of instructor. Experience in teaching under guidance of faculty member. (P/NP grading only.)

198. Directed Group Study (1-5)
(P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5)
(P/NP grading only.)

Graduate Courses

222. Advanced Population Dynamics (3)
Lecture—3 hours. Prerequisite: graduate standing; advanced course in ecology (e.g., Evolution and Ecology 101), population dynamics (e.g., course 122), and one year of calculus; familiarity with matrix algebra and partial differential equations recommended. Logical basis for population models, evaluation of simple ecological models, current population models with age, size, and stage structure, theoretical basis for management and exemplary case histories. Emphasis on development and use of realistic population models in ecological research.—II. (II.) Botsford

290. Seminar (1-3)
Seminar—1-3 hours. Prerequisite: consent of instructor. Seminar devoted to a highly specific research topic in any area of wildlife or fisheries biology. Special topic selected for a quarter will vary depending on interests of instructor and students. (SU grading only)—I, II, III. (I, II, III.)

290C. Research Group Conference (1)
Discussion—1 hour. Prerequisite: consent of instructor. Weekly conference on research problems, progress and techniques in wildlife and fishery sciences. May be repeated for credit. (SU grading only)—I, II, III. (I, II, III.)

291. Seminar in Aquatic Ecology (2)
Seminar—2 hours. Prerequisite: graduate standing in biology. Presentation and analysis of assigned topics in aquatic ecology emphasizing fish, fisheries and aquatic conservation. Offered in alternate years. (SU grading only.)—III. (III.) Moyle

292. Physiology of Fishes Seminar (1)
Seminar—1 hour. Prerequisite: graduate standing and at least two courses in physiology; consent of instructor. Seminar devoted to current topics concerning the physiological functioning of fishes. May be repeated twice for credit. (SU grading only)–—I, II, III. (I, II, III.)

293. Seminar in Wildlife Disease Ecology (2)
Seminar—2 hours. Prerequisite: graduate standing or advanced undergraduate in biology. Presentation and analysis of assigned research papers on disease ecology of wild vertebrates related to considerations of habitat quality, population regulation, wildlife management, and/or implications for human or domestic animal health. (SU grading only)–—II. (II.)

294. Seminar in Behavioral Ecology of Predators and Prey (3)
Seminar—2 hours; term paper. Prerequisite: graduate standing in biology. Presentation and analysis of research papers on social and foraging behavior of predatory animals, anti-predator strategies of prey species, co-evolution of predators and prey, and ecology of predator-prey interactions. May be repeated twice for credit. Offered in alternate years. —II. Caro

295. Seminar in Wildlife Ecotoxicology (3)
Seminar—2 hours; term paper. Prerequisite: graduate standing in biology. Presentation and analysis of assigned research papers on transport, exposure, and effects of environmental contaminants on wildlife-associated ecosystem components, especially at individual/population levels. Specific subjects vary each offering. Offered in alternate years. (SU grading only)—II. Anderson

297T. Supervised Teaching in Wildlife and Fisheries Biology (1-3)
Tutorial—3-9 hours. Prerequisite: meet qualifications for teaching assistant; graduate standing; and consent of instructor. Tutoring and teaching students in undergraduate courses in Wildlife, Fish, and Conservation Biology. Weekly conferences with instructor; evaluations of teaching; preparing for and conducting demonstrations, laboratories, and discussions; preparing and grading examinations. May be repeated for a total of 6 units when a different course is tutored. (SU grading only.)

299. Group Study (1-5)
(SU grading only.)
Women and Gender Studies

Faculty
Charlayne Allan, Lecturer (Classics)
Carole Blair, Ph.D., Professor (American Studies)
Cynthia L. Brantley, Ph.D., Associate Professor (History)
JoAnn Cannon, Ph.D., Professor (French and Italian)
Sue-Ellen Case, Ph.D., Professor (Dramatic Art)
Angie Chabram-Dernersesian, Ph.D., Associate Professor (Chicana/o Studies)
Elizabeth Constable, Ph.D., Assistant Professor (French and Italian)
Sergio De La Mora, Ph.D., Assistant Professor (Chicana/o Studies)
Joanne Deft, Ph.D., Professor (English)
Karen P. Erickson, Ph.D., Professor (Psychology)
Diane Felmlee, Ph.D., Professor (Sociology)
Migaret W. Ferguson, Ph.D., Professor (English)
Gail Finney, Ph.D., Professor (Comparative Literature, German)
Yvette Flores-Oritz, Ph.D., Associate Professor (Chicana/o Studies)
Susan Foster, Ph.D., Assistant Professor (Theatre and Dance)
Ruth Frankenberg, Ph.D., Associate Professor (American Studies)
Rosa Linda Fregoso, Ph.D., Associate Professor (Women and Gender Studies)
Sandra Gilbert, Ph.D., Professor (English)
Gayatri Gopinath, Ph.D. (Women and Gender Studies)
Laura Grindstaff, Ph.D., Professor (Women and Gender Studies)
Sandra Gibb, Ph.D., Professor (English)
Indira Hernández-Avila, Ph.D., Associate Professor (Native American Studies)
Lynn Hershman, M.F.A., Professor (Art)
Wendy Ho, Ph.D., Associate Professor (Asian American Studies, Women and Gender Studies)
Mary Jackman, Ph.D., Professor (Sociology)
Carole Joffe, Ph.D., Professor (Sociology, Women and Gender Studies)
Alessa Johns, Ph.D., Assistant Professor (English)
Suad Joseph, Ph.D., Professor (Anthropology)
Susan Kaisier, Ph.D., Professor (Textiles and Clothing, Women and Gender Studies)
Cathy Kudlick, Ph.D., Associate Professor (History)
Anna K. Kuhn, Ph.D., Professor (German)
Kari Lokke, Ph.D., Associate Professor (Comparative Literature)
Dianne Sachko Macleod, Ph.D., Associate Professor (Art History)
Martha Maci, Ph.D., Associate Professor (Anthropology, Native American Studies)
Susan Mann, Ph.D., Professor (History)
Sandra J. McPherson, B.A., Professor (English)
Jay Meichling, Ph.D., Professor (American Studies)
Zoria Mendoza, Ph.D., Assistant Professor (Native American Studies)
Barbara Metcalf, Ph.D., Professor (History)
Janet Momsen, Ph.D. (Human and Community Development)
Patricia Moran, Ph.D., Associate Professor (English)
Linda Morris, Ph.D., Professor (English)
Harriet Murav, Ph.D., Associate Professor (Russian)
Judith Newton, Ph.D., Professor (Women and Gender Studies)
Beatrix M. Pesquera, Ph.D., Associate Professor (Chicana/o Studies)
Michele Praeger, Ph.D., Associate Professor (French and Italian)
Sarah Projszansky, Ph.D., Assistant Professor (Women and Gender Studies)
Ella Ray, Ph.D., Assistant Professor (African American and African Studies)
Donna Reed, Ph.D., Lecturer (Comparative Literature)
Janelle Reinelt, Ph.D., Professor (Dramatic Art)
Riché Richardson, Ph.D., Assistant Professor (English)
Catherine Robson, Ph.D., Assistant Professor (English)
Ruth E. Rosen, Ph.D., Professor (History)
Luana Ross, Ph.D., Assistant Professor (Native American Studies)
Roger Rouse, Ph.D., Assistant Professor (Anthropology)
Suzanna Sawyer, Ph.D., Assistant Professor (Anthropology)
Seth Schein, Ph.D., Professor (Comparative Literature)
Juliana Schiesari, Ph.D., Professor (French and Italian)
Karen Shimakawa, Ph.D., Assistant Professor (Asian American Studies, Theatre and Dance)
Carol Smith, Ph.D., Professor (Anthropology)
Janet Smith, Ph.D., Professor (Anthropology)
Victoria Smith, Ph.D., Associate Professor (Sociology)
Barbara Sommer, Ph.D., Lecturer (Psychology)
Lenora A. Timm, Ph.D., Professor (Linguistics)
Patricia Turner, Ph.D., Professor (Asian American Studies, African American and African Studies, American Studies)
Deidre Van Le, Ph.D., Professor (English)
Sophie Volp, Ph.D., Associate Professor (East Asian Languages and Cultures)
Martha West, J.D., Professor (Law)
Diane Wolf, Ph.D., Associate Professor (Sociology)

The Major Program
Women's Studies is an interdisciplinary major founded on the premise that gender is a historically variable construction that centrally shapes the historical experience and everyday lives of women as well as men. Women's Studies also assumes that gender, race, class, and sexual and national identities are constructed in relation to each other. The intersections of these categories of experience as well as the history of debate over what these categories mean is an important strand of the Women's Studies curriculum. Women's Studies at UC Davis is particularly rich in faculty doing comparative, cross-cultural work on women and gender. Among the faculty offering courses for the major are scholars working on women and gender in Africa, the Caribbean, the Americas, China, Europe, Japan, India, various countries of the Middle East, Southeast Asia, and the United States.

The Program. Students majoring in this field may take courses in African American and African studies, American studies, anthropology, comparative literature, English, history, linguistics, Chicana/o studies, political science, psychology, sociology, Asian American studies, Native American studies, French, German, Italian, Spanish, textiles and clothing, and other related disciplines. Depending on individual career goals, each student will design a program in consultation with an adviser.

Career Alternatives. The B.A. degree in Women's Studies provides excellent grounding for undergraduates with career aspirations in law, medicine, public administration, and social services. Students wishing to pursue doctoral work will also find that interdisciplinary training in Women's Studies equips them with theoretical and methodological strengths in most disciplines and applied research fields. Increasingly, specialists in Women's Studies are being used as consultants in industry, higher education, insurance companies, and personnel firms. State and federal government agencies require people who have special training in understanding gender relations. Finally, educational institutions need specialists to develop and administer women's studies programs, women's centers, and other institutional structures designed specifically to study and assist women.

Women's Studies
A.B. Major Requirements:

Preparatory Subject Matter

Two courses from Women's Studies 20, 50, 60, 70..8
Three courses selected from the following:African American and African Studies 10, 15, American Studies 1E, 1F, Anthropology 2, 20, 21, Art History 15, Asian American Studies 1, 2, Chicana/o Studies 10, 50, Classics 15, Comparative Literature 12, Dramatic Art 1, English 30A or 30B, 45, 46A or 46B or 46C, History 72A, 72B, Humanities 10, Native American Studies 1, 10, Nature and Culture 1, Political Science 7, Psychology 1, Science and Society 1, 15, Sociology 1, 2, 3, Textiles and Clothing 7, Women's Studies 80..12

Depth Subject Matter

Women's Studies 103, 104, 190 and one additional upper division course..44

Women's Studies course..16
Cross-Cultural Requirement ..16

Choose four courses (at least one from each category). Courses used to meet this requirement may not duplicate those used to meet other Women's Studies major requirements. The list that follows represents a partial list of options; other courses may be included with the consent of the Women's Studies Adviser.

Ethnic Studies: Women of Color in the United States

African American and African Studies 123, 133, Anthropology 139,
Asian American Studies 112, Chicana/o Studies 111, 122, 131,

Historical Material Prior to 1900

Gender-based Courses...12
Choose one of two tracks: Disciplinary or Thematic. Courses used to meet this requirement may not duplicate those used to meet other Women's Studies major requirements.

Disciplinary track
Choose three courses from one of the following focus groups:
Anthropology focus: Anthropology 129, 130, 131, 134, 148B, 158, Women's Studies 102, 182, 184.

Thematic track
In consultation with a Women's Studies adviser, choose three courses that form a thematic cluster (for example, Gender and Race in the United States, The Cultural Representations of Gender; Gender and Public Policy; Gender and Global Issues; Gender and Autobiography; The Body, Theory and Representation; Sexualities). Other clusters may be developed in consultation with a Women's Studies adviser.

Total units for the major ..64

Major Adviser. All Women's Studies majors and minors must consult with a faculty adviser, individually, at least once each academic year.

Minor Program Requirements:

UNITs
Women's Studies ...24
Women's Studies majors and minors must consult with a faculty adviser, individually, at least once each academic year.

Graduate Study. The Women's Studies Program offers a designated emphasis in Feminist Theory and Research for students enrolled in the Ph.D. programs of twelve other affiliated departments. See "Feminist Theory and Research." Courses in Women's Studies (WMS)

Lower Division Courses

20. Cultural Representations of Gender (4)
Lecture/discussion—4 hours. Prerequisite: one course specified for the Women's Studies major. Interdisciplinary investigation of how specific cultural forms represent gender difference. Examine a variety of cultural forms and phenomena including film, television, literature, music, popular movements, and institutions. GE credit: ArtHum, Div, Wrt.—III. (III.)

50. Introduction to Women's Studies (4)
Lecture—3 hours; discussion—1 hour or term paper (instructor's option). Interdisciplinary introduction which will survey and integrate literary, anthropological, psychological, historical, sociological and biological perspectives on the study of sex roles. GE credit: ArtHum or SocSci, Div, Wrt.—II, III, (I, II, III) Profyansky, Joffe, Newton

60. Feminist Perspectives on Western Social Thought (4)
Lecture/discussion—4 hours. A critical introduction to major traditions of social thinking in the West from a feminist perspective. GE credit: ArtHum or SocSci, Div.—I.

70. Theory and History of Sexualities (4)
Lecture/discussion—4 hours. Key issues in the social construction, organization, and reproduction of sexualities such as the intersection of sexual identity with gender, race, ethnicity, and class, and the relation between movements for sexual liberation and the regulation of the body. GE credit: ArtHum or SocSci, Div.—II.

80. Special Topics in Women's Studies (4)
Lecture/discussion—4 hours. In-depth examination of a women's studies topic related to the research interest of the instructor. May be repeated for credit when topic varies. Limited enrollment.

90X. Lower Division Seminar (2)
Seminar—2 hours. Examination of a special topic in Women's Studies through shared readings, discussions, and written assignments. Offered in alternate years.

98. Directed Group Study (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)

99. Special Study for Undergraduates (1-5)
Prerequisite: consent of instructor. (P/NP grading only.)

Upper Division Courses

102. Colonialism, Nationalism, and Women (4)
Lecture/discussion—4 hours. Prerequisite: one course specified for Women's Studies major. Explores key dimensions of women's relationship to colonialism and nationalism in one or more societies. GE credit: SocSci, Div.—I.

104. Feminist Approaches to Inquiry (4)
Lecture/discussion—4 hours. Prerequisite: one course specified for the Women's Studies major. Introduction to the emergence of feminist theory and to key concepts in feminist theorizing. Examination of past and current debates over sexuality, race, identity politics, and the social construction of women's experience.—I. (I.)

139. Feminist Cultural Studies (4)
Lecture/discussion—4 hours. Prerequisite: one course in Women's Studies course or Sociol. 131 or 132. An examination of contemporary conflicts over family values and the changing family from a feminist perspective. Offered in alternate years. GE credit: ArtHum or SocSci, Div.—III.

140. Gender and Law (4)
Lecture/discussion—4 hours. Prerequisite: one course in Women's Studies. Explo- ration of women's legal rights in historical and contemporary context, discussing a variety of legal issues and applicable feminist theories. Topics include constitutional equal protection, discrimination in employment and education, sexual orientation discrimination, and the regulation of abortion. GE credit: SocSci, Div.—II. (II.)

158. Contemporary Masculinities (4)
Lecture/discussion—4 hours. Prerequisite: one course specified for the Women's Studies major. A multicultural study of contemporary trends in masculinity and the economic, social and political forces that have shaped them. Topics may include men's movements, ethnic nationalist masculinities, and images of masculinity in popular culture. GE credit: ArtHum or SocSci, Div.—III.

160. Representations of Women of Color in Cinema (4)
Lecture/discussion—3 hours; film viewing—3 hours. Prerequisite: course 20 or another film course. The representations of women of color in commercial and independent films from a feminist perspective. GE credit: ArtHum, Div.—III.

162. Feminist Film Theory and Criticism (4)
Lecture/discussion—4 hours. Prerequisite: one course specified for the Women's Studies major. Contemporary issues in feminist film theory including representation, spectatorship, and cultural production. Film stars, women filmmakers and the intersection of gender, race, sexuality and class in films and their audiences. GE credit: ArtHum, Div.—II.

164. Topics in Gender and Cinematic Representation (4)
Lecture/discussion—4 hours. Topics vary with instructor. May be repeated twice for credit when topic differs. Offered in alternate years. GE credit: ArtHum, Div.—II.

180. Women of Color Writing in the United States (4)
Lecture/discussion—4 hours. Prerequisite: course 20 or 50. Literature, especially novels, written by contemporary women of color in the United States, understood in their socio-economic, cultural and historical contexts. GE credit: ArtHum, Div.—II.
182. Globalization, Gender and Identity (4)
Lecture/discussion—4 hours. Prerequisite: course 50. Feminist theories on affects of gender on self and identity and cross cultural study as it intersects gender with race, class, ethnicity. Impact of globalization processes on gender and identity. Offered in alternate years. GE credit: SocSci, Div, Wrt.—(II.)

184. Gender in the Arab World (4)
Lecture/discussion—4 hours. Prerequisite: course 50. Examination of the history, culture, and social/political/economic dynamics of gender relations and gendering in the Arab world. GE credit: SocSci, Div, Wrt.

187. Gender and Social Policy (4)
Lecture/discussion—3 hours; term paper. Prerequisite: upper division standing and a course in Women's Studies. The role of gender in the creation of social policies, especially with respect to issues brought into the policy arena by contemporary feminism. Offered in alternate years. GE credit: SocSci, Div.—(III.)

190. Senior Seminar (4)
Seminar—4 hours. Prerequisite: senior standing in Women's Studies. Capstone course for senior Women's Studies majors, which focuses on current issues on feminism as they impact theory, public policy, and practice.—(III.)

192. Internship in Women's Studies (1-12)
Internship—3-36 hours; written report. Prerequisite: completion of a minimum of 84 units and consent of instructor; enrollment dependent on availability of intern positions with priority to Women's Studies majors. Supervised internship and study in positions/institutional settings dealing with gender-related problems or issues, as for example, a women's center, affirmative action office, advertising agency, or social welfare agency. Final written report on internship experience. (P/NP grading only.)

194HA-194HB. Senior Honors Project in Women's Studies (4-6)
Independent study—12 hours. Prerequisite: senior standing, Women's Studies major, and adviser's approval. In consultation with an adviser, students complete a substantial research paper or significant creative project on a Women's Studies topic. (Deferred grading only, pending completion of sequence.)

195. Thematic Seminar in Women's Studies (4)
Seminar—4 hours. Prerequisite: two courses specified for women's studies major. Group study of a topic, issue or area in feminist theory and research involving intensive reading and writing. May be repeated for credit when topic differs. GE credit: ArtHum or SocSci, Div.—III.

197T. Tutoring in Women's Studies (1-4)
Tutoring—3-12 hours. Prerequisite: upper division standing and consent of director. Leading small, voluntary discussion groups affiliated with a Women's Studies course. May be repeated for credit for a total of 8 units. (P/NP grading only.)

198. Directed Group Study (1-5)
Prerequisite: upper division standing; consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5)
Prerequisite: upper division standing; consent of instructor. (P/NP grading only.)

Graduate Courses

200A. Current Issues in Feminist Theory (4)
Seminar—4 hours. Current issues in feminist theory; techniques employed to build feminist theory in various fields.—I. (I.)

200B. Problems in Feminist Research (4)
Seminar—4 hours. Prerequisite: course 200A with a grade of B+ or better. Application of feminist theoretical perspectives to the interdisciplinary investigation of a problem or question chosen by the instructor(s). May be repeated for credit when subject area differs.—III. (III.)

201. Special Topics in Feminist Theory and Research (4)
Lecture/discussion—4 hours. Explores in depth a topic in feminist theory and research related to the research interests of the instructor. May be repeated for credit when topic differs. Limited enrollment.—II. (II.)

299. Special Study for Graduate Students (1-12)
(S/U grading only.)

Professional Course

396. Teaching Assistant Training Practicum (1-4)
Prerequisite: graduate standing. May be repeated for credit. (S/U grading only.)—I, II, III. (I, II, III.)

Quarter Offered: I=Fall; II=Winter; III=Spring; IV=Summer; 2001-2002 offering in parentheses.
General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
GENERAL EDUCATION OPTIONS/COURSES
Arts and Humanities

Majors
- African American and African Studies
- American Studies
- Art History
- Art Studio
- Asian American Studies (Humanities emphasis)
- Chicana/Chicano (Mexican-American) Studies (Humanities emphasis)
- Chinese
- Classical Civilization
- Comparative Literature
- Design
- Dramatic Art
- English
- French
- German
- Greek
- History
- Italian
- Japanese
- Landscape Architecture
- Latin
- Medieval Studies
- Music
- Native American Studies
- Philosophy
- Religious Studies
- Russian
- Spanish
- Women's Studies

Minors
- African American and African Studies
- American Studies
- Art History
- Art Studio
- Asian American Studies
- Chicana/Chicano (Mexican-American) Studies
- Chinese
- Classical Civilization
- Comparative Literature
- Dramatic Art
- English
- French
- Filin Studies
- French
- German
- Global and International Studies
- Greek
- History
- Italian
- Japanese
- Jewish Studies
- Latin
- Medieval Studies
- Music
- Native American Studies
- Philosophy
- Religious Studies
- Russian
- Social and Ethnic Relations
- Spanish
- Women's Studies

Science and Engineering

Majors
- Agricultural Systems and Environment
- Animal Biology
- Animal Science
- Animal Science and Management
- Anthropology (B.S. degree only)
- Applied Physics
- Atmospheric Science
- Avian Sciences
- Biochemistry
- Biological Sciences
- Biotechnology
- Cell Biology
- Chemistry
- Clinical Nutrition
- Computer Science
- Crop Science and Management
- Engineering (all majors)
- Entomology
- Environmental and Resource Sciences
- Environmental Biology and Management
- Environmental Horticulture and Urban Forestry
- Environmental Toxicology
- Evolution and Ecology
- Exercise Science
- Fermentation Science
- Fiber and Polymer Science
- Food Biochemistry
- Food Science
- Genetics
- Geology
- Hydrology
- Mathematics
- Microbiology
- Nature and Culture
- Neurobiology, Physiology, and Behavior
- Nutrition Science
- Physics
- Plant Biology
- Psychology (B.S. degree)
- Range and Wildlands Science
- Soil and Water Science
- Statistics
- Viticulture and Enology
- Wildlife, Fish and Conservation Biology

Minors
- Agricultural Computing and Information Systems
- Agricultural Entomology
- Agricultural Systems and Environment
- Animal Science
- Anthropology (Biological Emphasis)
- Apiculture
- Applied Biological Systems Technology
- Atmospheric Science
- Avian Sciences
- Biological Sciences
- Community Nutrition
- Computer Science
- Entomology
- Environmental Geology
- Environmental Horticulture
- Environmental Toxicology
- Exercise Science
- Fiber and Polymer Science
- Fungal Biology and Ecology
- Geographic Information Systems
- Geographic Studies
- Geology
- Geophysics
- Hydrology
- Insect Ecology
- Landscape Restoration
- Mathematics
- Medical-Veterinary Entomology
- Nature and Culture
- Nematology
- Nutrition and Food
- Nutrition Science
- Physics
- Plant Biology
- Precision Agriculture
- Science and Society
- Soil Science
- Statistics

Social Sciences

Majors
- Anthropology (A.B. degree)
- Asian American Studies (Social Sciences emphasis)
- Chicana/Chicano (Mexican-American) Studies (Social Sciences emphasis)
- Communication
- Community and Regional Development
- East Asian Studies
- Economics
- Environmental Policy Analysis and Planning
- Human Development
- International Agricultural Development
- International Relations
- Linguistics
- Managerial Economics
- Political Science
- Political Science–Public Service
- Psychology (A.B. degree)
- Sociology
- Sociology–Organizational Studies
- Textiles and Clothing

Minors
- Aging and Adult Development
- Agricultural and Managerial Economics
- Anthropology (Social–Cultural Emphasis)
- Anthropology (General Emphasis)
- Communication
- Community Development
- East Asian Studies
- Economics
- Economy, Justice and Society
- Education
- Energy Policy
- Environmental Policy Analysis
- Global and International Studies
- History and Philosophy of Science
- Human Development
- International Agricultural Development
- Linguistics
- Political Science
- Psychology
- Science and Society
- Sociology
- Textiles and Clothing
- War–Peace Studies
445

General Education Courses
Arts & Humanities
African American and African
Studies 12D W
African American and African
Studies 15D W
African American and African
Studies 16D W
African American and African
Studies 50D W
African American and African
Studies 52D W
African American and African
Studies 100D
African American and African
Studies 107A........................D W
African American and African
Studies 107BD W
African American and African
Studies 107CD W
African American and African
Studies 111D W
African American and African
Studies 123D
African American and African
Studies 150A........................D
African American and African
Studies 150BD
African American and African
Studies 152D W
African American and African
Studies 160D
African American and African
Studies 162D W
African American and African
Studies 163D W
African American and African
Studies 170D W
African American and African
Studies 171D
American Studies 1A †D W
American Studies 1B †D W
American Studies 1C †D W
American Studies 1E †D W
American Studies 5 †W
American Studies 30 †D W
American Studies 110 †D W
American Studies 120 †D W
American Studies 130 †D W
American Studies 132 †D W
American Studies 151 †D W
American Studies 152 †D W
American Studies 153 †D W
American Studies 154 †D W
American Studies 155 †D W
American Studies 156 †D W
American Studies 157 †D W
Art History 1A
Art History 1B
Art History 1CD
Art History 1D...........................D
Art History 10
Art History 25................................‡
Art History 110..............................W
Art History 150..........................D
Art History 151..........................D
Art History 152..........................D
Art History 153..........................D W
Art History 154AW
Art History 154BW

Art History 155..............................W
Art History 163AD W
Art History 163BD W
Art History 163C.......................D W
Art History 163D.......................D W
Art History 164..........................D W
Art History 168..............................W
Art History 175..........................D W
Art History 176AW
Art History 176BW
Art History 177AW
Art History 177BW
Art History 178AW
Art History 178BW
Art History 178CW
Art History 179BW
Art History 182..............................W
Art History 183A
Art History 183BD W
Art History 183C.......................D W
Art History 184..............................W
Art History 185..........................D W
Art History 186..........................D W
Art History 188AD W
Art History 188BW
Art History 188D...........................W
Art History 188EW
Art History 189..........................D W
Art Studio 10
Art Studio 30D W
Art Studio 132A.............................W
Art Studio 132BD W
Art Studio 147W
Art Studio 148W
Art Studio 149D W
Art Studio 150W
Chicana/o Studies 111
Chicana/o Studies 154...............D
Chinese 10.................................D W
Chinese 11.................................D W
Chinese 50.................................D W
Chinese 104...............................D W
Chinese 105...............................D W
Chinese 106...............................D W
Chinese 107...............................D W
Chinese 108...............................D W
Chinese 109AD W
Chinese 109B.............................D W
Chinese 109CD W
Chinese 109DD W
Chinese 109ED W
Chinese 109FD W
Chinese 109G............................D W
Chinese 109H............................D W
Chinese 109ID W
Chinese 110...............................D W
Classics 1W
Classics 2W
Classics 3W
Classics 10
Classics 15D W
Classics 20W
Classics 50W
Classics 102W
Classics 110W
Classics 140W
Classics 141W
Classics 142W
Classics 143W
Classics 150W

Classics 171D W
Classics 174W
Classics 175D W
Classics 190W
Comparative Literature 1*
Comparative Literature 2*
Comparative Literature 3*
Comparative Literature 4D *
Comparative Literature 5D W
Comparative Literature 6D W
Comparative Literature 7D W
Comparative Literature 8W
Comparative Literature 9D W
Comparative Literature 12D W
Comparative Literature 13W
Comparative Literature 14W
Comparative Literature 20W
Comparative Literature 25D W
Comparative Literature 53AD W
Comparative Literature 53B......D W
Comparative Literature 120W
Comparative Literature 135D W
Comparative Literature 138D W
Comparative Literature 140W
Comparative Literature 141W
Comparative Literature 144W
Comparative Literature 145W
Comparative Literature 146W
Comparative Literature 147D W
Comparative Literature 151D W
Comparative Literature 152D W
Comparative Literature 153D W
Comparative Literature 154D W
Comparative Literature 157W
Comparative Literature 158W
Comparative Literature 159D W
Comparative Literature 160AW
Comparative Literature 160B........W
Comparative Literature 161AW
Comparative Literature 161B........W
Comparative Literature 163W
Comparative Literature 164AW
Comparative Literature 164B........W
Comparative Literature 164CW
Comparative Literature 164DW
Comparative Literature 166AW
Comparative Literature 166B........W
Comparative Literature 167W
Comparative Literature 168AW
Comparative Literature 168B........W
Comparative Literature 169W
Comparative Literature 170W
Comparative Literature 180W
Design 1...W
Design 40.......................................W
Design 100.....................................W
Design 142AW
Design 142B...................................W
Design 143.....................................W
Design 144.....................................W
Dramatic Art 1...........................D W
Dramatic Art 20
Dramatic Art 150.......................D W
Dramatic Art 154.......................D W
Dramatic Art 155.......................D W
Dramatic Art 156AD W
Dramatic Art 156B.....................D W
Dramatic Art 156CD W
East Asian Studies 113D W
English 3..*

English 4..W
English 30AD W
English 30B................................D W
English 105....................................W
English 107....................................W
English 118....................................W
English 156....................................W
English 160....................................W
English 161AW
English 161BW
English 162....................................W
English 171AD W
English 171BD W
English 173....................................W
English 175....................................W
English 180....................................W
English 182................................D W
English 184....................................W
Entomology 1 †
French 50W
French 101
French 102
French 103
French 107
French 108
French 115
French 116
French 117A
French 117B
French 118A
French 118B
French 119A
French 119B
French 119C
French 120
French 121
French 124D
French 125
French 127
French 130
French 133D
French 162
German 47.................................D W
German 48.....................................W
German 101A
German 101B
German 111...................................W
German 112...................................W
German 113...................................W
German 115...................................W
German 117...................................W
German 118AW
German 118B.................................W
German 118CW
German 118D
German 118EW
German 118FW
German 119...................................W
German 120
German 121
German 122A
German 122B
German 123
German 124
German 125
German 130...................................W
German 131
German 132
German 133
German 134

* This course may not be used to satisfy a college or university composition requirement and GE writing experience simultaneously.
† Also assigned to another area of topical breadth. ‡ Credit for writing experience allowed if co-course taken concurrently (see Writing Experience list).


General Education Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>History 143</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 139B†</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 139A†</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 136</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 133</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 131B</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 131A</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 130C</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 130B</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 122</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 111B</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 111A</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 111C</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 110</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 115A</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 115B</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 115C</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 115D</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 114</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 113</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 112</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 111B</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>History 111A</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>History 110</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>History 109</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>History 108</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>History 107</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>History 106</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>History 105</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>History 104</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>History 103</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>History 102</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>History 101</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>History 100</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>History 100</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 98</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 97</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 96</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 95</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 94</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 93</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 92</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 91</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 90</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 87</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 86</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 85</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 84</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 83</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 82</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 81</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 80</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 79</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 78</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 77</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 76</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 75</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 74</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 73</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 72</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 71</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 70</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 69</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 68</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 67</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 66</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 65</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 64</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 63</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 62</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 61</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 60</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 59</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 58</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 57</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 56</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 55</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 54</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 53</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 52</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 51</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 50</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 49</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 48</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 47</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 46</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 45</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 44</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 43</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 42</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 41</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 40</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 39</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 38</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 37</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 36</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 35</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 34</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 33</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 32</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 31</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 30</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 29</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 28</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 27</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 26</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 25</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 24</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 23</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 22</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 21</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 20</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 19</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 18</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 17</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 16</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 15</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 14</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 13</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 12</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 11</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 10</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 9</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 8</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 7</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 6</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 5</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 4</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 3</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 2</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>History 1</td>
<td>W</td>
<td></td>
</tr>
</tbody>
</table>

* This course may not be used to satisfy a college or university composition requirement and GE writing experience simultaneously.

† Also assigned to another area of topical breadth. ‡ Credit for writing experience allowed if co-course taken concurrently (see Writing Experience list).
General Education Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anthropology 1</td>
<td>Environmental Toxicology 10</td>
</tr>
<tr>
<td>Anthropology 3</td>
<td>Environmental Toxicology 101</td>
</tr>
<tr>
<td>Anthropology 4</td>
<td>Environmental Toxicology 112A</td>
</tr>
<tr>
<td>Anthropology 5</td>
<td>Environmental Toxicology 112B</td>
</tr>
<tr>
<td>Anthropology 6</td>
<td>Environmental Toxicology 114A</td>
</tr>
<tr>
<td>Anthropology 7</td>
<td>Environmental Toxicology 114B</td>
</tr>
<tr>
<td>Anthropology 8</td>
<td>Environmental Toxicology 128</td>
</tr>
<tr>
<td>Anthropology 9</td>
<td>Environmental Toxicology 131</td>
</tr>
<tr>
<td>Anthropology 10</td>
<td>Environmental Toxicology 135</td>
</tr>
<tr>
<td>Anthropology 11</td>
<td>Environmental Toxicology 146</td>
</tr>
<tr>
<td>Anthropology 12</td>
<td>Evolution and Ecology 121</td>
</tr>
<tr>
<td>Anthropology 13</td>
<td>Evolution and Ecology 128</td>
</tr>
<tr>
<td>Anthropology 14</td>
<td>Evolution and Ecology 138</td>
</tr>
<tr>
<td>Anthropology 15</td>
<td>Evolution and Ecology 141</td>
</tr>
<tr>
<td>Anthropology 16</td>
<td>Exercise Science 101</td>
</tr>
<tr>
<td>Anthropology 17</td>
<td>Exercise Science 103</td>
</tr>
<tr>
<td>Anthropology 18</td>
<td>Exercise Science 110</td>
</tr>
<tr>
<td>Anthropology 19</td>
<td>Exercise Science 113</td>
</tr>
<tr>
<td>Anthropology 20</td>
<td>Exercise Science 115</td>
</tr>
<tr>
<td>Anthropology 21</td>
<td>Exercise Science 117</td>
</tr>
<tr>
<td>Anthropology 22</td>
<td>Exercise Science 118</td>
</tr>
<tr>
<td>Anthropology 23</td>
<td>Exercise Science 126</td>
</tr>
<tr>
<td>Anthropology 24</td>
<td>Fiber and Polymer Science 101</td>
</tr>
<tr>
<td>Anthropology 25</td>
<td>Food Science and Technology 120</td>
</tr>
<tr>
<td>Anthropology 26</td>
<td>Food Science and Technology 128</td>
</tr>
<tr>
<td>Anthropology 27</td>
<td>Geology 1</td>
</tr>
<tr>
<td>Anthropology 28</td>
<td>Geology 3</td>
</tr>
<tr>
<td>Anthropology 29</td>
<td>Geology 4</td>
</tr>
<tr>
<td>Anthropology 30</td>
<td>Geology 5</td>
</tr>
<tr>
<td>Anthropology 31</td>
<td>Geology 6</td>
</tr>
<tr>
<td>Anthropology 32</td>
<td>Geology 7</td>
</tr>
<tr>
<td>Anthropology 33</td>
<td>Geology 8</td>
</tr>
<tr>
<td>Anthropology 34</td>
<td>Geology 9</td>
</tr>
<tr>
<td>Anthropology 35</td>
<td>Geology 10</td>
</tr>
<tr>
<td>Anthropology 36</td>
<td>Geology 11</td>
</tr>
<tr>
<td>Anthropology 37</td>
<td>Geology 12</td>
</tr>
<tr>
<td>Anthropology 38</td>
<td>Geology 13</td>
</tr>
<tr>
<td>Anthropology 39</td>
<td>Geology 14</td>
</tr>
<tr>
<td>Anthropology 40</td>
<td>Geology 15</td>
</tr>
<tr>
<td>Anthropology 41</td>
<td>Geology 16</td>
</tr>
<tr>
<td>Anthropology 42</td>
<td>Geology 17</td>
</tr>
<tr>
<td>Anthropology 43</td>
<td>Geology 18</td>
</tr>
<tr>
<td>Anthropology 44</td>
<td>Geology 19</td>
</tr>
<tr>
<td>Anthropology 45</td>
<td>Geology 20</td>
</tr>
<tr>
<td>Anthropology 46</td>
<td>Science and Technology Studies 1</td>
</tr>
<tr>
<td>Anthropology 47</td>
<td>Science and Technology Studies 2</td>
</tr>
<tr>
<td>Anthropology 48</td>
<td>Science and Technology Studies 3</td>
</tr>
<tr>
<td>Anthropology 49</td>
<td>Science and Technology Studies 4</td>
</tr>
<tr>
<td>Anthropology 50</td>
<td>Science and Technology Studies 5</td>
</tr>
<tr>
<td>Anthropology 51</td>
<td>Science and Technology Studies 6</td>
</tr>
<tr>
<td>Anthropology 52</td>
<td>Science and Technology Studies 7</td>
</tr>
<tr>
<td>Anthropology 53</td>
<td>Science and Technology Studies 8</td>
</tr>
<tr>
<td>Anthropology 54</td>
<td>Science and Technology Studies 9</td>
</tr>
<tr>
<td>Anthropology 55</td>
<td>Science and Technology Studies 10</td>
</tr>
<tr>
<td>Anthropology 56</td>
<td>Science and Technology Studies 11</td>
</tr>
<tr>
<td>Anthropology 57</td>
<td>Science and Technology Studies 12</td>
</tr>
<tr>
<td>Anthropology 58</td>
<td>Science and Technology Studies 13</td>
</tr>
<tr>
<td>Anthropology 59</td>
<td>Science and Technology Studies 14</td>
</tr>
<tr>
<td>Anthropology 60</td>
<td>Science and Technology Studies 15</td>
</tr>
<tr>
<td>Anthropology 61</td>
<td>Science and Technology Studies 16</td>
</tr>
<tr>
<td>Anthropology 62</td>
<td>Science and Technology Studies 17</td>
</tr>
<tr>
<td>Anthropology 63</td>
<td>Science and Technology Studies 18</td>
</tr>
<tr>
<td>Anthropology 64</td>
<td>Science and Technology Studies 19</td>
</tr>
<tr>
<td>Anthropology 65</td>
<td>Science and Technology Studies 20</td>
</tr>
<tr>
<td>Anthropology 66</td>
<td>Science and Technology Studies 21</td>
</tr>
<tr>
<td>Anthropology 67</td>
<td>Science and Technology Studies 22</td>
</tr>
<tr>
<td>Anthropology 68</td>
<td>Science and Technology Studies 23</td>
</tr>
<tr>
<td>Anthropology 69</td>
<td>Science and Technology Studies 24</td>
</tr>
<tr>
<td>Anthropology 70</td>
<td>Science and Technology Studies 25</td>
</tr>
<tr>
<td>Anthropology 71</td>
<td>Science and Technology Studies 26</td>
</tr>
<tr>
<td>Anthropology 72</td>
<td>Science and Technology Studies 27</td>
</tr>
<tr>
<td>Anthropology 73</td>
<td>Science and Technology Studies 28</td>
</tr>
<tr>
<td>Anthropology 74</td>
<td>Science and Technology Studies 29</td>
</tr>
<tr>
<td>Anthropology 75</td>
<td>Science and Technology Studies 30</td>
</tr>
<tr>
<td>Anthropology 76</td>
<td>Science and Technology Studies 31</td>
</tr>
<tr>
<td>Anthropology 77</td>
<td>Science and Technology Studies 32</td>
</tr>
<tr>
<td>Anthropology 78</td>
<td>Science and Technology Studies 33</td>
</tr>
<tr>
<td>Anthropology 79</td>
<td>Science and Technology Studies 34</td>
</tr>
<tr>
<td>Anthropology 80</td>
<td>Science and Technology Studies 35</td>
</tr>
<tr>
<td>Anthropology 81</td>
<td>Science and Technology Studies 36</td>
</tr>
<tr>
<td>Anthropology 82</td>
<td>Science and Technology Studies 37</td>
</tr>
<tr>
<td>Anthropology 83</td>
<td>Science and Technology Studies 38</td>
</tr>
<tr>
<td>Anthropology 84</td>
<td>Science and Technology Studies 39</td>
</tr>
<tr>
<td>Anthropology 85</td>
<td>Science and Technology Studies 40</td>
</tr>
<tr>
<td>Anthropology 86</td>
<td>Science and Technology Studies 41</td>
</tr>
<tr>
<td>Anthropology 87</td>
<td>Science and Technology Studies 42</td>
</tr>
<tr>
<td>Anthropology 88</td>
<td>Science and Technology Studies 43</td>
</tr>
<tr>
<td>Anthropology 89</td>
<td>Science and Technology Studies 44</td>
</tr>
<tr>
<td>Anthropology 90</td>
<td>Science and Technology Studies 45</td>
</tr>
<tr>
<td>Anthropology 91</td>
<td>Science and Technology Studies 46</td>
</tr>
<tr>
<td>Anthropology 92</td>
<td>Science and Technology Studies 47</td>
</tr>
<tr>
<td>Anthropology 93</td>
<td>Science and Technology Studies 48</td>
</tr>
<tr>
<td>Anthropology 94</td>
<td>Science and Technology Studies 49</td>
</tr>
<tr>
<td>Anthropology 95</td>
<td>Science and Technology Studies 50</td>
</tr>
<tr>
<td>Anthropology 96</td>
<td>Science and Technology Studies 51</td>
</tr>
<tr>
<td>Anthropology 97</td>
<td>Science and Technology Studies 52</td>
</tr>
<tr>
<td>Anthropology 98</td>
<td>Science and Technology Studies 53</td>
</tr>
<tr>
<td>Anthropology 99</td>
<td>Science and Technology Studies 54</td>
</tr>
<tr>
<td>Anthropology 100</td>
<td>Science and Technology Studies 55</td>
</tr>
<tr>
<td>Anthropology 101</td>
<td>Science and Technology Studies 56</td>
</tr>
<tr>
<td>Anthropology 102</td>
<td>Science and Technology Studies 57</td>
</tr>
<tr>
<td>Anthropology 103</td>
<td>Science and Technology Studies 58</td>
</tr>
<tr>
<td>Anthropology 104</td>
<td>Science and Technology Studies 59</td>
</tr>
<tr>
<td>Anthropology 105</td>
<td>Science and Technology Studies 60</td>
</tr>
<tr>
<td>Anthropology 106</td>
<td>Science and Technology Studies 61</td>
</tr>
<tr>
<td>Anthropology 107</td>
<td>Science and Technology Studies 62</td>
</tr>
<tr>
<td>Anthropology 108</td>
<td>Science and Technology Studies 63</td>
</tr>
<tr>
<td>Anthropology 109</td>
<td>Science and Technology Studies 64</td>
</tr>
<tr>
<td>Anthropology 110</td>
<td>Science and Technology Studies 65</td>
</tr>
<tr>
<td>Anthropology 111</td>
<td>Science and Technology Studies 66</td>
</tr>
<tr>
<td>Anthropology 112</td>
<td>Science and Technology Studies 67</td>
</tr>
<tr>
<td>Anthropology 113</td>
<td>Science and Technology Studies 68</td>
</tr>
<tr>
<td>Anthropology 114</td>
<td>Science and Technology Studies 69</td>
</tr>
<tr>
<td>Anthropology 115</td>
<td>Science and Technology Studies 70</td>
</tr>
<tr>
<td>Anthropology 116</td>
<td>Science and Technology Studies 71</td>
</tr>
<tr>
<td>Anthropology 117</td>
<td>Science and Technology Studies 72</td>
</tr>
<tr>
<td>Anthropology 118</td>
<td>Science and Technology Studies 73</td>
</tr>
<tr>
<td>Anthropology 119</td>
<td>Science and Technology Studies 74</td>
</tr>
<tr>
<td>Anthropology 120</td>
<td>Science and Technology Studies 75</td>
</tr>
<tr>
<td>Anthropology 121</td>
<td>Science and Technology Studies 76</td>
</tr>
<tr>
<td>Anthropology 122</td>
<td>Science and Technology Studies 77</td>
</tr>
<tr>
<td>Anthropology 123</td>
<td>Science and Technology Studies 78</td>
</tr>
<tr>
<td>Anthropology 124</td>
<td>Science and Technology Studies 79</td>
</tr>
<tr>
<td>Anthropology 125</td>
<td>Science and Technology Studies 80</td>
</tr>
<tr>
<td>Anthropology 126</td>
<td>Science and Technology Studies 81</td>
</tr>
<tr>
<td>Anthropology 127</td>
<td>Science and Technology Studies 82</td>
</tr>
<tr>
<td>Anthropology 128</td>
<td>Science and Technology Studies 83</td>
</tr>
<tr>
<td>Anthropology 129</td>
<td>Science and Technology Studies 84</td>
</tr>
<tr>
<td>Anthropology 130</td>
<td>Science and Technology Studies 85</td>
</tr>
<tr>
<td>Anthropology 131</td>
<td>Science and Technology Studies 86</td>
</tr>
<tr>
<td>Anthropology 132</td>
<td>Science and Technology Studies 87</td>
</tr>
<tr>
<td>Anthropology 133</td>
<td>Science and Technology Studies 88</td>
</tr>
<tr>
<td>Anthropology 134</td>
<td>Science and Technology Studies 89</td>
</tr>
<tr>
<td>Anthropology 135</td>
<td>Science and Technology Studies 90</td>
</tr>
<tr>
<td>Anthropology 136</td>
<td>Science and Technology Studies 91</td>
</tr>
<tr>
<td>Anthropology 137</td>
<td>Science and Technology Studies 92</td>
</tr>
<tr>
<td>Anthropology 138</td>
<td>Science and Technology Studies 93</td>
</tr>
<tr>
<td>Anthropology 139</td>
<td>Science and Technology Studies 94</td>
</tr>
<tr>
<td>Anthropology 140</td>
<td>Science and Technology Studies 95</td>
</tr>
<tr>
<td>Anthropology 141</td>
<td>Science and Technology Studies 96</td>
</tr>
<tr>
<td>Anthropology 142</td>
<td>Science and Technology Studies 97</td>
</tr>
<tr>
<td>Anthropology 143</td>
<td>Science and Technology Studies 98</td>
</tr>
<tr>
<td>Anthropology 144</td>
<td>Science and Technology Studies 99</td>
</tr>
<tr>
<td>Anthropology 145</td>
<td>Science and Technology Studies 100</td>
</tr>
<tr>
<td>Anthropology 146</td>
<td>Science and Technology Studies 101</td>
</tr>
<tr>
<td>Anthropology 147</td>
<td>Science and Technology Studies 102</td>
</tr>
<tr>
<td>Anthropology 148</td>
<td>Science and Technology Studies 103</td>
</tr>
<tr>
<td>Anthropology 149</td>
<td>Science and Technology Studies 104</td>
</tr>
<tr>
<td>Anthropology 150</td>
<td>Science and Technology Studies 105</td>
</tr>
<tr>
<td>Anthropology 151</td>
<td>Science and Technology Studies 106</td>
</tr>
<tr>
<td>Anthropology 152</td>
<td>Science and Technology Studies 107</td>
</tr>
<tr>
<td>Anthropology 153</td>
<td>Science and Technology Studies 108</td>
</tr>
<tr>
<td>Anthropology 154</td>
<td>Science and Technology Studies 109</td>
</tr>
<tr>
<td>Anthropology 155</td>
<td>Science and Technology Studies 110</td>
</tr>
<tr>
<td>Anthropology 156</td>
<td>Science and Technology Studies 111</td>
</tr>
<tr>
<td>Anthropology 157</td>
<td>Science and Technology Studies 112</td>
</tr>
<tr>
<td>Anthropology 158</td>
<td>Science and Technology Studies 113</td>
</tr>
<tr>
<td>Anthropology 159</td>
<td>Science and Technology Studies 114</td>
</tr>
<tr>
<td>Anthropology 160</td>
<td>Science and Technology Studies 115</td>
</tr>
<tr>
<td>Anthropology 161</td>
<td>Science and Technology Studies 116</td>
</tr>
<tr>
<td>Anthropology 162</td>
<td>Science and Technology Studies 117</td>
</tr>
<tr>
<td>Anthropology 163</td>
<td>Science and Technology Studies 118</td>
</tr>
<tr>
<td>Anthropology 164</td>
<td>Science and Technology Studies 119</td>
</tr>
<tr>
<td>Anthropology 165</td>
<td>Science and Technology Studies 120</td>
</tr>
<tr>
<td>Anthropology 166</td>
<td>Science and Technology Studies 121</td>
</tr>
<tr>
<td>Anthropology 167</td>
<td>Science and Technology Studies 122</td>
</tr>
<tr>
<td>Anthropology 168</td>
<td>Science and Technology Studies 123</td>
</tr>
</tbody>
</table>

* This course may not be used to satisfy a college or university composition requirement and GE writing experience simultaneously.

† Also assigned to another area of topical breadth. ‡ Credit for writing experience allowed if co-course taken concurrently (see Writing Experience list).
General Education Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Studies 157</td>
<td>American History</td>
<td>American Studies</td>
</tr>
<tr>
<td>Animal Science 141</td>
<td>Animal Science</td>
<td>Animal Science</td>
</tr>
<tr>
<td>Animal Science 148</td>
<td>Animal Science</td>
<td>Animal Science</td>
</tr>
<tr>
<td>Anthropology 2</td>
<td>Anthropology</td>
<td>Anthropology</td>
</tr>
<tr>
<td>Anthropology 3</td>
<td>Anthropology</td>
<td>Anthropology</td>
</tr>
<tr>
<td>Anthropology 20</td>
<td>Anthropology</td>
<td>Anthropology</td>
</tr>
<tr>
<td>Anthropology 23</td>
<td>Anthropology</td>
<td>Anthropology</td>
</tr>
<tr>
<td>Anthropology 100</td>
<td>Anthropology</td>
<td>Anthropology</td>
</tr>
<tr>
<td>Anthropology 101</td>
<td>Anthropology</td>
<td>Anthropology</td>
</tr>
<tr>
<td>Anthropology 104N</td>
<td>Anthropology</td>
<td>Anthropology</td>
</tr>
<tr>
<td>Anthropology 110</td>
<td>Anthropology</td>
<td>Anthropology</td>
</tr>
<tr>
<td>Anthropology 112</td>
<td>Anthropology</td>
<td>Anthropology</td>
</tr>
<tr>
<td>Anthropology 113</td>
<td>Anthropology</td>
<td>Anthropology</td>
</tr>
<tr>
<td>Anthropology 117</td>
<td>Anthropology</td>
<td>Anthropology</td>
</tr>
<tr>
<td>Anthropology 119</td>
<td>Anthropology</td>
<td>Anthropology</td>
</tr>
<tr>
<td>Anthropology 120</td>
<td>Anthropology</td>
<td>Anthropology</td>
</tr>
<tr>
<td>Anthropology 122A</td>
<td>Anthropology</td>
<td>Anthropology</td>
</tr>
<tr>
<td>Anthropology 122B</td>
<td>Anthropology</td>
<td>Anthropology</td>
</tr>
<tr>
<td>Anthropology 124</td>
<td>Anthropology</td>
<td>Anthropology</td>
</tr>
<tr>
<td>Anthropology 125A</td>
<td>Anthropology</td>
<td>Anthropology</td>
</tr>
<tr>
<td>Anthropology 125B</td>
<td>Anthropology</td>
<td>Anthropology</td>
</tr>
<tr>
<td>Anthropology 126</td>
<td>Anthropology</td>
<td>Anthropology</td>
</tr>
<tr>
<td>Anthropology 126A</td>
<td>Anthropology</td>
<td>Anthropology</td>
</tr>
<tr>
<td>Anthropology 127</td>
<td>Anthropology</td>
<td>Anthropology</td>
</tr>
<tr>
<td>Anthropology 128A</td>
<td>Anthropology</td>
<td>Anthropology</td>
</tr>
<tr>
<td>Anthropology 128B</td>
<td>Anthropology</td>
<td>Anthropology</td>
</tr>
<tr>
<td>Anthropology 130A</td>
<td>Anthropology</td>
<td>Anthropology</td>
</tr>
<tr>
<td>Anthropology 130N</td>
<td>Anthropology</td>
<td>Anthropology</td>
</tr>
<tr>
<td>Anthropology 130C</td>
<td>Anthropology</td>
<td>Anthropology</td>
</tr>
<tr>
<td>Anthropology 132</td>
<td>Anthropology</td>
<td>Anthropology</td>
</tr>
<tr>
<td>Anthropology 133</td>
<td>Anthropology</td>
<td>Anthropology</td>
</tr>
<tr>
<td>Anthropology 135</td>
<td>Anthropology</td>
<td>Anthropology</td>
</tr>
<tr>
<td>Anthropology 136</td>
<td>Anthropology</td>
<td>Anthropology</td>
</tr>
<tr>
<td>Anthropology 138</td>
<td>Anthropology</td>
<td>Anthropology</td>
</tr>
<tr>
<td>Anthropology 139AN</td>
<td>Anthropology</td>
<td>Anthropology</td>
</tr>
<tr>
<td>Anthropology 140A</td>
<td>Anthropology</td>
<td>Anthropology</td>
</tr>
<tr>
<td>Anthropology 140B</td>
<td>Anthropology</td>
<td>Anthropology</td>
</tr>
<tr>
<td>Anthropology 141A</td>
<td>Anthropology</td>
<td>Anthropology</td>
</tr>
<tr>
<td>Anthropology 141B</td>
<td>Anthropology</td>
<td>Anthropology</td>
</tr>
<tr>
<td>Anthropology 142</td>
<td>Anthropology</td>
<td>Anthropology</td>
</tr>
<tr>
<td>Anthropology 143A</td>
<td>Anthropology</td>
<td>Anthropology</td>
</tr>
<tr>
<td>Anthropology 143B</td>
<td>Anthropology</td>
<td>Anthropology</td>
</tr>
<tr>
<td>Anthropology 144</td>
<td>Anthropology</td>
<td>Anthropology</td>
</tr>
<tr>
<td>Anthropology 146</td>
<td>Anthropology</td>
<td>Anthropology</td>
</tr>
<tr>
<td>Anthropology 147</td>
<td>Anthropology</td>
<td>Anthropology</td>
</tr>
<tr>
<td>Anthropology 148A</td>
<td>Anthropology</td>
<td>Anthropology</td>
</tr>
<tr>
<td>Anthropology 148B</td>
<td>Anthropology</td>
<td>Anthropology</td>
</tr>
<tr>
<td>Anthropology 148C</td>
<td>Anthropology</td>
<td>Anthropology</td>
</tr>
<tr>
<td>Anthropology 149A</td>
<td>Anthropology</td>
<td>Anthropology</td>
</tr>
<tr>
<td>Anthropology 149B</td>
<td>Anthropology</td>
<td>Anthropology</td>
</tr>
<tr>
<td>Anthropology 150</td>
<td>Anthropology</td>
<td>Anthropology</td>
</tr>
<tr>
<td>Anthropology 172</td>
<td>Anthropology</td>
<td>Anthropology</td>
</tr>
<tr>
<td>Anthropology 173</td>
<td>Anthropology</td>
<td>Anthropology</td>
</tr>
<tr>
<td>Anthropology 174</td>
<td>Anthropology</td>
<td>Anthropology</td>
</tr>
<tr>
<td>Anthropology 175</td>
<td>Anthropology</td>
<td>Anthropology</td>
</tr>
<tr>
<td>Anthropology 176</td>
<td>Anthropology</td>
<td>Anthropology</td>
</tr>
<tr>
<td>Anthropology 178</td>
<td>Anthropology</td>
<td>Anthropology</td>
</tr>
<tr>
<td>Anthropology 179</td>
<td>Anthropology</td>
<td>Anthropology</td>
</tr>
<tr>
<td>Anthropology 184</td>
<td>Anthropology</td>
<td>Anthropology</td>
</tr>
<tr>
<td>Asian American Studies 1</td>
<td>Asian American Studies</td>
<td>Asian American Studies</td>
</tr>
<tr>
<td>Asian American Studies 2</td>
<td>Asian American Studies</td>
<td>Asian American Studies</td>
</tr>
<tr>
<td>Asian American Studies 10</td>
<td>Asian American Studies</td>
<td>Asian American Studies</td>
</tr>
<tr>
<td>Asian American Studies 11</td>
<td>Asian American Studies</td>
<td>Asian American Studies</td>
</tr>
<tr>
<td>Asian American Studies 12</td>
<td>Asian American Studies</td>
<td>Asian American Studies</td>
</tr>
<tr>
<td>Chican@o Studies 110</td>
<td>Chican@o Studies</td>
<td>Chican@o Studies</td>
</tr>
<tr>
<td>Chican@o Studies 120</td>
<td>Chican@o Studies</td>
<td>Chican@o Studies</td>
</tr>
<tr>
<td>Chican@o Studies 121</td>
<td>Chican@o Studies</td>
<td>Chican@o Studies</td>
</tr>
<tr>
<td>Chican@o Studies 131</td>
<td>Chican@o Studies</td>
<td>Chican@o Studies</td>
</tr>
<tr>
<td>Communication 103</td>
<td>Communication</td>
<td>Communication</td>
</tr>
<tr>
<td>Communication 105</td>
<td>Communication</td>
<td>Communication</td>
</tr>
<tr>
<td>Communication 114</td>
<td>Communication</td>
<td>Communication</td>
</tr>
<tr>
<td>Communication 115</td>
<td>Communication</td>
<td>Communication</td>
</tr>
<tr>
<td>Communication 130</td>
<td>Communication</td>
<td>Communication</td>
</tr>
<tr>
<td>Communication 134</td>
<td>Communication</td>
<td>Communication</td>
</tr>
<tr>
<td>Communication 135</td>
<td>Communication</td>
<td>Communication</td>
</tr>
<tr>
<td>Communication 136</td>
<td>Communication</td>
<td>Communication</td>
</tr>
<tr>
<td>Communication 138</td>
<td>Communication</td>
<td>Communication</td>
</tr>
<tr>
<td>Communication 140</td>
<td>Communication</td>
<td>Communication</td>
</tr>
<tr>
<td>Communication 141</td>
<td>Communication</td>
<td>Communication</td>
</tr>
<tr>
<td>Communication 150</td>
<td>Communication</td>
<td>Communication</td>
</tr>
<tr>
<td>Communication 152</td>
<td>Communication</td>
<td>Communication</td>
</tr>
<tr>
<td>Communication 154</td>
<td>Communication</td>
<td>Communication</td>
</tr>
<tr>
<td>Communication 157</td>
<td>Communication</td>
<td>Communication</td>
</tr>
<tr>
<td>Consumer Science 100</td>
<td>Consumer Science</td>
<td>Consumer Science</td>
</tr>
<tr>
<td>Consumer Science 105</td>
<td>Consumer Science</td>
<td>Consumer Science</td>
</tr>
<tr>
<td>Economics 1A</td>
<td>Economics</td>
<td>Economics</td>
</tr>
<tr>
<td>Economics 1B</td>
<td>Economics</td>
<td>Economics</td>
</tr>
<tr>
<td>Economics 104</td>
<td>Economics</td>
<td>Economics</td>
</tr>
<tr>
<td>Economics 105</td>
<td>Economics</td>
<td>Economics</td>
</tr>
<tr>
<td>Economics 110A</td>
<td>Economics</td>
<td>Economics</td>
</tr>
<tr>
<td>Economics 110B</td>
<td>Economics</td>
<td>Economics</td>
</tr>
<tr>
<td>Economics 111A</td>
<td>Economics</td>
<td>Economics</td>
</tr>
<tr>
<td>Economics 111B</td>
<td>Economics</td>
<td>Economics</td>
</tr>
<tr>
<td>Economics 113A</td>
<td>Economics</td>
<td>Economics</td>
</tr>
<tr>
<td>Economics 113B</td>
<td>Economics</td>
<td>Economics</td>
</tr>
<tr>
<td>Economics 116</td>
<td>Economics</td>
<td>Economics</td>
</tr>
<tr>
<td>Economics 121A</td>
<td>Economics</td>
<td>Economics</td>
</tr>
<tr>
<td>Economics 121B</td>
<td>Economics</td>
<td>Economics</td>
</tr>
<tr>
<td>Economics 126</td>
<td>Economics</td>
<td>Economics</td>
</tr>
<tr>
<td>Education 110</td>
<td>Education</td>
<td>Education</td>
</tr>
<tr>
<td>Education 120</td>
<td>Education</td>
<td>Education</td>
</tr>
<tr>
<td>Engineering 160</td>
<td>Engineering</td>
<td>Engineering</td>
</tr>
<tr>
<td>Environmental Science and Policy 101</td>
<td>Environmental Science and Policy</td>
<td>Environmental Science and Policy</td>
</tr>
<tr>
<td>Environmental Science and Policy 133</td>
<td>Environmental Science and Policy</td>
<td>Environmental Science and Policy</td>
</tr>
<tr>
<td>Environmental Science and Policy 161</td>
<td>Environmental Science and Policy</td>
<td>Environmental Science and Policy</td>
</tr>
<tr>
<td>Environmental Science and Policy 172</td>
<td>Environmental Science and Policy</td>
<td>Environmental Science and Policy</td>
</tr>
<tr>
<td>Environmental Science and Policy 175</td>
<td>Environmental Science and Policy</td>
<td>Environmental Science and Policy</td>
</tr>
<tr>
<td>Environmental Toxicology 138</td>
<td>Environmental Toxicology</td>
<td>Environmental Toxicology</td>
</tr>
<tr>
<td>Exercise Science 120</td>
<td>Exercise Science</td>
<td>Exercise Science</td>
</tr>
<tr>
<td>Fiber and Polymer Science 110</td>
<td>Fiber and Polymer Science</td>
<td>Fiber and Polymer Science</td>
</tr>
<tr>
<td>Food Science and Technology 2</td>
<td>Food Science and Technology</td>
<td>Food Science and Technology</td>
</tr>
<tr>
<td>Geography 2</td>
<td>Geography</td>
<td>Geography</td>
</tr>
<tr>
<td>History 132</td>
<td>History</td>
<td>History</td>
</tr>
<tr>
<td>History 139A</td>
<td>History</td>
<td>History</td>
</tr>
<tr>
<td>History 139B</td>
<td>History</td>
<td>History</td>
</tr>
<tr>
<td>History 140</td>
<td>History</td>
<td>History</td>
</tr>
<tr>
<td>History 147A</td>
<td>History</td>
<td>History</td>
</tr>
<tr>
<td>History 147B</td>
<td>History</td>
<td>History</td>
</tr>
<tr>
<td>History 147C</td>
<td>History</td>
<td>History</td>
</tr>
<tr>
<td>History 149</td>
<td>History</td>
<td>History</td>
</tr>
<tr>
<td>History 150</td>
<td>History</td>
<td>History</td>
</tr>
<tr>
<td>Human Development 13</td>
<td>Human Development</td>
<td>Human Development</td>
</tr>
<tr>
<td>Human Development 15</td>
<td>Human Development</td>
<td>Human Development</td>
</tr>
<tr>
<td>Humanities 2</td>
<td>Humanities</td>
<td>Humanities</td>
</tr>
<tr>
<td>Humanities 3</td>
<td>Humanities</td>
<td>Humanities</td>
</tr>
<tr>
<td>Humanities 4</td>
<td>Humanities</td>
<td>Humanities</td>
</tr>
<tr>
<td>Humanities 5</td>
<td>Humanities</td>
<td>Humanities</td>
</tr>
<tr>
<td>Humanities 8</td>
<td>Humanities</td>
<td>Humanities</td>
</tr>
<tr>
<td>Humanities 9</td>
<td>Humanities</td>
<td>Humanities</td>
</tr>
<tr>
<td>Humanities 10</td>
<td>Humanities</td>
<td>Humanities</td>
</tr>
<tr>
<td>Humanities 12</td>
<td>Humanities</td>
<td>Humanities</td>
</tr>
<tr>
<td>Humanities 60</td>
<td>Humanities</td>
<td>Humanities</td>
</tr>
<tr>
<td>Humanities 123</td>
<td>Humanities</td>
<td>Humanities</td>
</tr>
<tr>
<td>Integrated Studies 8C</td>
<td>Integrated Studies</td>
<td>Integrated Studies</td>
</tr>
<tr>
<td>International Agricultural Development 10</td>
<td>International Agricultural Development</td>
<td>International Agricultural Development</td>
</tr>
<tr>
<td>International Agricultural Development 10</td>
<td>International Agricultural Development</td>
<td>International Agricultural Development</td>
</tr>
<tr>
<td>Landscape Architecture 1</td>
<td>Landscape Architecture</td>
<td>Landscape Architecture</td>
</tr>
<tr>
<td>Landscape Architecture 2</td>
<td>Landscape Architecture</td>
<td>Landscape Architecture</td>
</tr>
<tr>
<td>Landscape Architecture 168</td>
<td>Landscape Architecture</td>
<td>Landscape Architecture</td>
</tr>
<tr>
<td>Linguistics 1</td>
<td>Linguistics</td>
<td>Linguistics</td>
</tr>
<tr>
<td>Linguistics 50</td>
<td>Linguistics</td>
<td>Linguistics</td>
</tr>
<tr>
<td>Linguistics 106</td>
<td>Linguistics</td>
<td>Linguistics</td>
</tr>
<tr>
<td>Linguistics 160</td>
<td>Linguistics</td>
<td>Linguistics</td>
</tr>
<tr>
<td>Linguistics 163</td>
<td>Linguistics</td>
<td>Linguistics</td>
</tr>
<tr>
<td>Linguistics 171</td>
<td>Linguistics</td>
<td>Linguistics</td>
</tr>
<tr>
<td>Linguistics 173</td>
<td>Linguistics</td>
<td>Linguistics</td>
</tr>
<tr>
<td>Native American Studies 1</td>
<td>Native American Studies</td>
<td>Native American Studies</td>
</tr>
<tr>
<td>Native American Studies 10</td>
<td>Native American Studies</td>
<td>Native American Studies</td>
</tr>
<tr>
<td>Native American Studies 130A</td>
<td>Native American Studies</td>
<td>Native American Studies</td>
</tr>
<tr>
<td>Native American Studies 130B</td>
<td>Native American Studies</td>
<td>Native American Studies</td>
</tr>
<tr>
<td>Native American Studies 130C</td>
<td>Native American Studies</td>
<td>Native American Studies</td>
</tr>
<tr>
<td>Native American Studies 133</td>
<td>Native American Studies</td>
<td>Native American Studies</td>
</tr>
<tr>
<td>Native American Studies 134</td>
<td>Native American Studies</td>
<td>Native American Studies</td>
</tr>
<tr>
<td>Native American Studies 180</td>
<td>Native American Studies</td>
<td>Native American Studies</td>
</tr>
<tr>
<td>Nutrition 20</td>
<td>Nutrition</td>
<td>Nutrition</td>
</tr>
<tr>
<td>Nutrition 120A</td>
<td>Nutrition</td>
<td>Nutrition</td>
</tr>
<tr>
<td>Nutrition 120B</td>
<td>Nutrition</td>
<td>Nutrition</td>
</tr>
<tr>
<td>Philosophy 109</td>
<td>Philosophy</td>
<td>Philosophy</td>
</tr>
<tr>
<td>Philosophy 118</td>
<td>Philosophy</td>
<td>Philosophy</td>
</tr>
<tr>
<td>Philosophy 119</td>
<td>Philosophy</td>
<td>Philosophy</td>
</tr>
<tr>
<td>Physics 137</td>
<td>Physics</td>
<td>Physics</td>
</tr>
<tr>
<td>Physics 160</td>
<td>Physics</td>
<td>Physics</td>
</tr>
<tr>
<td>Plant Biology 141</td>
<td>Plant Biology</td>
<td>Plant Biology</td>
</tr>
<tr>
<td>Political Science 1</td>
<td>Political Science</td>
<td>Political Science</td>
</tr>
</tbody>
</table>

* This course may not be used to satisfy a college or university composition requirement and GE writing experience simultaneously.

† Also assigned to another area of topical breadth. † Credit for writing experience allowed if co-course taken concurrently (see Writing Experience list).
Social-Cultural Diversity

These courses satisfy the GE requirement for social-cultural diversity. Many of these courses also provide GE credit for topical breadth or writing experience. Refer to the topical breadth and writing experience course lists to determine if any additional GE credit applies.

African American and African American Studies 1A, 1B, 1C, 1E, 101, 130, 131, 132, 133, 134, 135, 136, 137
Art History 1C, 1D, 150, 151, 152, 153, 163A, 163B, 163C, 163D, 164, 175, 182, 183B, 183C, 185, 186, 188A, 189
Art Studio 30, 32B, 149
Asian American Studies 1, 2, 110, 111, 112, 120
Chican@o Studies 10, 21, 30, 50, 70, 110, 120, 121, 130, 131, 134
Classics 15, 171, 173
Communication 135
Community and Regional Development 1, 2, 17, 151, 154, 157, 176
Comparative Literature 4, 5, 6, 7, 9, 12, 25, 53A, 53B, 135, 138, 147, 151, 152, 153, 154, 159
Consumer Science 100
Dramatic Art 1, 150, 154, 155, 156A, 156B, 156C
East Asian Studies 113
Economics 110A, 115A
Environmental Science and Policy 101, 133
Exercise Science 120
French 124, 133
German 47, 168
History and Philosophy of Science 150
Human Development 103, 160
Humanities 7, 8, 10, 60, 118, 119, 120, 121, 122
International Agricultural Development 10, 103
Italian 108, 141, 150
Japanese 30, 101, 102, 103, 104, 105, 106, 107, 108
Linguistics 160, 163, 169
Music 28, 105, 126, 129
Nutrition 120A, 120B
Philosophy 11, 14, 118, 119
Plant Biology 12
Political Science 124, 126, 142, 152, 166, 168, 176
Psychology 170
Religious Studies 1, 2, 3A, 3B, 3C, 21, 23, 115, 140, 141, 142, 143, 144, 150, 154, 159, 166
Science and Society 15
Sociology 5
Social Science 150
Sociology and Society 15
Sociology and Society 2
Sociology 3
Sociology 4
Sociology 5
Sociology 25
Sociology 125
Sociology 131
Sociology 132
Sociology 133
Sociology 144
Sociology 153
Sociology 156
Sociology 170
Statistics 10
Textiles and Clothing 7
Textiles and Clothing 8
Textiles and Clothing 107
Veterinary Medicine 170
Viticulture and Enology 3
Women's Studies 30
Women's Studies 60
Women's Studies 70
Women's Studies 102
Women's Studies 130
Women's Studies 139
Women's Studies 140
Women's Studies 158
Women's Studies 182
Women's Studies 184
Women's Studies 185
Women's Studies 187
Women's Studies 193
Women's Studies 20

* This course may not be used to satisfy a college or university composition requirement and GE writing experience simultaneously.
† Also assigned to another area of topical breadth. † Credit for writing experience allowed if course taken concurrently (see Writing Experience list).
General Education Courses

Writing Experience

These courses satisfy the GE requirement for writing experience, provided you have previously satisfied the Subject A requirement. Many of these courses also provide GE credit for topical breadth or social-cultural diversity. Refer to the topical breadth and social-cultural diversity course lists to determine if any additional GE credit applies.

African American and African Studies 1, 15, 16, 17, 50, 52, 80, 107A, 107B, 107C, 111, 132, 157, 162, 163, 170
Agricultural and Resource Economics 13, 150
Agricultural Education 100, 160, 172
Agricultural Systems and Environment 7, 121, 130
American Studies 1A, 1B, 1C, 1E, 5, 30, 110, 120, 130, 132, 133, 139, 151, 152, 153, 154, 155, 156, 157
Animal Science 1, 2, 42, 106, 124, 136, 141, 146, 148, 193
Art Studio 30, 132A, 132B, 147, 148, 149, 150
Asian American Studies 1, 2
Astronomy 10
Atmospheric Science 5, 10
Awan Sciences 11, 13
Biological Sciences 1C, 10, 10V
Chemistry 10, 115, 125, 150
Chicana/o Studies 10, 110, 121
Classics 1, 2, 3, 15, 20, 50, 102, 110, 140, 141, 142, 143, 150, 171, 174, 175, 190
Communication 1*, 143
Community and Regional Development 1, 2, 17, 118, 140, 151, 152, 154, 157, 176
Comparative Literature 1*, 2*, 3*, 4*, 5, 6, 7, 8, 9, 12, 13, 14, 20, 25, 35A, 53B, 120, 133, 138, 140, 141, 144, 145, 146, 147, 151, 152, 153, 154, 157, 158

* This course may not be used to satisfy a college or university composition requirement and GE writing experience simultaneously.
† Also assigned to another area of topical breadth. ‡ Credit for writing experience allowed if co-course taken concurrently (see Writing Experience list).
GENERAL EDUCATION THEME OPTIONS

General Education theme options are sets of GE courses sharing a common intellectual theme. These GE theme options are not a separate element of the GE requirement, but a way of selecting your GE courses so that you may benefit from a coherent focus of study while completing the GE requirement. Completion of a theme satisfies the GE requirement for students with majors assigned to the GE topical breadth area of Arts and Humanities. Students with majors assigned to the topical breadth area of either Science and Engineering or Social Science will need to complete additional GE courses in Arts and Humanities to satisfy the campus GE requirement.

Global Population and Environmental Issues

For centuries, there have been concerns and predictions about population growth and its potential effects on the environment and the quality of life. Perspectives on population and environmental issues often vary based on such factors as gender, social class, culture, nation, race/ethnicity, and religion. In this group of courses, students will learn about the complex interplay among environmental, economic, and ethical issues through the study of global population patterns. They will learn how science addresses the use of natural resources by humans, along with the fundamentals of environmental impacts such as global warming. This option group of courses explores diverse perspectives on global population and environmental issues by examining biological, physical, and social processes that influence the everyday lives of people around the world.

Topics might include the social, economic, and environmental challenges of population growth; and the ethics and dilemmas of natural resource use.

<table>
<thead>
<tr>
<th>Global Population</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Atmospheric Science 5</td>
<td>SciEng, Wrt</td>
</tr>
<tr>
<td>Environmental and Resource Sciences 60</td>
<td>SciEng, Wrt</td>
</tr>
<tr>
<td>Human Development 117</td>
<td>SciEng, Wrt</td>
</tr>
<tr>
<td>Agricultural and Resource Economics 15</td>
<td>SocSci, Div, Wrt</td>
</tr>
<tr>
<td>Science and Society 1</td>
<td>SciEng or SocSci, Div, Wrt</td>
</tr>
<tr>
<td>[or Fiber and Polymer Science 110</td>
<td>SciEng or SocSci, Wrt</td>
</tr>
<tr>
<td>International Agricultural Development 10, SocSci, Div, Wrt</td>
<td></td>
</tr>
</tbody>
</table>

Biodiversity and Cultural Diversity

The nations with the greatest biodiversity often have tremendous ethnic and cultural diversity. This option examines diversity in many interrelated contexts: biological diversity and the impact of contemporary humans; values and cultural practices in regard to production and consumption; the clothes people wear; creation and use of social spaces; and the preservation of genetic resources for food, fiber, and pharmaceuticals.

Topics might include conservation biology; integration of human and natural systems; cultural expression through clothing and appearance; and discussion of what are cultural and social rights.

<table>
<thead>
<tr>
<th>Biodiversity and Cultural Diversity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wildlife, Fish and Conservation Biology 10</td>
</tr>
<tr>
<td>Plant Biology 11</td>
</tr>
<tr>
<td>Science and Society 105</td>
</tr>
<tr>
<td>Textiles and Clothing 7</td>
</tr>
<tr>
<td>Community and Regional Development 2</td>
</tr>
<tr>
<td>Landscape Architecture 2</td>
</tr>
</tbody>
</table>

Food and Fiber

This option focuses on food and fiber systems, from their plant, animal, or synthetic sources to their ultimate use by humans for health, safety, communication, and pleasure. Understanding these systems enables students to see the connections between the food and clothes that are part of our everyday lives and the scientific, social, and cultural issues that make them so significant to society as a whole.

Topics might include food and clothing safety, quality, and availability; media and consumer perceptions; and cultural histories, values, and meanings.

<table>
<thead>
<tr>
<th>Food and Fiber</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal Science 1</td>
</tr>
<tr>
<td>[or Plant Biology 12</td>
</tr>
<tr>
<td>Nutrition 10</td>
</tr>
<tr>
<td>and Nutrition 11</td>
</tr>
<tr>
<td>[or Nutrition 20</td>
</tr>
<tr>
<td>[or Food Science and Technology 2</td>
</tr>
<tr>
<td>Textiles and Clothing 6</td>
</tr>
<tr>
<td>Textiles and Clothing 107</td>
</tr>
<tr>
<td>Science and Society 1</td>
</tr>
<tr>
<td>Viticulture and Enology 3-3W concurrently</td>
</tr>
</tbody>
</table>

Changing Agriculture

Changing demographics, environmental issues, and social-political trends in California all play a role in public perceptions and policies related to our food and fiber systems, natural resources, and community values. These perceptions, policies, and values need to be critically examined in the context of larger global economic trends and environmental health and safety. In this option group of courses, students can explore a range of challenging issues related to the complex interplay between rural and urban needs and values.

Topics might include holistic approaches to agriculture; international migration and agricultural development; and how plants and animals influence the course of history.

<table>
<thead>
<tr>
<th>Changing Agriculture Theme Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal Science 1 [or 13]</td>
</tr>
<tr>
<td>Entomology 110 [or 111]</td>
</tr>
<tr>
<td>Plant Biology 12</td>
</tr>
<tr>
<td>Agricultural and Resource Economics 15</td>
</tr>
<tr>
<td>Environmental and Resource Sciences 10-10G concurrently</td>
</tr>
<tr>
<td>[or Environmental & Resource Sciences 121*</td>
</tr>
<tr>
<td>Science and Society 2</td>
</tr>
</tbody>
</table>

*If Environmental & Resource Sciences 121 is substituted, you will require an additional SocSci course.
RESIDENCE FOR TUITION INFORMATION

Tuition Fee for Nonresident Students
If you have not been living in California with intent to make it your permanent home for more than one year immediately before the residence determination date for each term in which you propose to attend the University, you must pay a nonresident tuition fee in addition to all other fees. The residence determination date is the day instruction begins at the last of the University of California campuses to open for the quarter, and for schools on the semester system, the day instruction begins for the semester.

Law Governing Residence
The rules regarding residence for tuition purposes at the University of California are governed by the California Education Code and implemented by Standing Orders of the Regents of the University of California. Under these rules, adult citizens and certain classes of aliens can establish residence for tuition purposes. There are particular rules that apply to the residence classification of minors (see below).

Who is a Resident?
If you are an adult student (at least 18 years of age) you may establish residence for tuition purposes in California if: (1) you are a U.S. citizen; (2) you are a permanent resident or other immigrant; or (3) you are a nonimmigrant who is not precluded from establishing a domicile in the U.S. Nonimmigrants who are not precluded from establishing a domicile in the U.S. include those who hold visas of the following types: A, E, G, H-1, H-4, I, K, L, N, NATO, O-1, O-3, R, TN, or TD. To establish residence you must be physically present in California for more than one year and you must have come here with the intent to make California your home as opposed to coming to this state to go to school. Physical presence within the state solely for educational purposes does not constitute the establishment of California residence, regardless of the length of your stay. You must demonstrate your intention to make California your home by severing your residential ties with your former state of residence and establishing those ties with California. Evidence of intent must be dated one year before the term for which you seek resident classification. If these steps are delayed, the one-year duration will be extended until you have demonstrated both presence and intent for one full year. Effective Fall 1993, if your parents are not residents of California or you were not previously enrolled as a UC student, you will be required to be financially independent in order to be a resident for tuition purposes. Your residence cannot be derived from your spouse or your parents.

Requirement for Financial Independence
You will be considered “financially independent” if one or more of the following applies: (1) you are at least 24 years of age by December 31 of the calendar year for which you are requesting residence classification; (2) you are a veteran of the U.S. Armed Forces; (3) you are a ward of the court or both parents are deceased; (4) you have legal dependents other than a spouse; (5) you are married, or a graduate student or a professional student, and you were not claimed as an income tax deduction by your parents or any other individual for the tax year immediately preceding the term for which you are requesting resident classification; or (6) you are a single undergraduate student and you were not claimed as an income tax deduction by your parents or any other individual for the two tax years immediately preceding the term for which you are requesting resident classification, and you can demonstrate self-sufficiency for those years and the current year. (Note: Financial independence will not be a factor in residence status for graduate student instructors, graduate student teaching assistants, research assistants, junior specialists, post-graduate researchers, graduate student researchers, and teaching associates who are employed 49% or more of full time or who have funding equivalent to employment that is 49% or more of full time for the term for which classification is sought.)

Establishing Intent to Become a California Resident
Indications of your intent to make California your permanent residence can include the following: registering to vote and voting in California elections; designating California as your permanent address on all school and employment records, including military records if you are in the military service; obtaining a California driver's license or, if you do not drive, a California Identification Card; obtaining California vehicle registration; paying California income taxes as a resident, including taxes on income earned outside California from the date you establish residence; establishing a California residence in which you keep your personal belongings; and licensing for professional practice in California. The absence of these indicia in other states during any period for which you claim residence can also serve as an indication of your intent. Documentary evidence is required and all relevant indications will be considered in determining your classification. Your intent will be questioned if you return to your prior state of residence when the University is not in session.

General Rules Applying to Minors
If you are an unmarried minor (under age 18), the residence of the parent with whom you live is considered to be your residence. If you have a parent living, you cannot change your residence by your own act, by the appointment of a legal guardian, or by the relinquishment of your parent's right of control. If you lived with neither parent, your residence is that of the parent with whom you last lived. Unless you are a minor alien present in the U.S. under the terms of a nonimmigrant visa which precludes you from establishing domicile in the U.S., you may establish your own residence when both your parents are deceased and a legal guardian has not been appointed. If you derive California residence from a parent, that parent must satisfy the one-year duration residence requirement.

Specific Rules Applying to Minors
1. Divorced/Separated Parents
You may be able to derive California resident status from a California resident parent if you move to California to live with that parent on or before your 18th birthday. If you begin residing with your California parent after your 18th birthday, you will be treated like any other adult student coming to California to establish residence.

2. Parent of Minor Moves From California
You may be entitled to resident status if you are a minor U.S. citizen or eligible alien whose parent(s) was a resident of California who left that state within one year of the residence determination date: (1) you remained in California after your parent(s) departed; (2) you enroll in a California public postsecondary institution within one year of the time your parent(s) depart and establish residence elsewhere; and (3) once enrolled, you maintain continuous attendance in that institution. Financial independence will not be required in this case.

3. Self-Support
You may be entitled to resident status if you are a U.S. citizen or eligible alien and either a minor or age 18 and can prove the following: (1) you lived in California for the entire year immediately preceding the residence determination date; (2) you have been self-supporting for that year; and (3) you intend to make California your permanent home.

4. Two-Year Care and Control
You may be entitled to resident status if you are a U.S. citizen or eligible alien and you have lived continuously with an adult who is not your parent for at least two years prior to...
the residence determination date. The adult with whom you are living must have been responsible for your care and control for the entire two-year period and must have been residing in California during the one year immediately preceding the residence determination date.

Exemptions from Nonresident Tuition

1. **Member of the Military**
 If you are a member of the U.S. military stationed in California on active duty, unless you are assigned for educational purposes to a state-supported institution of higher education, you may be exempt from the nonresident tuition fee until you have lived in California long enough to become a resident. You must provide the residence deputy on campus with a statement from your commanding officer or personnel officer stating that your assignment to active duty in California is not for educational purposes. The letter must include the dates of your assignment to the state.

2. **Spouse or Other Dependents of Military Personnel**
 You are exempt from payment of the nonresident tuition fee if you are a spouse or a natural or adopted child or stepchild who is a dependent of a member of the U.S. military stationed in California on active duty. The exemption is available until you have lived in California long enough to become a resident. If you are enrolled in an educational institution and the member of the military is transferred on military orders to a place outside California where he or she continues to serve in the armed forces, or the member of the military retires from active duty immediately after having served in California on active duty, you may retain this exemption under the conditions listed above.

3. **Child or Spouse of Faculty Member**
 To the extent funds are available, if you are an unmarried dependent child under age 21 or the spouse of a member of the University faculty who is a member of the Academic Senate, you may be eligible for a waiver of the nonresident tuition fee. Confirmation of the faculty member's membership on the Academic Senate must be secured each term this waiver is granted.

4. **Child or Spouse of University Employee**
 You may be entitled to resident classification if you are the unmarried dependent child or the spouse of a full-time University employee whose assignment is outside of California (e.g., Los Alamos Scientific Laboratory). Your parent's or spouse's employment status with the University must be ascertained each term.

5. **Child of Deceased Public Law Enforcement or Fire Suppression Employee**
 You may be entitled to a waiver of the nonresident tuition fee if you are the child of a deceased public law enforcement or fire suppression employee who was a California resident at the time of his or her death and who was killed in the course of fire suppression or law enforcement duties.

6. **Dependent of a California Resident**
 A student who has not been an adult resident of California for more than one year and who is the dependent child of a California resident who has been a resident for more than one year immediately prior to the residence determination date may be entitled to resident classification until the student has resided in California for the minimum time necessary to become a resident so long as continuous attendance is maintained at an institution.

7. **Native American Graduate of BIA School**
 A student who is a graduate of a California school operated by the Federal Bureau of Indian Affairs (BIA), i.e., Sherman Indian High School, and who enrolls at the University of California may be eligible for an exemption of the nonresident fee.

Temporary Absence

If you are a nonresident student who is in the process of establishing a residence for tuition purposes and you return to your former home during non-instructional periods, your presence in the state will be presumed to be solely for educational purposes and only convincing evidence to the contrary will rebut this presumption. A student who is in the state solely for educational purposes will NOT be classified as a resident for tuition purposes regardless of the length of his or her stay.) If you are a student who has been classified as a resident for tuition purposes and you leave the state temporarily, your absence could result in the loss of your California residence. The burden will be on you (or your parents if you are a minor) to verify that you did nothing inconsistent with your claim of a continuing California residence during your absence. Steps that you (or your parents) should take to retain a California residence include:

1. Continue to use a California permanent address on all records—educational, employment, military, etc.
2. Satisfy California resident income tax obligations. (Note: If you are claiming California residence, you are liable for payment of income taxes on your total income from the date you establish California residence. This includes income earned in another state or country.)
3. Retain your California voter's registration and vote by absentee ballot.
4. Maintain a California driver's license and vehicle registration. If it is necessary to change your driver's license and/or vehicle registration while you are temporarily residing in another state, you must change them back to California within the time prescribed by law.
5. Maintain active bank accounts.

Classification to Resident Status

All changes of status must be initiated prior to the payment deadline for the term which you intend to be reclassified.

Incorrect Classification

If you were incorrectly classified as a resident, you are subject to reclassification and to payment of all nonresident tuition fees not paid. If you concealed information or furnished false information and were classified incorrectly as a result, you are also subject to University discipline. Resident students who become nonresidents must immediately notify the campus residence deputy.

Inquiries and Appeals

Inquiries regarding residence requirements, determination and/or recognized exceptions should be directed to the Residence Deputy, Office of the Registrar, One Shields Avenue, Davis, California 95616, (530)-752-0879. NO OTHER UNIVERSITY PERSONNEL ARE AUTHORIZED TO SUPPLY INFORMATION RELATIVE TO RESIDENCE REQUIREMENTS FOR TUITION PURPOSES. You are cautioned that this summary is not a complete explanation of the law regarding residence. Please note that changes may be made in the residence requirement between the publication of this statement and the relevant residence determination date.

Any student, following a final decision on residence classification by the residence deputy, may appeal in writing to the legal analyst (Legal Analyst—Residence Matters, 1111 Franklin St., 8th Floor, Oakland, CA 94607-5200) within 45 days of notification of the residence deputy's final decision.
UNIVERSITY POLICY ON NONDISCRIMINATION, SEXUAL HARASSMENT, STUDENT RECORDS AND PRIVACY

Nondiscrimination. The University of California, in accordance with applicable Federal and State laws and University policy, does not discriminate on the basis of race, color, national origin, religion, sex, disability, age, medical condition (cancer-related), ancestry, marital status, citizenship, sexual orientation, or status as a Vietnam-era veteran or special disabled veteran. The University also prohibits sexual harassment. This nondiscrimination policy covers admission, access, and treatment in University programs and activities.

Inquiries regarding the University’s student-related nondiscrimination policies may be directed to Student Judicial Affairs, 3200 Dutton Hall, 530-752-1128.

Sexual Harassment. Sexual harassment of all persons who participate in University programs and activities is prohibited by law and by University regulation (Policy 380-12). Sexual harassment is unacceptable and will not be condoned on the UC Davis campus. The Sexual Harassment Education Program (752-2255) provides information and assists in resolving complaints of sexual harassment informally. Formal grievance procedures for student complaints charging legally impermissible discrimination (Policy 280-05) are available in the Office of Student Judicial Affairs and may be used to bring complaints of sexual harassment or other discrimination. Students may receive informal counseling and formal assistance by contacting any of the following offices: Vice Chancellors, Deans of the Schools and Colleges, the Office of Student Judicial Affairs, or the Sexual Harassment Education Program.

In addition, the ASUCD Student Grievance Center, Counseling Center, and the Women’s Resources and Research Program (752-2255) provide information and assistance in resolving complaints of sexual harassment on the Davis campus. The Sexual Harassment Education Program (752-2255) provides information and assists in resolving complaints of sexual harassment informally. Formal grievance procedures for student complaints charging legally impermissible discrimination (Policy 280-05) are available in the Office of Student Judicial Affairs and may be used to bring complaints of sexual harassment or other discrimination. Students may receive informal counseling and formal assistance by contacting any of the following offices: Vice Chancellors, Deans of the Schools and Colleges, the Office of Student Judicial Affairs, or the Sexual Harassment Education Program.

Disclosures from Student Records. In accordance with the Federal Family Educational Rights and Privacy Act of 1974 and campus procedures implementing the University of California Policies Applying to the Disclosure of Information from Student Records, students at the Davis campus of the University have the right:

- To inspect and review their own student records within 45 days of the date the University receives a written request for access.

Students should submit their requests in writing to the Registrar, Dean, Department Chair, or other appropriate campus official for the office having custody of the requested records. The request must identify the record(s) they wish to inspect and review. The campus official will make arrangements for access and notify the student of the time and place where the records may be inspected. If the records are not maintained by the official receiving the request, that official shall advise the student of the correct official and redirect the request.

- The right to request the amendment of their own student records if a student believes the records are inaccurate or misleading.

Students should submit a written request to amend a record that they believe is inaccurate or misleading to the campus official responsible for the record, clearly identifying the portion of the record they want changed, and specifying why it is believed to be inaccurate or misleading. If the University determines that the record should not be amended as requested by the student, the University will notify the student of the decision and advise him/her of the right to a hearing regarding the request for amendment. Additional information regarding the hearing procedures will be provided to the student when notified of the right to a hearing.

- The right to consent to disclosures of personally identifiable information contained in their student records, except to the extent that law and policy authorize disclosure without consent.

One exception permitting disclosure without consent is disclosure to campus officials having a legitimate educational interest in the records. A campus official is any individual designated by the campus to perform an assigned function on behalf of the campus. Legitimate educational interest means a demonstrated need to know by officials who act in a student’s educational interest. A campus official has a “legitimate educational interest” in a record if the official is performing a task (1) specified in his or her job description; (2) specifically related to the official’s participation in the student’s education; (3) specifically related to the discipline of a student; or (4) specifically related to providing a service or benefit associated with a student or student’s family, such as health care, counseling, job placement, or financial aid.

Another exception permitting disclosure without consent is Public Information, defined as information contained in a student record that would not generally be considered harmful or an invasion of privacy if disclosed, unless the student has notified the Registrar that such information is to be treated as confidential with respect to him/herself. UC Davis has designated as public the following categories of information regarding students: the student’s name, address(es) and telephone number(s)(local and/or permanent addresses, including e-mail addresses); major field of study; dates of attendance; number of course units in which enrolled; degrees and honors received; most recent previous educational institution attended; participation in officially recognized activities, including intercollegiate athletics, and the name, weight, and height of participants on intercollegiate athletic teams.

Parents of a dependent student may obtain student records, including transcripts, upon request and production of the parents’ most recent IRS 1040 tax form which reflects the student is claimed as a dependent.

Parental/guardian Information is confidential. It is used by the University only for notification of events, ceremonies, awards, and development or in case of an emergency involving the student.

- The right to file a complaint with the U.S. Department of Education concerning alleged failures by UC Davis to comply with the requirements of the Federal Educational Rights and Privacy Act, addressed to the Family Policy Compliance Office, U.S. Department of Education, 400 Maryland Avenue, SW, Washington, DC. 20202-4605

Questions about these rights should be referred to Jeanne Wilson, Office of Student Judicial Affairs, 530-752-1128.

Students may request in writing by the tenth day of instruction that their addresses, including e-mail address, and telephone listings or all personally identifiable information from their records not be regarded as public information. Students who desire to withhold their addresses and telephone listings may so indicate on the Student Address Form included with registration materials. Students who wish to keep their e-mail addresses confidential should connect to mothra.ucdavis.edu and type “services” at the login prompt, and follow the instructions provided for changing “whois” directory information. If a student does not indicate that he or she wishes to keep his or her address and telephone number confidential, then the information may be released as a matter of public record and will be included in a campus Student Directory. The decision to withhold address and phone number or all information can be reversed by filing a form with the Office of the Registrar.

Students who desire to withhold all information from the category of public information must file a form in the Office of the Registrar. Students availing themselves of this right...
should understand what the consequences of such action may be. For example, if all information is designated non-
public information, the campus cannot make public any
Honors received by the student (e.g., the award of a Regents’ Scholarship or election to Phi Beta Kappa) and cannot
include the student's name and degree earned in the campus
commencement program without the student's written con-
sent. Similarly, the student's status as a student or any degrees
earned cannot be verified for potential employers without the
student's written consent.

Privacy Act. A student's Social Security number is used to
verify personal identity in the UCD Student Records System.
In accordance with the Federal Privacy Act of 1974, students
are hereby notified that disclosure of their social security
number is mandatory. This recordkeeping system was estab-
lished prior to January 1, 1975 pursuant to the authority of
The Regents of the University of California under Art. IX,
Sec. 9, of the California Constitution.

**CAMPUS SECURITY, CRIME AWARENESS,
AND ALCOHOL AND DRUG ABUSE
PREVENTION**

In accordance with federal law, UC Davis annually provides
students and employees with information regarding campus
security, crime statistics, and alcohol and drug abuse preven-
tion, pursuant to the Student Right to Know and Campus
The UC Davis Police and Campus Administration make con-
tinual efforts to reduce crime on campus. A well-informed
community is better served and safer.

For a copy of the complete UC Davis security and crime preven-
tion report, including crime statistics, campus security
measures and crime reporting procedures, applicants for
admission or prospective employees may contact the
UC Davis Campus Violence Prevention Office, located in the
UC Davis Police Department, 530-752-3299, or e-mail
jmbeeman@ucdavis.edu.

ACCREDITATION

The University of California, Davis is accredited by the
Accrediting Commission for Senior Colleges and Universities
of the Western Association of Schools and Colleges, 985
Atlantic Avenue, Suite 100, Alameda, CA 94501, (510) 748-
7001, an institutional accrediting body recognized by the
Council for Higher Education and the U.S. Department of
Education.

UC Davis is also accredited by the Association of American
Law Schools, American Bar Association, American Dietetic
Association, Association of American Medical Colleges,
American Association for Accreditation of Laboratory Animal
Care, Accreditation Council for Graduate Medical Education,
Council on Education of the American Veterinary Medical
Association, Engineering Accreditation Commission of the
Accreditation Board of Engineering and Technology,
Computing Science Accreditation Commission, American
Chemical Society, American Assembly of Collegiate Schools of
Business, American Society of Landscape Architects, the
Commission on Teacher Credentialing, and the Joint Com-
mission on Accreditation of Hospitals. Students interested in
reviewing the accreditation documents may do so by schedul-
ing an appointment with the Office of the Provost, Mrak Hall.

THE BOARD OF REGENTS

Governing of the university is entrusted to a corporation
called The Board of Regents. Of the individuals composing the
board, 18 are California citizens appointed by the governor;
and seven, including the president of the university and the
governor of California, serve ex officio. A student regent is se-
lected each year from a list of names submitted to the board by
the Student Body Presidents’ Council.

The regents have delegated authority in academic matters to
the Academic Senate of the faculty, which determines acade-
mic policy and supervises the instructional activities of the
entire university. All of the permanent faculty, as well as key
administrators, are members of the Senate.

The regents have delegated authority for the organization of
the university to the president. Richard C. Atkinson is presi-
dent and head of the universitywide administration.
Authority for the administration of each campus has been
delegated to a chancellor.

**THE REGENTS OF THE
UNIVERSITY OF CALIFORNIA**

Regents Ex Officio

Gray Davis

Governor of California and President of The Regents

Cruz Bustamante

Lieutenant Governor of California

Robert M. Herzberg

Speaker of the Assembly

Delaine Eastin

State Superintendent of Public Instruction

Irene Miura

President of the Alumni Associations of the
University of California

Markell W. Kohn, D.D.S.

Vice President of the Alumni Associations of the
University of California

Richard C. Atkinson

President of the University

Appointed Regents

(Current term expires on March 1 of year indicated)

William T. Bagley (2002)

Ward Connerly (2005)

John G. Davies (2004)

Judith L. Hopkinson (2009)

Odessa Johnson (2012)

S. Sue Johnson (2002)

Meredith J. Khachigian (2001)

Joanne Kozberg (2010)

Sherry L. Lansing (2010)

Howard H. Leach (2001)

David S. Lee (2006)

Velma Montoya (2005)

John J. Moores (2009)

Gerald L. Parshy (2008)

Peter Preuss (2008)

Tom Sayles (2006)

Justin Fong (June 30, 2001)

Michael Fong (August 30, 2001)

Student Regent

Faculty Representative

Principal Officers of The Regents

James E. Holst

General Counsel and Vice President—Legal Affairs

Patricia A. Small

Treasurer

Leigh Trivette

Secretary
APPENDIX

ADMINISTRATIVE OFFICERS OF THE UNIVERSITY

Richard C. Atkinson
President of the University
C. Judson King
Provost and Senior Vice President—Academic Affairs
Joseph P. Mullinix
Senior Vice President—Business and Finance
Bruce B. Darling
Senior Vice President—University and External Relations
W.R. Gomes
Vice President—Agriculture and Natural Resources
Lawrence C. Hershman
Vice President—Budget
William H. Gurtner
Vice President—Clinical Services Development
Anne C. Broome
Vice President—Financial Management
Alex M. Saragoza
Vice President—Educational Outreach
Michael V. Drake
Vice President—Health Affairs
James E. Holst
General Counsel and Vice President—Legal Affairs

UNIVERSITY CHANCELLORS

Robert M. Berdahl
Chancellor at Berkeley
Larry N. Vanderhoef
Chancellor at Davis
Ralph J. Cicerone
Chancellor at Irvine
Albert Carnesale
Chancellor at Los Angeles
Carol Tomlinson-Keasey
Chancellor at Merced
Raymond L. Orbach
Chancellor at Riverside
Robert C. Dynes
Chancellor at San Diego
J. Michael Bishop
Chancellor at San Francisco
Henry T. Y. Yang
Chancellor at Santa Barbara
M.R.C. Greenwood
Chancellor at Santa Cruz

ADMINISTRATIVE OFFICERS—UC DAVIS

Chancellor
Larry N. Vanderhoef, Ph.D.

Chancellors Emeritus
Theodore L. Hullar, Ph.D.
James H. Meyer, Ph.D.

Vice Chancellors
Robert D. Grey, Ph.D.
Provost and Executive Vice Chancellor
Janet C. Hamilton, B.S.
Vice Chancellor—Administration
Celeste E. Rose, J.D.
Vice Chancellor—University Relations
Kevin M. Smith, Ph.D.
Vice Chancellor—Research
Carolyn F. Wall, Ph.D.
Vice Chancellor—Student Affairs
John Meyer
Vice Chancellor—Resource Management and Planning

Vice Provosts
John L. Bruno, Ph.D.
Vice Provost—Information and Educational Technology

Barry M. Klein, Ph.D.
Vice Provost—Academic Personnel
William B. Lacy, Ph.D.
Vice Provost—University Outreach and International Programs
Patricia A. Turner, Ph.D.
Vice Provost—Undergraduate Studies

Assistant Chancellor
Sally P. Springer, Ph.D.

Associate/Assistant Vice Chancellors/Provost
Jill M. Blackwelder, B.S.
Associate Vice Chancellor—Facilities
Dennis J. Dutschke, Ph.D.
Associate Vice Provost—International Programs

Robert G. Franks, Ph.D., J.D.
Associate Vice Chancellor—Student Affairs
Janet C. Gong, Ed.D
Assistant Vice Chancellor—Student Affairs
Gerald R. Hallee, M.P.A.
Assistant Executive Vice Chancellor
Virginia Kelsch, B.A.
Associate Vice Chancellor—University Relations
André Lauchli, Ph.D.
Associate Vice Chancellor—Research
Vivonne L. Marsh, M.S.
Assistant Vice Chancellor—Student Affairs
Richard J. Meisinger, Jr., Ph.D.
Associate Provost—Academic Planning

Stan Nesek, M.S.
Assistant Vice Chancellor—Management Analysis and Planning
Dennis W. Shimak, B.S.
Associate Vice Chancellor—Human Resources and Risk Management

University Librarian
Marilyn J. Sharrow, M.A.L.S.

Registrar
Jack R. Farrell, Ph.D.

Directors
Tom C. Compton, J.D.
Executive Director, Campus Unions and Campus Recreation
Marjorie M. Dickinson, B.A.
Director of Government and Community Relations
Michelle Famula, M.D.
Director of Cowell Student Health Center
Patricia A. Kearney, Ph.D.
Executive Director, Student Housing and Financial Aid
Robert A. Kerr, Ph.D.
Director of Alumni Relations and Executive Director, Cal Aggie Alumni Association
Brian E. McCurdy, M.A.
Director of University Cultural Programs
Maril R. Stratton, M.A.
Director of Public Communications
Gary Tudor, Ed.D.
Director of Undergraduate Admissions and Outreach Services
Greg Warzecka, M.S.
Director of Athletics
Daniel L. Wick, Ph.D.
Director of Summer Sessions

College of Agricultural and Environmental Sciences
Neal K. Van Allen, Ph.D., Dean
James MacDonald, Ph.D., Executive Associate Dean
College of Engineering
Alan J. Laub, Ph.D., Dean
Ian M. Kennedy, Ph.D., Associate Dean—Academic Personnel and Planning
Zuhair A. Munir, Ph.D., Associate Dean—Research and Graduate Studies
James F. Shackelford, Ph.D., Associate Dean—Undergraduate Studies

College of Letters and Science
Elizabeth Langland, Ph.D., Dean—Division of Humanities, Arts, and Cultural Studies
Peter A. Rock, Ph.D., Dean—Division of Mathematical and Physical Sciences
Steven M. Sheffrin, Ph.D., Dean—Division of Social Sciences
Fred E. Wood, Ph.D., Associate Dean—Undergraduate Education

Division of Biological Sciences (Intercollege)
Mark G. McNamee, Ph.D., Dean
Thomas L. Rost, Ph.D., Associate Dean—Undergraduate Academic Programs

Division of Education
Jon Sandoval, Ph.D., Acting Director

Graduate School of Management
Robert H. Smiley, Ph.D., Dean
Paul A. Griffin, Ph.D., Associate Dean—Academic Affairs

Graduate Studies
Cristina Gonzalez, Ph.D., Dean
Jerry L. Hedrick, Ph.D., Associate Dean
Rosemarie H. Kraft, Ph.D., Associate Dean

School of Law
Rex R. Perschbacher, J.D., Dean
Kevin Johnson, J.D., Associate Dean—Academic Affairs
Jill Peterson, J.D., Assistant Dean—Student Affairs

School of Medicine
Joseph Silva, Jr., M.D., Dean
Thomas F. Anders, M.D., Executive Associate Dean
James J. Castles, M.D., Associate Dean—Academic Affairs
Fitz-Roy E. Curry, Ph.D., Associate Dean—Research and Basic Sciences
Faith Fitzgerald, M.D., Assistant Dean—Student Affairs
Vijaya Kumari, M.B.B.S., Ph.D., Assistant Dean—Curricular Affairs
Charles A. Lacy, Ph.D., Associate Dean—Office of Medical Education
Brian O'Neill, M.D., Assistant Dean—Veterans Affairs
Thomas Hobday, Assistant Dean—Health Sciences Advancement
Thomas Nesbitt, M.D., Assistant Dean—Regional Outreach, and Telehealth

School of Veterinary Medicine
Bennie I. Osburn, D.V.M., Ph.D., Dean
John R. Pascoe, B.V.Sc., Ph.D., Executive Associate Dean
Stephen W. Barthold, D.V.M., Ph.D., Associate Dean—Comparative Medicine
James S. Cullor, D.V.M., Ph.D., Associate Dean—Veterinary Medicine Teaching and Research Center, Tulare
Robert J. Hansen, Ph.D., Associate Dean—Student Programs
Dallas M. Hyde, Ph.D., Associate Dean—Research and Graduate Education Program
Bradford P. Smith, D.V.M., Associate Dean—Clinical Programs and Director—Veterinary Medical Teaching Hospital
Donald J. Klingborg, D.V.M., Assistant Dean—Public Programs and Director—Veterinary Extension

University Extension
Charles A. Lacy, Ph.D., Dean
PROPORTION OF UC DAVIS GRADUATES FINDING WORK IN THEIR FIELDS OF CHOICE

The percent of alumni whose full-time job is in the field of their choice is shown by field of study. Figures do not include the 13 percent of graduates who had not decided on a career field at the time of the survey.

<table>
<thead>
<tr>
<th>Field of Study</th>
<th>Percentage finding work in field of choice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal Biology, 83</td>
<td>Human Health and Development, 77</td>
</tr>
<tr>
<td>Biological Sciences, 62</td>
<td>Interdisciplinary, 63</td>
</tr>
<tr>
<td>Engineering, 92</td>
<td>Letters, 67</td>
</tr>
<tr>
<td>Environmental and Resource Sciences and Policy, 78</td>
<td>Mathematics and Statistics, 90</td>
</tr>
<tr>
<td>Fine Arts, 60</td>
<td>Plant Sciences, 80</td>
</tr>
<tr>
<td>Foreign Languages, 80</td>
<td>Physical Sciences, 80</td>
</tr>
<tr>
<td></td>
<td>Social Sciences, 59</td>
</tr>
</tbody>
</table>

Total, 72

1Source: A 1997 survey of June 1996 graduates conducted by Student Affairs Research and Information.
2Fields of Study are groups of related undergraduate majors; for example, “Animal Biology” includes Agricultural Science and management, Animal Biology, Animal Science, Animal Science and Management, Avian Science, Entomology, Wildlife and Fisheries Biology, and Wildlife, Fish and Conservation Biology.

RETENTION DATA AND GRADUATION RATES AT UC DAVIS

Freshmen
(Retention and graduation rates through Spring 1999 for all undergraduates entering UC Davis from high school.)

<table>
<thead>
<tr>
<th>Fall Quarter of Initial Enrollment:</th>
<th>Number of Students</th>
<th>Percent Enrolled 4 Quarters</th>
<th>*Percent Graduating in 12 Quarters</th>
<th>*Percent Graduating in 15 Quarters</th>
</tr>
</thead>
<tbody>
<tr>
<td>1989</td>
<td>3,188</td>
<td>94%</td>
<td>35%</td>
<td>74%</td>
</tr>
<tr>
<td>1990</td>
<td>3,230</td>
<td>94%</td>
<td>39%</td>
<td>74%</td>
</tr>
<tr>
<td>1991</td>
<td>2,356</td>
<td>93%</td>
<td>36%</td>
<td>73%</td>
</tr>
<tr>
<td>1992</td>
<td>2,930</td>
<td>93%</td>
<td>38%</td>
<td>73%</td>
</tr>
<tr>
<td>1993</td>
<td>3,179</td>
<td>94%</td>
<td>34%</td>
<td>72%</td>
</tr>
<tr>
<td>1994</td>
<td>3,232</td>
<td>93%</td>
<td>34%</td>
<td>65%</td>
</tr>
</tbody>
</table>

Transfer Students
(Retention and graduation rates through Spring 1999 for all undergraduates transferring to UC Davis as juniors.)

<table>
<thead>
<tr>
<th>Fall Quarter of Initial Enrollment:</th>
<th>Number of Students</th>
<th>Percent Enrolled 4 Quarters</th>
<th>*Percent Graduating in 6 Quarters</th>
<th>*Percent Graduating in 9 Quarters</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>844</td>
<td>93%</td>
<td>35%</td>
<td>78%</td>
</tr>
<tr>
<td>1991</td>
<td>658</td>
<td>93%</td>
<td>42%</td>
<td>80%</td>
</tr>
<tr>
<td>1992</td>
<td>862</td>
<td>93%</td>
<td>44%</td>
<td>78%</td>
</tr>
<tr>
<td>1993</td>
<td>863</td>
<td>93%</td>
<td>38%</td>
<td>78%</td>
</tr>
<tr>
<td>1994</td>
<td>1,066</td>
<td>94%</td>
<td>38%</td>
<td>77%</td>
</tr>
<tr>
<td>1995</td>
<td>1,091</td>
<td>94%</td>
<td>34%</td>
<td>75%</td>
</tr>
<tr>
<td>1996</td>
<td>1,111</td>
<td>92%</td>
<td>38%</td>
<td>72%</td>
</tr>
</tbody>
</table>

*These are not necessarily quarters of continuous enrollment. Students may drop out or go on Planned Educational Leave for a quarter or longer, and then resume their studies. (There are three quarters in each academic year.)

1Source: Student Affairs Research and Information, UC Davis (January 2000).

AVERAGE YEARLY SALARY OFFERED TO GRADUATES WITH BACHELOR’S, MASTER’S, AND DOCTORATE DEGREES

<table>
<thead>
<tr>
<th>Field of Study</th>
<th>Average Yearly Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bachelor’s</td>
</tr>
<tr>
<td>Engineering</td>
<td>$41,161</td>
</tr>
<tr>
<td>Humanities/Social Sciences</td>
<td>$27,283</td>
</tr>
<tr>
<td>Health Sciences/Life Sciences</td>
<td>$28,294</td>
</tr>
<tr>
<td>Physical Sciences</td>
<td>$35,311</td>
</tr>
</tbody>
</table>

1Source: 1999 National Salary Survey data provided by the National Association of Colleges and Employers.
INDEX
Aging and Adult Development, 297
African American and African Studies, Aerospace Studies (Air Force ROTC), 361
Aeronautical Science and Engineering, Advising Services, 53
Advising, preprofessional, 53
Advising, peer, 53
Advising, academic
Agricultural and Environmental Sciences, 51
Biological Sciences, 51
Engineering, 51–52
Letters and Science, 52
Agricultural and Environmental Chemistry, 118
Agricultural and Environmental Sciences, College of, 13, 51, 74–75, 83–84
Agricultural and Managerial Economics, see Managerial Economics
Agricultural and Resource Economics, 118–121
Agricultural Computing and Information Systems, 121
Agricultural Education, 121–122
(see also Agricultural Systems and Environment)
Agricultural Engineering (see Biological and Agricultural Engineering)
Agricultural Entomology, 257
(under Entomology)
Agricultural History Center, 16
Agricultural Systems and Environment, 122–124
Agricultural Teaching Program, 96–97 (see also Agricultural Education)
Agronomy, 125
Agronomy and Range Science, 125
Air Force (AFROTC), 361
Allergy (see Rheumatology–Allergy)
Alumni Network, 49
American College Tests (ACT), 25
American History and Institutions requirement, 80–81
American Studies, 125–127
Anatomy (see Cell Biology and Human Anatomy; in Medicine, School of)
Anatomy, Physiology and Cell Biology (Veterinary Medicine), 127–128
Anesthesiology, 339
Animal Behavior, 128–129
(see also Neurobiology; Physiology and Behavior)
Animal Biology, 129 (see also Animal Science)
Animal Genetics, 129–130
Animal Science, 130–133
Animal Science and Management, 133–134
Animal Surgery Laboratory, 19
Anthropology, 134–139
Apiculture, 257 (under Entomology)
Applied Behavioral Sciences (see Community and Regional Development)
Applied Biological Systems Technology, 139–140
Applied Chemistry (see Chemical and Materials Science Engineering)
Applied Mathematics, 140
Applied Physics, 380–381
Applied Science Engineering, 216–219
Aquaculture (see Animal Science; Applied Biological Systems Technology; Biological and Agricultural Engineering; Wildlife, Fish and Conservation Biology)
Arboretum, UC Davis, 15
Archaeology (see Anthropology)
Architecture (see Art History; Design; Landscape Architecture)
Area (breadth) requirement, 89–90
Army (see Military Science)
Art galleries, 47–48
Art History, 140–143
Art Studio, 143–145
Asian American Studies, 145–146
Asian Studies (see Asian American Studies; East Asian Languages and Cultures; East Asian Studies)
Associated Students (ASUCD), 48
Astronomy, 381
ASUCD, see Associated Students
ASUCD Grievance Center, 54
Athletics, Intercollegiate, 47 (see also Exercise Science; Physical Education)
Atmospheric Science, 146–148
Avian Medicine (see Medicine and Epidemiology)
Avian Sciences, 148–150
Baccalaureate, second, 32
Bachelor’s degree requirements
University requirements, 80–81
General Education requirement, 81–83
Agricultural and Environmental Sciences, 83–84
Engineering, 84–87
Letters and Science, 87–91
Bacteriology (see Microbiology)
Band, Cal Aggie Marching, 49
Basement Gallery, 48
Bicycles, 35, 43
Biochemical Engineering (see Chemical and Materials Science Engineering)
Biochemistry, (see Biochemistry and Molecular Biology; Biophysics; Molecular and Cellular Biology)
Biochemistry and Molecular Biology, 150–151
Biochemistry and Special Instrumentation Laboratory, 19
Biological and Agricultural Engineering, 151, 220–223
Biological Chemistry, 340
Biological Sciences, 31, 75–76, 151–170
courses, 158
major, 151–153
Sections of, 158–170
Biological Systems Engineering, 220–223
Index

1. **Electrical and Computer Engineering**, 238–245
2. **Emergency Medicine**, 346
3. **Employee-Student**, 36
4. **Employment, student**, 39, 43
5. **Energy conservation/Energy systems** (see Chemical and Materials Science Engineering; Environmental and Resource Sciences; Environmental Policy Analysis and Planning)
7. **Endocrinology**, 215
8. **Endocrinology and Metabolism**, 346–347
 - Aeronautical Science and Engineering, 246, 249
 - Applied Science, 216–219
 - Biological and Agricultural (Biological Systems), 151, 220–223
 - Chemical, 224–228
 - Civil and Environmental, 229–234
 - Computer Science, 234–238
 - Electrical and Computer Engineering, 238–245
 - Engineering core courses, 215–216
 - Materials Science and Engineering, 225–226, 228–229
 - Mechanical, 245–249
 - Mechanical and Aeronautical, 249–251
 - Engineering design requirement, 86
 - Engineering electives, 86–87
 - Engineers, Graduate Certificate Program, 96
 - English, 251–256
 - English 57 (see Subject A)
 - English as a Second Language, 323–325 (under Linguistics)
 - English composition examination, 84, 85, 88–89
 - English proficiency requirement, 25
 - Enology (Viticulture and Enology), 434–437
 - Enrolling in courses, 59
 - Entomology, 256–258
 - Environmental and Resource Sciences, 260–261
 - Environmental Biology and Management, 260–261
 - Environmental Design, 261 (see also Design; Landscape Architecture)
 - Environmental Engineering (see Chemical and Materials Science Engineering; Civil and Environmental Engineering)
 - Environmental Geology, 261
 - Environmental Horticulture, 261–262
 - Environmental Horticulture and Urban Forestry, 262–263
 - Environmental Planning and Management, (under Environmental Biology and Management; see also Environmental
 - Policy Analysis and Planning; Environmental Horticulture and Urban Forestry)
 - Environmental Policy Analysis and Planning, 263–234
 - Environmental Science and Policy, 264–266
 - Environmental Studies (see Environmental Science and Policy)
 - Environmental Toxicology, 266–268
 - EOP, (see Educational Opportunity Program)
 - Epidemiology, 268–269 (see also Epidemiology and Preventive Medicine; Medicine and Epidemiology)
 - Epidemiology and Preventive Medicine, 341–342
 - Equestrian Center, 45
 - Equine management (see Animal Science)
 - Evolution and Ecology, 154, 158–160
 - Examination in English as a Second Language, 31
 - Examination requirement (ACT and SAT), 25–26
 - Examinations
 - Advanced Placement, 27, 28
 - credit by, 64
 - final, 65–66
 - High School Proficiency, 28
 - midterm, 65
 - TOEFL (Test of English as a Foreign Language), 31, 94, 104, 111
 - Exercise Science, 155, 160–162
 - Expenses
 - annual, 36
 - housing, 42
 - international student, 36
 - Exploratory program, 51
 - Extension courses (see University Extension)

Family Practice (see Family and Community Medicine)

1. **Family and Community Medicine**, 342–344
2. **Family Nurse Practitioner**, 342–344
3. **Farming/Field equipment** (see Applied Biological Systems Technology)
4. **Fees
 - course materials, 35
 - employee–student, 36
 - graduate student, 35
 - parking permit and bicycle licensing, 36
 - part–time student, 35
 - professional student, 35
 - refunds, 36–37
 - undergraduate student, 35
 - Fellowships, 95–96
 - Feminist Theory and Research, 269
 - Fermentation Science, 269–270
 - Fiber and Polymer Science, 270–271

Film Studies, 271

1. **Financial aid, 37–39, 95–96
2. **Fine Arts Collection, 47
3. **First Resort, The, 53
4. **Fisheries** (see Animal Science; Biological and Agricultural Engineering; Wildlife, Fish and Conservation Biology)
5. **FNP/PA Program**, 108, 342–344
6. **Food Biochemistry**, 271
7. **Food Engineering, 221
8. **Food Intake Laboratory, 19
9. **Food Process Engineering** (see Chemical and Materials Science Engineering)
10. **Food Science**, 271–272
11. **Food Science and Technology, 272–274
12. **Food Service Management, 274
13. **Foreign language requirement, 90
14. **Foreign student** (see International student)
15. **Forest Engineering, 221
16. **Forestry** (see Environmental Horticulture and Urban Forestry; Forest Engineering)
17. **French, 275–277
18. **Freshman Seminar Program, 277
19. **Fungal Biology and Ecology, 278

Galleries, art, 47–48

1. **Games Area, 46
2. **Gastroenterology, 347
3. **Gender studies** (see Women and Gender Studies)
4. **General Education (GE)**
 - GE Requirement, 81–83
 - courses, 444–451
5. **General Medicine, 347
6. **Genetics, 155–156, 278–279** (see also Molecular and Cellular Biology)
7. **Geochemistry, 281
8. **Geographic Information Systems, 279** (see also Applied Biological Systems Technology)
9. **Geographic Studies, 279
10. **Geography, 279–280
11. **Geology, 281–285
12. **Geophysics, 285
13. **Geotechnical Modeling, Center for, 17
14. **German, 285–289
15. **Gorman Museum, 48
16. **Government, student, 48–49
17. **Governmental Affairs, Institute of, 17
18. **Grade point average (GPA)**, 66
19. **Grade points, 66
20. **Grades, 66–68**
 - change of, 54, 67
 - final, 68
 - incomplete, 67
 - in–progress, 67

Grades, 66–68

1. **Grades, 66–68**
2. **Grades, 66–68**
3. **Grades, 66–68**
4. **Grades, 66–68**
5. **Grades, 66–68**
6. **Grades, 66–68**
7. **Grades, 66–68**
8. **Grades, 66–68**
9. **Grades, 66–68**
10. **Grades, 66–68**
11. **Grades, 66–68**
12. **Grades, 66–68**
13. **Grades, 66–68**
14. **Grades, 66–68**
15. **Grades, 66–68**
16. **Grades, 66–68**
17. **Grades, 66–68**
18. **Grades, 66–68**
19. **Grades, 66–68**
20. **Grades, 66–68**
Passed/Not Passed, 66–67
repeated course, 68
Satisfactory/Unsatisfactory, 67
Graduate Certificate Program for Engineers, 96
Graduate student admission, 93–94
advising, 53
deadlines, 95
degrees, 6–7, 94–95
international student, 94
placement services, 55–56
readmission, 93–94
Graduate Management Admissions Test (GMAT), 103
Graduate Record Examination (GRE), 93, 110
Graduate Student Association (GSA), 49
Graduates, proportion finding work in their field of study, 460
Graduation filing for, 71
honors, 69–70
rates, 460
Grants, 38
Greek, 180, 181
Grievances, resolving, 54
Handicapped students, services to, (see Disability Resource Center)
Health
education, 44
insurance, 35, 37
services, 45
Health Sciences Research Laboratories, 19
Hebrew, 404
Hematology-Oncology, 347
Herbarium, UC Davis, 21
Herpetology (see Evolution and Ecology)
High school proficiency examination, 28
History, 289–295
History and Philosophy of Science, 295
Honorary societies, 71
Honors
Deans’ list, 69
graduation, 69–70
Honors Challenge, 70, 295
Honors Program, College of Letters and Science, 70
Horticulture and Agronomy, 296
(see also Environmental Horticulture)
House, The, 45
Housing, 42–43
Human Anatomy (see Cell Biology and Human Anatomy)
Human and Community Development, 297
Human Corps Program, 56
Human Development, 297–300
Human Performance Laboratory, 19
Human Physiology, 344–345
Humanities, 300–301
Humanities Institute, 19
Hydrologic Sciences, 301–302
Hydrology, 302–303
IGETC, (see Intersegmental General Education Transfer Curriculum)
Image Processing and Integrated Computing, Center for, 17
Immunology, 303–304
(see also Medical Microbiology; Pathology, Microbiology and Immunology)
Incomplete grades, 67
Independent Study Program, 304
Individual major, 63, 304
Infectious Diseases, 347–348
Information Technology, 15–16
In-Progress grading, 67
Insect Ecology, 257 (under Entomology)
Integrated Studies, 70, 305
Intercampus exchange program, 95
Intercampus Visitors Program, 64
Intercampus Institute for Research at Particle Accelerators, 20
Intercollegiate athletics, 47
Interior Design (see Design)
International Medicine, 345–346
International Agricultural Development, 305–307
International Nutrition, 308
International Nutrition, Program in, 18
International Relations, 308–309
International student admission, undergraduate, 29–30
admission to Graduate Studies, 93–94
expenses, 36
Services for International Students and Scholars, 57
International study (see Education Abroad Program)
Internship and Career Center, 55
Internship Program, 55, 309
Interssegmental General Education Transfer Curriculum (IGETC), 83
Intramural Sports/Sports Clubs, 47
Irrigation (see Civil and Environmental Engineering; Hydrologic Science; Soil and Water Science)
Italian, 309–311
Japanese, 198, 199–200
Jepson Prairie Reserve, 20
Jewish Studies, 311–312
John Muir Institute of the Environment, 18
Judicial Affairs, 54
Land, Air and Water Resources, 312
Landscape Architecture, 312–315
Landscape Restoration, 315
LaRue Park Children’s House, 43
Latin, 180, 181–182
Law School Admission Test (LSAT), 99
Law, School of, 315–322
calendar, 101
Learning disabilities, 65–66
Learning Skills Center, 55
Learning Resources Center, 55
Leave of absence, 71–72
Lesbian, Gay, Bisexual, and Transgender Resource Center, 56–57
Letters and Science, College of, 14, 78–79, 87–91
Library, University, 15
Linguistics, 322–325
(see also Anthropology)
Literature in Translation, 325–326
Loans, 38–39, 95–96
Major Programs (by college)
Agricultural and Environmental Sciences, College of, 74–75
Division of Biological Sciences, 75–76
Engineering, College of, 76–78
Letters and Science, College of, 78–79
Majors
change of, 61
cross-college, 62–63
declaration of, 61
degree certification, 84
individual, 63
list of, 6–7
multiple, 62
Management, Graduate School of, 326–328
Managerial Economics, 328–329
Mann Laboratory, 20
Manufacturing (see Mechanical and Aeronautical Engineering)
Marine biology (see Neurobiology, Physiology and Behavior)
Master of Education, 329
Master of Laws, 101
Master of Preventive Veterinary Medicine, 111, 399
Master’s degree, 94
Materials Science and Engineering, 225–226, 228–229
Mathematical and Physical Sciences, 329
Mathematics, 329–333
(see also Applied Mathematics)
MBA Working Professional Program, 104
McLaughlin Reserve, 20
Mechanical and Aeronautical Engineering, 249–251
Mechanical Engineering, 245–249
Medical Microbiology, 348–349
Medical Pharmacology and Toxicology, 349
Medical Sciences, 339
Medical/Veterinary Entomology, 257
(Medical Microbiology; Pathology; Microbiology and Immunology)
Midterm examinations, 65
Military Science, 359–362
Minimum progress, 60, 69
Minor programs, 8, 63, 74–76, 78–79
Molecular and Cellular Biology, 163–166
Molecular Biosciences, 362–363
Motorist Assistance Program, 43
Music, 47, 363–366

Name, change of, 59
Native American Studies, 366–368
Natural Reserve System, 20
Nature and Culture, 368–369
Naval ROTC, 362
Nelson Gallery, 47
Nematology, 369
Nephrology, 348
Neurobiology, Physiology and Behavior, 156, 166–168
Neurology, 349–350
Neuroscience, 369–370
Neuroscience Center for, 19
Neurosurgery, 350
Nondiscrimination, 456–457
Nonresident admission, 28, 29
Nuclear Magnetic Resonance Facility, 20
Nursing (see Family Nurse Practitioner)
Nutrition (see Clinical Nutrition and Metabolism; Community Nutrition; Dietetics; Nutrition; Nutrition Science)
Nutrition, 370–373
Nutrition and Food, 371
Nutrition Science, 373–374
Obstetrics and Gynecology, 350–351
Oceanography, 281
Occupational and Environmental Health (see Epidemiology and Preventive Medicine)
Ophthalmology, 351
Organizational Studies, 411
Organized Research Units (ORUs), 16–18
Orientation, 53
Ornithology (see Evolution and Ecology)
Orthopaedic Surgery, 351
Otolaryngology, 351–352
Outdoor Adventures, 45
Paleobiology, 281
Parking fees and permits, 36, 43
Parks and recreation (see Community and Regional Development; Design; Environmental Planning and Management; Landscape Architecture; Physical Education)
Part-time status, 35, 60–61
Passed/Not Passed grading, 66–67, 88
Pathology (Medicine), 352
Pathology, Microbiology and Immunology, 374–375
Pediatrics, 352–353
PELP, (see Planned Educational Leave Program)
Pharmacology (see Medical Pharmacology and Toxicology; Molecular Biosciences)
Pharmacology and Toxicology, 375–376
Ph.D. degree, 94–95
Philosophy, 376–378
Photography (see Art Studio)
Photo ID, student, 59
Physical Education 378–380
(also see Exercise Science)
Physical Medicine and Rehabilitation, 353
Physician Assistant Program, 116, 342–344
Physics, 380–384
Physiology, 384–385
(see also Neurobiology; Physiology and Behavior; Human Physiology; Plant Biology)
Placement Services, graduate and educational, 56
Planned Educational Leave Program (PELP), 37, 71–72
(see also Agricultural Systems and Environment; Agronomy; Biological Sciences: Crop Science and Management; Environmental Horticulture; Environmental Horticulture and Urban Forestry; Plant Pathology; Plant Protection and Pest Management; Plant Science; Preventive Veterinary Medicine, Master’s of (M.P.V.M.), 111, 399
Premedical engineering (see Biological and Agricultural Engineering; Chemical and Materials Science Engineering)
Prize and Awards, 39–40, 71
Probation, 68–69
Proficiency examination, high school, 28
Psychiatry, 353–354
Psychology, 399–403
Pulmonary Medicine, 348
Putah Creek Lodge, 46
Quail Ridge Reserve, 20
Quantum physics, 381
Quarter system
explanatory note, 114–115
how to convert units, 63
Radiation Oncology, 354
Radiological Sciences (see Surgical and Radiological Sciences)
Radiology, Diagnostic, 354
Radiology, Nuclear Medicine, 354–355
Range and Wildlands Science, 403–404
Range Science, 404
Rape Prevention Education Program, 56
Readmission after an absence, 32
in graduate standing, 93–94
(see also Reentry Student Services)
Rec Pool Lodge, 46
Records, disclosures from, 456–457
Recreation Hall, 46
Recreation Swimming Pool, 46
Recreational facilities and programs, 45–47
Index 467

Reentry Student Services, 57
Refunds, fee, 36–37
Regents, 457
Registration
cancellation of, 36
late, 59
priority, 59
procedures, 59
RSVP (telephone registration), 59
Web Registration, 59
Registration Fee Deferred Payment Plan
(RFDPP), 35
Religious observances, 66
Religious Studies, 404–405
Repeating courses, 68
Residence halls, 42
Residence for tuition purposes, 454–455
Residence requirement for bachelor's
degree, 81, 83, 85, 88
Retention data, 460
Rhetoric (see Communication)
Rheumatology-Allergy, 348
ROTC (Air Force and Navy), 361–362
RSVP (telephone registration), 59
Russian, 406–407
Russell Park Child Development
Center, 43
Satisfactory/Unsatisfactory grading, 67
Satisfactory academic progress, 38, 68–69
Schedule of Refunds, 37
Scholarship requirement for bachelor's
degree, 81, 83–84, 85, 88
Scholarships, 39–40, 69
Scholastic Assessment Test (SAT), 25–26
Scholastic deficiencies, 68–69
Science and Society, 407–408
Science and Technology Studies, 408–409
Services for International Students and
Scholars (S.I.S.S.), 57
Sexual harassment, policy against, 456
Shuttles, campus, 43
Silo Union, 46
Social and Ethnic Relations, 409
Social Science Data Service, 20
Social Sciences, 409
Social Theory and Comparative History, 409
Sociology, 409–414
Sociology–Organizational Studies, 411
Soil and Water Science, 415
Soil Science, 415–416
Spanish, 416–420
Special Transitional Enrichment Program
(STEP), 55
Sports, 47 (see also Exercise Science;
Physical Education)
Stafford/Ford Student Loans, 39
Statement of Intent to Register
(SIR), 31, 33
Statement of Legal Residence, 59
Statistics, 420–423
Stebbins Cold Canyon Reserve, 20
Structural engineering (see Civil and
Environmental Engineering)
Student
conduct and discipline, 53–54
records, disclosures from, 456–457
responsibilities, 54
Student Employment Center, 39, 43
Student Experimental Farm, 21
Student/Faculty relations, 54
Student Housing, 42
Student government, 48–49
Student Health Center, Cowell, 44
Student Judicial Affairs, 54
Student Programs and Activities Center, 49
Student Special Services, 57
Study list, 59
Study plan approval, 84
Subject A (English requirement), 80
Subject requirements, 24–25
Substance abuse prevention
Campus Alcohol and Drug Abuse
Prevention Program (CADAPP), 44
Summer Advising, 53
Summer Sessions, 64
Surgery (Medicine), 355
Surgical and Radiological Sciences, 423–425
Swimming pool, 46
Teacher Credential Programs, 96–97
Teaching Credential, UCD/CSU Sacramento
Collaborative Elementary Credential
Program, 208
Teaching Assistantships, 95–96
Teaching, Seminar in College Teaching, 97
Telephone registration (RSVP), 59
Test of English as a Foreign Language
(TOEFL), 31, 94, 104, 111
Textile Arts and Costume Design, 195
under Design
Textile Science (see Fiber and Polymer
Science; Textiles; Textiles and Clothing)
Textiles, 425
Textiles and Clothing, 427–430
Theoretical Dynamics, Institute of, 17
TOEFL, (see Test of English as a Foreign
Language)
Tours, campus, 11
Toxicology (see Environmental Toxicology;
Medical Pharmacology and Toxicology;
Pharmacology and Toxicology; Molecular
Biosciences)
Transcultural and Environmental Health,
Institute of, 17
Transcripts, 68
Transfer
admission, 28–29, 30, 31
credit, 28
intercampus, 29
scholastic deficiencies, 69
to College of Engineering, 30, 85
Transfer Core Curriculum (TCC), 82–83
Transfer Student Services, 57
Transportation and parking, 36, 43
Transportation Technology and Policy,
430–431
Transportation planning (see Civil and
Environmental Engineering; Environmental
Policy Analysis and Planning; Mechanical
Engineering)
Transportation Studies, Institute of, 18
Tuition, 35, 454–455
Tutoring, 55
UC Agricultural Issues Center, 21
UC Davis Arboretum, 15
UC Davis Herbarium, 21
UC Davis Presents, 47
UC Davis Washington Center, 431
UC/CSU/Community College
Cross-Enrollment, 65
UC reciprocity, 82–83
UCD/CSU Sacramento Collaborative
Elementary Credential Program, 208
Units
limitations, 60, 83, 88
quarter to semester, 63
requirements, 81, 83, 84, 87
value (credit), 63
Unitrans, 43
University Extension, 65, 83, 85, 88
University of California, 10
University requirements for bachelor's
degree, 79–81
Urban planning/development (see Civil and
Environmental Engineering; Community
and Regional Development,
Environmental Horticulture and Urban
Forestry; Environmental Policy Analysis and
Planning; Environmental Studies)
Urology, 356
Variable-unit courses, 114
Vegetable Crops, 431–432
Veterans Affairs Office, 57
Veterinary Genetics Laboratory, 21
Veterinary Medicine, School of, 109–112, 132–134, calendar, 112
Veterinary Medicine Teaching and Research Center, 21
Visitors Center, 11
Viticulture and Enology, 434–437
Visas, 94

War-Peace Studies, 437
Washington Center, UC Davis, 431
Water quality/management (see Civil and Environmental Engineering; Environmental Policy Analysis and Planning; Hydrologic Sciences; Hydrology)
Water science (see Hydrologic Sciences; Hydrology; Soil and Water Science)
Web Registration, 59
Weed science (see Plant Biology)
Wildlife, Fish and Conservation Biology, 437–439

Wildland Resources Center, 21
Wines and wine-making (see Fermentation Science; Food Science and Technology; Microbiology; Viticulture and Enology)
Withdrawals, 36–37, 72
Women's Resources & Research Center, 57
Women and Gender Studies, 439–441
Work-learn (see Internship and Career Center)
Work-Study, 39

X-Ray Crystallographic Facility, 21

Zoology (see Evolution and Ecology)